WO2020244137A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2020244137A1
WO2020244137A1 PCT/CN2019/115330 CN2019115330W WO2020244137A1 WO 2020244137 A1 WO2020244137 A1 WO 2020244137A1 CN 2019115330 W CN2019115330 W CN 2019115330W WO 2020244137 A1 WO2020244137 A1 WO 2020244137A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
same
pixels
display panel
Prior art date
Application number
PCT/CN2019/115330
Other languages
English (en)
French (fr)
Inventor
高阔
韩佰祥
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/618,397 priority Critical patent/US11296168B2/en
Publication of WO2020244137A1 publication Critical patent/WO2020244137A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • This application relates to the field of display technology, and in particular to a display panel and a display device.
  • OLED display devices have self-luminescence, low drive voltage, high luminous efficiency, short response time, high definition and contrast, a viewing angle of nearly 180°, and a wide operating temperature range, enabling flexible display and Large-area full-color display and many other advantages are recognized by the industry as the display panel with the most development potential.
  • the display panel array is distributed with multiple sub-pixels.
  • the size of the driving TFTs of the sub-pixels in the same color and different positions are the same.
  • each row of main lines scans the signal line After passing through a sub-pixel circuit, the corresponding current of the sub-pixel circuit will be fed back to the scan signal line of the main circuit, which will inevitably affect the current of the next sub-pixel circuit connected to the scan circuit, causing the current of the sub-pixel in the display panel to change from Gradually increase from left to right, which affects the uneven brightness of the organic light-emitting diodes.
  • the larger the display panel size the more obvious the brightness of the organic light-emitting diodes in the sub-pixels at different positions, especially the current size gap under low-level grayscale. This affects the display quality of the entire display panel.
  • the load and storage capacitors in the sub-pixel circuit in the prior art cause the current of the sub-pixels in the panel to gradually increase along the signal input end of the scan line to the signal output end, resulting in uneven brightness of the organic light-emitting diode and the display panel
  • the purpose of this application is to provide a display panel and a display device, in which the load and storage capacitor in the sub-pixel circuit in the prior art cause the current of the sub-pixels in the panel to gradually increase along the signal input end of the scan line to the signal output end. This affects the uneven brightness of the organic light-emitting diodes.
  • the embodiments of the present application provide a display panel and a display device.
  • the display panel includes at least three sub-pixel partitions, the sub-pixel partitions are distributed along the scan line direction; the sub-pixel partitions include array distribution
  • Each of the sub-pixels includes at least one driving TFT; the width-to-length ratios of the channel regions of the driving TFTs in the same sub-pixel partition are the same, and the signal input terminal to the signal along the scan line In the direction of the output end, the width-to-length ratio of the channel region of the driving TFT of the latter sub-pixel division with respect to the channel region of the driving TFT of the previous sub-pixel division is sequentially reduced.
  • the sub-pixel regions are equally spaced along the scan line and the data line in the display panel.
  • the shape of the sub-pixel partition includes one or more of rectangles, parallelograms, diamonds, triangles, polygons, or irregular planar figures; two adjacent sub-pixel partitions There is a shielding structure to prevent signal interference.
  • the number of the sub-pixels in different sub-pixel partitions is the same.
  • the number of the driving TFTs of the sub-pixels of the same color in the same sub-pixel partition is the same.
  • the width-to-length ratios of the driving TFT channel regions of the sub-pixels of the same color in the sub-pixel regions that are different in the direction of the same data line are the same.
  • the widths of the driving TFT channel regions of the sub-pixels of the same color in the different sub-pixel regions along the same scan line direction gradually decrease, and the lengths are the same.
  • the pixel circuits corresponding to each row of the sub-pixels in the array distributed sub-pixels are connected in series, and the pixel circuits corresponding to any two adjacent rows of the sub-pixels are connected in parallel.
  • the sub-pixel includes a switching TFT, a driving TFT, a detection TFT, a storage capacitor, and an organic light emitting diode, and the detection voltage connected to the detection TFT is a constant value.
  • an embodiment of the present application also provides a display device, the display device includes the above display panel, the display panel includes at least three sub-pixel partitions, and the sub-pixel partitions are distributed along the scan line direction;
  • the sub-pixel partition includes sub-pixels distributed in an array, and each of the sub-pixels includes at least one driving TFT.
  • width-to-length ratios of the channel regions of the driving TFTs in the same sub-pixel partition are the same, and in the direction from the signal input terminal to the signal output terminal of the scan line, the driving of the latter sub-pixel partition.
  • the width-to-length ratio of the channel region of the TFT with respect to the driving TFT of the previous sub-pixel partition is sequentially reduced.
  • the sub-pixel regions are equally spaced along the scan line and the data line in the display panel.
  • the shape of the sub-pixel partition includes one or more of rectangles, parallelograms, diamonds, triangles, polygons, or irregular planar figures; two adjacent sub-pixel partitions There is a shielding structure to prevent signal interference.
  • the number of the sub-pixels in different sub-pixel partitions is the same.
  • the number of the driving TFTs of the sub-pixels of the same color in the same sub-pixel partition is the same.
  • the width-to-length ratios of the driving TFT channel regions of the sub-pixels of the same color in the sub-pixel regions that are different in the direction of the same data line are the same.
  • the widths of the driving TFT channel regions of the sub-pixels of the same color in the different sub-pixel regions along the same scan line direction gradually decrease, and the lengths are the same.
  • the pixel circuits corresponding to each row of the sub-pixels in the sub-pixel partitions distributed in the array are sequentially connected in series, and the pixel circuits corresponding to any two adjacent rows of the sub-pixels are connected in parallel.
  • the sub-pixel includes a switching TFT, a driving TFT, a detection TFT, a storage capacitor, and an organic light emitting diode, and the detection voltage connected to the detection TFT is a constant value.
  • the display panel is provided with multiple sub-pixel partitions.
  • the size of the driving TFT channel region in different sub-pixel partitions gradually decreases in the direction of the scanning voltage.
  • the current provided by each driving TFT to the organic light-emitting diode is close to ensure the sub-pixel circuit In order to improve the uniformity of the display panel, the brightness of the organic light emitting diodes is consistent.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 2 is a flow chart of a structure of sub-pixel partitions according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a pixel circuit provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a driving thin film transistor circuit provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the uniformity of sub-pixel currents in different sub-pixel regions of a conventional display panel
  • FIG. 6 is a schematic diagram of the uniformity of sub-pixel currents in different sub-pixel regions of a display panel provided by an embodiment of the application.
  • This application is directed to the load and storage capacitors in the sub-pixel circuits in the prior art that cause the current of the sub-pixels in the panel to gradually increase along the signal input end of the scan line to the signal output end, resulting in uneven brightness of the organic light emitting diode, and the larger the display panel size Larger, the more obvious the brightness unevenness of the organic light emitting diodes in different sub-pixel partitions, especially the more obvious the difference of the sub-pixel currents in 32-bit grayscale, which affects the display quality of the entire display panel. This embodiment can solve this defect.
  • an embodiment of the present application provides a display panel including at least three sub-pixel partitions, and the at least three sub-pixel partitions are distributed along the scan line direction; the pixel partitions include sub-pixels distributed in an array, and each sub-pixel includes at least one driver.
  • TFT in the display panel in this embodiment, the sub-pixel division 101, the sub-pixel division 102 and the sub-pixel division 103 are distributed along the scan line direction and have the same area.
  • the sub-pixel division 101, the sub-pixel division 102 and the sub-pixel division 103 respectively include multiple driving TFTs. .
  • the channel regions of the driving TFTs in the same sub-pixel division have the same aspect ratio, and along the scan line from the signal input end to the signal output end, the driving TFT of the next sub-pixel division is relative to the driving of the previous sub-pixel division
  • the aspect ratio of the channel region of the TFT decreases successively.
  • the aspect ratio T11 of the driving TFT of the sub-pixel partition 101 in the display panel is 15 ⁇ m/6 ⁇ m
  • the aspect ratio T12 of the driving TFT of the sub-pixel partition 102 is both 13.3 ⁇ m/6 ⁇ m
  • the sub-pixel partition 103 driving TFT aspect ratio T13 are both 13.1 ⁇ m/6 ⁇ m.
  • the sub-pixel partitions are preferably equally spaced along the scan lines and data lines in the display panel, and the shape of the sub-pixel partitions includes one or more of rectangles, parallelograms, rhombuses, triangles, polygons or irregular planar graphics;
  • a shielding structure for preventing signal interference between two adjacent sub-pixel regions is provided, and the shielding structure is a metal sheet; the number of sub-pixels in different sub-pixel regions is preferably the same.
  • the number of driving TFTs of the sub-pixels of the same color is preferably the same, and the width-to-length ratio of the driving TFT channel regions of the sub-pixels of the same color in different sub-pixel regions along the same data line direction is the same.
  • the width and length of the driving TFT channel regions of the sub-pixels of the same color in different sub-pixel regions gradually decrease, and the length is the same.
  • the sub-pixel partition 101 has sub-pixels distributed in a 4 ⁇ 3 array, and each row has 4 sub-pixels connected in series first and last. There are 3 rows of sub-pixels, and any two adjacent rows of sub-pixels are connected in parallel.
  • the sub-pixel includes a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a storage capacitor Cst, and an organic light emitting diode (OLED), wherein the first thin film transistor T1 is a driving TFT, The second thin film transistor T2 is a switching TFT, and the third thin film transistor T3 is a detection TFT.
  • the driving TFT, the switching TFT, and the detection TFT are all low-temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the gate of the second thin film transistor T2 is electrically connected to the scan line, the source is electrically connected to the data line, and the drain is electrically connected to the gate of the first thin film transistor T1 and one end of the storage capacitor Cst;
  • the source of the first thin film transistor T1 is electrically connected to the positive voltage of the power supply, the drain is electrically connected to the anode of the organic light emitting diode; the cathode of the organic light emitting diode is grounded, and one end of the storage capacitor Cst is electrically connected to the second thin film transistor
  • the drain of T2 and the gate of the first thin film transistor T1, and the other end of the storage capacitor Cst is electrically connected to the drain of the first thin film transistor, the anode of the organic light emitting diode and the source of the third thin film transistor T3;
  • the gate of the thin film crystal T3 is electrically connected to another data line, the source is electrically connected to the drain of the first thin film transistor T1, and the drain is connected to
  • the scan voltage and the data voltage of the sub-pixel circuit in each sub-pixel section are respectively applied to the gate and source of the second thin film transistor T2 in the pixel circuit; data writing in the sub-pixel circuit
  • the third switching thin film transistor T3 in the sub-pixel circuit is turned on to apply the data voltage to the drain of the first thin film transistor T1; during the light-emitting period of the sub-pixel circuit, the first thin film transistor T1 is turned on, so that the The organic light emitting diode on the drain of the first thin film transistor emits light.
  • the driving thin film transistor T1 includes at least a gate 201, a source 202, a drain 203, and an active layer.
  • the active layer includes a channel layer distributed between the source and the drain.
  • the width-to-length ratios of the channel regions of the driving TFTs in the same sub-pixel partition are the same, and along the direction from the signal input end to the signal output end of the scan line
  • the width-to-length ratio of the channel region of the driving TFT of the next sub-pixel partition to that of the driving TFT of the previous sub-pixel partition is sequentially reduced, which can significantly improve the uniformity of the low-gray-level current of the sub-pixels, and ensure that the sub-pixels are in different sub-image partitions.
  • the uniformity of each gray-scale current of the sub-pixels is maintained above 90%.
  • the applicant uses the controlled variable method.
  • This embodiment provides a display panel panel.
  • the aspect ratios of the driving thin film transistors in the sub-pixel partition 101 are all 15 ⁇ m/6 ⁇ m, and the aspect ratios of the driving thin film transistors in the sub-pixel partition 102 are both 13.3 ⁇ m/6 ⁇ m, the width-to-length ratio of the driving thin film transistors in the sub-pixel partition 103 is 13.1 ⁇ m/6 ⁇ m, and then select the width of the driving thin film transistors in the sub-pixel partition 301, sub-pixel partition 302 and sub-pixel partition 303 in a conventional display panel The aspect ratios are both 15 ⁇ m/6 ⁇ m. Except for the different sub-pixel partitions, the driving thin film transistors in the two panels have different width-to-length ratios.
  • Two sets of experiments are done to obtain a sub-pixel partition 301 in a traditional display panel.
  • the current size of the low-level gray value of the sub-pixels in the sub-pixel partition 302 and the sub-pixel partition 303 is used to evaluate the uniformity of the light emission of the organic light-emitting diodes in the corresponding sub-pixel partitions, and by obtaining the neutrons of the display panel
  • the current magnitudes of the low-level gray values of the sub-pixels in the pixel partition 101, the sub-pixel partition 102, and the sub-pixel partition 103 are used to evaluate the uniformity of the organic light emitting diode light emission in the corresponding sub-pixel partition, as shown in Table 1.
  • Table 1 A conventional display panel and the present embodiment provides a display panel with sub-pixel current sizes and uniformity values under different grayscale values
  • FIGS. 5 and 6 are schematic diagram of the uniformity of sub-pixel currents in different sub-pixel regions in a conventional display panel.
  • the abscissa is the sub-pixel region, referred to as S, and the ordinate is the uniformity of sub-pixel current, referred to as (E%).
  • E% the uniformity of sub-pixel current
  • the current uniformity has been reduced to 76.30% in the sub-pixel division 303 with 32-level gray value, and the OLED display brightness in the sub-pixel division 303 is not Uniformity directly affects the display quality of traditional display panels.
  • 6 is a schematic diagram of the uniformity of sub-pixel currents in different sub-pixel regions in a display panel provided by this embodiment.
  • the abscissa is the sub-pixel region, referred to as S, and the ordinate is the uniformity of sub-pixel current, referred to as (E%).
  • this embodiment provides a display panel with the same width-to-length ratio of the channel regions of the driving TFTs in the same sub-pixel partition and along the direction of the signal input end to the signal output end of the scan line.
  • the width-to-length ratio of the channel region of the driving TFT of one sub-pixel division is reduced in turn relative to that of the driving TFT of the previous sub-pixel division, which can ensure the current uniformity value of the gray scale values of 255, 128, 63, 32 in different sub-pixel divisions All are guaranteed to be above 90%, which improves the display quality of the display panel.
  • a display device including the display panel of the above embodiment.
  • the display panel includes at least three sub-pixel partitions, the sub-pixel partitions are distributed along the scan line direction; the sub-pixel partitions include sub-pixels distributed in an array, and each sub-pixel includes at least one driving TFT.
  • the width-to-length ratio of the channel regions of the driving TFTs in the same sub-pixel division is the same, and along the direction of the signal input end to the signal output end of the scan line, the driving TFT of the latter sub-pixel division is relative to all the driving TFTs of the previous sub-pixel division.
  • the width-to-length ratio of the channel region of the driving TFT decreases sequentially.
  • the display panel in this application is provided with multiple sub-pixel partitions.
  • the aspect ratio of the driving TFT channel region in different sub-pixel partitions gradually decreases in the direction of the scanning voltage, and the current provided by each driving TFT to the organic light emitting diode is close.
  • the brightness of the organic light emitting diodes in the sub-pixel circuit is ensured to be consistent, so as to improve the display uniformity of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板,包括至少三个子像素分区(101, 102, 103),所述子像素分区(101, 102, 103)沿扫描线方向分布;同一所述子像素分区(101, 102, 103)内的所述驱动TFT的沟道区的宽长比(T11, T12, T13)相同,且沿所述扫描线的信号输入端至信号输出端的方向上,后一所述子像素分区(101, 102, 103)的所述驱动TFT相对于前一所述子像素分区(101, 102, 103)的所述驱动TFT的沟道区的宽长比(T11, T12, T13)依次减小。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示面板。
显示面板阵列分布多个子像素,相同颜色不同位置子像素的驱动TFT尺寸一致,在单侧驱动条件下,由于每一排中子像素电路中电阻和电容的影响,每一排主线路扫描信号线经过一个子像素电路后,该子像素电路相应的电流会反馈到主线路扫描信号线上,必然会影响与该扫描电路相连的下一个子像素电路的电流大小,导致显示面板内子像素的电流从左至右逐渐增大,从而影响到有机发光二极管亮度不均匀,显示面板尺寸越大,不同位置的子像素中有机发光二极管亮度也越明显,尤其低阶灰阶下的电流大小差距更加明显,从而影响整个显示面板的显示品质。
综上所述,现有技术中子像素电路中负载和存储电容导致面板内子像素的电流沿扫描线的信号输入端至信号输出端方向上逐渐增大,造成有机发光二极管亮度不均匀,显示面板尺寸越大,不同位置的子像素电极的有机发光二极管亮度不均匀性越明显,尤其低阶灰阶下的电流大小差距更加明显,从而影响整个显示面板的显示品质的技术问题。
技术问题
本申请的目的在于提供一种显示面板及显示装置,以现有技术中子像素电路中负载和存储电容导致面板内子像素的电流沿扫描线的信号输入端至信号输出端方向上逐渐增大,从而影响到有机发光二极管亮度不均匀,显示面板尺寸越大,不同位置的子像素电极的有机发光二极管亮度不均匀性越明显,尤其低阶灰阶下的电流大小差距更加明显,从而影响整个显示面板的显示品质的技术问题。
技术解决方案
为了解决上述问题,本申请实施例提供了一种显示面板及显示装置,该一种显示面板包括至少三个子像素分区,所述子像素分区沿扫描线方向分布;所述 子像素分区包括阵列分布的子像素,每个所述子像素包括至少一个驱动TFT;同一所述子像素分区内的所述驱动TFT的沟道区的宽长比相同,且沿所述扫描线的信号输入端至信号输出端的方向上,后一所述子像素分区的所述驱动TFT相对于前一所述子像素分区的所述驱动TFT的沟道区的宽长比依次减小。
根据本申请一优选实施例,所述子像素分区沿着所述显示面板中所述扫描线和数据线方向上等间距划分。
根据本申请一优选实施例,所述子像素分区的形状包括矩形、平行四边形、菱形、三角形、多边形或者不规则的平面图形中一种或一种以上;相邻的两个所述子像素分区之间设有防止信号互相干扰的屏蔽结构。
根据本申请一优选实施例,不同所述子像素分区中所述子像素的数量相同。
根据本申请一优选实施例,同一所述子像素分区中相同颜色的所述子像素的所述驱动TFT的数量相同。
根据本申请一优选实施例,沿着同一数据线方向上不同的所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽长比相同。
根据本申请一优选实施例,沿着同一扫描线方向上不同所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽度逐渐减小,长度相同。
根据本申请一优选实施例,阵列分布的所述子像素中每一排所述子像素所对应的像素电路依次串联,任意相邻的两排所述子像素对应的所述像素电路并联。
根据本申请一优选实施例,所述子像素包括开关TFT、驱动TFT、检测TFT、存储电容、以及有机发光二极管,所述检测TFT相连的检测电压为一恒定值。
根据本申请一优选实施例,同一行的每一所述子像分区均通过同一扫描线提供扫描电压;同一列的每一所述子像素分区均通过同一数据线提供数据电压。
为了解决上述问题,本申请实施例还提供了一种显示装置,所述显示装置包括上述显示面板,所述显示面板包括至少三个子像素分区,所述子像素分区沿扫描线方向分布;所述子像素分区包括阵列分布的子像素,每个所述子像素包括至少一个驱动TFT。
同一所述子像素分区内的所述驱动TFT的沟道区的宽长比相同,且沿所述扫描线的信号输入端至信号输出端的方向上,后一所述子像素分区的所述驱动TFT相对于前一所述子像素分区的所述驱动TFT的沟道区的宽长比依次减小。
根据本申请一优选实施例,所述子像素分区沿着所述显示面板中所述扫描线和数据线方向上等间距划分。
根据本申请一优选实施例,所述子像素分区的形状包括矩形、平行四边形、菱形、三角形、多边形或者不规则的平面图形中一种或一种以上;相邻的两个所 述子像素分区之间设有防止信号互相干扰的屏蔽结构。
根据本申请一优选实施例,不同所述子像素分区中所述子像素的数量相同。
根据本申请一优选实施例,同一所述子像素分区中相同颜色的所述子像素的所述驱动TFT的数量相同。
根据本申请一优选实施例,沿着同一数据线方向上不同的所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽长比相同。
根据本申请一优选实施例,沿着同一扫描线方向上不同所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽度逐渐减小,长度相同。
根据本申请一优选实施例,阵列分布的所述子像素分区中每一排所述子像素所对应的像素电路依次串联,任意相邻的两排所述子像素对应的所述像素电路并联。
根据本申请一优选实施例,所述子像素包括开关TFT、驱动TFT、检测TFT、存储电容、以及有机发光二极管,所述检测TFT相连的检测电压为一恒定值。
根据本申请一优选实施例,同一行的每一所述子像素分区均通过同一扫描线提供扫描电压;同一列的每一所述子像素分区均通过同一数据线提供数据电压。
有益效果
该显示面板设置有多个子像素分区,不同子像素分区中驱动TFT沟道区的尺寸按照扫描电压方向上逐渐减小,各驱动TFT提供给有机发光二极管提供的电流大小接近,确保了子像素电路中有机发光二极管发光的亮度一致,以提升显示面板显示均匀性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供一种显示面板的结构示意图;
图2为本申请实施例提供一种子像素分区的结构流程图;
图3为本申请实施例提供一种像素电路的示意图;
图4为本申请实施例提供一种驱动薄膜晶体管电路的示意图;
图5为一种传统显示面板不同子像素分区中子像素电流的均匀性示意图;
图6为本申请实施例提供一种显示面板不同子像素分区中子像素电流的均 匀性示意图。
本发明的实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请针对现有技术中子像素电路中负载和存储电容导致面板内子像素的电流沿扫描线的信号输入端至信号输出端方向上逐渐增大,造成有机发光二极管亮度不均匀,显示面板尺寸越大,不同子像素分区中有机发光二极管亮度不均匀性越明显,尤其32位灰阶下子像素电流大小差距更加明显,从而影响整个显示面板的显示品质的技术问题,本实施例能够解决该缺陷。
如图1所示,本申请实施例提供一种显示面板,包括至少三个子像素分区,至少三个子像素分区沿扫描线方向分布;像素分区包括阵列分布的子像素,每个子像素包括至少一个驱动TFT,本实施例中显示面板中子像素分区101,子像素分区102和子像素分区103沿扫描线方向分布,面积相等,子像素分区101,子像素分区102和子像素分区103分别包括多个驱动TFT。
同一子像素分区内的驱动TFT的沟道区的长宽比相同,且沿扫描线的信号输入端至信号输出端方向上,后一子像素分区的驱动TFT相对于前一子像素分区的驱动TFT的沟道区的宽长比依次减小,本实施例中显示面板中子像素分区101的驱动TFT的宽长比T11均为15μm/6μm,子像素分区102驱动TFT宽长比T12均为13.3μm/6μm,以及子像素分区103驱动TFT宽长比T13均为13.1μm/6μm。
子像素分区优选沿着显示面板中扫描线和数据线方向上等间距划分,子像素分区的形状包括矩形、平行四边形、菱形、三角形、多边形或者不规则的平面图形中一种或多种;相邻的两个子像素分区之间设有防止信号互相干扰的屏蔽结构,该屏蔽结构为金属片;不同子像素分区中子像素的数量优选相同。
相同颜色的子像素的驱动TFT的数量优选相同,沿着同一数据线方向上不同的子像素分区中相同颜色的子像素的驱动TFT沟道区的宽长比相同。
沿着同一扫描线方向上不同子像素分区中相同颜色的子像素的驱动TFT沟道区的宽长逐渐减小,长度相同。
同一行的每一子像素分区均通过同一扫描线提供扫描电压;同一列的每一子像素分区均通过同一数据信号线提供数据电压。
如图2所示,子像素分区101中阵列分布的子像素,每一排的子像素所对 应的像素电路依次串联,任意相邻的两排的子像素对应的所述子像素电路并联。本实施例中子像素分区101中有4×3阵列分布的子像素,每一个排有4个子像素首尾依次串联,子像素有3排,任意相邻的两排子像素并联。
如图3所示,子像素包括第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、存储电容Cst、以及有机发光二极管(OLED),其中,第一薄膜晶体管T1为驱动TFT,第二薄膜晶体管T2为开关TFT,第三薄膜晶体管T3为检测TFT。驱动TFT、开关TFT和检测TFT均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
在子像素电路中第二薄膜晶体管T2的栅极电性连接扫描线上,源极电性连接数据线上,漏极与第一薄膜晶体管T1的栅极和存储电容Cst的一端电性连接;第一薄膜晶体管T1的源极电性连接电源正电压上,漏极电性连接有机发光二级管的阳极;有机发光二级管的阴极接地,存储电容Cst的一端电性连接第二薄膜晶体管T2的漏极和第一薄膜晶体管T1的栅极,存储电容Cst的另一端电性连接第一薄膜晶体管的漏极、有机发光二级管的阳极和第三薄膜晶体管T3的源极;第三薄膜晶体T3栅极电性连接另一数据线,源极电性连接第一薄膜晶体管T1的漏极,漏极与检测电压相连,该检测电压(VCM)为一恒定电压。
在子像素电路的重置时段,各子像素分区中子像素电路的扫描电压和数据电压分别施加到像素电路中的第二薄膜晶体管T2的栅极和源极;在子像素电路的数据写入时段,子像素电路中的第三开关薄膜晶体管T3导通,以将数据电压施加到第一薄膜晶体管T1的漏极;在子像素电路的发光时段,第一薄膜晶体管T1导通,使得连接在第一薄膜晶体管的漏极上有机发光二极管发光。
如图4所示,驱动薄膜晶体管T1至少包括栅极201、源极202、漏极203,以及有源层,有源层包括分布在源极和漏极之间的沟道层,沟道层宽长比减小,相应驱动薄膜晶体管的开态电流会降低。驱动薄膜晶体管T1提供给有机发光二极管电流越大,有机发光二极管亮度越大,反之驱动薄膜晶体管T1提供给有机发光二极管电流越小,有机发光二极管亮度越小。
为了验证本申请实施例中提供一种显示面板,设计多个子像素分区,同一子像素分区内的驱动TFT的沟道区的宽长比相同,且沿扫描线的信号输入端至信号输出端的方向上,后一子像素分区的驱动TFT相对于前一子像素分区的驱动TFT的沟道区的宽长比依次减小,能够显著提高子像素低灰阶电流均匀性,确保不同子像分区中的子像素各灰阶电流均匀性均保持在90%以上。
申请人利用控制变量法,本实施例提供一种显示面板面板中子像素分区101中驱动薄膜晶体管的宽长比均为15μm/6μm,子像素分区102中驱动薄膜晶体管的宽长比均为13.3μm/6μm,子像素分区103中驱动薄膜晶体管的宽长比均为 13.1μm/6μm,再选取一种传统显示面板中子像素分区301、子像素分区302和子像素分区303中驱动薄膜晶体管的宽长比均为15μm/6μm,两种面板中除了不同子像素分区的驱动薄膜晶体管的宽长比不同,其他条件均相同,做了两组实验,通过获取一种传统显示面板中子像素分区301、子像素分区302和子像素分区303中子像素的低阶灰度值的电流大小来评估相应子像素分区中有机发光二极管发光的均匀性,以及通过获取本实施例提供一种显示面板面板中子像素分区101、子像素分区102和子像素分区103中子像素的低阶灰度值的电流大小来评估相应子像素分区中有机发光二极管发光的均匀性,如表1所示。
表1一种传统显示面板和本实施例提供一种显示面板不同灰阶值下子像素电流大小和均匀性值
Figure PCTCN2019115330-appb-000001
从表1中分别选取一种传统显示面板和本实施例提供一种显示面板中不同像素分区中子像素的各灰阶电流均匀性值制作图5和图6。图5为一种传统显示面板中不同子像素分区中子像素电流的均匀性示意图,横坐标为子像素分区,简称S,纵坐标为子像素电流均匀性,简称(E%),随着灰阶值的降低,一种传统显示面板的显示均匀性越来越差,尤其在32阶灰度值的子像素分区303中电流均匀性已经降低至76.30%,子像素分区303中OLED显示亮度不均匀,直接影响传统显示面板的显示品质。图6为本实施例提供一种显示面板中不同子像素 分区中子像素电流的均匀性示意图,横坐标为子像素分区,简称S,纵坐标为子像素电流均匀性,简称(E%),通过调整子像素分区102和子像素分区103中驱动TFT的沟道区的宽长比尺寸,可明显提高低灰阶下的电流均匀性,32灰阶下子像素分区103的像素电流均匀性由76.30%提升至90.24%,明显提高子像素分区103中OLED显示亮度。
通过图5和图6比较,本实施例提供一种显示面板中同一子像素分区内的驱动TFT的沟道区的宽长比相同,且沿扫描线的信号输入端至信号输出端方向,后一子像素分区的驱动TFT相对于前一子像素分区的驱动TFT沟道区的宽长比依次减小,可保证不同子像素分区中灰阶值255,128,63,32的电流均匀性值都保证在90%以上,提高显示面板的显示品质。
依据本申请的上述目的,提供一种显示装置,包括上述实施例一种显示面板。
该显示面板包括至少三个子像素分区,子像素分区沿扫描线方向分布;子像素分区包括阵列分布的子像素,每个子像素包括至少一个驱动TFT。
同一子像素分区内的驱动TFT的沟道区的宽长比相同,且沿扫描线的信号输入端至信号输出端的方向上,后一子像素分区的驱动TFT相对于前一子像素分区的所述驱动TFT的沟道区的宽长比依次减小。
本申请中显示面板设置有多个子像素分区,不同子像素分区中驱动TFT沟道区的宽长比尺寸按照扫描电压方向上逐渐减小,各驱动TFT提供给有机发光二极管提供的电流大小接近,确保了子像素电路中有机发光二极管发光的亮度一致,以提升显示面板显示均匀性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种显示面板,其中,包括至少三个子像素分区,所述子像素分区沿扫描线方向分布;所述子像素分区包括阵列分布的子像素,每个所述子像素包括至少一个驱动TFT;
    同一所述子像素分区内的所述驱动TFT的沟道区的宽长比相同,且沿所述扫描线的信号输入端至信号输出端的方向上,后一所述子像素分区的所述驱动TFT相对于前一所述子像素分区的所述驱动TFT的沟道区的宽长比依次减小。
  2. 根据权利要求1所述的显示面板,其中,所述子像素分区沿着所述显示面板中所述扫描线和数据线方向上等间距划分。
  3. 根据权利要求1所述的显示面板,其中,所述子像素分区的形状包括矩形、平行四边形、菱形、三角形、多边形或者不规则的平面图形中一种或一种以上;相邻的两个所述子像素分区之间设有防止信号互相干扰的屏蔽结构。
  4. 根据权利要求1所述的显示面板,其中,不同所述子像素分区中所述子像素的数量相同。
  5. 根据权利要求1所述的显示面板,其中,同一所述子像素分区中相同颜色的所述子像素的所述驱动TFT的数量相同。
  6. 根据权利要求1所述的显示面板,其中,沿着同一数据线方向上不同的所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽长比相同。
  7. 根据权利要求1所述的显示面板,其中,沿着同一扫描线方向上不同所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽度逐渐减小,长度相同。
  8. 根据权利要求1所述的显示面板,其中,阵列分布的所述子像素分区中每一排所述子像素所对应的像素电路依次串联,任意相邻的两排所述子像素对应的所述像素电路并联。
  9. 根据权利要求8所述的显示面板,其中,所述像素电路包括开关TFT、驱动TFT、检测TFT、存储电容、以及有机发光二极管,所述检测TFT相连的检测电压为一恒定值。
  10. 根据权利要求1所述的显示面板,其中,同一行的每一所述子像素分区均通过同一扫描线提供扫描电压;同一列的每一所述子像素分区均通过同一数据线提供数据电压。
  11. 一种显示装置,其中,所述显示装置包括显示面板,所述显示面板包括至少三个子像素分区,所述子像素分区沿扫描线方向分布;所述子像素分区包括阵列分布的子像素,每个所述子像素包括至少一个驱动TFT;
    同一所述子像素分区内的所述驱动TFT的沟道区的宽长比相同,且沿所述扫描线的信号输入端至信号输出端的方向上,后一所述子像素分区的所述驱动TFT相对于前一所述子像素分区的所述驱动TFT的沟道区的宽长比依次减小。
  12. 根据权利要求11所述的显示装置,其中,所述子像素分区沿着所述显示面板中所述扫描线和数据线方向上等间距划分。
  13. 根据权利要求11所述的显示装置,其中,所述子像素分区的形状包括矩形、平行四边形、菱形、三角形、多边形或者不规则的平面图形中一种或一种以上;相邻的两个所述子像素分区之间设有防止信号互相干扰的屏蔽结构。
  14. 根据权利要求11所述的显示装置,其中,不同所述子像素分区中所述子像素的数量相同。
  15. 根据权利要求11所述的显示装置,其中,同一所述子像素分区中相同颜色的所述子像素的所述驱动TFT的数量相同。
  16. 根据权利要求11所述的显示装置,其中,沿着同一数据线方向上不同的所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽长比相同。
  17. 根据权利要求11所述的显示装置,其中,沿着同一扫描线方向上不同所述子像素分区中相同颜色的所述子像素的所述驱动TFT沟道区的宽度逐渐减小,长度相同。
  18. 根据权利要求11所述的显示装置,其中,阵列分布的所述子像素分区中每一排所述子像素所对应的像素电路依次串联,任意相邻的两排所述子像素对应的所述像素电路并联。
  19. 根据权利要求18所述的显示装置,其中,所述像素电路包括开关TFT、驱动TFT、检测TFT、存储电容、以及有机发光二极管,所述检测TFT相连的检测电压为一恒定值。
  20. 根据权利要求11所述的显示装置,其中,同一行的每一所述子像素分区均通过同一扫描线提供扫描电压;同一列的每一所述子像素分区均通过同一数据线提供数据电压。
PCT/CN2019/115330 2019-06-03 2019-11-04 显示面板及显示装置 WO2020244137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/618,397 US11296168B2 (en) 2019-06-03 2019-11-04 Display panel comprising at least three sub-pixel regions for each sub-pixel and display device having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910474694.5A CN110137236B (zh) 2019-06-03 2019-06-03 显示面板及显示装置
CN201910474694.5 2019-06-03

Publications (1)

Publication Number Publication Date
WO2020244137A1 true WO2020244137A1 (zh) 2020-12-10

Family

ID=67579839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115330 WO2020244137A1 (zh) 2019-06-03 2019-11-04 显示面板及显示装置

Country Status (3)

Country Link
US (1) US11296168B2 (zh)
CN (1) CN110137236B (zh)
WO (1) WO2020244137A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110137236B (zh) * 2019-06-03 2022-01-28 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置
CN114038423B (zh) 2021-12-09 2023-03-21 京东方科技集团股份有限公司 显示面板及显示装置
CN115240585B (zh) * 2022-06-27 2023-07-18 惠科股份有限公司 显示驱动电路及显示装置
CN115202118B (zh) 2022-07-29 2023-06-23 惠科股份有限公司 显示面板、显示面板的制作方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002624A (zh) * 2011-09-13 2013-03-27 昆山维信诺显示技术有限公司 有源oled照明装置
CN103048840A (zh) * 2012-11-12 2013-04-17 京东方科技集团股份有限公司 阵列基板及其制作方法、液晶显示面板和显示装置
CN104252076A (zh) * 2014-09-24 2014-12-31 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN104465669A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN106847834A (zh) * 2017-03-30 2017-06-13 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
CN110137236A (zh) * 2019-06-03 2019-08-16 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046427A (ja) * 2006-08-18 2008-02-28 Sony Corp 画像表示装置
JP5519101B2 (ja) * 2007-09-28 2014-06-11 株式会社ジャパンディスプレイ 電子機器
KR101320107B1 (ko) * 2007-12-31 2013-10-18 엘지디스플레이 주식회사 유기전계발광표시장치
TW201517260A (zh) * 2013-10-21 2015-05-01 Chunghwa Picture Tubes Ltd 主動式矩陣有機發光二極體畫素結構
KR102123979B1 (ko) * 2013-12-09 2020-06-17 엘지디스플레이 주식회사 리페어 구조를 갖는 유기발광표시장치
JP2017107109A (ja) * 2015-12-11 2017-06-15 三菱電機株式会社 液晶表示装置
KR102209416B1 (ko) * 2017-02-22 2021-01-29 쿤산 고-비젼녹스 옵토-일렉트로닉스 씨오., 엘티디. 픽셀 구동 회로 및 그 구동 방법과 트랜지스터의 레이아웃 구조
CN107369700B (zh) * 2017-07-13 2020-01-07 京东方科技集团股份有限公司 一种阵列基板、其制备方法、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002624A (zh) * 2011-09-13 2013-03-27 昆山维信诺显示技术有限公司 有源oled照明装置
CN103048840A (zh) * 2012-11-12 2013-04-17 京东方科技集团股份有限公司 阵列基板及其制作方法、液晶显示面板和显示装置
CN104252076A (zh) * 2014-09-24 2014-12-31 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN104465669A (zh) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN106847834A (zh) * 2017-03-30 2017-06-13 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板
CN110137236A (zh) * 2019-06-03 2019-08-16 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US11296168B2 (en) 2022-04-05
CN110137236A (zh) 2019-08-16
US20210359054A1 (en) 2021-11-18
CN110137236B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2020244137A1 (zh) 显示面板及显示装置
US11881176B2 (en) Pixel circuit, display panel, display device, and driving method
US10698282B2 (en) Display substrate, display device and method for driving display device
KR101944645B1 (ko) Amoled의 전압강하 보상방법
KR101382001B1 (ko) 화소 유닛 회로 및 oled 표시 장치
US10192485B2 (en) Pixel compensation circuit and AMOLED display device
WO2018214258A1 (zh) Oled显示装置的ovss电压降的补偿方法及像素驱动电路
US10255858B2 (en) Pixel compensation circuit and AMOLED display device
JP6084616B2 (ja) Oled画素構造及び駆動方法
CN113192463B (zh) 发光控制移位寄存器、栅极驱动电路、显示装置及方法
CN102915703B (zh) 一种像素驱动电路及其驱动方法
WO2016011719A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2019100420A1 (zh) 显示面板及具有该显示面板的显示装置
JPWO2009041061A1 (ja) 画素回路および表示装置
US20200152126A1 (en) Organic light emitting diode display device and method of driving the same
CN114120912B (zh) 显示面板和包括该显示面板的显示装置
CN111192557A (zh) 一种像素补偿电路及驱动方法
US11640798B2 (en) Display device
JP2004126106A (ja) エレクトロルミネッセンス表示装置
CN211376152U (zh) 一种像素补偿电路
Tsujimura et al. 8.1: Invited Paper: Advancements and Outlook of High Performance Active‐Matrix OLED Displays
CN103440846A (zh) 像素驱动单元及其驱动方法、像素电路
CN113096594A (zh) 像素电路、阵列基板与显示终端
CN203300187U (zh) 一种像素电路
JP6619622B2 (ja) 表示パネル、表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931609

Country of ref document: EP

Kind code of ref document: A1