WO2020244110A1 - 有机发光二极管显示面板及电子设备 - Google Patents

有机发光二极管显示面板及电子设备 Download PDF

Info

Publication number
WO2020244110A1
WO2020244110A1 PCT/CN2019/110606 CN2019110606W WO2020244110A1 WO 2020244110 A1 WO2020244110 A1 WO 2020244110A1 CN 2019110606 W CN2019110606 W CN 2019110606W WO 2020244110 A1 WO2020244110 A1 WO 2020244110A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
emitting diode
organic light
light emitting
Prior art date
Application number
PCT/CN2019/110606
Other languages
English (en)
French (fr)
Inventor
彭斯敏
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/625,515 priority Critical patent/US11374204B2/en
Publication of WO2020244110A1 publication Critical patent/WO2020244110A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present application relates to the field of display technology, and in particular to an organic light emitting diode display panel and electronic equipment.
  • Organic light emitting diodes (Organic Light Emitting Diode, OLED) are manufactured by using the characteristics of organic materials that can emit light when current passes through. It has spontaneity, wide viewing angle, high contrast, low energy consumption, high reaction rate, and can be made into large size and The advantages of flexible panels have become popular research.
  • OLED has been widely used in the display panels of mobile phones (small-size displays), and the under-screen camera display devices (Camera Under Panel, CUP) is a new type of OLED display device.
  • the OLED display device places the camera below the organic light emitting diode display panel, and the display area of the organic light emitting diode display panel is displayed normally.
  • the area of the organic light emitting diode display panel corresponding to the camera under the screen has light transmittance to improve the light transmittance, it is achieved by digging a hole in the area of the organic light emitting diode display panel corresponding to the camera to form a light transmission area, but the injection hole Part of the light in the hole is absorbed by the film on the inner wall of the hole, resulting in a decrease in the amount of light reaching the camera.
  • the purpose of this application is to provide an organic light emitting diode display panel and an electronic device to reduce the light incident on the film layer surrounding the through hole in the organic light emitting diode display panel and increase the amount of light received by the optical sensor in the electronic device.
  • An organic light emitting diode display panel comprising:
  • a substrate having a first surface and a second surface opposed to each other;
  • a thin film transistor array layer formed on the first surface of the substrate
  • An organic light emitting diode array layer formed on a side of the thin film transistor array layer away from the substrate;
  • a through hole which penetrates the thin film transistor array layer, the organic light emitting diode array layer and the encapsulation layer along the direction in which the substrate points to the encapsulation layer;
  • a filling part, the filling part is filled in the entire through hole
  • the refractive index of the filling portion is greater than the refractive index of at least one film layer in the thin film transistor array layer, and/or the refractive index of the filling portion is greater than that of at least one film layer in the organic light emitting diode array layer.
  • the refractive index, and/or, the refractive index of the filling portion is greater than the refractive index of at least one film layer in the encapsulation layer.
  • the refractive index of the filling portion is greater than the maximum refractive index of each film layer of the organic light emitting diode array layer, the thin film transistor array layer, and the packaging layer.
  • the filling part includes a first filling part filled in the through hole and a second filling part filled between the outer wall of the first filling part and the inner wall of the through hole.
  • the refractive index of the first filling part is greater than the refractive index of the second filling part
  • the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the thin film transistor array layer, and/or the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the organic light emitting diode array layer
  • the refractive index of the layer, and/or the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the encapsulation layer.
  • the refractive index of the second filling portion is greater than the maximum refractive index of each film layer of the organic light emitting diode array layer, the thin film transistor array layer, and the encapsulation layer.
  • the refractive index of the filling portion has a value range greater than 1.9 and less than or equal to 5.0.
  • the preparation material of the filling part includes organic silicon and nano particles.
  • the preparation material of the nano particles is selected from at least one of Y 2 O 3 , CeO 2 , TiO 2 , Al 2 O 3 , ZnS, ZrO 2 , MgO, and ThF 4 .
  • the material for the filling portion is selected from at least one of Y 2 O 3 , CeO 2 , MgO, ZnS, TiO 2 , ThF 4 and ZrO 2 .
  • the refractive index of the material prepared from the filling portion ranges from 2 to 2.5.
  • the longitudinal section of the through hole is an inverted trapezoid.
  • An electronic device comprising an organic light emitting diode display panel and an optical sensor, the organic light emitting diode display panel comprising:
  • a substrate having a first surface and a second surface opposed to each other;
  • a thin film transistor array layer formed on the first surface of the substrate
  • An organic light emitting diode array layer formed on a side of the thin film transistor array layer away from the substrate;
  • a through hole which penetrates the thin film transistor array layer, the organic light emitting diode array layer and the encapsulation layer along the direction in which the substrate points to the encapsulation layer;
  • a filling part, the filling part is filled in the entire through hole
  • the optical sensor is arranged on the side of the second surface of the substrate and arranged corresponding to the through hole;
  • the refractive index of the filling portion is greater than the refractive index of at least one film layer in the thin film transistor array layer, and/or the refractive index of the filling portion is greater than that of at least one film layer in the organic light emitting diode array layer.
  • the refractive index, and/or, the refractive index of the filling portion is greater than the refractive index of at least one film layer in the encapsulation layer.
  • the refractive index of the filling portion is greater than the maximum refractive index of each film layer of the organic light emitting diode array layer, the thin film transistor array layer, and the packaging layer.
  • the filling part includes a first filling part filled in the through hole and a second filling part filled between the outer wall of the first filling part and the inner wall of the through hole,
  • the refractive index of the first filling part is greater than the refractive index of the second filling part
  • the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the thin film transistor array layer, and/or the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the organic light emitting diode array layer
  • the refractive index of the layer, and/or the refractive index of the second filling portion is greater than the refractive index of at least one film layer in the encapsulation layer.
  • the refractive index of the second filling portion is greater than the maximum refractive index of each film layer of the organic light emitting diode array layer, the thin film transistor array layer, and the encapsulation layer.
  • the value range of the refractive index of the filling part is greater than 1.9 and less than or equal to 5.0.
  • the preparation material of the filling part includes organic silicon and nano particles.
  • the material for preparing the nanoparticles is selected from at least one of Y 2 O 3 , CeO 2 , TiO 2 , Al 2 O 3 , ZnS, ZrO 2 , MgO, and ThF 4 .
  • the material for preparing the filling portion is selected from at least one of Y 2 O 3 , CeO 2 , TiO 2 , Al 2 O 3 , ZnS, ZrO 2 , MgO, and ThF 4 .
  • the refractive index of the material prepared from the filling portion ranges from 2 to 2.5.
  • the longitudinal section of the through hole is an inverted trapezoid.
  • the present application provides an organic light emitting diode display panel and an electronic device.
  • the light incident at the interface between the filling part and at least one film layer at a specific angle is totally reflected to reduce the incidence of light into the film layer surrounding the inner wall of the through hole.
  • the amount of light that reaches the substrate through total reflection and passes through the substrate to increase the amount of light received by the optical sensor.
  • FIG. 1 is a schematic structural diagram of an electronic device according to the first embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of an electronic device according to a second embodiment of the application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to a third embodiment of the application.
  • FIG. 1 is a schematic structural diagram of an electronic device according to a first embodiment of the application.
  • the electronic device 100 includes an organic light emitting diode display panel 10 and an optical sensor 20.
  • the organic light emitting diode display panel 10 includes a substrate 101, a thin film transistor array layer 103, an organic light emitting diode array layer 105, an encapsulation layer 107, a through hole 10a, and a filling part 109.
  • the substrate 101 has an opposing first surface 101a and a second surface 101b.
  • the substrate 101 may be a glass substrate or a flexible polymer substrate.
  • Flexible polymer substrates include but are not limited to polyimide substrates.
  • the thin film transistor array layer 103 is formed on the first surface 101 a of the substrate 101.
  • the thin film transistor array layer 103 includes a plurality of thin film transistors arrayed on the first surface 101a of the substrate 101, and the plurality of thin film transistors are used to control the working state of the organic light emitting diode.
  • the thin film transistor may be a polysilicon thin film transistor or a metal oxide thin film transistor.
  • Each thin film transistor includes a gate, an active layer, a source and drain electrode, a gate insulating layer formed between the gate and the active layer, an interlayer insulating layer formed between the source and drain electrode and the active layer, and the like.
  • the thin film transistor array layer 103 may also include a passivation layer to prevent impurity ions from entering the thin film transistor.
  • the thin film transistor array layer 103 may further include a planarization layer to make the surface of the thin film transistor array layer 103 more flat. It can be seen that the thin film transistor array layer 103 includes multiple film layers, and different film layers correspond to different refractive indexes.
  • the metal layer in the thin film transistor array layer 103 plays a role in reflecting light, and the refractive index of the organic layer and the inorganic layer constituting the thin film transistor array layer 103 is less than or close to 1.9, so each film in the thin film transistor array layer 103 The maximum refractive index of the layer is less than or close to 1.9.
  • the organic light emitting diode array layer 105 is formed on the side of the thin film transistor array layer 103 away from the substrate 101.
  • the organic light emitting diode array layer 105 includes a plurality of organic light emitting diodes arranged in an array, and the organic light emitting diodes emit visible light to display images.
  • Each organic light emitting diode includes an anode, a cathode, and an organic light emitting layer formed between the anode and the cathode.
  • the organic light emitting diode may also include a hole injection layer, a hole transport layer, an electron blocking layer, an electron injection layer, an electron transport layer, a hole blocking layer, and the like.
  • the organic light emitting diode array layer 105 includes a plurality of different film layers, and the refractive indexes of the different film layers are different.
  • the refractive index of each film layer constituting the organic light emitting diode array layer 105 is generally less than 1.9.
  • the encapsulation layer 107 is formed on the side of the organic light emitting diode array layer 105 away from the substrate 101.
  • the encapsulation layer 107 is used to encapsulate the organic light-emitting diode array layer 105 to prevent the active metals and organic light-emitting materials in the organic light-emitting diode array layer 105 from being corroded, resulting in shortening the service life of the organic light-emitting diode.
  • the encapsulation layer 107 includes a first inorganic layer, a second inorganic layer, and an organic layer located between the first inorganic layer and the second inorganic layer.
  • the inorganic layer has good barrier properties and the flexibility of the organic layer, so that the encapsulation layer 107 can block water and oxygen. It can be seen that the encapsulation layer 107 includes multiple film layers, and different film layers have different refractive indices to light. Generally speaking, the refractive index of each film layer in the encapsulation layer 107 is less than or close to 1.9.
  • the through hole 10 a penetrates the thin film transistor array layer 103, the organic light emitting diode array layer 105 and the packaging layer 107 along the direction of the substrate 101 pointing to the packaging layer 107.
  • the longitudinal section of the through hole 10a is rectangular.
  • the through hole 10a is a cylindrical hole.
  • the filling portion 109 is filled in the entire through hole 10a.
  • the refractive index of the filling portion 109 is greater than the refractive index of at least one film layer in the thin film transistor array layer 103, and/or the refractive index of the filling portion 109 is greater than the refractive index of at least one film layer in the organic light emitting diode array layer 105, and/or The refractive index of the filling part 109 is greater than the refractive index of at least one film layer in the encapsulation layer 107.
  • the refractive index of at least one film layer in the thin film transistor array layer 103 and/or at least one film layer in the organic light emitting diode array layer 105 and/or at least one film layer in the encapsulation layer 107 smaller than the refractive index of the filling portion 109 , So that the incident light at the interface I with an incident angle greater than or equal to ⁇ is totally reflected on at least one film layer at the interface I, reducing the amount of light incident on the film layer surrounding the inner wall of the through hole 10a, and more The light reaches the substrate 101 and passes through the substrate 101 and is received by the optical sensor 20.
  • is arcsin(n 2 /n 1 ), where n 1 is the refractive index of the filling part, and n 2 is the thin film transistor array layer 103, an organic light emitting diode array layer 105, and encapsulation layer 107 is less than the refractive index of each film layer refractive index n 1 of the film layer.
  • the refractive index of the filling portion 109 is greater than the maximum refractive index of each film layer in the thin film transistor array layer 103, and/or the refractive index of the filling portion 109 is greater than the maximum refractive index of each film layer in the organic light emitting diode array layer 105, And/or, the refractive index of the filling part 109 is greater than the maximum refractive index of each film layer in the encapsulation layer 107.
  • the refractive index of the filling portion 109 is greater than the maximum refractive index of each film layer in the organic light emitting diode array layer 105, the thin film transistor array layer 103, and the encapsulation layer 107, so that it enters the through hole 10a and enters the filling portion 109 and the surrounding area.
  • the incident light at the interface I between the layers of the inner wall of the composite through hole 10a whose incident angle is greater than or equal to ⁇ can be totally reflected at the interface I, reach the substrate 101 and pass through the substrate after one or more total reflections 101 is incident on the optical sensor 20.
  • the value range of the refractive index of the filling portion 109 is greater than 1.9 and less than or equal to 5.0. Further, the value range of the refractive index of the filling portion 109 is greater than or equal to 2.0 and less than or equal to 3.0.
  • the refractive index of the filling part 109 is greater than 1.9 to allow more light to be totally reflected at the interface I, and the refractive index of the filling part 109 is less than or equal to 5 to avoid excessive refractive index difference between the filling part 109 and the substrate 101 It is large and the amount of light incident on the optical sensor 20 decreases.
  • the preparation material of the filling part 109 includes organic silicon and nanoparticles.
  • the material for preparing the nanoparticles is selected from at least one of Y 2 O 3 , CeO 2 , TiO 2 , Al 2 O 3 , ZnS, ZrO 2 , MgO, and ThF 4 . Further, the preparation materials of the nanoparticles are selected from TiO 2 (refractive index of about 2.35), ZnS (refractive index of about 2.4), ZrO 2 (refractive index of about 2.05) and CeO 2 (refractive index of about 2.20) At least one, that is, the refractive index of the nanoparticle preparation material ranges from 2 to 2.5, so as to further increase the refractive index of the filling portion 109.
  • the preparation material of the filling part 109 is selected from at least one of Y 2 O 3 , CeO 2 , TiO 2 , Al 2 O 3 , ZnS, ZrO 2 , MgO, and ThF 4 . Further, the preparation material of the filling part is selected from TiO 2 (refractive index of about 2.35), ZnS (refractive index of about 2.4), ZrO 2 (refractive index of about 2.05), and CeO 2 (refractive index of about 2.20) At least one, that is, the refractive index of the material prepared for the filling part 109 ranges from 2 to 2.5, so as to further increase the refractive index of the filling part 109.
  • the optical sensor 20 is a camera, and may also be other components that convert optical signals into electrical signals.
  • the optical sensor 20 is disposed on the side of the second surface 101b of the substrate 101 and corresponding to the through hole 10a. The light that has been totally reflected one or more times at the interface I passes through the substrate 101 to reach the optical sensor 20, so that the optical sensor 20 receives more optical signals.
  • FIG. 2 is a schematic structural diagram of an electronic device according to a second embodiment of the application.
  • the electronic device 100 of the second embodiment is basically similar to the electronic device 100 of the first embodiment. The difference is that the longitudinal section of the through hole 10a is an inverted trapezoid, so that more light enters the filling portion 109 and more light It can be incident on the optical sensor 20 after total reflection.
  • FIG. 3 is a schematic structural diagram of an electronic device according to a third embodiment of the application.
  • the electronic device 100 of the third embodiment is basically similar to the electronic device 100 of the second embodiment.
  • the filling part 109 includes a first filling part 1091 filled in the through hole 10a and an outer wall filling the first filling part 1091.
  • the refractive index of the first filling portion 1091 is greater than the refractive index of the second filling portion 1092.
  • the refractive index of the second filling portion 1092 is greater than the refractive index of at least one film layer in the thin film transistor array layer 103, and/or the refractive index of the second filling portion 1092 is greater than the refractive index of at least one film layer in the organic light emitting diode array layer 105 , And/or, the refractive index of the second filling portion 1092 is greater than the refractive index of at least one film layer in the encapsulation layer 107. Specifically, the refractive index of the second filling portion 1092 is greater than the maximum refractive index of each of the organic light emitting diode array layer 105, the thin film transistor array layer 103, and the encapsulation layer 107.
  • the incident light with an incident angle greater than or equal to ⁇ can be totally reflected at the interface I.
  • the interface I is the interface between the second filling portion 1092 and the layers surrounding the inner wall of the through hole 10a.
  • the incident angle ⁇ The value of is arcsin(n 2 /n 1 ), where n 1 is the refractive index of the second filling portion 1092, and n 2 is each film layer in the thin film transistor array layer 103, the organic light emitting diode array layer 105, and the encapsulation layer 107 The refractive index of the film layer whose refractive index is less than n 1 .
  • Part of the light totally reflected at the interface I is incident into the second filling portion 1091, totally reflected at the interface II, is incident on the substrate 101 and reaches the optical sensor 20 through the substrate 101.
  • the incident light with an incident angle greater than or equal to ⁇ 1 can be totally reflected at the interface II.
  • the value of the incident angle ⁇ 1 is arcsin(n 1 /n 3 ), where n 3 is the refraction of the first filling part 1091 rate.
  • the light passing through a part of the specific incident angle is totally reflected at the interface I and the interface II, after one or more times of total reflection to the substrate 101 and passing through the substrate 101 to reach the optical sensor 20, the optical signal increases, which improves the camera The imaging effect.
  • the longitudinal section of the through hole 10a is rectangular, and the longitudinal section of the first filling portion 1091 is an inverted trapezoid, so that more light enters the first filling portion 1091, and more light is totally reflected at the interface II, and further The amount of light incident on the optical sensor 20 is increased.
  • the optical sensor 20 is a camera, the imaging effect of the camera is improved.
  • the electronic device of the embodiment of the present application totally reflects the light incident on the interface between the filling part and the at least one film layer at a specific angle to reduce the light incident on the film layer surrounding the inner wall of the through hole, so that the light is totally reflected
  • the amount of light that reaches the substrate and passes through the substrate and is received by the optical sensor increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种有机发光二极管显示面板及电子设备,通过使特定角度入射至填充部与至少一膜层之间交界面处的光发生全反射以减少入射至围合成通孔内壁的膜层中的光,以使得经全反射到达衬底且穿过衬底而为光学感应器接收的光量增加。

Description

有机发光二极管显示面板及电子设备 技术领域
本申请涉及显示技术领域,尤其涉及一种有机发光二极管显示面板及电子设备。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)利用有机材料在电流通过时可发光这一特性制备而成,具有自发性、广视角、高对比、低能耗、高反应速率、可制成大尺寸和挠性面板等优点而成为热门研究。
近些年,OLED已广泛应用于手机(小尺寸显示器)的显示面板上,屏下摄像头显示器件(Camera Under Panel,CUP)是一种新型的OLED显示器件。OLED显示器件将摄像头放置在有机发光二极管显示面板的下方,同时有机发光二极管显示面板的显示区域正常显示。为了保证屏下摄像头对应的有机发光二极管显示面板的区域具有透光性以提高透光率,通过在摄像头对应的有机发光二极管显示面板的区域挖孔以形成透光区以实现,然而射入孔中的部分光被孔内壁上的膜层吸收而导致到达摄像头的光量减小。
技术问题
本申请的目的在于提供一种有机发光二极管显示面板及电子设备,以减少入射至有机发光二极管显示面板中围合成通孔的膜层中的光,增加电子设备中光学感应器接收的光量。
技术解决方案
一种有机发光二极管显示面板,所述有机发光二极管显示面板包括:
衬底,所述衬底具有相对的第一表面和第二表面;
薄膜晶体管阵列层,所述薄膜晶体管阵列层形成于所述衬底的所述第一表面上;
有机发光二极管阵列层,所述有机发光二极管阵列层形成于所述薄膜晶体管阵列层远离所述衬底的一侧;
封装层,所述封装层形成于所述有机发光二极管阵列层远离所述衬底的一侧;
通孔,所述通孔沿所述衬底指向所述封装层的方向贯穿所述薄膜晶体管阵列层、所述有机发光二极管阵列层以及所述封装层;
填充部,所述填充部填充于整个所述通孔中;
其中,所述填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述封装层中至少一膜层的折射率。
在上述有机发光二极管显示面板中,所述填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
在上述有机发光二极管显示面板中,所述填充部包括填充于所述通孔中的第一填充部和填充于所述第一填充部的外壁和所述通孔的内壁之间的第二填充部,
所述第一填充部的折射率大于所述第二填充部的折射率;
所述第二填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述封装层中至少一膜层的折射率。
在上述有机发光二极管显示面板中,所述第二填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
在上述有机发光二极管显示面板中,所述填充部的折射率的取值范围为大于1.9且小于或等于5.0。
在上述有机发光二极管显示面板中,所述填充部的制备材料包括有机硅和纳米粒子。
在上述有机发光二极管显示面板中,所述纳米粒子的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
在上述有机发光二极管显示面板中,所述填充部的制备材料选自Y 2O 3、CeO 2、MgO、ZnS、TiO 2、ThF 4以及ZrO 2中的至少一种。
在上述有机发光二极管显示面板中,所述填充部制备材料的折射率的取值范围为2-2.5。
在上述有机发光二极管显示面板中,所述通孔的纵截面为倒梯形。
一种电子设备,所述电子设备包括有机发光二极管显示面板以及光学感应器,所述有机发光二极管显示面板包括:
衬底,所述衬底具有相对的第一表面和第二表面;
薄膜晶体管阵列层,所述薄膜晶体管阵列层形成于所述衬底的所述第一表面上;
有机发光二极管阵列层,所述有机发光二极管阵列层形成于所述薄膜晶体管阵列层远离所述衬底的一侧;
封装层,所述封装层形成于所述有机发光二极管阵列层远离所述衬底的一侧;
通孔,所述通孔沿所述衬底指向所述封装层的方向贯穿所述薄膜晶体管阵列层、所述有机发光二极管阵列层以及所述封装层;
填充部,所述填充部填充于整个所述通孔中;
所述光学感应器设置于所述衬底的所述第二表面所在侧且对应所述通孔设置;
其中,所述填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述封装层中至少一膜层的折射率。
在上述电子设备中,所述填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
在上述电子设备中,所述填充部包括填充于所述通孔中的第一填充部和填充于所述第一填充部的外壁和所述通孔的内壁之间的第二填充部,
所述第一填充部的折射率大于所述第二填充部的折射率;
所述第二填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述封装层中至少一膜层的折射率。
在上述电子设备中,所述第二填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
在上述电子设备中,所述填充部的折射率的取值范围为大于1.9且小于或等于5.0。
在上述电子设备中,所述填充部的制备材料包括有机硅和纳米粒子。
在上述电子设备中,所述纳米粒子的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
在上述电子设备中,所述填充部的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
在上述电子设备中,所述填充部制备材料的折射率的取值范围为2-2.5。
在上述电子设备中,所述通孔的纵截面为倒梯形。
有益效果
本申请提供一种有机发光二极管显示面板及电子设备,通过使特定角度入射至填充部与至少一膜层之间交界面处的光发生全反射以减少入射至围合成通孔内壁的膜层中的光,以使得经全反射到达衬底且穿过衬底而为光学感应器接收的光量增加。
附图说明
图1为本申请第一实施例电子设备的结构示意图;
图2为本申请第二实施例电子设备的结构示意图;
图3为本申请第三实施例电子设备的结构示意图。
附图标示:
100 电子设备;10 有机发光二极管显示面板;20 光学感应器;
101 衬底;103 薄膜晶体管阵列层;105有机发光二极管阵列层;
107 封装层;10a 通孔;109 填充部;101a第一表面;101b第二表面;1091第一填充部;1092第二填充部。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,其为本申请第一实施例电子设备的结构示意图。电子设备100包括有机发光二极管显示面板10以及光学感应器20。
有机发光二极管显示面板10包括衬底101、薄膜晶体管阵列层103、有机发光二极管阵列层105、封装层107、通孔10a以及填充部109。
衬底101具有相对第一表面101a和第二表面101b。衬底101可以为玻璃基板或柔性聚合物基板。柔性聚合物基板包括但不限于聚酰亚胺基板。
薄膜晶体管阵列层103形成于衬底101的第一表面101a。薄膜晶体管阵列层103包括阵列设置于衬底101的第一表面101a上的多个薄膜晶体管,多个薄膜晶体管用于控制有机发光二极管的工作状态。薄膜晶体管可以为多晶硅薄膜晶体管或金属氧化物薄膜晶体管。每个薄膜晶体管包括栅极、有源层、源漏电极、形成于栅极和有源层之间的栅极绝缘层以及形成于源漏电极和有源层之间的层间绝缘层等。薄膜晶体管阵列层103还可以包括钝化层以防止杂质离子进入薄膜晶体管中。薄膜晶体管阵列层103还可以包括平坦化层以使得薄膜晶体管阵列层103的表面更加平整。由此可知,薄膜晶体管阵列层103包括多个膜层,不同的膜层对应的折射率不同。一般而言,薄膜晶体管阵列层103中的金属层对光起到反射作用,而组成薄膜晶体管阵列层103的有机层和无机层的折射率小于或接近1.9,故薄膜晶体管阵列层103中各膜层的最大折射率小于或接近1.9。
有机发光二极管阵列层105形成于薄膜晶体管阵列层103远离衬底101的一侧。有机发光二极管阵列层105包括多个阵列排布的有机发光二极管,有机发光二极管发出可见光以显示图像。每个有机发光二极管包括一阳极、一阴极以及形成于阳极和阴极之间的有机发光层。有机发光二极管还可以包括空穴注入层、空穴传输层、电子阻挡层、电子注入层、电子传输层以及空穴阻挡层等。由此可知,有机发光二极管阵列层105包括多个不同的膜层,不同的膜层的折射率不同。组成有机发光二极管阵列层105的各膜层的折射率一般小于1.9。
封装层107形成于有机发光二极管阵列层105远离衬底101的一侧。封装层107用于对有机发光二极管阵列层105进行封装以避免有机发光二极管阵列层105中的活泼金属以及有机发光材料受侵蚀而导致有机发光二极管的使用寿命变短。封装层107包括第一无机层、第二无机层以及位于第一无机层和第二无机层之间的有机层。利用无机层具有良好的阻隔性以及有机层的柔性等以使得封装层107起到阻隔水和氧的作用。由此可知,封装层107包括多个膜层,不同膜层对光的折射率不同。一般而言,封装层107中各膜层的折射率小于或接近1.9。
通孔10a沿衬底101指向封装层107的方向贯穿薄膜晶体管阵列层103、有机发光二极管阵列层105以及封装层107。通孔10a的纵截面为矩形。通孔10a为圆柱孔。
填充部109填充于整个通孔10a中。填充部109的折射率大于薄膜晶体管阵列层103中至少一膜层的折射率,和/或,填充部109的折射率大于有机发光二极管阵列层105中至少一膜层的折射率,和/或,填充部109的折射率大于封装层107中至少一膜层的折射率。
通过使薄膜晶体管阵列层103中的至少一膜层和/或有机发光二极管阵列层105中的至少一膜层和/或封装层107中的至少一膜层的折射率小于填充部109的折射率,以使得在交界面Ⅰ处以入射角度大于等于θ的入射光在交界面Ⅰ处的至少一膜层上发生全反射,减少入射至围合成通孔10a内壁的膜层中的光量,更多的光到达衬底101并穿过衬底101后为光学感应器20接收,θ的取值为arcsin(n 2/n 1),其中,n 1为填充部的折射率,n 2为薄膜晶体管阵列层103、有机发光二极管阵列层105以及封装层107中各膜层中折射率小于n 1的膜层的折射率。
进一步地,填充部109的折射率大于薄膜晶体管阵列层103中各膜层的最大折射率,和/或,填充部109的折射率大于有机发光二极管阵列层105中各膜层的最大折射率,和/或,填充部109的折射率大于封装层107中各膜层的最大折射率。例如,填充部109的折射率大于有机发光二极管阵列层105、薄膜晶体管阵列层103以及封装层107中各膜层的最大折射率,以使得入射至通孔10a中且入射至填充部109与围合成通孔10a内壁的各膜层之间界面I处的入射角度大于等于θ的入射光在交界面I处均能被全反射,经过一次或多次全反射到达衬底101并穿过衬底101以入射至光学感应器20。
填充部109的折射率的取值范围为大于1.9且小于或等于5.0。进一步地,填充部109的折射率的取值范围为大于或等于2.0且小于或等于3.0。填充部109的折射率大于1.9以使得更多的光在交界面I处发生全反射,填充部109的折射率小于或等于5以避免填充部109与衬底101之间的折射率差值过大而导致入射至光学感应器20的光量减少。
填充部109的制备材料包括有机硅以及纳米粒子。纳米粒子的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。进一步地,纳米粒子的制备材料选自TiO 2(折射率约为2.35)、ZnS(折射率约为2.4)、ZrO 2(折射率约为2.05)以及CeO 2(折射率约为2.20)中的至少一种,即纳米粒子制备材料的折射率的取值范围为2-2.5,以进一步地提高填充部109的折射率。
填充部109的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。进一步地,填充部的制备材料选自TiO 2(折射率约为2.35)、ZnS(折射率约为2.4)、ZrO 2(折射率约为2.05)以及CeO 2(折射率约为2.20)中的至少一种,即填充部109制备材料的折射率的取值范围为2-2.5,以进一步地提高填充部109的折射率。
光学感应器20为摄像头,也可以为其他将光信号转化为电信号的元件。光学感应器20设置于衬底101的第二表面101b所在侧且对应通孔10a设置。在界面I处经过一次或多次全反射的光穿过衬底101到达光学感应器20,使得光学感应器20接收的光信号变多。
请参阅图2,其为本申请第二实施例电子设备的结构示意图。第二实施例电子设备100与第一实施例电子设备100基本相似,不同之处在于,通孔10a的纵截面为倒梯形,使得射入至填充部109中的光量更多,更多的光可以经过全反射后入射至光学感应器20。
请参阅图3,其为本申请第三实施例电子设备的结构示意图。第三实施例电子设备100与第二实施例电子设备100基本相似,不同之处在于,填充部109包括填充于通孔10a中的第一填充部1091和填充于第一填充部1091的外壁和通孔10a的内壁之间的第二填充部1092,第一填充部1091的折射率大于第二填充部1092的折射率。第二填充部1092的折射率大于薄膜晶体管阵列层103中至少一膜层的折射率,和/或,第二填充部1092的折射率大于有机发光二极管阵列层105中至少一膜层的折射率,和/或,第二填充部1092的折射率大于封装层107中至少一膜层的折射率。具体地,第二填充部1092的折射率大于有机发光二极管阵列层105、薄膜晶体管阵列层103以及封装层107中各膜层的最大折射率。
入射角度大于或等于θ的入射光在交界面I处均能被全反射,交界面I处为第二填充部1092与围合成通孔10a内壁的各膜层之间的交界面,入射角度θ的取值为arcsin(n 2/n 1),其中,n 1为第二填充部1092的折射率,n 2为薄膜晶体管阵列层103、有机发光二极管阵列层105以及封装层107中各膜层中折射率小于n 1的膜层的折射率。经过交界面I处全反射的部分光入射至第二填充部1091中,在交界面Ⅱ处发生全反射,入射至衬底101并经过衬底101到达光学感应器20。入射角度大于或等于θ 1的入射光在交界面Ⅱ处均能被全反射,入射角度θ 1的取值为arcsin(n 1/n 3),其中,n 3为第一填充部1091的折射率。通过部分特定入射角度的光在交界面I处和交界面Ⅱ处发生全反射,经过一次或多次全反射至衬底101且穿过衬底101到达光学感应器20的光信号增多,提高摄像头的成像效果。
通孔10a的纵截面为矩形,第一填充部1091的纵截面为倒梯形,使得入射至第一填充部1091中的光量更多,更多的光在交界面Ⅱ上发生全反射,进一步地提高入射至光学感应器20的光量,光学感应器20为摄像头时,提高摄像头的成像效果。
本申请实施例电子设备通过使特定角度入射至填充部与至少一膜层之间交界面处的光发生全反射以减少入射至围合成通孔内壁的膜层中的光,以使得经全反射到达衬底且穿过衬底而为光学感应器接收的光量增加。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种有机发光二极管显示面板,其中,所述有机发光二极管显示面板包括:
    衬底,所述衬底具有相对的第一表面和第二表面;
    薄膜晶体管阵列层,所述薄膜晶体管阵列层形成于所述衬底的所述第一表面上;
    有机发光二极管阵列层,所述有机发光二极管阵列层形成于所述薄膜晶体管阵列层远离所述衬底的一侧;
    封装层,所述封装层形成于所述有机发光二极管阵列层远离所述衬底的一侧;
    通孔,所述通孔沿所述衬底指向所述封装层的方向贯穿所述薄膜晶体管阵列层、所述有机发光二极管阵列层以及所述封装层;
    填充部,所述填充部填充于整个所述通孔中;
    其中,所述填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述封装层中至少一膜层的折射率。
  2. 根据权利要求1所述的有机发光二极管显示面板,其中,所述填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
  3. 根据权利要求1所述的有机发光二极管显示面板,其中,所述填充部包括填充于所述通孔中的第一填充部和填充于所述第一填充部的外壁和所述通孔的内壁之间的第二填充部,
    所述第一填充部的折射率大于所述第二填充部的折射率;
    所述第二填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述封装层中至少一膜层的折射率。
  4. 根据权利要求3所述的有机发光二极管显示面板,其中,所述第二填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
  5. 根据权利要求1所述的有机发光二极管显示面板,其中,所述填充部的折射率的取值范围为大于1.9且小于或等于5.0。
  6. 根据权利要求1所述的有机发光二极管显示面板,其中,所述填充部的制备材料包括有机硅和纳米粒子。
  7. 根据权利要求6所述的有机发光二极管显示面板,其中,所述纳米粒子的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
  8. 根据权利要求1所述的有机发光二极管显示面板,其中,所述填充部的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
  9. 根据权利要求8所述的有机发光二极管显示面板,其中,所述填充部制备材料的折射率的取值范围为2-2.5。
  10. 根据权利要求1所述的有机发光二极管显示面板,其中,所述通孔的纵截面为倒梯形。
  11. 一种电子设备,其中,所述电子设备包括有机发光二极管显示面板以及光学感应器,所述有机发光二极管显示面板包括:
    衬底,所述衬底具有相对的第一表面和第二表面;
    薄膜晶体管阵列层,所述薄膜晶体管阵列层形成于所述衬底的所述第一表面上;
    有机发光二极管阵列层,所述有机发光二极管阵列层形成于所述薄膜晶体管阵列层远离所述衬底的一侧;
    封装层,所述封装层形成于所述有机发光二极管阵列层远离所述衬底的一侧;
    通孔,所述通孔沿所述衬底指向所述封装层的方向贯穿所述薄膜晶体管阵列层、所述有机发光二极管阵列层以及所述封装层;
    填充部,所述填充部填充于整个所述通孔中;
    所述光学感应器设置于所述衬底的所述第二表面所在侧且对应所述通孔设置;
    其中,所述填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述填充部的折射率大于所述封装层中至少一膜层的折射率。
  12. 根据权利要求11所述的电子设备,其中,所述填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
  13. 根据权利要求11所述的电子设备,其中,所述填充部包括填充于所述通孔中的第一填充部和填充于所述第一填充部的外壁和所述通孔的内壁之间的第二填充部,
    所述第一填充部的折射率大于所述第二填充部的折射率;
    所述第二填充部的折射率大于所述薄膜晶体管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述有机发光二极管阵列层中至少一膜层的折射率,和/或,所述第二填充部的折射率大于所述封装层中至少一膜层的折射率。
  14. 根据权利要求13所述的电子设备,其中,所述第二填充部的折射率大于所述有机发光二极管阵列层、所述薄膜晶体管阵列层以及所述封装层中各膜层的最大折射率。
  15. 根据权利要求11所述的电子设备,其中,所述填充部的折射率的取值范围为大于1.9且小于或等于5.0。
  16. 根据权利要求11所述的电子设备,其中,所述填充部的制备材料包括有机硅和纳米粒子。
  17. 根据权利要求16所述的电子设备,其中,所述纳米粒子的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
  18. 根据权利要求11所述的电子设备,其中,所述填充部的制备材料选自Y 2O 3、CeO 2、TiO 2、Al 2O 3、ZnS、ZrO 2、MgO以及ThF 4中的至少一种。
  19. 根据权利要求18所述的电子设备,其中,所述填充部制备材料的折射率的取值范围为2-2.5。
  20. 根据权利要求11所述的电子设备,其中,所述通孔的纵截面为倒梯形。
PCT/CN2019/110606 2019-06-06 2019-10-11 有机发光二极管显示面板及电子设备 WO2020244110A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,515 US11374204B2 (en) 2019-06-06 2019-10-11 Organic light emitting diode display panel and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910489369.6 2019-06-06
CN201910489369.6A CN110265439A (zh) 2019-06-06 2019-06-06 有机发光二极管显示面板及电子设备

Publications (1)

Publication Number Publication Date
WO2020244110A1 true WO2020244110A1 (zh) 2020-12-10

Family

ID=67916982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110606 WO2020244110A1 (zh) 2019-06-06 2019-10-11 有机发光二极管显示面板及电子设备

Country Status (3)

Country Link
US (1) US11374204B2 (zh)
CN (1) CN110265439A (zh)
WO (1) WO2020244110A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265439A (zh) * 2019-06-06 2019-09-20 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及电子设备
CN110649073B (zh) * 2019-09-24 2022-02-08 武汉天马微电子有限公司 一种显示面板及显示装置
CN112785507A (zh) * 2019-11-07 2021-05-11 上海耕岩智能科技有限公司 图像处理方法及装置、存储介质、终端
CN111640771A (zh) * 2020-06-08 2020-09-08 昆山国显光电有限公司 一种显示装置
CN111754876B (zh) * 2020-06-28 2022-06-21 昆山国显光电有限公司 一种显示面板以及显示装置
US20220045306A1 (en) * 2020-08-07 2022-02-10 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Oled display panel and electronic device
CN111969017B (zh) * 2020-08-21 2023-05-26 合肥维信诺科技有限公司 显示面板及其制备方法
CN113554938B (zh) * 2021-07-21 2023-08-22 南通惟怡新材料科技有限公司 出光改善型功能膜以及显示面板
CN113594225B (zh) * 2021-08-11 2023-06-30 云谷(固安)科技有限公司 显示面板及显示装置
CN114464758B (zh) * 2022-02-10 2024-03-15 京东方科技集团股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026924A1 (en) * 2007-07-23 2009-01-29 Leung Roger Y Methods of making low-refractive index and/or low-k organosilicate coatings
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
CN104393016A (zh) * 2014-10-30 2015-03-04 京东方科技集团股份有限公司 一种oled像素单元、显示基板及制备方法、显示装置
CN106486519A (zh) * 2015-08-25 2017-03-08 乐金显示有限公司 有机发光二极管显示装置及用于有机发光二极管显示装置的聚合物纳米颗粒
CN108258008A (zh) * 2016-12-29 2018-07-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN110265439A (zh) * 2019-06-06 2019-09-20 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969899B2 (en) * 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7803647B2 (en) * 2007-02-08 2010-09-28 Taiwan Semiconductor Manufacturing Company, Ltd. Optical transmission improvement on multi-dielectric structure in advance CMOS imager
JP4697258B2 (ja) * 2008-05-09 2011-06-08 ソニー株式会社 固体撮像装置と電子機器
KR101892711B1 (ko) * 2011-12-28 2018-08-29 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN102751447B (zh) * 2012-07-04 2015-08-12 信利半导体有限公司 光学过渡层材料、光学基板/封装层、oled及各自制法
TWM473557U (zh) * 2013-07-17 2014-03-01 Superc Touch Corp 窄邊框高正確性的有機發光二極體顯示觸控結構
CN104425542B (zh) * 2013-08-26 2017-08-04 昆山工研院新型平板显示技术中心有限公司 一种有机发光显示装置及其制备方法
CN107451576B (zh) * 2017-08-09 2020-05-08 上海天马微电子有限公司 一种阵列基板及其制备方法、显示面板和显示装置
CN107658332A (zh) * 2017-10-25 2018-02-02 京东方科技集团股份有限公司 一种显示面板、显示装置及制作方法
CN108039356B (zh) * 2017-11-21 2021-03-16 上海天马微电子有限公司 显示面板、显示装置和显示面板的制造方法
CN108717244B (zh) * 2018-05-18 2021-03-26 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质
CN109148525B (zh) * 2018-08-13 2021-02-02 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法
CN109119446B (zh) * 2018-08-28 2020-12-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN109768188B (zh) * 2019-02-28 2021-07-23 武汉华星光电半导体显示技术有限公司 制作有机发光面板的开孔结构的方法及有机发光面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026924A1 (en) * 2007-07-23 2009-01-29 Leung Roger Y Methods of making low-refractive index and/or low-k organosilicate coatings
CN104037357A (zh) * 2014-06-05 2014-09-10 京东方科技集团股份有限公司 一种有机发光显示装置及其制造方法
CN104393016A (zh) * 2014-10-30 2015-03-04 京东方科技集团股份有限公司 一种oled像素单元、显示基板及制备方法、显示装置
CN106486519A (zh) * 2015-08-25 2017-03-08 乐金显示有限公司 有机发光二极管显示装置及用于有机发光二极管显示装置的聚合物纳米颗粒
CN108258008A (zh) * 2016-12-29 2018-07-06 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
CN110265439A (zh) * 2019-06-06 2019-09-20 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及电子设备

Also Published As

Publication number Publication date
US11374204B2 (en) 2022-06-28
US20210408491A1 (en) 2021-12-30
CN110265439A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2020244110A1 (zh) 有机发光二极管显示面板及电子设备
US11360507B2 (en) Display panel and method of manufacturing the same, display device
US10756304B2 (en) Organic light-emitting display panel and display device thereof
KR101755770B1 (ko) 표시 장치, 표시 장치의 제조 방법 및 표시 장치의 설계 방법
CN104037357B (zh) 一种有机发光显示装置及其制造方法
TWI557897B (zh) 顯示裝置及製造顯示裝置之方法
CN103258838B (zh) 显示设备及用于制造显示设备的方法
CN109728190A (zh) 显示面板和显示装置
CN111952481B (zh) 显示面板及电子设备
CN101015232A (zh) 有机电致发光显示装置
KR20060027330A (ko) 광학 디바이스 및 유기 el 디스플레이
WO2022183767A1 (zh) Oled显示基板及其制作方法、显示装置
EP4376573A1 (en) Display panel and display apparatus
US20240023416A1 (en) Organic light emitting diode display panel and display device
WO2020098151A1 (zh) 显示面板及移动设备
US20240032397A1 (en) Display panel, manufacturing method and electronic device
WO2021258849A1 (zh) 显示面板及显示装置
CN113745433B (zh) 一种显示面板
KR20230060573A (ko) 표시 장치
EP3598502A1 (en) Package structure, display panel and display device
CN111029480A (zh) 一种底发射显示基板、制作方法和显示装置
KR102408471B1 (ko) 전계발광 표시장치
CN114464607A (zh) 发光面板及其制备方法、显示装置
CN111599932B (zh) 一种oled显示面板及oled显示器
WO2020107739A1 (zh) 有机发光装置及阵列基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931840

Country of ref document: EP

Kind code of ref document: A1