WO2020248580A1 - Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation - Google Patents

Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation Download PDF

Info

Publication number
WO2020248580A1
WO2020248580A1 PCT/CN2019/129546 CN2019129546W WO2020248580A1 WO 2020248580 A1 WO2020248580 A1 WO 2020248580A1 CN 2019129546 W CN2019129546 W CN 2019129546W WO 2020248580 A1 WO2020248580 A1 WO 2020248580A1
Authority
WO
WIPO (PCT)
Prior art keywords
grooves
surface area
texturing
specific surface
increased specific
Prior art date
Application number
PCT/CN2019/129546
Other languages
English (en)
Chinese (zh)
Inventor
张元秋
谢毅
杨蕾
王岚
洪布双
张鹏
Original Assignee
通威太阳能(安徽)有限公司
通威太阳能(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(安徽)有限公司, 通威太阳能(成都)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2020248580A1 publication Critical patent/WO2020248580A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of photovoltaic cells, in particular to a monocrystalline silicon cell with an increased specific surface area and a texturing method thereof.
  • the conventional production process of monocrystalline silicon cells mainly includes: texturing-diffusion-etching-annealing-front SiNx coating-screen printing-sintering-sorting. In this process, a few steps are added, such as back passivation coating, back Coating, laser grooving, etc., with slight adjustments to some of these processes, can be made into high-efficiency batteries such as PERC, PERC+SE, and double-sided PERC+SE. Texturing is an indispensable step for conventional monocrystalline cells or PERC+ high-efficiency monocrystalline cells.
  • the conventionally used single crystal texturing method is alkali texturing.
  • the process steps are divided into: 1 lye initial polishing to remove the damage left by the wafer cutting; 2 pre-cleaning to remove impurities and dirt on the surface of the silicon wafer; 3 Texturing to form a pyramid; 4Alkaline washing to remove dirt; 5Pickling to remove residual alkali while removing the surface oxide layer and metal ions; 6Cleaning and drying; this conventional method will finally form on the surface of the flat silicon wafer
  • the densely arranged pyramid suede as shown in Figure 1 of the specification.
  • the surface area of the silicon wafer is limited, so the number of pyramids formed is limited. In the end, only a certain surface area can be obtained, and no more pyramids can be obtained.
  • the size and height of the pyramids are usually optimized to increase the production. The surface area after velvet, but the optimization process is more complicated, resulting in the short-circuit current of the cell and the cell conversion efficiency can not be further improved, which affects the progress of the photovoltaic industry.
  • the purpose of the present invention is to provide a single crystal silicon cell with an increased specific surface area and a method for making the same to solve the above-mentioned problems in the background art.
  • a single crystal silicon cell chip with an increased specific surface area comprising a silicon chip.
  • the surface of the silicon chip is provided with a number of grooves.
  • the surfaces of the silicon chip are provided with pyramid fleece where grooves are provided and where the grooves are not provided. ⁇ Surface structure.
  • the groove shape of the groove is any one of triangle, circle, square, rhombus and polygon.
  • the center distance between two adjacent grooves is controlled to be 40-500 ⁇ m.
  • the area of the groove is controlled within 200-20000 ⁇ m 2 .
  • the depth of the groove is controlled to be 2-15 ⁇ m.
  • a texturing method for monocrystalline silicon cell wafers with increased specific surface area Before texturing the silicon wafers, single-sided laser grooving is performed to form a number of grooves on the surface of the wafer, and the grooves are equilateral triangles Distribution, the center distance between any two adjacent grooves is equal;
  • the texturing is then carried out, forming a pyramidal suede structure in both the grooves and the flat areas where the laser is not grooved.
  • the present invention by regularly slotting the surface of the silicon wafer before texturing, more pyramid suede structures and a larger surface area can be obtained, and the shape, arrangement and size of the grooves can be controlled by special parameters.
  • the ratio requirement further increases the PN junction area, thereby further increasing the Isc short-circuit current, and finally achieving the purpose of improving the battery conversion efficiency. It is very practical and worthy of promotion.
  • Figure 1 is a schematic diagram of the surface structure of a silicon wafer prepared by using the prior art
  • Figure 2 is a schematic diagram of the surface structure of a silicon wafer prepared by the method of the present invention.
  • Fig. 3 is a schematic structural diagram of a circular groove design for the groove in the specific embodiment of the present invention.
  • a monocrystalline silicon cell chip with an increased specific surface area comprising a silicon chip 1, a surface of the silicon chip 1 is provided with a plurality of grooves 2, and the surface of the silicon chip 1 is provided with grooves 2 and not provided with grooves 2 Pyramid suede structure 12 is provided everywhere.
  • a texturing method for monocrystalline silicon cell wafers with an increased specific surface area Before texturing the silicon wafer 1, single-sided laser grooving is performed to form a certain number, composition, and depth on the surface of the silicon wafer 1 Groove 2, the groove shape of groove 2 is any one of triangle, circle, square, rhombus and polygon. The area of groove 2 is controlled within 200-20000 ⁇ m 2 , and the depth of groove 2 is controlled within 2-15 ⁇ m , A number of grooves 2 are distributed in an equilateral triangle, the center distance between any two adjacent grooves 2 is equal, and the center distance between two adjacent grooves 2 is controlled within 40-500 ⁇ m.
  • the pyramid texture 12 is formed in the groove 2 and the flat area where the laser is not grooved.
  • the side where the groove 2 is present is the front side.
  • a single-sided laser grooving is performed on the silicon wafer 1 to form grooves 2 on the surface of the silicon wafer 1.
  • the grooves 2 are distributed in an equilateral triangle, and the area of each groove 2 is within 400 ⁇ m2, as shown in Figure 3 As shown, the dotted line constitutes an equilateral triangle.
  • the shape of the groove 2 is circular as an example. The distance between any two adjacent grooves 2 is equal, and the center distance of two adjacent grooves 2 is in the range of 50 ⁇ m.
  • Pyramid 12 is formed in both the groove 2 and the flat area where the laser is not hit. In the subsequent process, the side where the groove 2 exists is the front side.
  • the structure of silicon wafer 1 shown in Figure 1 of the specification the conventional texturing process single-sided etching depth is controlled at 3-7 ⁇ m, in order to avoid the obvious difference between the height of the groove 2 and the flat area without laser after texturing, the groove 2
  • the depth range is 10 ⁇ m.
  • laser grooving will inevitably cause certain damage to the surface of the silicon wafer 1.
  • the damage caused by the laser can be removed at the same time.
  • Comparative group the silicon wafer 1 was textured by the conventionally used single crystal texturing method in the background technology to obtain the structure of the silicon wafer 1 as shown in Figure 1 of the specification, and the electrical performance of the silicon wafer 1 was tested;
  • Example group the silicon wafer 1 was texturized using the method in the first embodiment, and the equipment and texturing liquid used for texturing were exactly the same as those of the comparison group, and the structure of the silicon wafer 1 as shown in Figure 2 of the specification was obtained. , And conduct electrical performance test on silicon wafer 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Weting (AREA)

Abstract

L'invention concerne une cellule de silicium monocristallin présentant une surface spécifique accrue, la cellule de silicium monocristallin comprenant une tranche de silicium (1), une surface de la tranche de silicium (1) étant pourvue de plusieurs rainures (2), et la surface de la tranche de silicium (1) étant pourvue de structures pyramidales texturées (12) se trouvant au niveau des rainures (2) et au niveau des parties où il n'y a pas de rainures (2). Selon un procédé de texturation de la cellule de silicium monocristallin présentant une surface spécifique accrue, les multiples rainures (2) sont formées sur la surface de la tranche de silicium (1), et les multiples rainures (2) sont réparties en un triangle équilatéral, ayant des distances égales entre les centres de deux rainures adjacentes quelconques (2) ; et après la texturation, les structures pyramidales texturées (12) sont formées au niveau des rainures (2) et au niveau de zones planes où le rainurage au laser n'est pas effectué. Au moyen de la formation de rainures régulières sur la surface de la tranche de silicium (1) avant la texturation, des structures pyramidales plus texturées (12) et une surface plus grande peuvent être obtenues, de manière à augmenter davantage la zone de jonction P-N et à améliorer encore le courant de court-circuit Isc, ce qui permet d'obtenir finalement l'objectif d'amélioration de l'efficacité de conversion de batterie.
PCT/CN2019/129546 2019-06-10 2019-12-28 Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation WO2020248580A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910495610.6A CN110137283A (zh) 2019-06-10 2019-06-10 一种增大比表面积的单晶硅电池片及其制绒方法
CN201910495610.6 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020248580A1 true WO2020248580A1 (fr) 2020-12-17

Family

ID=67580715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129546 WO2020248580A1 (fr) 2019-06-10 2019-12-28 Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation

Country Status (2)

Country Link
CN (1) CN110137283A (fr)
WO (1) WO2020248580A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137283A (zh) * 2019-06-10 2019-08-16 通威太阳能(安徽)有限公司 一种增大比表面积的单晶硅电池片及其制绒方法
CN111092136A (zh) * 2020-01-07 2020-05-01 浙江爱旭太阳能科技有限公司 一种降低反射率的单晶太阳能电池制备方法
CN111799339A (zh) * 2020-06-29 2020-10-20 韩华新能源(启东)有限公司 适用于太阳能电池的硅片的表面处理方法
CN111933754A (zh) * 2020-08-14 2020-11-13 孙鹏 一种n型多晶硅太阳能电池及其制造方法
CN112466968A (zh) * 2020-11-18 2021-03-09 隆基绿能科技股份有限公司 一种光伏电池及光伏组件
CN113314626A (zh) * 2021-05-26 2021-08-27 江苏润阳世纪光伏科技有限公司 一种太阳能电池片的制造方法
CN114361273A (zh) * 2021-12-03 2022-04-15 宁夏隆基乐叶科技有限公司 硅片及其制备方法和太阳能电池
CN116978960B (zh) * 2023-09-22 2024-01-09 金阳(泉州)新能源科技有限公司 一种高转换效率的背接触太阳能电池及其制备方法和组件
CN117038799A (zh) * 2023-10-07 2023-11-10 正泰新能科技有限公司 一种bc电池制备方法及bc电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742019A (zh) * 2009-12-23 2012-10-17 瓦里安半导体设备公司 利用等离子体鞘层调变的工件图案化
CN103035769A (zh) * 2011-08-30 2013-04-10 王立康 具有选择性射极结构的太阳能电池及其制造方法
US20150255642A1 (en) * 2008-09-16 2015-09-10 Lg Electronics Inc. Solar cell and texturing method thereof
CN205985017U (zh) * 2016-12-26 2017-02-22 北京诺飞新能源科技有限责任公司 一种高效吸收光线的单晶硅片
CN110137283A (zh) * 2019-06-10 2019-08-16 通威太阳能(安徽)有限公司 一种增大比表面积的单晶硅电池片及其制绒方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068800B1 (ko) * 2009-07-14 2011-10-04 주식회사 신성홀딩스 태양전지의 제조 방법
CN102110724B (zh) * 2010-11-12 2012-10-03 北京大学 双面微纳复合结构的太阳能电池及其制备方法
CN102487105A (zh) * 2010-12-06 2012-06-06 中国科学院微电子研究所 一种制备立体结构高效太阳能电池的方法
CN102610692A (zh) * 2012-03-09 2012-07-25 润峰电力有限公司 一种晶体硅纳米-微米复合绒面的制备方法
CN102683439A (zh) * 2012-05-04 2012-09-19 友达光电股份有限公司 光学抗反射结构、其制法以及包含其的太阳能电池
KR20150073623A (ko) * 2013-12-23 2015-07-01 군산대학교산학협력단 고효율 태양전지 및 그 제조방법
CN103715305A (zh) * 2013-12-31 2014-04-09 秦广飞 一种激光刻蚀制绒工艺
CN209804674U (zh) * 2019-06-10 2019-12-17 通威太阳能(安徽)有限公司 一种增大比表面积的单晶硅电池片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150255642A1 (en) * 2008-09-16 2015-09-10 Lg Electronics Inc. Solar cell and texturing method thereof
CN102742019A (zh) * 2009-12-23 2012-10-17 瓦里安半导体设备公司 利用等离子体鞘层调变的工件图案化
CN103035769A (zh) * 2011-08-30 2013-04-10 王立康 具有选择性射极结构的太阳能电池及其制造方法
CN205985017U (zh) * 2016-12-26 2017-02-22 北京诺飞新能源科技有限责任公司 一种高效吸收光线的单晶硅片
CN110137283A (zh) * 2019-06-10 2019-08-16 通威太阳能(安徽)有限公司 一种增大比表面积的单晶硅电池片及其制绒方法

Also Published As

Publication number Publication date
CN110137283A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020248580A1 (fr) Cellule de silicium monocristallin présentant une surface spécifique accrue et son procédé de texturation
US8623688B2 (en) Solar cell and method for manufacturing such a solar cell
CN102212885B (zh) 多晶硅太阳能电池片的制绒方法
EP3246954A1 (fr) Batterie double face de type n et procédé de fabrication de celle-ci
CN109888061A (zh) 一种碱抛光高效perc电池及其制备工艺
WO2020238199A1 (fr) Batterie efficace du type p à contact à passivation double face et son procédé de préparation
WO2020057264A1 (fr) Photopile et procédé de préparation associé
JP6553731B2 (ja) N型両面電池のウェットエッチング方法
CN108231917B (zh) 一种perc太阳能电池及其制备方法
CN109065667B (zh) 一种无机碱刻蚀用于太阳能se双面perc电池的方法
TWI536597B (zh) A low cost, suitable for mass production of back contact with the battery production methods
WO2023077772A1 (fr) Cellule solaire et son procédé de préparation
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
CN103456837A (zh) 局部背场钝化太阳能电池的制造方法
WO2023020003A1 (fr) Cellule solaire, et structure de surface texturée et son procédé de préparation
CN109473487B (zh) 基于复合陷光结构的晶体硅太阳电池及其制备方法
WO2023097973A1 (fr) Tranche de silicium et son procédé de préparation, et cellule solaire
CN111682090A (zh) 选择性发射极太阳能电池的制备方法及太阳能电池
CN117153953B (zh) 开膜式双面TOPCon电池的制备方法
CN209804674U (zh) 一种增大比表面积的单晶硅电池片
CN104362219B (zh) 一种晶体硅太阳能电池制造工艺
CN113257952B (zh) 双面太阳能电池及其制备方法
CN114883429A (zh) 一种异质结电池及其制备方法
CN103531667A (zh) 一种不合格太阳能电池片处理方法
CN113314626A (zh) 一种太阳能电池片的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932640

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19932640

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19932640

Country of ref document: EP

Kind code of ref document: A1