WO2020244207A1 - 空调系统 - Google Patents
空调系统 Download PDFInfo
- Publication number
- WO2020244207A1 WO2020244207A1 PCT/CN2019/128423 CN2019128423W WO2020244207A1 WO 2020244207 A1 WO2020244207 A1 WO 2020244207A1 CN 2019128423 W CN2019128423 W CN 2019128423W WO 2020244207 A1 WO2020244207 A1 WO 2020244207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dehumidification
- main
- heat exchanger
- air conditioning
- compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0003—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/28—Arrangement or mounting of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
Definitions
- This application belongs to the field of air conditioning technology, and specifically relates to an air conditioning system.
- the most common and effective dehumidification method is cooling dehumidification, that is, dehumidification using the principle of refrigeration.
- Conventional dehumidification requires a separate refrigeration system, which includes compressors, evaporators, condensers, throttling devices, fans, etc., with many parts and high costs.
- an air conditioner with dehumidification function which includes two compressors, the cost of the air conditioning system will be higher, which is not conducive to cost reduction.
- the technical problem to be solved by the present application is to provide an air conditioning system that can reduce the number of compressors and reduce system costs on the basis of realizing temperature adjustment and dehumidification functions.
- the present application provides an air conditioning system, including a compressor, a temperature adjustment system, and a dehumidification system.
- the temperature adjustment system and the dehumidification system are connected in series with the compressor after being arranged in parallel, and the temperature adjustment system and the compressor are connected through a pipeline to form a temperature Regulating the cycle, the dehumidification system and the compressor are connected by pipelines to form a dehumidification cycle.
- the exhaust port of the compressor is respectively connected to the first end of the temperature regulation system and the dehumidification system through the first flow distribution device; and/or the suction port of the compressor is respectively connected to the temperature regulation system through the second flow distribution device Connect to the second end of the dehumidification system.
- the temperature adjustment system includes a main outdoor heat exchanger, a main throttling device and a main indoor heat exchanger
- the main outdoor heat exchanger is connected to the first flow distribution device
- the main indoor heat exchanger is connected to the second flow distribution device
- the main throttling device is located between the main outdoor heat exchanger and the main indoor heat exchanger.
- the temperature regulation system includes a main outdoor heat exchanger, a main throttling device, a four-way valve and a main indoor heat exchanger, the first port of the four-way valve is connected to the first flow distribution device, and the second port of the four-way valve Connected to the main outdoor heat exchanger, the third port of the four-way valve is connected to the main indoor heat exchanger, and the fourth port of the four-way valve is connected to the second flow distribution device.
- the main throttling device is located between the main outdoor heat exchanger and the main indoor heat exchanger. Between indoor heat exchangers.
- the dehumidification system includes a dehumidification condenser, a dehumidification throttling device, and a dehumidification evaporator
- the dehumidification condenser is connected to the first flow distribution device
- the dehumidification evaporator is connected to the second flow distribution device
- the dehumidification throttling device is located in the dehumidification condenser and Between the dehumidification evaporator.
- the dehumidification system further includes a control valve arranged between the dehumidification condenser and the first flow distribution device, and the control valve is used to control the on-off of the pipeline of the dehumidification system.
- the dehumidification system further includes a flow adjustment device arranged between the dehumidification condenser and the first flow distribution device.
- a gas-liquid separator is provided between the second flow distribution device and the suction port of the compressor.
- the air conditioning system includes an outdoor part and an indoor part, the outdoor part and the indoor part are separated by a partition, the temperature adjustment system includes a main outdoor heat exchanger, a main throttling device and a main indoor heat exchanger, and the dehumidification system includes a dehumidification condenser , Dehumidification throttling device and dehumidification evaporator, the main outdoor heat exchanger is installed in the outdoor part, the compressor is installed between the main outdoor heat exchanger and the partition, and the dehumidification condenser and dehumidification evaporator are installed near the outdoor part of the partition One side.
- the dehumidification condenser and the dehumidification evaporator are arranged at the air inlet of the indoor part, and the dehumidification evaporator and the dehumidification condenser are arranged in sequence along the air flow direction.
- a dehumidification filter screen is provided on the air inlet side of the dehumidification evaporator.
- the outdoor part and the indoor part are both arranged on the base, the outdoor part is located on the outside of the wall, the indoor part is on the indoor side, and the cavity between the outdoor part and the indoor part is also included in the wall, and the compressor and the dehumidification system are both provided In the cavity.
- the air conditioning system provided by this application includes a compressor, a temperature adjustment system, and a dehumidification system.
- the temperature adjustment system and the dehumidification system are connected in series after being connected in series with the compressor.
- the temperature adjustment system and the compressor are connected through a pipeline to form a temperature adjustment cycle.
- the compressor is connected by pipelines to form a dehumidification cycle.
- the air-conditioning system, dehumidification system and temperature adjustment system of the present application share one compressor, so one compressor can provide power for temperature adjustment and dehumidification at the same time to achieve indoor dehumidification and temperature adjustment, eliminating the need for a separate dehumidification compressor, and reducing
- the number of compressors used can make the structure of the air conditioning system more compact and reduce the cost of the air conditioning system.
- Fig. 1 is a schematic structural diagram of an air conditioning system according to an embodiment of the application
- Figure 2 is a three-dimensional structural diagram of an air conditioning system according to an embodiment of the application.
- an air conditioning system includes a compressor 1, a temperature adjustment system 2 and a dehumidification system 3.
- the temperature adjustment system 2 and the dehumidification system 3 are arranged in parallel and then connected in series with the compressor 1.
- the temperature regulation system 2 and the compressor 1 are connected through a pipeline to form a temperature regulation cycle, and the dehumidification system 3 and the compressor 1 are connected through a pipeline to form a dehumidification cycle.
- the dehumidification system 3 and the temperature adjustment system 2 share the same compressor 1, so that one compressor 1 can provide power for temperature adjustment and dehumidification at the same time, realize indoor dehumidification and temperature adjustment, and eliminate the separate dehumidification compression
- the number of compressors used is reduced, the structure of the air conditioning system can be made more compact, and the cost of the air conditioning system can be reduced.
- the air conditioning system of this application is particularly suitable for PTAC (Packaged Terminal Air Conditioner) air conditioners.
- PTAC Packaged Terminal Air Conditioner
- the discharge port of the compressor 1 is connected to the first end of the temperature regulation system 2 and the dehumidification system 3 through the first flow distribution device 4; and/or the suction port of the compressor 1 is connected to the first end of the temperature control system 2 and the dehumidification system 3 through the second flow distribution device 5, respectively
- the temperature adjustment system 2 and the second end of the dehumidification system 3 are connected.
- the splitter is mainly used to split the refrigerant.
- the discharge port of the compressor 1 is divided by the first flow distribution device 4, so that the refrigerant can be more reasonably distributed to the temperature adjustment system 2 and the dehumidification system 3.
- the refrigerant flowing through the temperature adjustment system 2 and the dehumidification system 3 is The two flow distribution devices 5 converge at one place through the second flow distribution device 5, and then return to the suction port of the compressor 1 to complete the circulating flow of the refrigerant.
- the first flow distribution device 4 can respectively deliver the exhaust gas of the compressor 1 to two systems according to a certain proportion.
- the first flow distribution device 4 is, for example, a first splitter
- the second flow distribution device 5 is, for example, a first splitter.
- the temperature regulation system 2 includes a main outdoor heat exchanger 6, a main throttling device 7, and a main indoor heat exchanger 8.
- the main outdoor heat exchanger 6 is connected to the first flow distribution device 4, and the main indoor heat exchanger 8 is connected to the second flow distribution device 5, and the main throttling device 7 is located between the main outdoor heat exchanger 6 and the main indoor heat exchanger 8.
- the temperature adjustment system of the present application since the dehumidification is mainly used in the refrigeration environment, the temperature adjustment system of the present application only needs to meet the cooling adjustment, and the four-way valve can be omitted, and the control structure of the air conditioning system can be simplified. The control difficulty of the air-conditioning system is reduced, and at the same time, it can effectively dehumidify and refrigerate in the high temperature and humid environment, saving the cost of the air-conditioning system.
- the temperature control system 2 includes a main outdoor heat exchanger 6, a main throttling device 7, a four-way valve and a main indoor heat exchanger 8.
- the first port of the four-way valve is connected to the first flow distribution device 4, and the first port of the four-way valve
- the second port is connected to the main outdoor heat exchanger 6, the third port of the four-way valve is connected to the main indoor heat exchanger 8, the fourth port of the four-way valve is connected to the second flow distribution device 5, and the main throttling device 7 is located in the main Between the outdoor heat exchanger 6 and the main indoor heat exchanger 8.
- a four-way valve is added to control the reversing control of the temperature adjustment system 2, so as to ensure the normal dehumidification of the dehumidification system.
- the temperature adjustment system can perform cooling or heating according to control needs, and can realize both cooling and dehumidifying functions, as well as heating and dehumidifying functions.
- the functions are more diverse and can be applied to some special environments.
- the dehumidification system 3 includes a dehumidification condenser 9, a dehumidification throttling device 10, and a dehumidification evaporator 11.
- the dehumidification condenser 9 is connected to the first flow distribution device 4, the dehumidification evaporator 11 is connected to the second flow distribution device 5, and the dehumidification throttling device 10 is located between the dehumidification condenser 9 and the dehumidification evaporator 11.
- the dehumidification system 3 also includes a control valve 12 arranged between the dehumidification condenser 9 and the first flow distribution device 4, and the control valve 12 is used to control the on and off of the pipeline of the dehumidification system 3. For different seasons or different regions, there may be a phenomenon that dehumidification is not required. In this case, if dehumidification is still forced, it will cause the room to be too dry, affect the user's comfort, and increase the compressor 1 The operating power of the compressor 1 increases the power consumption of the compressor 1, which is not conducive to energy saving.
- a control valve 12 that can control the on and off of the pipeline of the dehumidification system 3 is added, and the control valve 12 can be controlled to open the channel when dehumidification is required, so that the dehumidification system 3 can dehumidify normally.
- the control valve 12 is controlled to close the passage, so that the dehumidification system 3 does not need to dehumidify and save energy.
- the control valve 12 is, for example, a solenoid valve.
- the dehumidification system 3 further includes a flow adjustment device 13 arranged between the dehumidification condenser 9 and the first flow distribution device 4.
- the flow adjustment device can adjust the flow of the refrigerant entering the dehumidification system 3, thereby reasonably adjusting the dehumidification amount according to the indoor humidity, so that the indoor humidity can be within the range required by the user, and better meet the user's indoor temperature and humidity requirements.
- a gas-liquid separator 14 is provided between the second flow distribution device 5 and the suction port of the compressor 1.
- the air conditioning system includes an outdoor part and an indoor part, the outdoor part and the indoor part are separated by a partition 15, and the temperature adjustment system 2 includes a main outdoor heat exchanger 6, a main throttle device 7 and a main indoor part.
- the main outdoor heat exchanger 6 is installed in the outdoor part, and the compressor 1 is installed in the main outdoor heat exchanger 6 and the partition Between 15, the dehumidification condenser 9 and the dehumidification evaporator 11 are arranged on the side of the partition 15 close to the outdoor part.
- the outdoor part and the indoor part are both set on the base, the outdoor part is located on the outside of the wall, the indoor part is on the indoor side, and the cavity between the outdoor part and the indoor part is located in the wall, the compressor 1, Both the throttling device and the dehumidification system 3 can be arranged in the cavity, so that the structural features of the air conditioner can be more rationally used to realize the structural arrangement, the space is fully utilized, the space occupation is reduced, and the air conditioner structure is more compact and the layout is more reasonable.
- the dehumidification system 3 Since the dehumidification system 3 needs to dehumidify the air before the air enters the indoor side for temperature adjustment, the dehumidification system 3 is arranged on the side of the partition 15 close to the outdoor part to make the dehumidification system 3 more convenient for dehumidification.
- the dehumidification condenser 9 and the dehumidification evaporator 11 are arranged at the air inlet of the indoor part, and the dehumidification evaporator 11 and the dehumidification condenser 9 are arranged side by side in sequence along the air flow direction.
- the air first flows through the dehumidification evaporator 11 and condenses on the surface of the dehumidification evaporator 11 to remove moisture in the air.
- the dehumidified air is heated by the dehumidification condenser 9 to avoid the low air temperature.
- the main indoor heat exchanger 8 cannot absorb enough heat.
- the dehumidification evaporator 11 is provided with a dehumidification filter 16 on the air inlet side, which can filter the air entering the dehumidification evaporator 11 to prevent impurities and the like from entering the dehumidification evaporator 11, and at the same time, it can also prevent pests and mice from entering the air inlet side. Indoor part.
- a dehumidification fan 17 is also provided at the air inlet of the indoor part.
- the dehumidification fan 17 is arranged on the side of the dehumidification evaporator 11 away from the dehumidification condenser 9 to allow outdoor air to enter the dehumidification evaporator 11 through the air inlet of the indoor part for condensation. Dehumidification.
- An indoor fan is also provided in the indoor part corresponding to the main indoor heat exchanger 8.
- the indoor fan is, for example, a cross-flow fan 18, which can make the air blow into the room after heat exchange with the main indoor heat exchanger 8 to control the indoor temperature. adjust.
- the refrigerant When the above-mentioned air-conditioning system is working, the refrigerant is discharged from the exhaust port of the compressor 1, and then enters the first flow distribution device 4 through the refrigerant pipeline for flow distribution.
- the first flow distribution device 4 has two branches. Enter the main outdoor heat exchanger 6 through the first branch, then enter the second flow distribution device 5 through the main throttling device 7, the main indoor heat exchanger 8, and then flow through the gas-liquid separator 14 through the refrigerant pipeline After that, it enters compressor 1 to complete the refrigeration system cycle.
- the refrigerant enters the dehumidification condenser 9 through the bottom two divisions, and then enters the second flow distribution device 5 through the dehumidification throttling device 10 and the dehumidification evaporator 11, and then flows through the gas-liquid separator 14 through the refrigerant pipeline. Enter compressor 1 to complete the refrigeration system cycle.
- the outdoor air first passes through the dehumidification fan 17, and then through the dehumidification filter 16, and then passes through the dehumidification evaporator 11, the dehumidification condenser 9, and then enters through the partition 15
- the cross-flow fan blades On the indoor side, under the action of the cross-flow fan blades, it first passes through the gap reserved in the volute, and then discharges through the indoor air duct system.
- the dehumidification evaporator 11 When the air passes through the dehumidification evaporator 11, because the surface of the dehumidification evaporator 11 is low and lower than the dew point temperature of the air, the moisture in the air can be cooled, and the cooling water can be discharged to the outdoor chassis through the drainage system. After the air passes through the dehumidification evaporator 11, the moisture in the air is removed, and then the dehumidified air is heated by the dehumidification condenser 9 and then enters the room.
- the compressor 1 mentioned above may be an inverter compressor or a fixed frequency compressor.
- the above-mentioned throttling device may be an electronic expansion valve.
- the above-mentioned flow adjustment device may be an electronic expansion valve or a short pipe.
- the aforementioned solenoid valve may be a stop valve or a two-way valve.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调系统,包括压缩机(1)、温度调节系统(2)和除湿系统(3),温度调节系统(2)和除湿系统(3)并联设置后与压缩机(1)串联,温度调节系统(2)与压缩机(1)通过管路连接形成温度调节循环,除湿系统(3)与压缩机(1)通过管路连接形成除湿循环。
Description
本申请要求于2019年06月04日提交至中国国家知识产权局、申请号为201910481530.5,发明名称为“空调系统”的专利申请的优先权。
本申请属于空气调节技术领域,具体涉及一种空调系统。
目前,最常见、最有效的除湿方式是冷却除湿,即利用制冷原理除湿。常规除湿,需要单独的制冷系统,其包括压缩机、蒸发器、冷凝器、节流装置、风扇等等,零部件多、成本高。这样一来,在一个具有除湿功能的空调器中,其包括两个压缩机,会造成空调系统成本较高,不利于降低成本。
发明内容
因此,本申请要解决的技术问题在于提供一种空调系统,能够在实现温度调节和除湿功能的基础上减少压缩机数量,降低系统成本。
为了解决上述问题,本申请提供一种空调系统,包括压缩机、温度调节系统和除湿系统,温度调节系统和除湿系统并联设置后与压缩机串联,温度调节系统与压缩机通过管路连接形成温度调节循环,除湿系统与压缩机通过管路连接形成除湿循环。
优选地,压缩机的排气口通过第一流量分配装置分别与温度调节系统和除湿系统的第一端连接;和/或,压缩机的吸气口通过第二流量分配装置分别与温度调节系统和除湿系统的第二端连接。
优选地,温度调节系统包括主室外换热器、主节流装置和主室内换热器,主室外换热器连接至第一流量分配装置,主室内换热器连接至第二流量分配装置,主节流装置位于主室外换热器和主室内换热器之间。
优选地,温度调节系统包括主室外换热器、主节流装置、四通阀和主室内换热器,四通阀的第一接口连接至第一流量分配装置,四通阀的第二接口连接 至主室外换热器,四通阀的第三接口连接至主室内换热器,四通阀的第四接口连接至第二流量分配装置,主节流装置位于主室外换热器和主室内换热器之间。
优选地,除湿系统包括除湿冷凝器、除湿节流装置和除湿蒸发器,除湿冷凝器连接至第一流量分配装置,除湿蒸发器连接至第二流量分配装置,除湿节流装置位于除湿冷凝器和除湿蒸发器之间。
优选地,除湿系统还包括设置在除湿冷凝器和第一流量分配装置之间的控制阀,控制阀用于控制除湿系统的管路通断。
优选地,除湿系统还包括设置在除湿冷凝器和第一流量分配装置之间的流量调节装置。
优选地,第二流量分配装置与压缩机的吸气口之间设置有气液分离器。
优选地,空调系统包括室外部分和室内部分,室外部分和室内部分通过隔板隔开,温度调节系统包括主室外换热器、主节流装置和主室内换热器,除湿系统包括除湿冷凝器、除湿节流装置和除湿蒸发器,主室外换热器设置在室外部分,压缩机设置在主室外换热器和隔板之间,除湿冷凝器和除湿蒸发器设置在隔板靠近室外部分的一侧。
优选地,除湿冷凝器和除湿蒸发器设置在室内部分的进风口处,且除湿蒸发器和除湿冷凝器沿着气流流动方向依次设置。
优选地,除湿蒸发器的进风侧设置有除湿过滤网。
优选地,室外部分和室内部分均设置在底座上,室外部分位于墙外侧,室内部分位于室内侧,室外部分和室内部分之间还包括位于墙体内的空腔,压缩机和除湿系统均设置在空腔内。
本申请提供的空调系统,包括压缩机、温度调节系统和除湿系统,温度调节系统和除湿系统并联设置后与压缩机串联,温度调节系统与压缩机通过管路连接形成温度调节循环,除湿系统与压缩机通过管路连接形成除湿循环。本申请的空调系统,除湿系统和温度调节系统共用一个压缩机,因此能够通过一个压缩机同时为温度调节和除湿提供动力,实现室内的除湿和温度调节,取消了单独的除湿压缩机,减少了压缩机的使用数量,可以使得空调系统结构更加紧凑,降低了空调系统的成本。
图1为本申请实施例的空调系统的结构原理图;
图2为本申请实施例的空调系统的立体结构图。
附图标记表示为:
1、压缩机;2、温度调节系统;3、除湿系统;4、第一流量分配装置;5、第二流量分配装置;6、主室外换热器;7、主节流装置;8、主室内换热器;9、除湿冷凝器;10、除湿节流装置;11、除湿蒸发器;12、控制阀;13、流量调节装置;14、气液分离器;15、隔板;16、除湿过滤网;17、除湿风机;18、贯流风机。
结合参见图1至图2所示,根据本申请的实施例,空调系统包括压缩机1、温度调节系统2和除湿系统3,温度调节系统2和除湿系统3并联设置后与压缩机1串联,温度调节系统2与压缩机1通过管路连接形成温度调节循环,除湿系统3与压缩机1通过管路连接形成除湿循环。
本申请的空调系统,除湿系统3和温度调节系统2共用一个压缩机1,因此能够通过一个压缩机1同时为温度调节和除湿提供动力,实现室内的除湿和温度调节,取消了单独的除湿压缩机,减少了压缩机的使用数量,可以使得空调系统结构更加紧凑,降低了空调系统的成本。
本申请的空调系统尤其适用于PTAC(Packaged Terminal Air Conditioner封装式终端空调)空调。
压缩机1的排气口通过第一流量分配装置4分别与温度调节系统2和除湿系统3的第一端连接;和/或,压缩机1的吸气口通过第二流量分配装置5分别与温度调节系统2和除湿系统3的第二端连接。分流器主要用于对冷媒进行分流。压缩机1的排气口通过第一流量分配装置4进行分流,使得冷媒可以更加合理地分配至温度调节系统2和除湿系统3中,流经温度调节系统2和除湿系统3的冷媒,在第二流量分配装置5处又通过第二流量分配装置5汇聚在一处,然后回流至压缩机1的吸气口,完成冷媒的循环流动。第一流量分配装置4可以将压缩机1的排气按照一定比例分别输送到两套系统中。第一流量分配装置4例如为第一分流器,第二流量分配装置5例如为第一分流器。
在本申请中,温度调节系统2包括主室外换热器6、主节流装置7和主室内换热器8,主室外换热器6连接至第一流量分配装置4,主室内换热器8连接至第二流量分配装置5,主节流装置7位于主室外换热器6和主室内换热器8之间。对于本申请的空调系统而言,由于除湿主要应用与制冷环境下,因此,本申请的温度调节系统只需要满足制冷调节即可,可以省去四通阀等结构,简 化空调系统的控制结构,降低空调系统的控制难度,同时也可以在高温潮湿环境中进行有效的除湿制冷,节省空调系统成本。
温度调节系统2包括主室外换热器6、主节流装置7、四通阀和主室内换热器8,四通阀的第一接口连接至第一流量分配装置4,四通阀的第二接口连接至主室外换热器6,四通阀的第三接口连接至主室内换热器8,四通阀的第四接口连接至第二流量分配装置5,主节流装置7位于主室外换热器6和主室内换热器8之间。在本实施例中,基于温度调节具有制冷调节和制热调节两种不同调节工况的情况,增加了四通阀来控制温度调节系统2的换向控制,从而在保证除湿系统正常除湿的情况下,使得温度调节系统可以根据控制需要进行制冷或者制热,既能够实现制冷除湿功能,也能够实现制热除湿功能,功能更加多样化,可以适用于一些特殊的环境下。
除湿系统3包括除湿冷凝器9、除湿节流装置10和除湿蒸发器11,除湿冷凝器9连接至第一流量分配装置4,除湿蒸发器11连接至第二流量分配装置5,除湿节流装置10位于除湿冷凝器9和除湿蒸发器11之间。
除湿系统3还包括设置在除湿冷凝器9和第一流量分配装置4之间的控制阀12,控制阀12用于控制除湿系统3的管路通断。对于不同的季节或者不同的地区,可能会出现并不需要除湿的现象,在此情况下,如果仍然强制进行除湿,就会导致室内过于干燥,影响用户使用舒适度,同时还会增加压缩机1的运行功率,加大压缩机1的功耗,不利于实现节能。因此,在此情况下,增加了能够控制除湿系统3管路通断的控制阀12,可以在需要进行除湿时控制控制阀12打开通道,使得除湿系统3正常除湿。在无需除湿时控制控制阀12关闭通道,使得除湿系统3无需进行除湿,节省能源。该控制阀12例如为电磁阀。
优选地,除湿系统3还包括设置在除湿冷凝器9和第一流量分配装置4之间的流量调节装置13。该流量调节装置能够调节进入除湿系统3的冷媒流量,从而根据室内湿度合理调节除湿量,使得室内湿度能够处于用户所需范围内,更好地满足用户的室内温湿度要求。
第二流量分配装置5与压缩机1的吸气口之间设置有气液分离器14。
优选地,对于PTAC空调而言,空调系统包括室外部分和室内部分,室外部分和室内部分通过隔板15隔开,温度调节系统2包括主室外换热器6、主节流装置7和主室内换热器8,除湿系统3包括除湿冷凝器9、除湿节流装置10和除湿蒸发器11,主室外换热器6设置在室外部分,压缩机1设置在主室外换热器6和隔板15之间,除湿冷凝器9和除湿蒸发器11设置在隔板15靠近室 外部分的一侧。
在本实施例中,室外部分和室内部分均设置在底座上,室外部分位于墙外侧,室内部分位于室内侧,室外部分和室内部分之间还包括位于墙体内的空腔,压缩机1、节流装置和除湿系统3均可以设置在该空腔内,从而能够更加合理地利用空调结构特点实现结构布置,更加充分利用空间,减小空间占用,使得空调结构更加紧凑,布局更加合理。由于除湿系统3需要对空气进行除湿,之后空气才会进入到室内侧进行温度调节,因此将除湿系统3设置在隔板15靠近室外部分的一侧,能够使得除湿系统3更加方便进行除湿。
优选地,除湿冷凝器9和除湿蒸发器11设置在室内部分的进风口处,且除湿蒸发器11和除湿冷凝器9沿着气流流动方向依次并排设置。在进行除湿的过程中,空气首先流经除湿蒸发器11,在除湿蒸发器11的表面进行冷凝,去除空气中的水分,除湿之后的空气经除湿冷凝器9加热,避免了空气温度过低导致的主室内换热器8无法吸收足够热量的问题。
除湿蒸发器11的进风侧设置有除湿过滤网16,可以对进入除湿蒸发器11的空气进行过滤,避免杂质等进入到除湿蒸发器11,同时也能够避免虫鼠等经进风侧进入到室内部分。
在室内部分的进风口还设置有除湿风机17,除湿风机17设置在除湿蒸发器11远离除湿冷凝器9的一侧,用于使得室外空气顺利经室内部分的进风口进入除湿蒸发器11进行冷凝除湿。
在室内部分对应于主室内换热器8还设置有室内风机,室内风机例如为贯流风机18,能够使得空气在与主室内换热器8换热之后,被吹送至室内,对室内温度进行调节。
在上述的空调系统工作时,冷媒自压缩机1的排气口排出后,经冷媒管路进入到第一流量分配装置4处进行流量分配,第一流量分配装置4具有两个分路,冷媒经第一分路进入到主室外换热器6,然后经主节流装置7、主室内换热器8后,进入第二流量分配装置5,然后经冷媒管路流经气液分离器14后,进入压缩机1,完成制冷系统循环。
冷媒经底二分录进入到除湿冷凝器9,然后经除湿节流装置10和除湿蒸发器11之后,进入到第二流量分配装置5,然后经冷媒管路流经气液分离器14后,进入压缩机1,完成制冷系统循环。
在空调系统运转过程中,室外空气由于除湿风机17的作用,先通过除湿风机17,然后经过除湿过滤网16进行过滤,然后通过除湿蒸发器11、除湿冷 凝器9,再通过隔板15进入到室内侧,在贯流风叶的作用下,先通过蜗壳中预留的空隙,然后通过室内风道系统排出。空气经过除湿蒸发器11时,因除湿蒸发器11表面文顿低,低于空气的露点温度,因此可以把空气中的水分冷却,冷却水可以通过排水系统排到室外底盘。空气经过除湿蒸发器11后,空气中的水分被除去,然后除湿后的空气经除湿冷凝器9加热,之后进入到室内。
上述的压缩机1可以为变频压缩机,也可以为定频压缩机。上述的节流装置可以为电子膨胀阀。上述的流量调节装置可以为电子膨胀阀或者短管。上述的电磁阀可以为截止阀或二通阀。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。
Claims (12)
- 一种空调系统,其特征在于,包括压缩机(1)、温度调节系统(2)和除湿系统(3),所述温度调节系统(2)和所述除湿系统(3)并联设置后与所述压缩机(1)串联,所述温度调节系统(2)与所述压缩机(1)通过管路连接形成温度调节循环,所述除湿系统(3)与所述压缩机(1)通过管路连接形成除湿循环。
- 根据权利要求1所述的空调系统,其特征在于,所述压缩机(1)的排气口通过第一流量分配装置(4)分别与所述温度调节系统(2)和所述除湿系统(3)的第一端连接;和/或,所述压缩机(1)的吸气口通过第二流量分配装置(5)分别与所述温度调节系统(2)和所述除湿系统(3)的第二端连接。
- 根据权利要求2所述的空调系统,其特征在于,所述温度调节系统(2)包括主室外换热器(6)、主节流装置(7)和主室内换热器(8),所述主室外换热器(6)连接至所述第一流量分配装置(4),所述主室内换热器(8)连接至所述第二流量分配装置(5),所述主节流装置(7)位于所述主室外换热器(6)和所述主室内换热器(8)之间。
- 根据权利要求2所述的空调系统,其特征在于,所述温度调节系统(2)包括主室外换热器(6)、主节流装置(7)、四通阀和主室内换热器(8),所述四通阀的第一接口连接至所述第一流量分配装置(4),所述四通阀的第二接口连接至所述主室外换热器(6),所述四通阀的第三接口连接至所述主室内换热器(8),所述四通阀的第四接口连接至所述第二流量分配装置(5),所述主节流装置(7)位于所述主室外换热器(6)和所述主室内换热器(8)之间。
- 根据权利要求2所述的空调系统,其特征在于,所述除湿系统(3)包括除湿冷凝器(9)、除湿节流装置(10)和除湿蒸发器(11),所述除湿冷凝器(9)连接至所述第一流量分配装置(4),所述除湿蒸发器(11)连接至所述第二流量分配装置(5),所述除湿节流装置(10)位于所述除湿冷凝器(9)和所述除湿蒸发器(11)之间。
- 根据权利要求5所述的空调系统,其特征在于,所述除湿系统(3)还包括设置在所述除湿冷凝器(9)和所述第一流量分配装置(4)之间的控制阀(12),所述控制阀(12)用于控制所述除湿系统(3)的管路通断。
- 根据权利要求5所述的空调系统,其特征在于,所述除湿系统(3)还包括设置在所述除湿冷凝器(9)和所述第一流量分配装置(4)之间的流量调节 装置(13)。
- 根据权利要求2所述的空调系统,其特征在于,所述第二流量分配装置(5)与所述压缩机(1)的吸气口之间设置有气液分离器(14)。
- 根据权利要求1所述的空调系统,其特征在于,所述空调系统包括室外部分和室内部分,所述室外部分和所述室内部分通过隔板(15)隔开,所述温度调节系统(2)包括主室外换热器(6)、主节流装置(7)和主室内换热器(8),所述除湿系统(3)包括除湿冷凝器(9)、除湿节流装置(10)和除湿蒸发器(11),所述主室外换热器(6)设置在室外部分,所述压缩机(1)设置在所述主室外换热器(6)和所述隔板(15)之间,所述除湿冷凝器(9)和所述除湿蒸发器(11)设置在所述隔板(15)靠近室外部分的一侧。
- 根据权利要求9所述的空调系统,其特征在于,所述除湿冷凝器(9)和所述除湿蒸发器(11)设置在所述室内部分的进风口处,且所述除湿蒸发器(11)和所述除湿冷凝器(9)沿着气流流动方向依次设置。
- 根据权利要求10所述的空调系统,其特征在于,所述除湿蒸发器(11)的进风侧设置有除湿过滤网(16)。
- 根据权利要求9所述的空调系统,其特征在于,所述室外部分和所述室内部分均设置在底座上,室外部分位于墙外侧,室内部分位于室内侧,所述室外部分和所述室内部分之间还包括位于墙体内的空腔,所述压缩机(1)和所述除湿系统(3)均设置在所述空腔内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910481530.5 | 2019-06-04 | ||
CN201910481530.5A CN110260552A (zh) | 2019-06-04 | 2019-06-04 | 空调系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020244207A1 true WO2020244207A1 (zh) | 2020-12-10 |
Family
ID=67916745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/128423 WO2020244207A1 (zh) | 2019-06-04 | 2019-12-25 | 空调系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110260552A (zh) |
WO (1) | WO2020244207A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110260552A (zh) * | 2019-06-04 | 2019-09-20 | 珠海格力电器股份有限公司 | 空调系统 |
CN110848825A (zh) * | 2019-11-20 | 2020-02-28 | 珠海格力电器股份有限公司 | 具有新风除湿功能的空调系统、空调器及控制方法 |
CN110939998A (zh) * | 2019-11-20 | 2020-03-31 | 珠海格力电器股份有限公司 | 空调系统、空调器以及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB372410A (en) * | 1931-10-14 | 1932-05-12 | Ernest John Naylor | Improvements in and relating to means for cooling and dehumidifying air |
GB451847A (en) * | 1933-11-14 | 1936-08-06 | Kelvinator Corp | Improvements in or relating to cooling and dehumidifying gases, such as air |
CN202947213U (zh) * | 2012-10-24 | 2013-05-22 | 泰豪科技股份有限公司 | 多冷凝器并联式调温除湿机 |
CN104251515A (zh) * | 2013-06-25 | 2014-12-31 | 上海日立电器有限公司 | 潜热显热分离控制的家用空调制冷系统 |
CN104864495A (zh) * | 2014-02-21 | 2015-08-26 | 大金工业株式会社 | 空调装置 |
CN110260552A (zh) * | 2019-06-04 | 2019-09-20 | 珠海格力电器股份有限公司 | 空调系统 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4573328A (en) * | 1985-02-04 | 1986-03-04 | Carrier Corporation | Apparatus for mounting a packaged terminal air controller to a plastic well sleeve |
US4877106A (en) * | 1988-04-29 | 1989-10-31 | Carrier Corporation | Sound-attenuating discharge apparatus for a packaged terminal air conditioner |
US6381978B1 (en) * | 2001-05-16 | 2002-05-07 | Carrier Corporation | Base pan assembly for air conditioner |
JP3711999B2 (ja) * | 2004-03-31 | 2005-11-02 | ダイキン工業株式会社 | 調湿装置 |
CN1793747A (zh) * | 2005-12-31 | 2006-06-28 | 东莞市广大制冷有限公司 | 调温型除湿机的控制方法 |
CN101666526B (zh) * | 2009-09-18 | 2011-07-20 | 南京理工大学 | 一种双蒸发器调温除湿空调机组 |
CN201569203U (zh) * | 2009-12-25 | 2010-09-01 | 韩旭 | 蒸冷式调温除湿机组 |
CN102486322B (zh) * | 2010-12-06 | 2014-11-05 | 中国科学院理化技术研究所 | 调温除湿系统和方法 |
US9322581B2 (en) * | 2011-02-11 | 2016-04-26 | Johnson Controls Technology Company | HVAC unit with hot gas reheat |
CN202419796U (zh) * | 2011-12-06 | 2012-09-05 | 南京五洲制冷集团有限公司 | 一种用于除湿机的冷凝热多点排热系统 |
CN102705916B (zh) * | 2012-06-28 | 2014-04-09 | 张晓卉 | 库房专用净化消毒加湿除湿恒温一体机 |
CN203036900U (zh) * | 2012-11-28 | 2013-07-03 | 姚永明 | 一种热泵除湿机 |
CN203464401U (zh) * | 2013-07-17 | 2014-03-05 | 珠海格力电器股份有限公司 | 一种变频穿墙机 |
CN204100406U (zh) * | 2014-09-26 | 2015-01-14 | 广州东奥电气有限公司 | 一种双制冷系统调温除湿机 |
US9759435B2 (en) * | 2015-02-27 | 2017-09-12 | Haier Us Appliance Solutions, Inc. | Packaged terminal air conditioner unit |
US20170003040A1 (en) * | 2015-07-02 | 2017-01-05 | General Electric Company | Packaged terminal air conditioner unit |
CN205381118U (zh) * | 2016-03-21 | 2016-07-13 | 郑鹏奇 | 一种电动汽车空调系统 |
CN105805972B (zh) * | 2016-04-15 | 2018-11-20 | 广东美的暖通设备有限公司 | 空调系统及空调系统的控制方法 |
CN206760625U (zh) * | 2017-03-22 | 2017-12-19 | 徐州市海涛制冷设备有限公司 | 泵环连续式果蔬烘干预冷速冻隧道 |
US11067302B2 (en) * | 2017-06-02 | 2021-07-20 | Haier Us Appliance Solutions, Inc. | System and method for operating a packaged terminal air conditioner unit |
CN207225010U (zh) * | 2017-06-30 | 2018-04-13 | 北京智行鸿远汽车有限公司 | 一种并联式的空调系统 |
CN107990438A (zh) * | 2017-12-25 | 2018-05-04 | 泰豪科技股份有限公司 | 整体式除湿烘干机 |
CN108443971A (zh) * | 2018-05-29 | 2018-08-24 | 珠海格力电器股份有限公司 | 穿墙机 |
CN108758878A (zh) * | 2018-07-06 | 2018-11-06 | 珠海格力节能环保制冷技术研究中心有限公司 | 除湿机 |
CN209459060U (zh) * | 2018-12-12 | 2019-10-01 | 珠海格力电器股份有限公司 | 穿墙机 |
CN109442571A (zh) * | 2018-12-12 | 2019-03-08 | 珠海格力电器股份有限公司 | 穿墙机 |
-
2019
- 2019-06-04 CN CN201910481530.5A patent/CN110260552A/zh active Pending
- 2019-12-25 WO PCT/CN2019/128423 patent/WO2020244207A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB372410A (en) * | 1931-10-14 | 1932-05-12 | Ernest John Naylor | Improvements in and relating to means for cooling and dehumidifying air |
GB451847A (en) * | 1933-11-14 | 1936-08-06 | Kelvinator Corp | Improvements in or relating to cooling and dehumidifying gases, such as air |
CN202947213U (zh) * | 2012-10-24 | 2013-05-22 | 泰豪科技股份有限公司 | 多冷凝器并联式调温除湿机 |
CN104251515A (zh) * | 2013-06-25 | 2014-12-31 | 上海日立电器有限公司 | 潜热显热分离控制的家用空调制冷系统 |
CN104864495A (zh) * | 2014-02-21 | 2015-08-26 | 大金工业株式会社 | 空调装置 |
CN110260552A (zh) * | 2019-06-04 | 2019-09-20 | 珠海格力电器股份有限公司 | 空调系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110260552A (zh) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106524317B (zh) | 一种分质热回收冷剂过冷再热空调器及其空气处理方法 | |
CN110715364B (zh) | 空气处理设备及其控制方法、装置 | |
CN106705224B (zh) | 一种多层次热回收组合式空气处理器及其空气处理方法 | |
CN111306646B (zh) | 新风空调的控制方法 | |
CN108679870A (zh) | 一种带新风处理功能的温湿分控空调系统 | |
WO2020244207A1 (zh) | 空调系统 | |
CN112880034A (zh) | 新风温湿度控制系统、新风空调及新风除湿风温控制方法 | |
CN207729719U (zh) | 热回收型双冷源新风机组 | |
JPH07310964A (ja) | 空気調和機 | |
CN112880035A (zh) | 一种改进的控温除湿新风空调及新风除湿风温控制方法 | |
JP3506333B2 (ja) | 天井内熱回収機 | |
KR100430278B1 (ko) | 히트파이프를 적용한 에너지 절약형 폐열회수 공기조화기 | |
CN213873264U (zh) | 空调系统 | |
JP2894571B2 (ja) | 空調システム及び空気調和装置 | |
CN209763409U (zh) | 一种可冬夏季调温的新风机 | |
JP2002228187A (ja) | 空冷ヒートポンプ式外気処理空調機 | |
CN208475494U (zh) | 一种新风除湿机 | |
CN208936579U (zh) | 一种温湿度独立控制的新风空调系统 | |
CN108317650B (zh) | 一种带独立新风的多联式空调热泵系统 | |
CN208567194U (zh) | 一种全直膨型温湿度独立控制的空调系统 | |
JP3614775B2 (ja) | ヒートポンプ式空調機 | |
JP2002250540A (ja) | 薄形ヒートポンプ式外気処理空調機 | |
CN205957318U (zh) | 多功能型列间空调装置 | |
CN108679869A (zh) | 一种单制冷剂回路全直膨型温湿分控空调系统 | |
JP2006317012A (ja) | エアコン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932108 Country of ref document: EP Kind code of ref document: A1 |