CN106710891A - 一种NiCo2O4/活性炭复合材料的制备方法 - Google Patents

一种NiCo2O4/活性炭复合材料的制备方法 Download PDF

Info

Publication number
CN106710891A
CN106710891A CN201710064548.6A CN201710064548A CN106710891A CN 106710891 A CN106710891 A CN 106710891A CN 201710064548 A CN201710064548 A CN 201710064548A CN 106710891 A CN106710891 A CN 106710891A
Authority
CN
China
Prior art keywords
composite material
nico
preparation
nico2o4
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710064548.6A
Other languages
English (en)
Other versions
CN106710891B (zh
Inventor
徐靖才
洪波
彭晓领
王新庆
李静
金红晓
金顶峰
杨艳婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710064548.6A priority Critical patent/CN106710891B/zh
Publication of CN106710891A publication Critical patent/CN106710891A/zh
Application granted granted Critical
Publication of CN106710891B publication Critical patent/CN106710891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种NiCo2O4/活性炭复合材料的制备方法,它涉及一种NiCo2O4纳米片负载活性炭的制备方法,包括步骤:将Ni(NO3)2·6H2O和 Co(NO3)2·6H2O溶于蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的金属溶液,然后加入一定量的活性炭,搅拌均匀后逐滴加入氨水调节pH值,移入反应釜中100~200℃反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。本发明方法具有操作简单、环境友好、耗能低等优点;所获得的NiCo2O4/活性炭复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。

Description

一种NiCo2O4/活性炭复合材料的制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种NiCo2O4纳米片负载活性炭的制备方法。
背景技术
近年来,超级电容器因其高功率密度、快速充电功能、良好的循环稳定性和长循环寿命,广泛应用于通信,航空航天,大型工业装备,微电子器件等诸多等要求瞬间释放超大电流的场合,尤其是在新能源汽车领域有着广阔的应用前景。根据能量存储机制,超级电容器可以分为双电层电容和赝电容两种类型。双电层电容的电极材料主要是碳基材料,包括活性炭、碳纤维、碳纳米管、石墨烯等,它们依靠碳材料双电层静电场储存能量;赝电容的电极材料主要是金属氧化物材料,主要依靠它们快速、可逆的氧化还原反应储存能量。NiCo2O4是一种典型的尖晶石结构复合金属氧化物,存在Co3+/Co2+及Ni3+/Ni2+氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的电极材料,因此不同结构、形态、尺寸的NiCo2O4的制备受到了众多研究人员的关注(如CN102259936B;CN102092797B; CN102745752A; CN103107025A; CN103594246A; CN104003455B;CN104659358A)。然而与贵金属氧化物相比,NiCo2O4由于其导电性较差,导致比电容偏低,在大电流密度下充循环冲放电不够稳定。因而,需要以一定的方式将NiCo2O4和碳材料复合,来提高电极材料的导电性,以达到增强其电化学性能的目的。如Wen等利用电化学沉积方法制备了钴镍氧化物/碳纳米管复合材料(J. Mater. Chem. A, 2014, 2, 5100); 谢健等利用一步低温法发明了一种镍钴氧化物/石墨烯复合材料(CN103117389B)。然而,尽管碳纳米管和石墨烯结合NiCo2O4复合材料具有较高的导电性和优异的超级电容性能,但这些碳纳米材料制备困难、价格昂贵,难以商业化大规模生产。而活性炭原料范围广、制备成本低,且具有高比表面积、高导电性和良好的吸附性能等优点。将活性炭与NiCo2O4组成复合电极材料,两者可以取长补短,有望得到具有高比电容、高导电率、循环充放电稳定的超级电容器电极材料。
发明内容
本发明的目的是提供一种NiCo2O4/活性炭复合材料的制备方法,该方法可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种NiCo2O4/活性炭复合材料的制备方法,其特征在于,具体包括以下步骤:将Ni(NO3)2·6H2O和 Co(NO3)2·6H2O溶于蒸馏水中,配制成含Ni2 +/Co2+摩尔比为1:2的金属溶液,然后加入一定量的活性炭,搅拌均匀后逐滴加入氨水调节pH值,移入反应釜中100~200℃反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
本发明优点:本发明方法具有操作简单、环境友好、耗能低等优点;所获得的NiCo2O4/活性炭复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
本发明采用X射线衍射技术(XRD)分析本发明制备的NiCo2O4/活性炭复合材料的物相,采用扫描电子显微镜(SEM)表征本发明制备的NiCo2O4/活性炭复合材料的微观结构,采用电化学工作站来测试本发明制备的NiCo2O4/活性炭复合材料的电化学性能,可知本发明成功制备出了具有较高的比电容值和良好的电化学性能稳定性的NiCo2O4/活性炭复合材料。
附图说明
图1是实施方式一制备的NiCo2O4/活性炭复合材料的XRD曲线图,证实制备的NiCo2O4/活性炭复合材料含有NiCo2O4物相和活性炭物相。
图2是实施方式一制备的NiCo2O4/活性炭复合材料的SEM图,通过图2可知本发明制备的NiCo2O4/活性炭复合材料形成了NiCo2O4纳米片负载活性炭的结构。
图3是实施方式一制备的NiCo2O4/活性炭复合材料的循环伏安曲线图,通过图3可知本发明制备的NiCo2O4/活性炭复合材料表现出良好的循环伏安特性和Co3+/Co2+及Ni3+/Ni2+氧化还原峰。
图4是实施方式一制备的NiCo2O4/活性炭复合材料的恒流放电曲线图,通过图4可知本发明制备的NiCo2O4/活性炭复合材料在电流密度为1 A/g、2 A/g、4 A/g、8 A/g、16 A/g下的比电容值分别为273.5 F/g, 234.5 F/g, 208 F/g, 180 F/g, 152 F/g。
图5是实施方式一制备的NiCo2O4/活性炭复合材料的循环稳定性能图,通过图5可知本发明制备的NiCo2O4/活性炭复合材料在1 A/g电流密度下经过3000次循环仍保持96%以上的比电容值,在16 A/g电流密度下经过2500次循环仍保持80%以上的比电容值。
具体实施方式
下面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
具体实施方式一:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入4.8 g活性炭,搅拌均匀后逐滴加入氨水调节pH=10,移入反应釜中180℃反应12 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式二:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入1.2 g活性炭,搅拌均匀后逐滴加入氨水调节pH=10,移入反应釜中180℃反应12 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式三:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入4.8 g活性炭,搅拌均匀后逐滴加入氨水调节pH=10,移入反应釜中100℃反应18 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式四:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入6.0 g活性炭,搅拌均匀后逐滴加入氨水调节pH=7,移入反应釜中200℃反应6 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式五:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入4.8 g活性炭,搅拌均匀后逐滴加入氨水调节pH=10,移入反应釜中140℃反应16 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式六:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入2.4 g活性炭,搅拌均匀后逐滴加入氨水调节pH=12,移入反应釜中180℃反应18 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
具体实施方式七:一种NiCo2O4/活性炭复合材料的制备方法,具体是按以下步骤完成的:将5 mmol Ni(NO3)2·6H2O和10 mmol Co(NO3)2·6H2O溶于60 ml的蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液A;然后加入4.8 g活性炭,搅拌均匀后逐滴加入氨水调节pH=10,移入反应釜中200℃反应10 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。

Claims (3)

1.一种NiCo2O4/活性炭复合材料的制备方法,其特征在于,由以下步骤组成:将Ni(NO3)2·6H2O和 Co(NO3)2·6H2O溶于蒸馏水中,配制成含Ni2+/Co2+摩尔比为1:2的金属溶液A,然后加入一定量的活性炭,搅拌均匀后逐滴加入氨水调节pH值,移入反应釜中100~200℃反应8~16h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,100℃烘干得到复合材料前驱体;将前驱体在300℃煅烧2h得到NiCo2O4/活性炭复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的混合金属溶液A中,Ni2+和Co2+的总浓度为0.1~1.0mol/L。
3.根据权利要求1所述的制备方法,其特征在于,NiCo2O4加入的量为活性炭理论重量的5~50%。
CN201710064548.6A 2017-02-04 2017-02-04 一种NiCo2O4/活性炭复合材料的制备方法 Active CN106710891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710064548.6A CN106710891B (zh) 2017-02-04 2017-02-04 一种NiCo2O4/活性炭复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710064548.6A CN106710891B (zh) 2017-02-04 2017-02-04 一种NiCo2O4/活性炭复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106710891A true CN106710891A (zh) 2017-05-24
CN106710891B CN106710891B (zh) 2018-08-14

Family

ID=58910299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710064548.6A Active CN106710891B (zh) 2017-02-04 2017-02-04 一种NiCo2O4/活性炭复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106710891B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393725A (zh) * 2017-06-20 2017-11-24 中国科学院福建物质结构研究所 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
CN108520827A (zh) * 2018-01-29 2018-09-11 江苏大学 碳纤维/NiCo2O4/石墨烯复合材料的制备方法
WO2020244186A1 (zh) * 2019-06-06 2020-12-10 宁波中车新能源科技有限公司 一种超级电容器用活性炭及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824705A (zh) * 2014-03-10 2014-05-28 东华大学 一种水系非对称超级电容器的制备方法
US20140206896A1 (en) * 2012-07-26 2014-07-24 Liquid Light, Inc. Method and System for Production of Oxalic Acid and Oxalic Acid Reduction Products
CN104870087A (zh) * 2012-11-09 2015-08-26 巴斯夫欧洲公司 生产碳负载镍-钴氧化物催化剂的方法及其在可再充电电化学金属-氧电池中的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140206896A1 (en) * 2012-07-26 2014-07-24 Liquid Light, Inc. Method and System for Production of Oxalic Acid and Oxalic Acid Reduction Products
CN104870087A (zh) * 2012-11-09 2015-08-26 巴斯夫欧洲公司 生产碳负载镍-钴氧化物催化剂的方法及其在可再充电电化学金属-氧电池中的用途
CN103824705A (zh) * 2014-03-10 2014-05-28 东华大学 一种水系非对称超级电容器的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴红英等: ""钴酸镍纳米花/活性炭纤维复合物的制备和表征及其超级电容器性能"", 《物理化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107393725A (zh) * 2017-06-20 2017-11-24 中国科学院福建物质结构研究所 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
CN107393725B (zh) * 2017-06-20 2019-08-20 中国科学院福建物质结构研究所 一种多孔导电的碳材料负载NiCo2O4复合材料及其制法和应用
CN108520827A (zh) * 2018-01-29 2018-09-11 江苏大学 碳纤维/NiCo2O4/石墨烯复合材料的制备方法
WO2020244186A1 (zh) * 2019-06-06 2020-12-10 宁波中车新能源科技有限公司 一种超级电容器用活性炭及其制备方法和应用

Also Published As

Publication number Publication date
CN106710891B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
Aadil et al. Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities
Zhang et al. Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors
Venkatachalam et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications
Shang et al. Self-assembled hierarchical peony-like ZnCo2O4 for high-performance asymmetric supercapacitors
Zhang et al. Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors
Jiang et al. Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes
Ma et al. Nickel cobalt hydroxide@ reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability
Tang et al. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors
Xuan et al. Engineering 2D multi-layer graphene-like Co 3 O 4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudocapacitor materials
Guo et al. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors
Zhang et al. Electrochemical investigation of MnO2 electrode material for supercapacitors
Zhu et al. In-situ growth of MnCo2O4 hollow spheres on nickel foam as pseudocapacitive electrodes for supercapacitors
Xu et al. Design of the seamless integrated C@ NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors
Zhou et al. Chemical precipitation synthesis of porous Ni2P2O7 nanowires for supercapacitor
Younas et al. Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor
Hua et al. Facile synthesis of new-type MnOOH/NiAl-layered double hydroxide nanocomposite for high-performance supercapacitor
Huang et al. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors
Yao et al. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review
Li et al. Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes
Deepi et al. Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications
CN105161313B (zh) 一种钴酸镍/碳纳米管复合材料的制备方法
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Zhao et al. High-performance Li-ion batteries and supercapacitors based on prospective 1-D nanomaterials
Liu et al. Co (OH) F@ CoP/CC core-shell nanoarrays for high-performance supercapacitors
Zhang et al. Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180704

Address after: 310018 Zhejiang, Hangzhou, Jianggan District Xiasha Higher Education Park, 258 yuan Xue Yuan Street, China Metrology University

Applicant after: CHINA JILIANG UNIVERSITY

Address before: 310018 No. 258, Xue Yuan Street, Xiasha Higher Education Park, Jianggan District, Hangzhou, Zhejiang.

Applicant before: Xu Jingcai

GR01 Patent grant
GR01 Patent grant