WO2020250341A1 - 課金システム - Google Patents

課金システム Download PDF

Info

Publication number
WO2020250341A1
WO2020250341A1 PCT/JP2019/023291 JP2019023291W WO2020250341A1 WO 2020250341 A1 WO2020250341 A1 WO 2020250341A1 JP 2019023291 W JP2019023291 W JP 2019023291W WO 2020250341 A1 WO2020250341 A1 WO 2020250341A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
billing
power consumption
amount
air conditioner
Prior art date
Application number
PCT/JP2019/023291
Other languages
English (en)
French (fr)
Inventor
佑輝 西川
敏基 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/023291 priority Critical patent/WO2020250341A1/ja
Publication of WO2020250341A1 publication Critical patent/WO2020250341A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing

Definitions

  • the present invention relates to a billing system that calculates the billing amount of an air conditioner.
  • the air-conditioning charge for ventilation equipment is calculated based on the ratio of the floor area or volume of the air-conditioning area where the ventilation equipment is installed.
  • the operating time of the indoor unit provided in the air conditioner or the amount of heat exchanged by the indoor unit is approximately calculated, and the air conditioning charge is calculated based on the ratio. Will be done.
  • the air conditioning charging device first divides the total amount of heat supplied from the outdoor unit, which is a heat source, by the flow rate of the heat refrigerant passing through each indoor unit, and then divides the indoor unit. Calculate the heat consumption proportional division value for each. Next, the air-conditioning billing device calculates the billing amount to the billing destination based on the calculated heat consumption proportionally divided value.
  • the present invention has been made to solve such a problem, and an object of the present invention is to obtain a charging system capable of charging for water temperature maintenance control operation.
  • the billing system monitors the state of the air conditioner and the communication unit that receives the value of the electric energy of the air conditioner, and at the start and end of the water temperature maintenance control operation in the air conditioner. Is detected, and the value of the electric energy at the start and the end is acquired through the communication unit to obtain the difference, so that the first electric energy consumed during the water temperature maintenance control operation is obtained. It is provided with a state monitoring unit for calculating the first charge amount and a charge calculation unit for calculating the first charge amount based on the first power consumption amount calculated by the state monitoring unit.
  • billing related to water temperature maintenance control operation can be performed.
  • FIG. It is a block diagram which shows the structure of the air-conditioning system provided with the billing system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the internal structure of the billing system which concerns on Embodiment 1.
  • FIG. It is a flowchart which showed the processing flow of the billing system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the air-conditioning system provided with the billing system which concerns on Embodiment 4.
  • FIG. It is a block diagram which shows the structure of the air-conditioning system provided with the billing system which concerns on Embodiment 5.
  • the present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.
  • the present invention includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, in each figure, those having the same reference numerals are the same or corresponding to each other, which are common in the entire text of the specification.
  • FIG. 1 is a block diagram showing a configuration of an air conditioning system provided with a billing system according to the first embodiment.
  • the air conditioning system includes a centralized management system 1, one or more outdoor units 2, one or more repeaters 3, one or more indoor units 4, and a power monitoring device 5.
  • the centralized management system 1 constitutes a billing system.
  • the outdoor unit 2, the repeater 3, and the indoor unit 4 constitute an air conditioner.
  • the centralized management system 1 is communication-connected to the outdoor unit 2 and the power monitoring device 5.
  • the outdoor unit 2 is communication-connected to each of the repeaters 3.
  • Each of the repeaters 3 is communication-connected to one or more indoor units 4.
  • the indoor units 4A, 4B and 4C connected to the repeater 3A are installed in the tenant A, and the tenant B is connected to the repeater 3B. It is assumed that three indoor units 4D, 4E, and 4F are installed. However, which indoor units 4A to 4F should be allocated to each tenant can be freely selected as appropriate. For example, of the three indoor units 4A, 4B, and 4C connected to one repeater 3A, the indoor units 4A and 4B may be installed in the tenant A, and the indoor unit 4C may be installed in the tenant B.
  • the outdoor unit 2 supplies the thermal refrigerant to the repeaters 3A and 3B.
  • the thermal refrigerant for example, R410A or the like is used.
  • the outdoor unit 2 has a heat exchanger inside.
  • the heat exchanger of the outdoor unit 2 circulates a heat refrigerant inside, and exchanges heat between the heat refrigerant and the outdoor air.
  • the repeater 3 supplies a water refrigerant to the indoor unit 4.
  • the repeater 3 has a heat exchanger inside.
  • the heat exchanger of the repeater 3 exchanges heat between the heat refrigerant from the outdoor unit 2 and the water refrigerant.
  • the repeater 3 performs a water temperature maintenance control operation for maintaining the water temperature of the water refrigerant at night or the like.
  • the indoor unit 4 has a heat exchanger inside.
  • the heat exchanger of the indoor unit 4 circulates a water refrigerant inside, and exchanges heat between the water refrigerant and the air in the room to be air-conditioned.
  • the centralized management system 1 communicates with each of the outdoor unit 2, the repeater 3, and the indoor unit 4.
  • the centralized management system 1 acquires state data indicating the operating states of the outdoor unit 2, the repeater 3, and the indoor unit 4 from each of the outdoor unit 2, the repeater 3, and the indoor unit 4 by the communication. .. Further, the centralized management system 1 receives an operation input from the user and transmits the content of the operation input to the outdoor unit 2 and the indoor unit 4 as needed.
  • the power monitoring device 5 measures the electric energy values of the outdoor unit 2, the repeater 3, and the indoor unit 4 with a sensor such as a measuring instrument.
  • the centralized management system 1 acquires the electric energy values of the outdoor unit 2, the repeater 3, and the indoor unit 4 from the power monitoring device 5 by communicating with the power monitoring device 5.
  • the value of the electric energy measured by the electric power monitoring device 5 is a cumulative value. Therefore, when calculating the amount of power consumption consumed in a certain period, the value of the amount of power at the start of the period is subtracted from the value of the amount of power at the end of the period, and the amount of those powers is calculated. Find the difference between the values.
  • the centralized management system 1 stores the state data collected from each of the outdoor unit 2, the repeater 3, and the indoor unit 4 and the value of the electric energy collected from the power monitoring device 5 in the database unit 13, which will be described later. ..
  • FIG. 2 is a block diagram showing an internal configuration of the billing system according to the first embodiment.
  • the centralized management system 1 constituting the billing system includes a received data processing unit 11, a data analysis unit 12, a database unit 13, a billing calculation unit 14, a communication unit 15, and transmission data processing.
  • a unit 16, a state monitoring unit 17, and a display unit 18 are provided.
  • the communication unit 15 receives the electric energy value of the air conditioner from the electric power monitoring device 5. Specifically, the communication unit 15 receives the electric energy values of the outdoor unit 2, the repeater 3, and the indoor unit 4 from the power monitoring device 5.
  • the communication unit 15 receives the state data indicating the state of the air conditioner from the air conditioner. Specifically, the communication unit 15 receives state data indicating the states of the outdoor unit 2, the repeater 3, and the indoor unit 4 from each of the outdoor unit 2, the repeater 3, and the indoor unit 4. The communication unit 15 transmits the received state data to the reception data processing unit 11.
  • the received data processing unit 11 divides the state data received from the communication unit 15 into a content item and a data content, and then transmits the data to the data analysis unit 12.
  • the content item is information indicating the type of state data
  • the data content is various data indicating the details of the operating state.
  • the types of status data include "normal operation”, “stop”, and "during water temperature maintenance control”.
  • the data analysis unit 12 performs a shaping process for storing the content items and data contents of the state data received from the received data processing unit 11 in the database unit 13.
  • the database unit 13 stores the content items and data contents of the state data formatted by the data analysis unit 12. Further, the database unit 13 stores the value of the electric energy of the air conditioner received by the communication unit 15. Specifically, the database unit 13 stores the values of the electric energy of the outdoor unit 2, the repeater 3, and the indoor unit 4 received by the communication unit 15. Further, the database unit 13 stores the calculation result of the billing calculation unit 14.
  • the charge calculation unit 14 calculates the charge amount for each indoor unit 4 using the content items of the state data and the value of the electric energy stored in the database unit 13, and stores the charge amount in the database unit 13. Further, the charge calculation unit 14 totals the charge amounts of the indoor units 4 belonging to the tenants A and B for each of the tenants A and B, calculates the charge amount to be charged to the tenants A and B, and calculates the charge amount to be charged to the tenants A and B. Store in.
  • the billing calculation unit 14 periodically calculates the billing amount to be billed to tenants A and B for each preset period such as daily, monthly, and yearly.
  • the state monitoring unit 17 monitors the state of the air conditioner based on the state data received by the communication unit 15.
  • the status monitoring unit 17 periodically transmits a command for generating an event to the transmission data processing unit 16 in order to monitor the status of the outdoor unit 2, the repeater 3, and the indoor unit 4. ..
  • the transmission data processing unit 16 requests a status data from the outdoor unit 2, the repeater 3, and the indoor unit 4 via the communication unit 15. Send.
  • the outdoor unit 2, the repeater 3, and the indoor unit 4 receives the status request from the communication unit 15, it transmits its own status data to the communication unit 15 in response to the status request.
  • the display unit 18 displays the calculation result of the billing calculation unit 14 and various data stored in the database unit 13 on the display screen in response to the request from the user.
  • the display unit 18 includes a display device such as a display.
  • condition monitoring unit 17 and the charge calculation unit 14 will be further described.
  • the condition monitoring unit 17 monitors the state of the repeater 3 of the air conditioner and detects when the water temperature maintenance control operation in the repeater 3 starts and ends. Further, the condition monitoring unit 17 acquires the value of the electric energy at the start and the end of the water temperature maintenance control operation from the power monitoring device 5 via the communication unit 15 with respect to the repeater 3 and the outdoor unit 2. The condition monitoring unit 17 obtains the difference between the electric energy values at the start and end of the water temperature maintenance control operation for each of the repeater 3 and the outdoor unit 2, thereby consuming the power consumed during the water temperature maintenance control operation. Calculate the amount. The total value of the power consumption of the repeater 3 and the power consumption of the outdoor unit 2 during the water temperature maintenance control operation is called the first power consumption.
  • the billing calculation unit 14 calculates the first billing amount based on the first power consumption amount calculated by the condition monitoring unit 17. Further, the billing calculation unit 14 prorates the first billing amount at a fixed ratio set in advance for each indoor unit 4, and calculates the billing amount during the water temperature maintenance control operation for each indoor unit 4.
  • condition monitoring unit 17 acquires the value of the electric energy of the air conditioner via the communication unit 15 to calculate the second power consumption consumed by the air conditioner during the normal operation. Specifically, the condition monitoring unit 17 calculates the amount of power consumed during normal operation of the outdoor unit 2, the repeater 3, and the outdoor unit 2. The total value of the power consumption of the outdoor unit 2, the power consumption of the repeater 3, and the power consumption of the outdoor unit 2 during normal operation is referred to as a second power consumption.
  • the charge calculation unit 14 calculates the second charge amount based on the second power consumption amount calculated by the condition monitoring unit 17. In addition, the charge calculation unit 14 prorates the second charge amount according to the usage ratio of each indoor unit 4, and calculates the charge amount during normal operation for each indoor unit 4.
  • condition monitoring unit 17 acquires the value of the electric energy of the air conditioner via the communication unit 15 to calculate the third power consumption consumed by the air conditioner during the standby operation. Specifically, the condition monitoring unit 17 calculates the amount of power consumed during the standby operation of the outdoor unit 2, the repeater 3, and the outdoor unit 2. The total value of the power consumption of the outdoor unit 2, the power consumption of the repeater 3, and the power consumption of the outdoor unit 2 during the standby operation is referred to as a third power consumption.
  • the billing calculation unit 14 calculates the third billing amount based on the third power consumption amount calculated by the condition monitoring unit 17. In addition, the charge calculation unit 14 prorates the third charge amount at a fixed ratio set in advance for each indoor unit 4, and calculates the charge amount during standby operation for each indoor unit 4.
  • Each function in the centralized management system 1 is realized by a processing circuit.
  • the processing circuit that realizes each function may be dedicated hardware or a processor that executes a program stored in the memory.
  • the processing circuit is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array). , Or a combination of these.
  • the functions of the received data processing unit 11, the data analysis unit 12, the database unit 13, the billing calculation unit 14, the communication unit 15, the transmission data processing unit 16, and the status monitoring unit 17 are realized by individual processing circuits. Alternatively, the functions of each part may be collectively realized by a processing circuit.
  • the processing circuit is a processor
  • the functions of the received data processing unit 11, the data analysis unit 12, the database unit 13, the billing calculation unit 14, the communication unit 15, the transmission data processing unit 16, and the status monitoring unit 17 are , Software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the processor realizes the functions of each part by reading and executing the program stored in the memory. That is, when the centralized management system 1 is executed by the processing circuit, the received data processing step, the data analysis step, the data storage step, the billing calculation step, the communication step, the transmission data processing step, and the state monitoring step are the result. It has a memory for storing programs that will be executed in.
  • the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Memory), and EEPROM (Electrically Memory).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically Memory
  • volatile semiconductor memory is applicable.
  • magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like also fall under the category of memory.
  • the processing circuit can realize the functions of the above-mentioned parts by hardware, software, firmware, or a combination thereof.
  • FIG. 3 is a flowchart showing a processing flow of the billing system according to the first embodiment.
  • FIG. 4 is a diagram showing a state determination table 20 for determining the state of the repeater 3 according to the first embodiment.
  • the state determination table 20 of FIG. 4 is a table for the state monitoring unit 17 to determine the state of the repeater 3 from the transition of the state of the repeater 3.
  • the vertical axis is the “previous state” and the horizontal axis is the “current state”.
  • the state monitoring unit 17 determines the state of the repeater 3 by using the state determination table 20 of FIG. For example, if the "previous state" of the repeater 3 is "water temperature maintenance control" and the "current state” is "stopped”, the state monitoring unit 17 refers to the state determination table 20 and repeats the repeater 3.
  • the state of 3 is determined to be the state in which the water temperature maintenance control operation is "finished". If the "previous state” of the repeater 3 is "normal operation” and the “current state” is "water temperature maintenance control in progress", the condition monitoring unit 17 determines that the state of the repeater 3 is water temperature maintenance control. Determine that the operation has been “started”. If the "previous state” of the repeater 3 is “during water temperature maintenance control” and the “current state” is “during water temperature maintenance control", the condition monitoring unit 17 indicates that the state of the repeater 3 is the water temperature. It is determined that the maintenance control operation is "continued".
  • the condition monitoring unit 17 has "stopped” the operation of the repeater 3 in the state of the repeater 3. It is determined that the state, that is, the power is turned off. As described above, in the state determination table 20, the state of the repeater 3 is defined in advance for each of the “previous state” and the “current state” of the repeater 3.
  • step S1 the state monitoring unit 17 acquires the "previous state” and the "current state” of the repeater 3 from the state data stored in the database unit 13. Using the acquired “previous state” and “current state”, the state monitoring unit 17 sets the state of the repeater 3 to "normal operation” and "stop” with reference to the state determination table 20 of FIG. , "Start”, “Continue”, “End” to decide.
  • step S2 the condition monitoring unit 17 determines whether or not the state of the repeater 3 is the state in which the water temperature maintenance control operation has been completed. That is, the condition monitoring unit 17 determines whether or not the state of the repeater 3 determined in step S1 is the “end” of FIG. If the state of the repeater 3 determined in step S1 is "finished”, the state monitoring unit 17 shifts to step S3. On the other hand, if the state of the repeater 3 determined in step S1 is not “finished", the state monitoring unit 17 shifts to step S6.
  • step S3 the state monitoring unit 17 updates the integrated value of the state data and proceeds to step S4. Specifically, the state monitoring unit 17 updates the state data of the "current state” to the "previous state” for next use.
  • the state data is updated each time the flow of FIG. 3 is executed, and is sequentially integrated. Therefore, the integrated value of the state data is stored in the database unit 13 as a history of the state data.
  • steps S1 and S2 can be performed if there are only two state data, the "current state” and the "previous state", the data before that can be deleted from the database unit 13. Good.
  • step S4 the condition monitoring unit 17 determines the value of the electric energy at the time when the repeater 3 ends the water temperature maintenance control operation for each of the outdoor unit 2 and the repeater 3 via the communication unit 15 and the power monitoring device 5. Get from. Further, the condition monitoring unit 17 acquires the value of the electric energy at the time when the repeater 3 starts the water temperature maintenance control operation for each of the outdoor unit 2 and the repeater 3 from the database unit 13. The state monitoring unit 17 maintains the water temperature for each of the outdoor unit 2 and the repeater 3 from the difference between the value of the electric energy at the time when the water temperature maintenance control operation is finished and the value of the electric energy at the time when the water temperature maintenance control operation is started. The value of the power consumption consumed during the controlled operation is obtained, and the process proceeds to step S5.
  • step S5 the state monitoring unit 17 stores the integrated value of the state data updated in step S3 and the value of the power consumption amount obtained in step S4 in the database unit 13.
  • step S6 the condition monitoring unit 17 determines whether or not the state of the repeater 3 is a state in which the water temperature maintenance control operation is continued. That is, the condition monitoring unit 17 determines whether or not the state of the repeater 3 determined in step S1 is “continuation” in FIG. If the state of the repeater 3 determined in step S1 is "continuation”, the state monitoring unit 17 proceeds to step S7. On the other hand, if the state of the repeater 3 determined in step S1 is not “continuation”, the state monitoring unit 17 shifts to step S10.
  • step S7 the state monitoring unit 17 updates the integrated value of the state data and proceeds to step S8. Specifically, as in step S3, the state monitoring unit 17 updates the state data of the "current state” to the "previous state” for next use.
  • step S8 the state monitoring unit 17 updates the electric energy value based on the electric energy value acquired from the electric energy monitoring device 5 by the communication unit 15, and proceeds to step S9.
  • step S9 the state monitoring unit 17 stores the integrated value of the state data updated in step S7 and the electric energy updated in step S8 in the database unit 13.
  • step S10 the condition monitoring unit 17 determines whether or not the state of the repeater 3 is the state in which the water temperature maintenance control is started. That is, the condition monitoring unit 17 determines whether or not the state of the repeater 3 determined in step S1 is the “start” of FIG. If the state of the repeater 3 determined in step S1 is "start”, the state monitoring unit 17 shifts to step S11. On the other hand, if the state of the repeater 3 determined in step S1 is not "start", the state monitoring unit 17 ends the process as it is.
  • step S11 the condition monitoring unit 17 starts accumulating the state data and proceeds to step S12. Specifically, the state monitoring unit 17 updates the state data of the "current state” to the "previous state” for next use.
  • step S12 the condition monitoring unit 17 determines the value of the electric energy at the time when the repeater 3 starts the water temperature maintenance control for each of the outdoor unit 2 and the repeater 3 from the power monitoring device 5 via the communication unit 15. Acquire and proceed to step S13.
  • step S13 the state monitoring unit 17 stores the integrated value of the state data in step S11 and the value of the electric energy acquired in step S8 in the database unit 13.
  • the database unit 13 stores the value of the power consumption during the water temperature maintenance control of the repeater 3 for each of the outdoor unit 2 and the repeater 3.
  • the operation modes of the outdoor unit 2, the repeater 3, and the indoor unit 4 include standby operation in addition to normal operation and water temperature maintenance control operation.
  • the operation of determining whether or not the outdoor unit 2, the repeater 3, and the indoor unit 4 are in standby operation is performed by the same process as the flow of FIG. 3 for determining whether or not the water temperature maintenance control operation is in progress. It is possible. Therefore, detailed description thereof will be omitted here. In this way, by determining whether or not the outdoor unit 2, the repeater 3, and the indoor unit 4 are in standby operation from the state data of the outdoor unit 2, the repeater 3, and the indoor unit 4, the standby operation is performed.
  • the power consumption from the start of the operation to the end of the standby operation can be stored in the database unit 13.
  • the database unit 13 has the total amount of power consumed from the time when the power of the outdoor unit 2, the repeater 3, and the indoor unit 4 is turned on to the time when the power is turned off by normal processing. The value is also remembered. Therefore, by subtracting the value of the power consumption during the water temperature maintenance control operation and the value of the power consumption during the standby operation from the total value, the outdoor unit 2, the repeater 3, and the indoor unit 4 are in normal operation. Power consumption can be calculated.
  • the power consumption during normal operation, the power consumption during water temperature maintenance control operation, and the power consumption during standby operation are all determined by the usage ratio of the indoor unit 4.
  • the billing amount is calculated by apportioning each of the four. Therefore, the air conditioning charge is not charged to the indoor unit 4 that is not operating at all.
  • the outdoor unit 2 and the repeater 3 are commonly installed with respect to the indoor unit 4. Therefore, the power consumption of the repeater 3 during the water temperature maintenance control and the power consumption of the outdoor unit 2 and the repeater 3 during the standby operation should be fairly charged to each indoor unit 4.
  • the centralized management system 1 has the first power consumption during the water temperature maintenance control operation, the second power consumption during the normal operation, and the second power consumption during the standby operation.
  • the power consumption of 3 is distinguished and stored in the database unit 13.
  • the centralized management system 1 calculates the billing amount by proportionally dividing the second power consumption amount during normal operation by the usage ratio of the electric energy amount of each indoor unit 4 for each indoor unit 4.
  • the centralized management system 1 has a fixed ratio preset for each indoor unit 4 for each indoor unit 4. Calculate the billing amount by dividing it into. Therefore, even for the indoor unit 4 that is not operating at all, the power consumption during the water temperature maintenance control and the power consumption during the standby operation are charged.
  • the power consumption used by the outdoor unit 2 is a mixture of the power consumption during normal operation and the power consumption during water temperature maintenance control operation.
  • the power consumption during the water temperature maintenance control operation can be obtained separately for each of the repeaters 3A and 3B.
  • the power consumption of the outdoor unit 2 during the water temperature maintenance control operation can be calculated as follows based on the ratio of the power consumption of the repeaters 3A and 3B.
  • the calculation formula for calculating the power consumption during the water temperature maintenance control operation of the outdoor unit 2 is the following formula (1). ..
  • the power consumption of the outdoor unit 2 X, the power consumption of the repeater 3A Y A, and the power consumption amount Y B of the repeater 3B is the following formula (1).
  • the calculation formula is the following formula (3).
  • the power consumption during the normal operation, the power consumption during the water temperature maintenance control operation, and the power consumption during the standby operation are calculated for each of the outdoor unit 2 and the repeater 3. , Stored in the database unit 13. Further, since the indoor unit 4 has no power consumption during the water temperature maintenance control operation, the power consumption during the normal operation and the power consumption during the standby operation are calculated and stored in the database unit 13.
  • the charge calculation unit 14 needs to charge the tenants A and B who are using the indoor unit 4. Therefore, the billing calculation unit 14 prorates the power consumption during normal operation for each of tenants A and B at a ratio according to the usage ratio by any of the following methods (a) to (g). And calculate the billing amount.
  • Example of calculation method of air conditioning charge in air conditioning system (A) Calculation method based on operating time x indoor functional power. (B) A calculation method based on thermo-ON time x indoor functional ability. (C) Calculation method based on integrated driving ability x indoor functional ability. (D) Calculation method based on the integrated value of the amount of refrigerant ⁇ indoor functional force. (E) Calculation method based on indoor functional power. (F) Calculation method based on the area ratio of the air-conditioned area. In this case, the power consumption is always apportioned at a fixed ratio. (G) Calculation method based on the volume ratio of the air-conditioned area. In this case, the power consumption is always apportioned at a fixed ratio.
  • the power consumption during the water temperature maintenance control operation and the power consumption during the standby operation are combined and proportionally divided at a fixed ratio by any of the above methods (e) to (g). Perform monetary calculation.
  • each parameter is defined as follows. However, here, for simplification of the description, only the repeater 3A is used, and the three indoor units 4 connected to the repeater 3A are referred to as indoor units 4A, 4B, and 4C, respectively.
  • the power consumptions X, Y, and Z of the outdoor unit 2, the repeater 3A, and the indoor units 4A to 4C are represented by the following equations (4) to (6), respectively.
  • the power consumption amounts M1, M2, and M3 to be charged for the indoor units 4A to 4C are indicated by the following (7) to (9), respectively.
  • Power consumption (M1) subject to billing for indoor unit 4A Aop x E1 / Eall + (Awm + Asp) x P1 / Pall + Bop ⁇ E1 / Eall + (Bwm + Bsp) ⁇ P1 / Pall + Cop ⁇ E1 / Eall + (Cwm + Csp) ⁇ P1 / Pall (7)
  • Power consumption (M2) to be charged for indoor unit 4B Aop x E2 / Eall + (Awm + Asp) x P2 / Pall + Bop ⁇ E2 / Eall + (Bwm + Bsp) ⁇ P2 / Pall + Cop ⁇ E2 / Eall + (Cwm + Csp) ⁇ P2 / Pall (8)
  • the charge calculation unit 14 calculates the power consumption during normal operation by the usage ratio of the power amount for each indoor unit 4. Divide each indoor unit 4 proportionally.
  • the billing calculation unit 14 determines the power consumption during water temperature maintenance control and the power consumption during standby at a fixed ratio preset for each indoor unit 4. The power consumption is apportioned for each indoor unit 4.
  • the charge calculation unit 14 adds the power consumption of all the indoor units 4 installed in the tenants A and B. Then, the power consumption for each tenant A and B is calculated. For example, when the indoor units 4A to 4C are installed in the tenant A, the power consumption to be charged to the tenant A is the total value of the above power consumptions M1, M2, and M3. The same applies to tenant B.
  • the billing calculation unit 14 calculates the billing amount to be charged to each of the tenants A and B based on the power consumption of the billing target calculated for each of the tenants A and B.
  • the calculation result is stored in the database unit 13 and can be retrieved by the user at any time. That is, the user can display the calculation result on the display screen of the display unit 18. Further, when the form system is connected to the centralized management system 1, the form system can access the database unit 13 of the centralized management system 1 to use the calculation result in the form system.
  • the power consumption during the water temperature maintenance control operation can be obtained by determining whether or not the repeater 3 is in the water temperature maintenance control operation. As a result, it becomes possible to calculate the charge amount related to the power consumption during the water temperature maintenance control operation.
  • the billing amount can be calculated for the power consumption during normal operation.
  • the power consumption during normal operation can be apportioned to each indoor unit 4 at a usage ratio, and the power consumption during water temperature maintenance control operation can be apportioned to each indoor unit 4 at a fixed ratio. By doing so, the power consumption during the water temperature maintenance control operation is charged even for the indoor unit 4 that is stopped, so that the proportional division calculation without unfairness is realized among the indoor units 4.
  • the centralized management system 1 has a billing calculation unit 14 for apportioning the power consumption, but the present invention is not limited to that case.
  • the outdoor unit 2, the repeater 3, or the indoor unit 4 may be provided with a part or all of the functions for apportioning the power consumption.
  • the first power consumption during the water temperature maintenance control operation is proportionally divided at a fixed ratio, but the present invention is not limited to this, and the first power consumption during the water temperature maintenance control operation is defined. It may be proportionally divided by the usage ratio.
  • the third power consumption during the standby operation is proportionally divided by a fixed ratio, but the present invention is not limited to this, and the third power consumption during the standby operation is proportionally divided by the usage ratio. You may try to do it. Further, the third power consumption during the standby operation may not be charged.
  • Embodiment 2 In the first embodiment described above, an example in which the power consumption during the water temperature maintenance control operation is apportioned by each indoor unit 4 has been described, but the present invention is not limited to this. In the second embodiment, some examples of the case where the power consumption during the water temperature maintenance control operation is not apportioned by each indoor unit 4 will be described below.
  • the charge calculation unit 14 tells the indoor unit 4 the amount of power consumed during the water temperature maintenance control operation. Full charge.
  • the charge calculation unit 14 is in the water temperature maintenance control operation for the tenant A in which the indoor unit 4A is installed. Charge the full amount of power consumption.
  • the power consumption amounts M1, M2, and M3 to be charged for the indoor units 4A to 4C in this case are represented by the following formulas (10) to (12), respectively. In the formulas (10) to (12), the indoor unit 4A is fully charged for the power consumption during the standby operation.
  • Power consumption (M1) subject to billing for indoor unit 4A Aop x E1 / Eall + Awm + Asp + Bop ⁇ E1 / Eall + Bwm + Bsp + Cop ⁇ E1 / Eall + Cwm + Csp (10)
  • the charge calculation unit 14 determines the indoor unit 4 that first operates after the water temperature maintenance operation is completed. Therefore, the full amount of power consumption during water temperature maintenance control operation is charged. For example, if none of the indoor units 4 is used during the nighttime water temperature maintenance control of the repeater 3A or 3B, and the indoor unit 4A is used for the first time on the next day, the charge calculation unit 14 causes the indoor unit 4A The tenant A in which is installed will be charged the full amount of power consumption during the water temperature maintenance control operation. In this case, the power consumption amounts M1, M2, and M3 of the indoor units 4A to 4C to be charged are the same as the above equations (10) to (12), respectively.
  • one indoor unit 4 is charged in full for the power consumption during the water temperature maintenance control operation, so that complicated calculation is not performed. You can calculate the billing amount. In addition, by notifying the user of such a billing method in advance, it is possible to raise the user's awareness of energy saving.
  • Embodiment 3 the power consumption Aop during the normal operation of the outdoor unit 2, the power consumption Awm during the water temperature maintenance control of the outdoor unit 2, and the standby power consumption of the outdoor unit 2 shown in the first embodiment.
  • Amount Asp power consumption Bop during normal operation of repeater 3A
  • power consumption Bwm during water temperature maintenance control of repeater 3A
  • power consumption Bsp during standby of repeater 3A
  • normal of all indoor units 4A-4C An example of a method of calculating the power consumption Cop during operation and the standby power consumption Csp of the entire indoor units 4A to 4C will be described.
  • Asp per unit of indoor unit 4 Standby power of outdoor unit 2 x proportional division period x (indoor functional power / ⁇ (indoor functional power)) (13)
  • Awm per unit of indoor unit 4 Water temperature maintenance control electric energy of outdoor unit 2 ⁇ (Water temperature maintenance control implementation period / ⁇ (Water temperature maintenance control implementation period)) ⁇ (Indoor functional power / ⁇ (Indoor functional power)) (14)
  • Aop per unit of indoor unit 4 (Weighing value of outdoor unit 2- ( ⁇ (Asp + Awm))) ⁇ (Indoor functional power x operating amount / ⁇ (indoor functional power x operating amount)) (15)
  • the power consumption Bsp during standby operation of the repeater 3, the power consumption Bwm during water temperature maintenance control operation of the repeater 3, and the power consumption Bop during normal operation of the repeater 3 per unit of the indoor unit 4 are. , Represented by the following equations (16) to (18), respectively.
  • Bwm per unit of indoor unit 4 Water temperature maintenance control electric energy of repeater 3 ⁇ (indoor functional power / ⁇ (indoor functional power)) (17)
  • Bop per unit of indoor unit 4 (Measurement value of repeater 3- ( ⁇ (Bsp + Bwm))) ⁇ (Indoor functional power x operating amount / ⁇ (indoor functional power x operating amount)) (18)
  • the power consumption Csp during standby operation of the indoor unit 4 and the power consumption Bop during normal operation of the repeater 3 are represented by the following equations (19) to (20), respectively.
  • Cop per unit of indoor unit 4 (Measuring value of indoor unit 4- ( ⁇ Csp)) ⁇ ((Indoor unit fan power consumption ⁇ fan operating time) / ⁇ (Indoor unit fan power consumption x fan operating time)) (20)
  • FIG. 5 is a block diagram showing a configuration of an air conditioning system provided with the billing system according to the fourth embodiment.
  • the air conditioning system includes a centralized management system 1, one or more outdoor units 2, one or more repeaters 3, one or more indoor units 4, and a power monitoring device 5.
  • the centralized management system 1 constitutes a billing system.
  • the difference between the first embodiment and the fourth embodiment is that, as shown in FIG. 5, one or more repeaters 3 are mounted in the outdoor unit 2 in the fourth embodiment. is there.
  • the centralized management system 1 is connected to the outdoor unit 2 and the power monitoring device 5.
  • Each repeater 3 mounted on the outdoor unit 2 is connected to one or more indoor units 4.
  • the billing system according to the fourth embodiment also performs the same processing as the billing system of the first to third embodiments to perform the billing, the same effect as that of the first embodiment or the second embodiment can be obtained. Needless to say.
  • FIG. 6 is a block diagram showing a configuration of an air conditioning system provided with the billing system according to the fifth embodiment.
  • the air conditioning system includes a centralized management system 1, one or more outdoor units 2, one or more repeaters 3, one or more indoor units 4, and a heat quantity monitoring device 6.
  • the centralized management system 1 constitutes a billing system.
  • the difference between the fourth embodiment and the fifth embodiment is that in the fifth embodiment, as shown in FIG. 6, a heat quantity monitoring device 6 is provided instead of the power monitoring device 5 of FIG. That is the point. In the fifth embodiment, charging is performed based on the amount of heat instead of the amount of power consumption.
  • the centralized management system 1 is connected to the outdoor unit 2 and the heat quantity monitoring device 6.
  • the power monitoring device 5 measures the electric energy values of the outdoor unit 2, the repeater 3, and the indoor unit 4 with a sensor such as a measuring instrument.
  • the heat quantity monitoring device 6 measures the heat quantity values of the outdoor unit 2, the repeater 3, and the indoor unit 4 with a sensor such as a temperature sensor.
  • the temperature sensors are provided on the input side and the output side of the heat exchangers provided in the outdoor unit 2, the repeater 3, and the indoor unit 4, respectively.
  • the temperature sensor detects the temperature of the thermal refrigerant or water refrigerant flowing in and out of the heat exchanger. The amount of heat exchanged can be obtained from the difference in temperature between the thermal refrigerant and the water refrigerant detected by the temperature sensor.
  • the condition monitoring unit 17 acquires the calorific value of the outdoor unit 2, the repeater 3, and the indoor unit 4 from the calorific value monitoring device 6 by communicating with the calorific value monitoring device 6.
  • condition monitoring unit 17 monitors the state of the repeater 3 by processing the flow of FIG. 3 as in the first embodiment, and at the start and end of the water temperature maintenance control operation in the repeater 3. And detect. At this time, the condition monitoring unit 17 calculates the amount of heat exchanged during the water temperature maintenance control operation by acquiring the amount of heat at the start and end of the water temperature maintenance control operation via the communication unit 15. The charge calculation unit 14 calculates the fourth charge amount based on the amount of heat calculated by the condition monitoring unit 17.
  • the state monitoring unit 17 obtains heat during normal operation and heat during standby operation from the heat amount monitoring device 6 via the communication unit 15, so that heat is generated during normal operation and standby operation. Calculate the amount of heat exchanged.
  • the charge calculation unit 14 calculates each charge amount based on the amount of heat calculated by the condition monitoring unit 17.
  • the fifth embodiment has been described as a modified example of the fourth embodiment shown in FIG. 5, the embodiment 5 is not limited to this case, and may be a modified example of the first embodiment shown in FIG. In that case, in the configuration of FIG. 1, the heat quantity monitoring device 6 of FIG. 6 is provided instead of the power monitoring device 5.
  • FIG. 7 is a block diagram showing a configuration of an air conditioning system provided with the billing system according to the sixth embodiment.
  • the air conditioning system includes a centralized management system 1, one or more outdoor units 2, one or more repeaters 3, one or more indoor units 4, and a flow rate monitoring device 7.
  • the centralized management system 1 constitutes a billing system.
  • the difference between the fourth embodiment and the sixth embodiment is that in the sixth embodiment, as shown in FIG. 7, a flow rate monitoring device 7 is provided instead of the power monitoring device 5 of FIG. That is the point.
  • charging is performed based on the flow rate of the refrigerant instead of the power consumption.
  • the centralized management system 1 is connected to the outdoor unit 2 and the flow rate monitoring device 7.
  • the power monitoring device 5 measures the electric energy values of the outdoor unit 2, the repeater 3, and the indoor unit 4 with a sensor such as a measuring instrument.
  • the flow rate monitoring device 7 measures the flow rate values of the refrigerants of the outdoor unit 2, the repeater 3, and the indoor unit 4 with a sensor such as a flow rate sensor.
  • the flow rate sensors are provided on the input side and the output side of the heat exchangers provided in the outdoor unit 2, the repeater 3, and the indoor unit 4, respectively.
  • the flow rate sensor detects the flow rate of the thermal refrigerant or water refrigerant flowing in and out of the heat exchanger. From the flow rate of the hot refrigerant or water refrigerant detected by the flow rate sensor, the flow rate of the hot refrigerant or water refrigerant circulated in the outdoor unit 2, the repeater 3, and the indoor unit 4 can be obtained.
  • the condition monitoring unit 17 acquires the value of the flow rate of the hot refrigerant or the water refrigerant circulated in the outdoor unit 2, the repeater 3, and the indoor unit 4 from the flow rate monitoring device 7 by communicating with the flow rate monitoring device 7. To do.
  • condition monitoring unit 17 monitors the state of the repeater 3 by processing the flow of FIG. 3 as in the first embodiment, and at the start and end of the water temperature maintenance control operation in the repeater 3. And detect. At this time, the condition monitoring unit 17 acquires the flow rates at the start and end of the water temperature maintenance control operation via the communication unit 15, so that the flow rate of the thermal refrigerant or the water refrigerant circulated during the water temperature maintenance control operation Is calculated.
  • the charge calculation unit 14 calculates the fifth charge amount based on the flow rate calculated by the condition monitoring unit 17.
  • the state monitoring unit 17 acquires the flow rate of the hot refrigerant or the water refrigerant during the normal operation and the flow rate of the hot refrigerant or the water refrigerant during the standby operation from the flow rate monitoring device 7 via the communication unit 15. By doing so, the flow rates during normal operation and standby operation are calculated.
  • the charge calculation unit 14 calculates each charge amount based on the flow rate calculated by the condition monitoring unit 17.
  • the sixth embodiment has been described as a modified example of the fourth embodiment shown in FIG. 5, it is not limited to this case, and may be a modified example of the first embodiment shown in FIG. In that case, in the configuration of FIG. 1, the flow rate monitoring device 7 of FIG. 7 is provided instead of the power monitoring device 5.
  • FIG. 8 is a partial block diagram showing a configuration of an air conditioning system provided with the billing system according to the seventh embodiment.
  • the repeater 3, the indoor unit 4, and the power monitoring device 5 are not shown, so refer to FIG. 1 for these.
  • the air conditioning system includes a centralized management system 1, one or more outdoor units 2, one or more repeaters 3, one or more indoor units 4, and a power monitoring device 5. doing.
  • the centralized management system 1 is connected to the outdoor unit 2 as in the first embodiment.
  • the outdoor unit 2 is connected to the power monitoring device 5 and each repeater 3.
  • Each repeater 3 is connected to one or more indoor units 4.
  • the difference between the first embodiment and the seventh embodiment is that, as shown in FIG. 8, in the seventh embodiment, a part of the components of the centralized management system 1 shown in FIG. 1 is the outdoor unit 2. It is a point that is installed in. Specifically, as shown in FIG. 8, the centralized management system 1 includes a received data processing unit 11, a data analysis unit 12, a database unit 13, a billing calculation unit 14, a communication unit 19, and a display unit 18. And have. Further, the outdoor unit 2 includes a communication unit 15 and a condition monitoring unit 17. The communication unit 19 communicates between the communication unit 15 and the received data processing unit 11. Therefore, in the seventh embodiment, the reception data processing unit 11 receives the data from the communication unit 15 via the communication unit 19. In the seventh embodiment, the centralized management system 1 and the outdoor unit 2 constitute a billing system.
  • each unit of the received data processing unit 11, the data analysis unit 12, the database unit 13, the billing calculation unit 14, the communication unit 15, the transmission data processing unit 16, and the condition monitoring unit 17 is an embodiment. Since it is the same as 1, the description thereof will be omitted here.
  • the same processing as that of the centralized management system 1 of the first embodiment or the second embodiment is performed to charge, so that the centralized management system 1 is the same as the first embodiment or the second embodiment. Needless to say, the effect of
  • the heat quantity monitoring device 6 may be provided instead of the power monitoring device 5.
  • the flow rate monitoring device 7 may be provided instead of the power monitoring device 5.
  • 1 Centralized management system 2 Outdoor unit, 3,3A, 3B repeater, 4,4A, 4B, 4C, 4D, 4E, 4F Indoor unit, 5 Power monitoring device, 6 Heat amount monitoring device, 7 Flow rate monitoring device, 11 Reception Data processing unit, 12 data analysis unit, 13 database unit, 14 billing calculation unit, 15 communication unit, 16 transmission data processing unit, 17 status monitoring unit, 18 display unit, 19 communication unit, 20 status determination table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

課金システムは、空気調和装置の電力量の値を受信する通信部と、空気調和装置の状態を監視して、空気調和装置における水温維持制御運転の開始時と終了時とを検出するとともに、開始時と終了時との電力量の値を通信部を介して取得して差分を求めることで水温維持制御運転中に消費された第1の消費電力量を算出する、状態監視部と、状態監視部が算出した第1の消費電力量に基づいて第1の課金額を計算する課金計算部とを備えている。

Description

課金システム
 本発明は、空気調和装置の課金額の計算を行う課金システムに関するものである。
 一般的な空調システムの課金方法として、換気機器の空調料金は、換気機器が設置されている空調エリアの床面積または容積などの割合に基づいて課金額が計算される。
 また、空気調和装置の場合には、空気調和装置に設けられた室内機の運転時間または室内機が熱交換した熱量などを近似的に計算し、その割合に基づいて空調料金の課金額が計算される。
 例えば特許文献1に記載の空調課金システムにおいては、空調課金装置が、まず、熱源である室外機から供給される全熱量を、各室内機を通過した熱冷媒の流量で按分して、室内機ごとに消費熱量按分値を算出する。次に、空調課金装置は、算出した消費熱量按分値に基づいて請求先への課金額を算出する。
特開2018-185140号公報
 昨今、水を主体とする熱冷媒を用いる空調システムが提案されている。この種の空調システムにおいては、熱冷媒の凍結を防止するために、熱冷媒の水温を維持させる水温維持制御運転を実施する。
 しかしながら、上記の特許文献1に記載の従来の空調課金方法では、空調システムが水温維持制御運転を行うことを意図していないため、水温維持制御運転中の消費熱量を区別して課金することができないという課題があった。
 本発明は、かかる課題を解決するためになされたものであり、水温維持制御運転に関する課金を行うことが可能な課金システムを得ることを目的とする。
 本発明に係る課金システムは、空気調和装置の電力量の値を受信する通信部と、前記空気調和装置の状態を監視して、前記空気調和装置における水温維持制御運転の開始時と終了時とを検出するとともに、前記開始時と前記終了時との前記電力量の値を前記通信部を介して取得して差分を求めることで前記水温維持制御運転中に消費された第1の消費電力量を算出する、状態監視部と、前記状態監視部が算出した前記第1の消費電力量に基づいて第1の課金額を計算する課金計算部とを備えたものである。
 本発明に係る課金システムでは、水温維持制御運転に関する課金を行うことができる。
実施の形態1に係る課金システムが設けられた空調システムの構成を示すブロック図である。 実施の形態1に係る課金システムの内部構成を示すブロック図である。 実施の形態1に係る課金システムの処理の流れを示したフローチャートである。 実施の形態1に係る中継器の状態を決定する状態決定テーブルを示す図である。 実施の形態4に係る課金システムが設けられた空調システムの構成を示すブロック図である。 実施の形態5に係る課金システムが設けられた空調システムの構成を示すブロック図である。 実施の形態6に係る課金システムが設けられた空調システムの構成を示すブロック図である。 実施の形態7に係る課金システムが設けられた空調システムの構成を示す部分ブロック図である。
 以下、本発明に係る課金システムの実施の形態について図面を参照して説明する。本発明は、以下の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々に変形することが可能である。また、本発明は、以下の実施の形態に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はそれに相当するものであり、これは明細書の全文において共通している。
 実施の形態1.
 図1は、実施の形態1に係る課金システムが設けられた空調システムの構成を示すブロック図である。図1に示すように、空調システムは、集中管理システム1と、1以上の室外機2と、1以上の中継器3と、1以上の室内機4と、電力監視装置5とを有している。実施の形態1において、集中管理システム1は、課金システムを構成している。また、室外機2、中継器3、および、室内機4は、空気調和装置を構成している。
 図1に示すように、集中管理システム1は、室外機2と電力監視装置5とに通信接続されている。室外機2は、中継器3のそれぞれに通信接続されている。中継器3のそれぞれは、1以上の室内機4に通信接続されている。
 なお、図1においては、室外機2の台数が1で、中継器3の台数が2で、室内機4の台数が6の場合を例に挙げて説明しているが、これらの台数の値は一例であって、これらの値に限定されるものではない。
 しかしながら、以下では、説明を簡略化させるために、中継器3が2台設置されている場合を例に挙げて説明する。また、2台の中継器3を区別する場合は、一方を中継器3Aと呼び、他方を中継器3Bと呼ぶこととする。さらに、中継器3Aに対して3台の室内機4が接続され、中継器3Bに対して3台の室内機4が接続されていることとする。中継器3Aに接続された3台の室内機4を区別する場合は、それぞれ、室内機4A、4B、4Cと呼ぶこととする。同様に、中継器3Bに接続された3台の室内機4を区別する場合は、それぞれ、室内機4D、4E、4Fと呼ぶこととする。また、2つのテナントA、Bが有り、テナントA内には、中継器3Aに接続された3台の室内機4A、4B、4Cが設置され、テナントB内には、中継器3Bに接続された3台の室内機4D、4E、4Fが設置されていることとする。ただし、各テナントに対して、どの室内機4A~4Fを割り振るかは、適宜自由に選択できる。例えば、1つの中継器3Aに接続された3台の室内機4A、4B、4Cのうち、室内機4Aおよび4BがテナントAに設置され、室内機4CがテナントBに設置されていてもよい。
 室外機2は、中継器3A、3Bに対して熱冷媒を供給する。熱冷媒としては、例えばR410Aなどを用いる。室外機2は、内部に、熱交換器を有している。室外機2の熱交換器は、内部に熱冷媒を流通させ、熱冷媒と室外の空気との熱交換を行う。
 中継器3は、室内機4に対して水冷媒を供給する。中継器3は、内部に、熱交換器を有している。中継器3の熱交換器は、室外機2からの熱冷媒と水冷媒との熱交換を行う。中継器3は、水冷媒の凍結を防止するために、夜間などに、水冷媒の水温を維持させる水温維持制御運転を行う。
 室内機4は、内部に、熱交換器を有している。室内機4の熱交換器は、内部に水冷媒を流通させ、水冷媒と空調対象となる室内の空気との熱交換を行う。
 集中管理システム1は、室外機2、中継器3、および、室内機4のそれぞれと通信を行う。集中管理システム1は、当該通信により、室外機2、中継器3、および、室内機4のそれぞれから、室外機2、中継器3、および、室内機4の運転状態を示す状態データを取得する。また、集中管理システム1は、ユーザーからの操作入力を受け付け、必要に応じて、当該操作入力の内容を室外機2と室内機4とに送信する。
 電力監視装置5は、室外機2、中継器3、および、室内機4の電力量の値を、計量器などのセンサーで計測する。集中管理システム1は、電力監視装置5と通信を行うことで、室外機2、中継器3、および、室内機4の電力量の値を電力監視装置5から取得する。なお、ここで、電力監視装置5が計測する電力量の値は、累計値である。そのため、或る期間に消費された消費電力量を求める場合には、当該期間の終了時の電力量の値から、当該期間の開始時の電力量の値を減算して、それらの電力量の値の差分を求める。
 集中管理システム1は、室外機2、中継器3、および、室内機4のそれぞれから収集した状態データ、および、電力監視装置5から収集した電力量の値を、後述するデータベース部13に保管する。
 図2は、実施の形態1に係る課金システムの内部構成を示すブロック図である。図2に示すように、課金システムを構成する集中管理システム1は、受信データ処理部11と、データ解析部12と、データベース部13と、課金計算部14と、通信部15と、送信データ処理部16と、状態監視部17と、表示部18とを備えている。
 通信部15は、電力監視装置5から、空気調和装置の電力量の値を受信する。具体的には、通信部15は、電力監視装置5から、室外機2、中継器3、および、室内機4の電力量の値を受信する。
 また、通信部15は、空気調和装置から、空気調和装置の状態を示す状態データを受信する。具体的には、通信部15は、室外機2、中継器3、および、室内機4のそれぞれから、室外機2、中継器3、および、室内機4の状態を示す状態データを受信する。通信部15は、受信した状態データを受信データ処理部11に送信する。
 受信データ処理部11は、通信部15から受信した状態データを、内容項目とデータ内容とに分割したのち、データ解析部12に送信する。なお、ここで、内容項目とは状態データの種別を示す情報であり、データ内容とは運転状態の詳細を示す種々のデータである。状態データの種別には、「通常運転」、「停止」、および、「水温維持制御中」が含まれる。
 データ解析部12は、受信データ処理部11から受信した状態データの内容項目およびデータ内容を、データベース部13に記憶させるための整形処理を行う。
 データベース部13は、データ解析部12によって整形処理された状態データの内容項目およびデータ内容を記憶する。また、データベース部13は、通信部15が受信した空気調和装置の電力量の値を記憶する。具体的には、データベース部13は、通信部15が受信した、室外機2、中継器3、および、室内機4の電力量の値を記憶する。さらに、データベース部13は、課金計算部14の計算結果を記憶する。
 課金計算部14は、データベース部13に記憶された状態データの内容項目および電力量の値を用いて、室内機4ごとの課金額を計算し、データベース部13に保管する。さらに、課金計算部14は、テナントA、Bごとに、当該テナントA、Bに属する室内機4の課金額を合計して、当該テナントA、Bに請求する課金額を計算し、データベース部13に保管する。課金計算部14は、日単位、月単位、年単位などの、予め設定された期間ごとに、定期的に、テナントA、Bに請求する課金額の計算を実施する。
 状態監視部17は、通信部15が受信する状態データに基づいて、空気調和装置の状態を監視する。状態監視部17は、室外機2、中継器3、および、室内機4の状態を監視するために、定期的に、送信データ処理部16に対して、イベントを発生させるための指令を送信する。
 送信データ処理部16は、状態監視部17からの指令に応じて、通信部15を介して、室外機2、中継器3、および、室内機4に対して、状態データを要求する状態要求を送信する。室外機2、中継器3、および、室内機4のそれぞれは、通信部15からの状態要求を受信すると、当該状態要求に応じて、自身の状態データを通信部15に対して送信する。
 表示部18は、ユーザーからの要求に応じて、課金計算部14の計算結果、および、データベース部13に記憶された種々のデータを、表示画面に表示する。表示部18は、ディスプレイなどの表示機器を備えている。
 以下、状態監視部17と課金計算部14の動作について、さらに説明する。
 状態監視部17は、空気調和装置の中継器3の状態を監視して、中継器3における水温維持制御運転の開始時と終了時とを検出する。また、状態監視部17は、中継器3および室外機2に関して、水温維持制御運転の開始時と終了時との電力量の値を、通信部15を介して、電力監視装置5から取得する。状態監視部17は、中継器3および室外機2ごとに、水温維持制御運転の開始時と終了時との電力量の値の差分を求めることで、水温維持制御運転中に消費された消費電力量を算出する。水温維持制御運転中の、中継器3の消費電力量と室外機2の消費電力量との合計値を、第1の消費電力量と呼ぶ。
 課金計算部14は、状態監視部17が算出した第1の消費電力量に基づいて、第1の課金額を計算する。また、課金計算部14は、第1の課金額を、室内機4ごとに予め設定された固定割合で按分して、室内機4ごとに、水温維持制御運転中の課金額を算出する。固定割合は、室内機4A:室内機4B:室内機4C=P1:P2:P3、および、室内機4D:室内機4E:室内機4F=P1:P2:P3のように、室内機4の室内機能力、空調エリアの面積比率または容積比率などに応じて、予め設定しておく。
 さらに、状態監視部17は、通信部15を介して、空気調和装置の電力量の値を取得することで、空気調和装置が通常運転中に消費した第2の消費電力量を算出する。具体的には、状態監視部17は、室外機2、中継器3、および、室外機2に関して、通常運転中に消費された消費電力量を算出する。通常運転中の、室外機2の消費電力量と、中継器3の消費電力量と、室外機2の消費電力量との合計値を、第2の消費電力量と呼ぶ。
 課金計算部14は、状態監視部17が算出した第2の消費電力量に基づいて、第2の課金額を計算する。また、課金計算部14は、第2の課金額を、室内機4ごとの使用割合で按分して、室内機4ごとに、通常運転中の課金額を算出する。使用割合は、室内機4A:室内機4B:室内機4C=E1:E2:E3、および、室内機4D:室内機4E:室内機4F=E1:E2:E3のように、室内機4の運転時間または消費電力量などにより決定される。
 さらに、状態監視部17は、通信部15を介して、空気調和装置の電力量の値を取得することで、空気調和装置が待機運転中に消費した第3の消費電力量を算出する。具体的には、状態監視部17は、室外機2、中継器3、および、室外機2に関して、待機運転中に消費された消費電力量を算出する。待機運転中の、室外機2の消費電力量と、中継器3の消費電力量と、室外機2の消費電力量との合計値を、第3の消費電力量と呼ぶ。
 課金計算部14は、状態監視部17が算出した第3の消費電力量に基づいて、第3の課金額を計算する。また、課金計算部14は、第3の課金額を、室内機4ごとに予め設定された固定割合で按分して、室内機4ごとに、待機運転中の課金額を算出する。固定割合は、室内機4A:室内機4B:室内機4C=P1:P2:P3、および、室内機4D:室内機4E:室内機4F=P1:P2:P3のように、室内機4の室内機能力、空調エリアの面積比率または容積比率などに応じて、予め設定しておく。
 ここで、集中管理システム1のハードウェア構成について簡単に説明する。実施の形態1に係る集中管理システム1における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。
 処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。受信データ処理部11、データ解析部12、データベース部13、課金計算部14、通信部15、送信データ処理部16、および、状態監視部17の各部の機能それぞれを個別の処理回路で実現してもよいし、各部の機能をまとめて処理回路で実現してもよい。
 一方、処理回路がプロセッサの場合、受信データ処理部11、データ解析部12、データベース部13、課金計算部14、通信部15、送信データ処理部16、および、状態監視部17の各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリに格納される。プロセッサは、メモリに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、集中管理システム1は、処理回路により実行されるときに、受信データ処理ステップ、データ解析ステップ、データ記憶ステップ、課金計算ステップ、通信ステップ、送信データ処理ステップ、および、状態監視ステップが結果的に実行されることになるプログラムを格納するためのメモリを備える。
 これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリに該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。
 次に、図3および図4を用いて、集中管理システム1の動作について説明する。図3は、実施の形態1に係る課金システムの処理の流れを示したフローチャートである。図4は、実施の形態1に係る中継器3の状態を決定する状態決定テーブル20を示す図である。
 図3のフローチャートの説明の前に、図4の状態決定テーブル20について説明する。図4の状態決定テーブル20は、状態監視部17が、中継器3の状態の遷移から、中継器3の状態を決定するためのテーブルである。図4の状態決定テーブル20において、縦軸は「前回の状態」であり、横軸は「今回の状態」である。状態監視部17は、図4の状態決定テーブル20を用いて、中継器3の状態を決定する。例えば、中継器3の「前回の状態」が「水温維持制御中」で、「今回の状態」が「停止」であれば、状態監視部17は、状態決定テーブル20を参照して、中継器3の状態は、水温維持制御運転を「終了」した状態であると決定する。また、中継器3の「前回の状態」が「通常運転」で、「今回の状態」が「水温維持制御中」であれば、状態監視部17は、中継器3の状態は、水温維持制御運転を「開始」した状態であると決定する。また、中継器3の「前回の状態」が「水温維持制御中」で、「今回の状態」が「水温維持制御中」であれば、状態監視部17は、中継器3の状態は、水温維持制御運転を「継続」している状態であると決定する。また、中継器3の「前回の状態」が「通常運転」で、「今回の状態」が「停止」であれば、状態監視部17は、中継器3の状態は、運転を「停止」した状態、すなわち、電源がOFFされた状態であると決定する。このように、状態決定テーブル20には、中継器3の「前回の状態」および「今回の状態」ごとに、中継器3の状態が予め定義されている。
 以下、図3のフローチャートについて説明する。
 図3に示すように、ステップS1で、状態監視部17が、データベース部13に記憶された状態データから、中継器3の「前回の状態」および「今回の状態」を取得する。状態監視部17は、取得した「前回の状態」および「今回の状態」を用いて、図4の状態決定テーブル20を参照して、中継器3の状態を、「通常運転」、「停止」、「開始」、「継続」、「終了」の中から決定する。
 次に、ステップS2では、状態監視部17は、中継器3の状態が、水温維持制御運転が終了した状態か否かを判定する。すなわち、状態監視部17は、ステップS1で決定した中継器3の状態が、図4の「終了」であるか否かを判定する。状態監視部17は、ステップS1で決定した中継器3の状態が「終了」であれば、ステップS3に移行する。一方、状態監視部17は、ステップS1で決定した中継器3の状態が「終了」でなければ、ステップS6に移行する。
 ステップS3では、状態監視部17は、状態データの積算値を更新して、ステップS4に移行する。具体的には、状態監視部17は、「今回の状態」の状態データを、次回用いるために「前回の状態」に更新する。状態データは、図3のフローが実行されるたびに更新され、順次積算される。従って、状態データの積算値は、状態データの履歴として、データベース部13に保管される。ただし、状態データは、「今回の状態」と「前回の状態」の2つだけあればステップS1およびS2の処理が行えるため、それ以前のデータについては、データベース部13から削除するようにしてもよい。
 ステップS4では、状態監視部17は、室外機2および中継器3ごとに、中継器3が水温維持制御運転を終了した時点の電力量の値を、通信部15を介して、電力監視装置5から取得する。また、状態監視部17は、室外機2および中継器3ごとに、中継器3が水温維持制御運転を開始した時点の電力量の値を、データベース部13から取得する。状態監視部17は、室外機2および中継器3ごとに、水温維持制御運転を終了した時点の電力量の値と水温維持制御運転を開始した時点の電力量の値との差分から、水温維持制御運転中に消費した消費電力量の値を求めて、ステップS5に移行する。
 ステップS5では、状態監視部17は、ステップS3で更新した状態データの積算値と、ステップS4で求めた消費電力量の値とをデータベース部13に記憶する。
 一方、ステップS6では、状態監視部17は、中継器3の状態が、水温維持制御運転を継続している状態か否かを判定する。すなわち、状態監視部17は、ステップS1で決定した中継器3の状態が、図4の「継続」であるか否かを判定する。状態監視部17は、ステップS1で決定した中継器3の状態が「継続」であれば、ステップS7に移行する。一方、状態監視部17は、ステップS1で決定した中継器3の状態が「継続」でなければ、ステップS10に移行する。
 ステップS7では、状態監視部17は、状態データの積算値を更新して、ステップS8に移行する。具体的には、ステップS3と同様に、状態監視部17は、「今回の状態」の状態データを、次回用いるために「前回の状態」に更新する。
 ステップS8では、状態監視部17は、通信部15が電力監視装置5から取得した電力量の値に基づいて、電力量の値を更新して、ステップS9に移行する。
 ステップS9では、状態監視部17は、ステップS7で更新した状態データの積算値と、ステップS8で更新した電力量とをデータベース部13に記憶する。
 一方、ステップS10では、状態監視部17は、中継器3の状態が、水温維持制御を開始した状態か否かを判定する。すなわち、状態監視部17は、ステップS1で決定した中継器3の状態が、図4の「開始」であるか否かを判定する。状態監視部17は、ステップS1で決定した中継器3の状態が「開始」であれば、ステップS11に移行する。一方、状態監視部17は、ステップS1で決定した中継器3の状態が「開始」でなければ、そのまま処理を終了する。
 ステップS11では、状態監視部17は、状態データの積算を開始して、ステップS12に移行する。具体的には、状態監視部17は、「今回の状態」の状態データを、次回用いるために「前回の状態」に更新する。
 ステップS12では、状態監視部17は、室外機2および中継器3ごとに、中継器3が水温維持制御を開始した時点の電力量の値を、通信部15を介して、電力監視装置5から取得して、ステップS13に移行する。
 ステップS13では、状態監視部17は、ステップS11の状態データの積算値と、ステップS8で取得した電力量の値とを、データベース部13に記憶する。
 以上の処理により、データベース部13には、室外機2および中継器3ごとに、中継器3が水温維持制御中の消費電力量の値が記憶される。
 室外機2、中継器3、および、室内機4の運転モードには、通常運転および水温維持制御運転の他に、待機運転がある。室外機2、中継器3、および、室内機4が待機運転中か否かを判定する動作については、水温維持制御運転中か否かを判定する図3のフローと同様の処理により、実施することが可能である。従って、ここでは、詳細な説明を省略する。このようにして、室外機2、中継器3、および、室内機4の状態データから、室外機2、中継器3、および、室内機4が待機運転中か否かを判定することで、待機運転の開始から待機運転の終了までの消費電力量をデータベース部13に記憶することができる。
 さらに、データベース部13には、通常の処理により、室外機2、中継器3、および、室内機4の電源がONされた時点から電源がOFFされた時点までに消費された消費電力量のトータル値も記憶されている。そこで、当該トータル値から、水温維持制御運転中の消費電力量の値および待機運転中の消費電力量の値を差し引くことにより、室外機2、中継器3、および、室内機4の通常運転中の消費電力量を求めることができる。
 ここで、一般的な課金システムにおいては、通常運転中の消費電力量、水温維持制御運転中の消費電力、および、待機運転中の消費電力のすべてについて、室内機4の使用割合で、室内機4ごとに按分して、課金額が計算される。従って、全く運転していない室内機4には、空調料金が全く課金されないことになる。しかしながら、室外機2および中継器3は、室内機4に対して共通に設置されているものである。従って、中継器3の水温維持制御中の消費電力量、および、室外機2及び中継器3の待機運転中の消費電力量は、各室内機4に対して公平に課金されるべきである。
 そこで、実施の形態1に係る集中管理システム1は、上述したように、水温維持制御運転中の第1の消費電力量、通常運転中の第2の消費電力量、および、待機運転中の第3の消費電力量を区別して、データベース部13に記憶させている。集中管理システム1は、通常運転中の第2の消費電力量については、室内機4ごとの電力量の使用割合で、室内機4ごとに按分して、課金額を計算する。一方、水温維持制御運転中の第1の消費電力量および待機運転中の第3の消費電力量については、集中管理システム1は、室内機4ごとに予め設定した固定割合で、室内機4ごとに按分して、課金額を計算する。従って、全く運転していない室内機4に対しても、水温維持制御中の消費電力量および待機運転中の消費電力量は課金されることになる。
 ただし、図1に示すように、室外機2が1台で、中継器3が2台の場合には、中継器3A、3Bごとに異なる動作を行う場合が想定される。すなわち、例えば、一方の中継器3Aが通常運転で、他方の中継器3Bが水温維持制御中という場合などがある。そのような場合に、室外機2が使用した消費電力量は、通常運転中の消費電力量と水温維持制御運転中の消費電力量とが混合した状態となる。
 その場合には、図3のフローの処理を中継器3A、3Bごとに別個に行うことにより、水温維持制御運転中の消費電力量を中継器3A、3Bごとに別個に求めることができる。例えば、室外機2の水温維持制御運転中の消費電力量は、中継器3A、3Bの電力量の割合をもとに以下のようにして算出することができる。
 例えば、中継器3Aが通常運転中で、中継器3Bが水温維持制御運転中の場合、室外機2の水温維持制御運転中の消費電力量を求める計算式は、下記の式(1)となる。ここで、室外機2の消費電力量をX、中継器3Aの消費電力量をY、中継器3Bの消費電力量Yとする。
 室外機2の水温維持制御運転中の消費電力量
=X×Y/(Y+Y)                 (1)
 同様に、中継器3A、3Bが共に水温維持制御中の場合、計算式は下記の式(2)となる。
 室外機2の水温維持制御運転中の消費電力量
=X×(Y+Y)/(Y+Y
=X                           (2)
 中継器3Aが停止していて、中継器3Bが水温維持制御中の場合、計算式は下記の式(3)となる。
 室外機2の水温維持制御運転中の消費電力量=X×Y/(Y+Y
                             (3)
 実際には、室外機2の待機運転の電力量があるが、上記の(1)~(3)では、省略している。
 以上の処理により、最終的に、室外機2および中継器3ごとに、通常運転中の消費電力量、水温維持制御運転中の消費電力量、および、待機運転中の消費電力量がそれぞれ算出され、データベース部13に記憶される。また、室内機4については、水温維持制御運転中の消費電力量は無いため、通常運転中の消費電力量および待機運転中の消費電力量がそれぞれ算出され、データベース部13に記憶される。
 課金計算部14は、最終的に、室内機4を使用しているテナントA、Bへ課金を請求する必要がある。そのため、課金計算部14は、通常運転中の消費電力量については、テナントA、Bごとに、下記の(a)~(g)のいずれかの方法で、使用割合に応じた割合で按分して、課金額の計算を実行する。
 <空調システムにおける空調料金の課金額の計算方法の例>
 (a)運転時間×室内機能力に基づく計算方法。
 (b)サーモON時間×室内機能力に基づく計算方法。
 (c)運転能力積算値×室内機能力に基づく計算方法。
 (d)冷媒量積算値×室内機能力に基づく計算方法。
 (e)室内機能力に基づく計算方法。
 (f)空調エリアの面積比率に基づく計算方法。この場合、消費電力量を常に固定割合で按分する。
 (g)空調エリアの容積比率に基づく計算方法。この場合、消費電力量を常に固定割合で按分する。
 この際に、水温維持制御運転中の消費電力量と待機運転中の消費電力量とは合わせて、上記の(e)~(g)のいずれかの方法で、固定割合で按分して、課金額の計算を実行する。
 以下に、具体的な算出式の一例を示す。下記の算出式において、各パラメータを以下のように定義する。ただし、ここでは、説明を簡略化するために、中継器3Aのみとし、中継器3Aに接続された3台の室内機4をそれぞれ室内機4A、4B、4Cとしている。
 室外機2の通常運転中の消費電力量:Aop、
 室外機2の水温維持制御中の消費電力量:Awm、
 室外機2の待機中の消費電力量:Asp、
 中継器3Aの通常運転中の消費電力量:Bop、
 中継器3Aの水温維持制御中の消費電力量:Bwm、
 中継器3Aの待機中の消費電力量:Bsp、
 室内機4A~4C全体の通常運転中の消費電力量:Cop、
 室内機4A~4C全体の水温維持制御中の消費電力量:Cwm(=0)、
 室内機4A~4C全体の待機中の消費電力量:Csp、
 室内機4A~4Cそれぞれの運転パラメータ(使用割合):E1、E2、E3
 室内機4A~4Cの運転パラメータの総和:Eall(=E1+E2+E3)
 室内機4A~4Cそれぞれの固定パラメータ(固定割合):P1、P2、P3
 室内機4A~4Cの固定パラメータの総和:Pall(=P1+P2+P3)
 このとき、室外機2、中継器3A、室内機4A~4Cの消費電力量X、Y、Zは、それぞれ以下の(4)~(6)式で示される。
  室外機2の消費電力量X=Aop+Awm+Asp          (4)
  中継器3Aの使用電力量Y=Bop+Bwm+Bsp         (5)
  室内機4A~4C全体の使用電力量Z=Cop+Cwm+Csp    (6)
 室内機4A~4Cの課金対象の消費電力量M1、M2、M3は、それぞれ、以下の(7)~(9)で示される。
 室内機4Aの課金対象の消費電力量(M1)
 =Aop×E1/Eall+(Awm+Asp)×P1/Pall
 +Bop×E1/Eall+(Bwm+Bsp)×P1/Pall
 +Cop×E1/Eall+(Cwm+Csp)×P1/Pall        (7)
 室内機4Bの課金対象の消費電力量(M2)
 =Aop×E2/Eall+(Awm+Asp)×P2/Pall
 +Bop×E2/Eall+(Bwm+Bsp)×P2/Pall
 +Cop×E2/Eall+(Cwm+Csp)×P2/Pall        (8)
 室内機4Cの課金対象の消費電力量(M3)
 =Aop×E3/Eall+(Awm+Asp)×P3/Pall
 +Bop×E3/Eall+(Bwm+Bsp)×P3/Pall
 +Cop×E3/Eall+(Cwm+Csp)×P3/Pall        (9)
 上記の式(7)~(9)から分かるように、通常運転中の消費電力量については、課金計算部14は、室内機4ごとの電力量の使用割合で通常運転中の消費電力量を室内機4ごとに按分する。一方、水温維持制御中の消費電力量および待機中の消費電力量については、課金計算部14は、室内機4ごとに予め設定した固定割合で、水温維持制御中の消費電力量および待機中の消費電力量を室内機4ごとに按分する。
 このとき、テナントA、B内に複数の室内機4が設置されている場合は、課金計算部14は、各テナントA、Bに設置されたすべての室内機4の消費電力量を加算することで、テナントA、Bごとの消費電力量を計算する。例えば、テナントA内に室内機4A~4Cが設置されている場合は、テナントAに対する課金対象の消費電力量は、上記の消費電力量M1、M2、および、M3を合計した値となる。テナントBについても同様である。
 課金計算部14は、テナントA、Bごとに計算した課金対象の消費電力量に基づいて、テナントA、Bのそれぞれに請求する課金額を計算する。計算結果は、データベース部13に記憶され、ユーザーがいつでも取り出すことができる。すなわち、ユーザーは、表示部18の表示画面に、計算結果を表示させることができる。さらに、集中管理システム1に帳票システムを接続した場合には、帳票システムが集中管理システム1のデータベース部13にアクセスすることで、帳票システムで計算結果を利用することができる。
 以上のように、実施の形態1では、中継器3が水温維持制御運転中か否かを判定することで、水温維持制御運転中の消費電力量を求めることができる。それにより、水温維持制御運転中の消費電力量に関する課金額の計算が可能になる。
 さらに、実施の形態1では、通常運転中の消費電力についても、課金額の計算を行うことができる。その結果、通常運転中の消費電力量については使用割合で各室内機4に按分し、水温維持制御運転中の消費電力量については固定割合で各室内機4に按分することができる。このようにすることで、停止中の室内機4に対しても、水温維持制御運転中の消費電力量が課金されるので、室内機4間で不公平のない按分計算が実現する。
 なお、上記の説明においては、集中管理システム1が、消費電力量を按分する課金計算部14を有していると説明したが、その場合に限定されない。室外機2、中継器3、あるいは、室内機4に、消費電力量を按分する機能の一部もしくは全てを備えるようにしてもよい。
 また、実施の形態1では、水温維持制御運転中の第1の消費電力量を固定割合で按分するとして説明したが、これに限定されず、水温維持制御運転中の第1の消費電力量を使用割合で按分するようにしてもよい。
 また、実施の形態1では、待機運転中の第3の消費電力量を固定割合で按分するとして説明したが、これに限定されず、待機運転中の第3の消費電力量を使用割合で按分するようにしてもよい。さらに、待機運転中の第3の消費電力量については、課金対象外としてもよい。
 実施の形態2.
 上記の実施の形態1では、水温維持制御運転中の消費電力量を各室内機4で按分する例について説明したが、これに限定されない。実施の形態2では、水温維持制御運転中の消費電力量を各室内機4で按分しない場合のいくつかの例について以下に説明する。
 <例1>
 中継器3の夜間の水温維持制御運転中に、ユーザーがいずれかの室内機4を使用した場合、課金計算部14は、当該室内機4に対して、水温維持制御運転中の消費電力量を全額課金する。例えば、中継器3Aの夜間の水温維持制御運転中に、ユーザーが室内機4Aを使用した場合、課金計算部14は、室内機4Aが設置されたテナントAに対して、水温維持制御運転中の消費電力量を全額課金する。この場合の室内機4A~4Cの課金対象の消費電力量M1、M2、M3は、それぞれ、以下の式(10)~(12)で示される。式(10)~(12)では、待機運転中の消費電力量についても、室内機4Aに全額課金されている。
 室内機4Aの課金対象の消費電力量(M1)
 =Aop×E1/Eall+Awm+Asp
 +Bop×E1/Eall+Bwm+Bsp
 +Cop×E1/Eall+Cwm+Csp               (10)
 室内機4Bの課金対象の消費電力量(M2)
 =Aop×E2/Eall
 +Bop×E2/Eall
 +Cop×E2/Eall                    (11)
 室内機4Cの課金対象の消費電力量(M3)
 =Aop×E3/Eall
 +Bop×E3/Eall
 +Cop×E3/Eall                    (12)
 <例2>
 中継器3Aまたは3Bの夜間の水温維持制御運転中に、いずれの室内機4も使用されなかった場合、課金計算部14は、水温維持運転の終了後に最初に運転を行った室内機4に対して、水温維持制御運転中の消費電力量を全額課金する。例えば、中継器3Aまたは3Bの夜間の水温維持制御中に、いずれの室内機4も使用されず、次の日に最初に室内機4Aが使用された場合、課金計算部14は、室内機4Aが設置されたテナントAに対して、水温維持制御運転中の消費電力量を全額課金する。この場合の室内機4A~4Cの課金対象の消費電力量M1、M2、M3は、それぞれ、上記の式(10)~(12)と同じになる。
 なお、実施の形態2における集中管理システム1の他の構成および動作については、上記の実施の形態1と同じであるため、ここでは、その説明を省略する。
 実施の形態2では、上記の例1または例2のように、1つの室内機4に対して、水温維持制御運転中の消費電力量を全額課金するようにしたので、複雑な計算を行わずに課金額を計算することができる。また、ユーザーに対して、そのような課金方法を予め通知しておくことで、ユーザーの省エネ意識を高めることができる。
 実施の形態3.
 実施の形態3では、実施の形態1で示した、室外機2の通常運転中の消費電力量Aop、室外機2の水温維持制御中の消費電力量Awm、室外機2の待機中の消費電力量Asp、中継器3Aの通常運転中の消費電力量Bop、中継器3Aの水温維持制御中の消費電力量Bwm、中継器3Aの待機中の消費電力量Bsp、室内機4A~4C全体の通常運転中の消費電力量Cop、室内機4A~4C全体の待機中の消費電力量Cspの算出方法の例について説明する。
 室内機4の1台あたりの、室外機2の待機運転中の消費電力量Asp、室外機2の水温維持制御運転中の消費電力量Awm、室外機2の通常運転中の消費電力量Aopは、それぞれ、以下の式(13)~(15)で示される。
 室内機4の1台あたりのAsp
 =室外機2の待機電力量×按分期間×(室内機能力/Σ(室内機能力))
                              (13)
 室内機4の1台あたりのAwm
 =室外機2の水温維持制御電力量
  ×(水温維持制御実施期間/Σ(水温維持制御実施期間))
  ×(室内機能力/Σ(室内機能力))           (14)
 室内機4の1台あたりのAop
 =(室外機2の計量計計量値-(Σ(Asp+Awm)))
  ×(室内機能力×運転量/Σ(室内機能力×運転量))   (15)
 室内機4の1台あたりの、中継器3の待機運転中の消費電力量Bsp、中継器3の水温維持制御運転中の消費電力量Bwm、中継器3の通常運転中の消費電力量Bopは、それぞれ、以下の式(16)~(18)で示される。
 室内機4の1台あたりのBsp
 =中継器3の待機電力量×按分期間×(室内機能力/Σ(室内機能力))
                              (16)
 室内機4の1台あたりのBwm
 =中継器3の水温維持制御電力量
  ×(室内機能力/Σ(室内機能力))           (17)
 室内機4の1台あたりのBop
 =(中継器3の計量計計量値-(Σ(Bsp+Bwm)))
  ×(室内機能力×運転量/Σ(室内機能力×運転量))   (18)
 室内機4の1台あたりの待機運転中の消費電力量Csp、中継器3の通常運転中の消費電力量Bopは、それぞれ、以下の式(19)~(20)で示される。
 室内機4の1台あたりのCsp
 =中継器3の待機電力量×按分期間             (19)
 室内機4の1台あたりのCop
 =(室内機4の計量計計量値-(ΣCsp))
  ×((室内機ファン消費電力量×ファン運転時間)
  /Σ(室内機ファン消費電力量×ファン運転時間))    (20)
 実施の形態3で記載した上記の式(13)~(20)は一例であって、これに限定されるものではない。
 実施の形態4.
 図5は、実施の形態4に係る課金システムが設けられた空調システムの構成を示すブロック図である。図5に示すように、空調システムは、集中管理システム1と、1以上の室外機2と、1以上の中継器3と、1以上の室内機4と、電力監視装置5とを有している。実施の形態4において、集中管理システム1は、課金システムを構成している。
 上記の実施の形態1と実施の形態4との相違点は、実施の形態4においては、図5に示すように、室外機2内に、1以上の中継器3が搭載されている点である。
 実施の形態4では、図5に示すように、集中管理システム1は、室外機2と電力監視装置5とに接続されている。室外機2に搭載された各中継器3は、1台以上の室内機4に接続されている。
 他の構成および動作については、実施の形態1~3のいずれか1つと同じであるため、ここでは、その説明を省略する。
 実施の形態4に係る課金システムにおいても、実施の形態1~3の課金システムと同様の処理を行って課金を行うため、実施の形態1または実施の形態2と同様の効果が得られることは言うまでもない。
 実施の形態5.
 図6は、実施の形態5に係る課金システムが設けられた空調システムの構成を示すブロック図である。図6に示すように、空調システムは、集中管理システム1と、1以上の室外機2と、1以上の中継器3と、1以上の室内機4と、熱量監視装置6とを有している。実施の形態5において、集中管理システム1は、課金システムを構成している。
 上記の実施の形態4と実施の形態5との相違点は、実施の形態5においては、図6に示すように、図5の電力監視装置5の代わりに、熱量監視装置6が設けられている点である。実施の形態5においては、消費電力量の代わりに、熱量に基づいて課金を行う。
 実施の形態5では、図6に示すように、集中管理システム1は、室外機2と熱量監視装置6とに接続されている。
 上記の実施の形態1~4においては、電力監視装置5が、室外機2、中継器3、および、室内機4の電力量の値を、計量器などのセンサーで計測している。一方、実施の形態5においては、熱量監視装置6が、室外機2、中継器3、および、室内機4の熱量の値を、温度センサーなどのセンサーで計測する。温度センサーは、室外機2、中継器3、および、室内機4のそれぞれに設けられた熱交換器の入力側と出力側とにそれぞれ設ける。温度センサーは、熱交換器に流出入する熱冷媒または水冷媒の温度を検知する。温度センサーが検知した熱冷媒または水冷媒の温度の差分から、熱交換された熱量を求めることができる。
 状態監視部17は、熱量監視装置6と通信を行うことで、室外機2、中継器3、および、室内機4の熱量の値を熱量監視装置6から取得する。
 具体的には、状態監視部17は、実施の形態1と同様に図3のフローの処理により、中継器3の状態を監視して、中継器3における水温維持制御運転の開始時と終了時とを検出する。このとき、状態監視部17は、水温維持制御運転の開始時と終了時との熱量を通信部15を介して取得することで、水温維持制御運転中に熱交換された熱量を算出する。課金計算部14は、状態監視部17が算出した熱量に基づいて第4の課金額を計算する。
 状態監視部17は、通常運転中の熱量、および、待機運転中の熱量についても同様に、通信部15を介して、熱量監視装置6から取得することで、通常運転中および待機運転中に熱交換された熱量を算出する。課金計算部14は、状態監視部17が算出した熱量に基づいて、それぞれの課金額を計算する。
 他の構成および動作については、実施の形態1~4と同じであるため、ここでは、その説明を省略する。なお、実施の形態5は、図5に示した実施の形態4の変形例として説明したが、その場合に限らず、図1に示した実施の形態1の変形例としてもよい。その場合には、図1の構成において、電力監視装置5の代わりに、図6の熱量監視装置6を設けるようにする。
 実施の形態5に係る課金システムにおいても、実施の形態1~4の課金システムと同様の処理を行って課金を行うため、実施の形態1~4と同様の効果が得られることは言うまでもない。
 実施の形態6.
 図7は、実施の形態6に係る課金システムが設けられた空調システムの構成を示すブロック図である。図7に示すように、空調システムは、集中管理システム1と、1以上の室外機2と、1以上の中継器3と、1以上の室内機4と、流量監視装置7とを有している。実施の形態6において、集中管理システム1は、課金システムを構成している。
 上記の実施の形態4と実施の形態6との相違点は、実施の形態6においては、図7に示すように、図5の電力監視装置5の代わりに、流量監視装置7が設けられている点である。実施の形態6においては、消費電力量の代わりに、冷媒の流量に基づいて課金を行う。
 実施の形態6では、図7に示すように、集中管理システム1は、室外機2と流量監視装置7とに接続されている。
 上記の実施の形態1~4においては、電力監視装置5が、室外機2、中継器3、および、室内機4の電力量の値を、計量器などのセンサーで計測している。一方、実施の形態6においては、流量監視装置7が、室外機2、中継器3、および、室内機4の冷媒の流量の値を、流量センサーなどのセンサーで計測する。流量センサーは、室外機2、中継器3、および、室内機4のそれぞれに設けられた熱交換器の入力側と出力側とにそれぞれ設ける。流量センサーは、熱交換器に流出入する熱冷媒または水冷媒の流量を検知する。流量センサーが検知した熱冷媒または水冷媒の流量から、室外機2、中継器3、および、室内機4に循環された熱冷媒または水冷媒の流量を求めることができる。
 状態監視部17は、流量監視装置7と通信を行うことで、室外機2、中継器3、および、室内機4に循環された熱冷媒または水冷媒の流量の値を流量監視装置7から取得する。
 具体的には、状態監視部17は、実施の形態1と同様に図3のフローの処理により、中継器3の状態を監視して、中継器3における水温維持制御運転の開始時と終了時とを検出する。このとき、状態監視部17は、水温維持制御運転の開始時と終了時との流量を通信部15を介して取得することで、水温維持制御運転中に循環された熱冷媒または水冷媒の流量を算出する。課金計算部14は、状態監視部17が算出した流量に基づいて第5の課金額を計算する。
 状態監視部17は、通常運転中の熱冷媒または水冷媒の流量、および、待機運転中の熱冷媒または水冷媒の流量についても同様に、通信部15を介して、流量監視装置7から取得することで、通常運転中および待機運転中の流量を算出する。課金計算部14は、状態監視部17が算出した流量に基づいて、それぞれの課金額を計算する。
 他の構成および動作については、実施の形態1~4と同じであるため、ここでは、その説明を省略する。なお、実施の形態6は、図5に示した実施の形態4の変形例として説明したが、その場合に限らず、図1に示した実施の形態1の変形例としてもよい。その場合には、図1の構成において、電力監視装置5の代わりに、図7の流量監視装置7を設けるようにする。
 実施の形態6に係る課金システムにおいても、実施の形態1~4の課金システムと同様の処理を行って課金を行うため、実施の形態1~4と同様の効果が得られることは言うまでもない。
 実施の形態7.
 図8は、実施の形態7に係る課金システムが設けられた空調システムの構成を示す部分ブロック図である。図8においては、中継器3、室内機4、および、電力監視装置5については図示を省略しているため、これらについては、図1を参照されたい。
 従って、実施の形態7においては、空調システムは、集中管理システム1と、1以上の室外機2と、1以上の中継器3と、1以上の室内機4と、電力監視装置5とを有している。
 また、実施の形態5においては、実施の形態1と同様に、集中管理システム1は、室外機2に接続されている。室外機2は、電力監視装置5と各中継器3とに接続されている。各中継器3は、1台以上の室内機4に接続されている。
 上記の実施の形態1と実施の形態7との相違点は、実施の形態7においては、図8に示すように、図1に示した集中管理システム1の構成要素の一部分が、室外機2に搭載されている点である。具体的には、図8に示すように、集中管理システム1は、受信データ処理部11と、データ解析部12と、データベース部13と、課金計算部14と、通信部19と、表示部18とを備えている。また、室外機2が、通信部15と、状態監視部17とを備えている。通信部19は、通信部15と受信データ処理部11との間の通信を行う。従って、実施の形態7では、受信データ処理部11が、通信部19を介して、通信部15からのデータを受信する。実施の形態7において、集中管理システム1および室外機2は、課金システムを構成している。
 受信データ処理部11と、データ解析部12と、データベース部13と、課金計算部14と、通信部15と、送信データ処理部16と、状態監視部17との各部の動作は、実施の形態1と同じであるため、ここでは、その説明を省略する。
 他の構成および動作については、実施の形態1または実施の形態2と同じであるため、ここでは、それらの説明についても省略する。
 実施の形態7に係る集中管理システム1においても、実施の形態1または実施の形態2の集中管理システム1と同様の処理を行って課金を行うため、実施の形態1または実施の形態2と同様の効果が得られることは言うまでもない。
 また、実施の形態7において、図6に示した実施の形態5のように、電力監視装置5の代わりに、熱量監視装置6を設けるようにしてもよい。また、実施の形態7において、図7に示した実施の形態6のように、電力監視装置5の代わりに、流量監視装置7を設けるようにしてもよい。
 1 集中管理システム、2 室外機、3,3A,3B 中継器、4,4A,4B,4C,4D,4E,4F 室内機、5 電力監視装置、6 熱量監視装置、7 流量監視装置、11 受信データ処理部、12 データ解析部、13 データベース部、14 課金計算部、15 通信部、16 送信データ処理部、17 状態監視部、18 表示部、19 通信部、20 状態決定テーブル。

Claims (13)

  1.  空気調和装置の電力量の値を受信する通信部と、
     前記空気調和装置の状態を監視して、前記空気調和装置における水温維持制御運転の開始時と終了時とを検出するとともに、前記開始時と前記終了時との前記電力量の値を前記通信部を介して取得して差分を求めることで前記水温維持制御運転中に消費された第1の消費電力量を算出する、状態監視部と、
     前記状態監視部が算出した前記第1の消費電力量に基づいて第1の課金額を計算する課金計算部と
     を備えた課金システム。
  2.  前記課金計算部は、前記第1の課金額を、前記空気調和装置に設けられた1以上の室内機ごとに予め設定された固定割合で按分して、前記室内機ごとに、前記水温維持制御運転中の課金額を算出する、
     請求項1に記載の課金システム。
  3.  前記課金計算部は、前記第1の課金額を、前記空気調和装置に設けられた1以上の室内機の中で、前記水温維持制御運転中に運転を行った前記室内機に対して全額課金する、
     請求項1に記載の課金システム。
  4.  前記課金計算部は、前記第1の課金額を、前記空気調和装置に設けられた1以上の室内機の中で、前記水温維持制御運転の終了後に最初に運転を行った前記室内機に対して全額課金する、
     請求項1に記載の課金システム。
  5.  前記状態監視部は、前記通信部を介して前記空気調和装置の前記電力量の値を取得することで、前記空気調和装置が通常運転中に消費した第2の消費電力量を算出し、
     前記課金計算部は、前記状態監視部が算出した前記第2の消費電力量に基づいて第2の課金額を計算する、
     請求項1~4のいずれか1項に記載の課金システム。
  6.  前記課金計算部は、前記第2の課金額を、前記空気調和装置に設けられた1以上の室内機ごとに予め設定された固定割合で按分して、前記室内機ごとに、前記通常運転中の課金額を算出する、
     請求項5に記載の課金システム。
  7.  前記課金計算部は、前記第2の課金額を、前記空気調和装置に設けられた1以上の室内機の消費電力量の使用割合で按分して、前記室内機ごとに、前記通常運転中の課金額を算出する、
     請求項5に記載の課金システム。
  8.  前記状態監視部は、前記通信部を介して前記空気調和装置の前記電力量の値を取得することで、前記空気調和装置が待機運転中に消費した第3の消費電力量を算出し、
     前記課金計算部は、前記状態監視部が算出した前記第3の消費電力量に基づいて第3の課金額を計算する、
     請求項1~7のいずれか1項に記載の課金システム。
  9.  前記課金計算部は、前記第3の課金額を、前記空気調和装置に設けられた1以上の室内機ごとに予め設定された固定割合で按分して、前記室内機ごとに、前記待機運転中の課金額を算出する、
     請求項8に記載の課金システム。
  10.  前記課金計算部は、前記第3の課金額を、前記空気調和装置に設けられた1以上の室内機の消費電力量の使用割合で按分して、前記室内機ごとに、前記待機運転中の課金額を算出する、
     請求項8に記載の課金システム。
  11.  前記課金計算部の計算結果を表示する表示部をさらに備えた、
     請求項1~10のいずれか1項に記載の課金システム。
  12.  空気調和装置が熱交換した熱量を受信する通信部と、
     前記空気調和装置の状態を監視して、前記空気調和装置における水温維持制御運転の開始時と終了時とを検出するとともに、前記開始時と前記終了時との前記熱量を前記通信部を介して取得することで前記水温維持制御運転中に熱交換された熱量を算出する、状態監視部と、
     前記状態監視部が算出した前記熱量に基づいて第4の課金額を計算する課金計算部と
     を備えた課金システム。
  13.  空気調和装置内を循環した冷媒の流量を受信する通信部と、
     前記空気調和装置の状態を監視して、前記空気調和装置における水温維持制御運転の開始時と終了時とを検出するとともに、前記開始時と前記終了時との前記流量を前記通信部を介して取得することで前記水温維持制御運転中に循環された流量を算出する、状態監視部と、
     前記状態監視部が算出した前記流量に基づいて第5の課金額を計算する課金計算部と
     を備えた課金システム。
PCT/JP2019/023291 2019-06-12 2019-06-12 課金システム WO2020250341A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023291 WO2020250341A1 (ja) 2019-06-12 2019-06-12 課金システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023291 WO2020250341A1 (ja) 2019-06-12 2019-06-12 課金システム

Publications (1)

Publication Number Publication Date
WO2020250341A1 true WO2020250341A1 (ja) 2020-12-17

Family

ID=73781696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023291 WO2020250341A1 (ja) 2019-06-12 2019-06-12 課金システム

Country Status (1)

Country Link
WO (1) WO2020250341A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130435A (ja) * 2001-10-29 2003-05-08 Mitsubishi Electric Corp 空調機制御システム及びその制御方法
US20060191275A1 (en) * 2005-02-25 2006-08-31 Lg Electronics Inc. Multi-air conditioner central control system and power control method thereof
JP2010286218A (ja) * 2009-06-15 2010-12-24 Mitsubishi Heavy Ind Ltd 空調料金計算装置及び空調料金計算方法
WO2013088482A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
JP2015087049A (ja) * 2013-10-30 2015-05-07 株式会社富士通ゼネラル 空調機システム
CN106771566A (zh) * 2016-12-09 2017-05-31 珠海格力电器股份有限公司 多联机空调分户计费方法、装置和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130435A (ja) * 2001-10-29 2003-05-08 Mitsubishi Electric Corp 空調機制御システム及びその制御方法
US20060191275A1 (en) * 2005-02-25 2006-08-31 Lg Electronics Inc. Multi-air conditioner central control system and power control method thereof
JP2010286218A (ja) * 2009-06-15 2010-12-24 Mitsubishi Heavy Ind Ltd 空調料金計算装置及び空調料金計算方法
WO2013088482A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
JP2015087049A (ja) * 2013-10-30 2015-05-07 株式会社富士通ゼネラル 空調機システム
CN106771566A (zh) * 2016-12-09 2017-05-31 珠海格力电器股份有限公司 多联机空调分户计费方法、装置和系统

Similar Documents

Publication Publication Date Title
US20060191275A1 (en) Multi-air conditioner central control system and power control method thereof
US7062927B2 (en) Central control system of air conditioners and method for operating the same
EP2256422B1 (en) Air conditioning management system, air conditioning system, program, and recording medium
TWI506581B (zh) 節能評估裝置、節能評估方法、伺服器裝置及程式
JP5448591B2 (ja) 空調料金計算装置及び空調料金計算方法
JP2010048433A (ja) 診断支援装置
KR20110046504A (ko) 진단 지원 장치
JP2008249154A (ja) 集中管理装置、集中管理プログラム及び集中管理システム
WO2019176546A1 (ja) 空調制御装置、空調システム、空調制御方法及びプログラム
WO2020250341A1 (ja) 課金システム
KR20080040454A (ko) 시스템 에어컨의 전력관리장치 및 그 방법
JP4544968B2 (ja) 空調料金計算装置
JPWO2019178117A5 (ja) 建物用の可変冷媒流量システムと同システムを動作させる方法
JP3857833B2 (ja) 空気調和システム
JP6443947B2 (ja) デマンド制御システム
JP2003322381A (ja) 空気調和装置の電力料金請求システム
EP4027069A1 (en) Refrigeration capacity determination method, refrigeration energy efficiency ratio determination method, and failure notification method
JP2011158115A (ja) 給気制御装置
JP5410103B2 (ja) 空気調和システムおよび空気調和システムの制御方法
JP2021082007A (ja) 省エネ効果推定装置、省エネ効果推定システム、省エネ効果推定方法及びプログラム
JP2002228225A (ja) 省エネルギー効果実績演算方法および装置
JP2005265286A (ja) 空気調和機管理システム、空気調和機販売事業者サーバ、空気調和機管理方法及び空気調和機管理プログラム
KR100550562B1 (ko) 멀티에어컨 시스템 및 그 동작방법
JP2003248773A (ja) エネルギー料金の課金方法およびエネルギー料金の課金システム
JP5519599B2 (ja) 空調設備用エネルギー管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP