WO2020244186A1 - 一种超级电容器用活性炭及其制备方法和应用 - Google Patents

一种超级电容器用活性炭及其制备方法和应用 Download PDF

Info

Publication number
WO2020244186A1
WO2020244186A1 PCT/CN2019/124753 CN2019124753W WO2020244186A1 WO 2020244186 A1 WO2020244186 A1 WO 2020244186A1 CN 2019124753 W CN2019124753 W CN 2019124753W WO 2020244186 A1 WO2020244186 A1 WO 2020244186A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
supercapacitors
carbonization
supercapacitor
sol
Prior art date
Application number
PCT/CN2019/124753
Other languages
English (en)
French (fr)
Inventor
阮殿波
于学文
乔志军
丁升
Original Assignee
宁波中车新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波中车新能源科技有限公司 filed Critical 宁波中车新能源科技有限公司
Publication of WO2020244186A1 publication Critical patent/WO2020244186A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to an activated carbon for supercapacitors and a preparation method and application thereof, and belongs to the technical field of electrode materials.
  • activated carbon for high-voltage supercapacitors mainly adopt methods such as “high-temperature graphitization” and “high-temperature hydrogen reduction” to achieve “high voltage” by “removing functional groups on the surface of the material” and “improving the crystallinity of the material.”
  • the surface of activated carbon materials will inevitably be “secondary oxidation”, which ultimately limits the working voltage of existing commercial carbon materials to below 2.7V, which cannot From the perspective of large-scale applications, applications with voltages of 3.0V and above can be realized.
  • the present invention provides an activated carbon for high withstand voltage supercapacitors and a preparation method and application thereof.
  • An activated carbon for supercapacitors the surface of which is bonded with nano materials.
  • the surface functional group content of the activated carbon is less than or equal to 0.5 meq/g.
  • the specific surface area of the activated carbon is 1500-1900 m 2 /g.
  • the average particle size distribution of the activated carbon is 5-12 ⁇ m.
  • the average pore diameter of the activated carbon is 1.0-2.5 nm.
  • the precursor of the activated carbon is one or more of coconut shell and phenolic resin.
  • the nano material includes Al 2 O 3 .
  • the content of Al 2 O 3 is 1-5%.
  • the manufacture of supercapacitors is relatively mature, and many parameters are relatively fixed. During the development process, the performance improvement is relatively limited.
  • the present invention addresses the necessity of activated carbon.
  • the components are compounded and modified, that is, based on the functional groups remaining on the surface of the activated carbon, they are bonded with the functional groups under the action of hydrogen bonds to form a "functional group region" coated material to avoid anions and cations and activated carbon during high voltage discharge
  • the contact of the material surface causes the performance of the capacitor to decrease or even fail.
  • the use of nanomaterials to protect activated carbon from being oxidized during use is equivalent to improving the service life of the capacitor and the application field of the capacitor.
  • a preparation method of activated carbon for supercapacitors includes the following steps:
  • the preparation method of the present invention is simple and easy to implement, can be realized on the basis of existing equipment, is convenient for large-scale industrial production, and the raw materials used are also easy to obtain.
  • a layer of sol material is coated on the surface of the activated carbon material.
  • the surface sol is carbonized to form the material covered by the "functional group area".
  • the heating temperature is 80-90°C
  • the time for stirring and dissolution is 1-3h
  • the time for the second stirring is 24-48h.
  • the acid solution includes nitric acid with a concentration of 68-72%.
  • the dropping amount of the nitric acid is 50-100 ml.
  • the usage amount of aluminum isopropoxide is 100-500g
  • the amount of nitric acid added is 50-100ml.
  • constant temperature carbonization is performed for 2-10 hours.
  • the mass ratio of the aluminum isopropoxide to activated carbon is 2-10:100.
  • the purity of the aluminum isopropoxide is at least analytically pure.
  • the supercapacitor includes electrode slurry, and the raw material of the electrode slurry includes activated carbon for supercapacitors.
  • the raw material of the electrode slurry also includes conductive carbon black, styrene butadiene rubber, and sodium carboxymethyl cellulose.
  • the mass ratio of the activated carbon for supercapacitors, conductive carbon black, styrene butadiene rubber, and sodium carboxymethyl cellulose is 90:5:3:1.8-2.2.
  • the electrode slurry is sequentially coated, rolled, slitted, wound, assembled, dried, injected, and sealed to obtain a super capacitor.
  • the supercapacitor has a cylindrical shape with a diameter of 55-65mm and a height of 135-141mm.
  • the composite material obtained by improving the activated carbon of the present invention (that is, the activated carbon for supercapacitors of the present application) is mainly used for supercapacitors to improve their withstand voltage performance, so that the supercapacitors can operate at higher voltages, and finally obtain better results.
  • the high energy density improves the overall performance of the device using the capacitor of the invention.
  • the present invention has the following advantages:
  • the activated carbon functional group on the surface of the composite material of the present invention in contact with the electrolyte is introduced through the introduction of nano-scale materials to achieve in-situ size isolation and ensure the high voltage resistance characteristics of the material.
  • nano-scale material of the present invention effectively increases the intrinsic packing density of the composite material, improves the uniformity of the dispersion between the electrode materials during the preparation of the activated carbon material slurry, and helps to increase the electron migration rate inside the electrode. Reduce the internal resistance of the monomer.
  • the sol is mixed with commercial activated carbon with 10kg precursor of coconut shell, specific surface area of 1500m 2 /g, average particle size of 5 ⁇ m, surface functional group content of 0.5meq/g, and average pore diameter of 1.0nm, in a rotating ball mill at room temperature Mix and stir for 3 hours to obtain the mixture, then transfer the mixture to a high-temperature carbonization furnace, and under a nitrogen atmosphere, the temperature rises to 800°C at a temperature rise rate of 5°C. After 5 hours of constant temperature carbonization, it is naturally cooled to room temperature to form Al 2 O 3 /C Activated carbon for super capacitors.
  • the sol is mixed with commercial activated carbon with 1kg precursor of phenolic resin, specific surface area of 1700m 2 /g, average particle size of 8 ⁇ m, surface functional group content of 0.3meq/g, and average pore diameter of 1.8nm, in a rotating ball mill at room temperature Mix and stir for 4 hours to obtain a mixture, then transfer the mixture to a high-temperature carbonization furnace, under a nitrogen atmosphere, increase to 750°C at a temperature rise rate of 3°C, and cool to room temperature after 10 hours of constant-temperature carbonization treatment to form Al 2 O 3 /C Activated carbon for super capacitors.
  • the sol was mixed with 10kg of precursor coconut shell, specific surface area of 1900m 2 /g, average particle size of 12 ⁇ m, surface functional group content of 0.1meq/g, average pore diameter of 2.5nm commercial activated carbon, in a rotating ball mill at room temperature Mix and stir for 3.5 hours to obtain the mixture, and then transfer the mixture to a high-temperature carbonization furnace. Under a nitrogen atmosphere, the temperature rises to 900°C at a rate of 4°C. After constant temperature carbonization treatment for 2 hours, it is naturally cooled to room temperature to form Al 2 Activated carbon for O 3 /C supercapacitors.
  • Example 2 The only difference from Example 2 is that the surface functional group content of the activated carbon of Example 4 is 0.6 meq/g.
  • Example 2 The only difference from Example 2 is that the acid solution added dropwise in Example 5 is 37% hydrochloric acid.
  • Example 2 The only difference from Example 2 is that the heating rate of the carbonization treatment in Example 6 is 2° C./min.
  • Example 7 The only difference from Example 2 is that the heating rate of the carbonization treatment in Example 7 is 6° C./min.
  • Example 2 The only difference from Example 2 is that the carbonization temperature of Example 8 is 700°C.
  • Example 9 The only difference from Example 2 is that the carbonization temperature of Example 9 is 950°C.
  • Example 2 The only difference from Example 2 is that the carbonization treatment time of Example 10 is 1 h.
  • Example 2 The only difference from Example 2 is that the time of the carbonization treatment in Example 11 is 11 hours.
  • Example 2 The only difference from Example 2 is that the mass ratio of aluminum isopropoxide to commercial activated carbon in Example 12 is 1:100.
  • Example 2 The only difference from Example 2 is that the mass ratio of aluminum isopropoxide to commercial activated carbon in Example 13 is 11:100.
  • the activated carbon for supercapacitors obtained in Examples 1-13 is used for capacitors, namely, activated carbon for supercapacitors, conductive carbon black, styrene butadiene rubber (SBR), and sodium hydroxymethyl cellulose (CMC) in a mass ratio of 90:5:
  • the electrode slurry for supercapacitors is prepared in a 3:2 method, and then the slurry is successively processed by coating, rolling, slitting, winding, assembling, drying, liquid injection, and sealing to prepare a diameter of 60mm and a height of 138mm Cylindrical supercapacitors.
  • Table 1 The performance of supercapacitors in application examples 1-13 and comparative example 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种超级电容器用活性炭及其制备方法和应用,属于电极材料技术领域,该活性炭表面键合纳米材料,并通过如下方法进行制备:将异丙醇铝加入到去离子水中,加热、搅拌溶解,同时滴加酸液,继续加热、二次搅拌得溶胶;将溶胶与商用活性炭混合后进行球磨处理得混料,再将混料转移至炭化炉中,炭化处理得超级电容器用活性炭。材料制备过程简单,能够在现有商品化超级电容器用活性炭材料的设备中完成工程化制备、生产。

Description

一种超级电容器用活性炭及其制备方法和应用 技术领域
本发明涉及一种超级电容器用活性炭及其制备方法和应用,属于电极材料技术领域。
背景技术
作为一种介于电容器与锂离子电池间的新型储能器件,超级电容器因具有功率密度高、循环寿命长、工作温度宽等突出优势使得其在轨道交通、风力发电、港口机械、军工等领域具有广泛的应用与市场前景。但能量密度偏低的缺点极大程度上限制了该器件的大规模应用,根据E=0.5CV 2可知,提升产品工作电压能够迅速、有效的提升产品的能量密度,而超级电容器用活性炭的工作电压直接关系到储能器件电压的提升与否。
目前,对于高电压超级电容器用活性炭主要采用“高温石墨化”、“氢气高温还原”等方法,以“去除材料表面官能团”、“提高材料结晶度”的方式实现“高电压”。但是考虑到活性炭在后续使用过程中需要长时间接触“空气”,活性炭材料表面不可避免的会被“二次氧化”,最终使得现有商品化炭材料的工作电压限制在2.7V以下,无法从规模化应用的角度实现3.0V电压及以上的应用。
发明内容
针对上述存在的问题,本发明提供一种高耐压超级电容器用活性炭及其制备方法和应用。
为了实现上述目的,本发明采用以下技术方案:
一种超级电容器用活性炭,所述活性炭表面键合纳米材料。
作为优选,所述活性炭的表面官能团含量≤0.5meq/g。
进一步优选,所述活性炭的比表面积为1500-1900m 2/g。
进一步优选,所述活性炭的平均粒径分布为5-12μm。
进一步优选,所述活性炭的平均孔径为1.0-2.5nm。
进一步优选,所述活性炭的前驱体为椰壳、酚醛树脂中的一种或多种。
作为优选,所述纳米材料包括Al 2O 3
进一步优选,所述Al 2O 3的含量为1-5%。
超级电容器的制造已经较为成熟,很多参数也较为固定,在发展过程中,性能的提升也较为有限,为了适应现阶段对电容器的性能要求,一般从材质上入手,本发明就针对活性炭这一必要成分,进行复合改性,即以活性炭表面残存的官能团为基础,在氢键的作用下与官能团键合,形成了“官能团区域”包覆的材料,避免在高电压放电过程中阴阳离子与活性炭材料表面的接触而造成电容器性能下降甚至失效。利用纳米材料来保护活性炭在使用时不被氧化,相当于提升了电容器的使用寿命和电容器的使用领域。
一种超级电容器用活性炭的制备方法,所述方法包括如下步骤:
将异丙醇铝加入到去离子水中,加热、搅拌溶解,同时滴加酸液,继续加热、二次搅拌得溶胶;
将溶胶与活性炭混合后进行球磨处理得混料,再将混料转移至炭化炉中,炭化处理得超级电容器用活性炭。
本发明的制备方法简单易行,可以在现有的设备基础上实现,便于进行规模化工业生产,且采用的原料也容易获得。本过程主要是溶胶与活性炭混合后,在活性炭材料表面包覆了一层溶胶材料,通过炭化过程,将表面溶胶炭化,形成了“官能团区域”包 覆的材料。
作为优选,所述加热的温度为80-90℃,搅拌溶解的时间为1-3h,二次搅拌的时间为24-48h。
作为优选,所述酸液包括硝酸,浓度为68-72%。
进一步优选,所述硝酸的滴加量为50-100ml。在异丙醇铝的使用量在100-500g时,添加硝酸的量为50-100ml。
作为优选,所述炭化处理时,以3-5℃/min的温升速率升至750-900℃后,恒温炭化2-10h。
作为优选,所述异丙醇铝与活性炭的质量比为2-10:100。
作为优选,所述异丙醇铝的纯度至少为分析纯。
一种超级电容器用活性炭在超级电容器中的应用,所述超级电容器包括电极浆料,所述电极浆料的原料包括超级电容器用活性炭。
作为优选,所述电极浆料的原料还包括导电炭黑、丁苯橡胶、羟甲基纤维素钠。
作为优选,所述超级电容器用活性炭、导电炭黑、丁苯橡胶、羟甲基纤维素钠的质量比为90:5:3:1.8-2.2。
作为优选,将所述电极浆料依次经涂覆、碾压、分切、卷绕、组装、干燥、注液、封口处理后,得超级电容器。
进一步优选,所述超级电容器呈圆柱形,直径为55-65mm、高度为135-141mm。
本发明改进活性炭后获得的复合材料(即本申请的超级电容器用活性炭),主要是用于超级电容器,以提升其耐电压性能,进而使得超级电容器可以在较高的电压下运行,最终获得较高的能量密度,即提升了采用本发明电容器的设备的综合性能。
与其他材料相比,本发明具有如下优点:
(1)本发明材料制备过程简单,能够在现有商品化超级电容器用活性炭材料的设备中完成工程化制备、生产。
(2)本发明复合材料表面与电解液接触的活性炭官能团通过纳米级材料的引入,实现了原位尺寸的隔离,确保了材料的高耐电压特性。
(3)本发明纳米级材料的添加,有效的提高了复合材料的本征堆积密度,提高了活性炭材料浆料制备过程电极材料间的分散均一性,有助于提高电极内部电子的迁移速率,降低单体的内阻值。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
将200g异丙醇铝在85℃、300g的去离子水中搅拌溶解1h,同时滴加80mL浓度为70%的HNO 3溶液,在85℃条件下搅拌24h形成均匀的溶胶;
将溶胶与10kg前驱体为椰壳、比表面积为1500m 2/g、平均粒径为5μm、表面官能团含量为0.5meq/g、平均孔径为1.0nm的商用活性炭混合,常温条件下在旋转球磨机中混合搅拌3h得混料,再将混料转移至高温炭化炉中,在氮气保护气氛下,以5℃的温升速率升至800℃,恒温炭化处理5h后自然冷却至室温,形成Al 2O 3/C超级电容器用活性炭。
实施例2
将100g异丙醇铝在90℃、224g的去离子水中搅拌溶解1h,同时滴加50mL浓度为70%的HNO 3溶液,在90℃条件下搅拌48h形成均匀的溶胶;
将溶胶与1kg前驱体为酚醛树脂、比表面积为1700m 2/g、平均粒径为8μm、表面官能团含量为0.3meq/g、平均孔径为1.8nm的商用活性炭混合,常温条件下在旋转球磨机中混合搅拌4h得混 料,再将混料转移至高温炭化炉中,在氮气保护气氛下,以3℃的温升速率升至750℃,恒温炭化处理10h后自然冷却至室温,形成Al 2O 3/C超级电容器用活性炭。
实施例3
将500g异丙醇铝在80℃、800g的去离子水中搅拌溶解1h,同时滴加100mL浓度为70%的HNO 3溶液,在90℃条件下搅拌36h形成均匀的溶胶;
将溶胶与10kg前驱体为椰壳、比表面积为1900m 2/g、平均粒径为12μm、表面官能团含量为0.1meq/g、平均孔径为2.5nm的商用活性炭混合,常温条件下在旋转球磨机中混合搅拌3.5h得混料,再将混料转移至高温炭化炉中,在氮气保护气氛下,以4℃的温升速率升至900℃,恒温炭化处理2h后自然冷却至室温,形成Al 2O 3/C超级电容器用活性炭。
实施例4
与实施例2的区别仅在于,实施例4活性炭的表面官能团含量为0.6meq/g。
实施例5
与实施例2的区别仅在于,实施例5滴加的酸液为37%的盐酸。
实施例6
与实施例2的区别仅在于,实施例6炭化处理的升温速率为2℃/min。
实施例7
与实施例2的区别仅在于,实施例7炭化处理的升温速率为6℃/min。
实施例8
与实施例2的区别仅在于,实施例8炭化处理的温度为700℃。
实施例9
与实施例2的区别仅在于,实施例9炭化处理的温度为950℃。
实施例10
与实施例2的区别仅在于,实施例10炭化处理的时间为1h。
实施例11
与实施例2的区别仅在于,实施例11炭化处理的时间为11h。
实施例12
与实施例2的区别仅在于,实施例12异丙醇铝与商用活性炭的质量比为1:100。
实施例13
与实施例2的区别仅在于,实施例13异丙醇铝与商用活性炭的质量比为11:100。
应用实施例1-13
将实施例1-13获得的超级电容器用活性炭用于电容器,即将超级电容器用活性炭、导电炭黑、丁苯橡胶(SBR)、羟甲基纤维素钠(CMC)按照质量比为90:5:3:2的方式制备超级电容器用电极浆料,再将浆料依次经过涂覆、碾压、分切、卷绕、组装、干燥、注液、封口处理,制备得直径为60mm、高度为138mm的圆柱形超级电容器。
对比例1
将普通市售活性炭、导电炭黑、丁苯橡胶(SBR)、羟甲基纤维素钠(CMC)按照质量比为90:5:3:2的方式制备超级电容器用电极浆料,再将浆料依次经过涂覆、碾压、分切、卷绕、组装、干燥、注液、封口处理,制备得直径为60mm、高度为138mm的圆柱形超级电容器。
将应用实施例1-13及对比例1中的超级电容器进行测试,测试其容量、直流内阻、工作电压、容量保持率(1万次,100A), 结果如表1所示:
表1:应用实施例1-13及对比例1中超级电容器的性能
Figure PCTCN2019124753-appb-000001
尽管对本发明已作出了详细的说明并引证了一些具体实施例,但是对本领域熟练技术人员来说,只要不离开本发明的精神和范围可作各种变化或修正是显然的。

Claims (10)

  1. 一种超级电容器用活性炭,其特征在于,所述活性炭表面键合纳米材料。
  2. 根据权利要求1所述的一种超级电容器用活性炭,其特征在于,所述活性炭的表面官能团含量≤0.5meq/g。
  3. 根据权利要求1所述的一种超级电容器用活性炭,其特征在于,所述纳米材料包括Al 2O 3
  4. 根据权利要求3所述的一种超级电容器用活性炭,其特征在于,所述Al 2O 3的含量为1-5%。
  5. 一种如权利要求1所述的超级电容器用活性炭的制备方法,其特征在于,所述方法包括如下步骤:
    将异丙醇铝加入到去离子水中,加热、搅拌溶解,同时滴加酸液,继续加热、二次搅拌得溶胶;
    将溶胶与活性炭混合后进行球磨处理得混料,再将混料转移至炭化炉中,炭化处理得超级电容器用活性炭。
  6. 根据权利要求5所述的一种超级电容器用活性炭的制备方法,其特征在于,所述加热的温度为80-90℃,搅拌溶解的时间为1-3h,二次搅拌的时间为24-48h。
  7. 根据权利要求5所述的一种超级电容器用活性炭的制备方法,其特征在于,所述酸液包括硝酸,浓度为68-72%。
  8. 根据权利要求5所述的一种超级电容器用活性炭的制备方法,其特征在于,所述炭化处理时,以3-5℃/min的升温速率升至750-900℃后,恒温炭化2-10h。
  9. 根据权利要求5所述的一种超级电容器用活性炭的制备方法,其特征在于,所述异丙醇铝与活性炭的质量比为2-10:100。
  10. 一种如权利要求1所述的超级电容器用活性炭在超级电容器中的应用,其特征在于,所述超级电容器包括电极浆料,所述电极浆料的原料包括超级电容器用活性炭。
PCT/CN2019/124753 2019-06-06 2019-12-12 一种超级电容器用活性炭及其制备方法和应用 WO2020244186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491068.7A CN110357092A (zh) 2019-06-06 2019-06-06 一种超级电容器用活性炭及其制备方法和应用
CN201910491068.7 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244186A1 true WO2020244186A1 (zh) 2020-12-10

Family

ID=68215755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124753 WO2020244186A1 (zh) 2019-06-06 2019-12-12 一种超级电容器用活性炭及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110357092A (zh)
WO (1) WO2020244186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357092A (zh) * 2019-06-06 2019-10-22 宁波中车新能源科技有限公司 一种超级电容器用活性炭及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106710891A (zh) * 2017-02-04 2017-05-24 徐靖才 一种NiCo2O4/活性炭复合材料的制备方法
CN107359054A (zh) * 2016-05-09 2017-11-17 国家纳米科学中心 一种复合电极材料、其制备方法及应用
CN108393082A (zh) * 2018-03-06 2018-08-14 淮南市通霸蓄电池有限公司 一种纳米氧化铅-碳复合材料及其制备方法
CN109786123A (zh) * 2019-03-18 2019-05-21 徐靖才 一种Zn2SnO4/活性炭复合材料的制备方法
CN110357092A (zh) * 2019-06-06 2019-10-22 宁波中车新能源科技有限公司 一种超级电容器用活性炭及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005032928B4 (de) * 2005-07-14 2010-02-11 Rennebeck, Klaus, Dr. Verfahren zur Herstellung von Aktivkohle, Körpern aus Aktivkohle und mit Aktivkohle versehenen Körpern
CN101890333B (zh) * 2010-07-06 2012-02-22 浙江大学 一种氧化铝膜包覆的活性炭及其制备方法
CN102426924B (zh) * 2011-10-13 2014-05-14 李荐 一种高性能铝/碳复合电极箔及其制备方法
KR102097334B1 (ko) * 2012-12-14 2020-04-06 삼성전기주식회사 활성 탄소, 이의 제조방법, 및 이를 포함하는 전기화학 캐패시터
CN103641114B (zh) * 2013-12-17 2015-11-18 中国科学院新疆理化技术研究所 以氧化锌和氧化铝为模板的石油焦基活性炭的制备和应用
CN106298262B (zh) * 2016-11-02 2019-01-08 江苏尊道科技有限公司 一种耐高压的超级电容器电极极片及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359054A (zh) * 2016-05-09 2017-11-17 国家纳米科学中心 一种复合电极材料、其制备方法及应用
CN106710891A (zh) * 2017-02-04 2017-05-24 徐靖才 一种NiCo2O4/活性炭复合材料的制备方法
CN108393082A (zh) * 2018-03-06 2018-08-14 淮南市通霸蓄电池有限公司 一种纳米氧化铅-碳复合材料及其制备方法
CN109786123A (zh) * 2019-03-18 2019-05-21 徐靖才 一种Zn2SnO4/活性炭复合材料的制备方法
CN110357092A (zh) * 2019-06-06 2019-10-22 宁波中车新能源科技有限公司 一种超级电容器用活性炭及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN ZENG, LIU YA-FEI,HU ZHONG-HUA,CHENGGENG JIN-SHENG,ZHAO GUO-HUA: "NiO-modified activated carbon electrode for electrochemical capacitor", GONGNENG CAILIAO - JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU, CHONGQING, CN, vol. 38, no. 1, 1 January 2007 (2007-01-01), CN, pages 105 - 108, XP055765650, ISSN: 1001-9731 *

Also Published As

Publication number Publication date
CN110357092A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
Liu et al. Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes
Liu et al. Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance
WO2023087485A1 (zh) 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
WO2022105175A1 (zh) 一种钠离子电池正极材料及其制备方法、钠离子电池
CN104681784B (zh) 一种钒酸锂负极材料、负极、电池以及负极材料制备方法
WO2019104927A1 (zh) 碳包覆二氧化铈空心球的制备方法
WO2016090958A1 (zh) 一种混合型电容器负极浆料制备方法
CN109637825B (zh) 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用
WO2017036069A1 (zh) 具有纳米线三维缠绕结构的v2o5空心微米线球及其制备方法和应用
WO2022199505A1 (zh) 一种负极及其制备方法和应用
CN108597891B (zh) 一种二氧化硅@金属氧化物/石墨烯气凝胶双负载双包覆复合材料及其制备方法和应用
Zhang et al. Metal organic frameworks-derived porous carbons/ruthenium oxide composite and its application in supercapacitor
Xu et al. One-pot solvothermal synthesis of size-controlled NiO nanoparticles
Yue et al. High performance hollow carbon@ SnO2@ graphene composite based on internal-external double protection strategy for lithium ion battery
CN109741966B (zh) 一种Ni6MnO8@碳纳米管复合材料及其制备方法和应用
CN108390037A (zh) 一种氧化硅-石墨烯包覆高镍锂电池正极材料及制备方法
Lin et al. Superior performance asymmetric supercapacitors based on flake-like Co/Al hydrotalcite and graphene
Liu et al. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
Fu et al. Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors
Du et al. High-performance quasi-solid-state flexible supercapacitors based on a flower-like NiCo metal–organic framework
WO2016110126A1 (zh) 一种含无机纳米颗粒的超级电容器有机电解液
CN114477300A (zh) 一种钠离子电池正极材料及其制备方法和应用
WO2020244186A1 (zh) 一种超级电容器用活性炭及其制备方法和应用
WO2017197675A1 (zh) 一种钛酸锂改性材料及其制备方法
Tang et al. Rational design of FeTiO 3/C hybrid nanotubes: promising lithium ion anode with enhanced capacity and cycling performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931764

Country of ref document: EP

Kind code of ref document: A1