WO2020242069A1 - 전자식 브레이크 시스템 및 작동방법 - Google Patents

전자식 브레이크 시스템 및 작동방법 Download PDF

Info

Publication number
WO2020242069A1
WO2020242069A1 PCT/KR2020/005806 KR2020005806W WO2020242069A1 WO 2020242069 A1 WO2020242069 A1 WO 2020242069A1 KR 2020005806 W KR2020005806 W KR 2020005806W WO 2020242069 A1 WO2020242069 A1 WO 2020242069A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
valve
flow path
pressure
pressure chamber
Prior art date
Application number
PCT/KR2020/005806
Other languages
English (en)
French (fr)
Inventor
김진석
최성호
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to US17/614,284 priority Critical patent/US12049207B2/en
Publication of WO2020242069A1 publication Critical patent/WO2020242069A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K13/00Other constructional types of cut-off apparatus; Arrangements for cutting-off
    • F16K13/08Arrangements for cutting-off not used
    • F16K13/10Arrangements for cutting-off not used by means of liquid or granular medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/62Pedals or like operating members, e.g. actuated by knee or hip
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/404Brake-by-wire or X-by-wire failsafe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/82Brake-by-Wire, EHB
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/05Reducing production costs, e.g. by redesign
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2304/00Optimising design; Manufacturing; Testing
    • B60Y2304/07Facilitating assembling or mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems

Definitions

  • the present invention relates to an electronic brake system and an operating method, and more particularly, to an electronic brake system and operation method for generating braking force by using an electric signal corresponding to a displacement of a brake pedal.
  • Vehicles are essentially equipped with a brake system for performing braking, and various types of brake systems have been proposed for the safety of drivers and passengers.
  • Such an electronic brake system and operation method generates and provides the driver's brake pedal operation as an electrical signal in the normal operation mode, and based on this, the hydraulic pressure supply device is electrically operated and controlled to generate the hydraulic pressure required for braking to the wheel cylinder. Deliver.
  • these electronic brake systems and operating methods are electrically operated and controlled, they can implement complex and various braking actions, but when a technical problem occurs in an electrical component element, the hydraulic pressure required for braking is not stably formed. There is a risk of threatening the safety of passengers. Therefore, the electronic brake system and operation method enters an abnormal operation mode when one component element fails or falls into an uncontrollable state, and in this case, a mechanism in which the driver's brake pedal operation is directly linked to the wheel cylinder is required. That is, in the abnormal operation mode of the electronic brake system and the operation method, the hydraulic pressure required for braking is immediately formed as the driver applies a pedal effort to the brake pedal, and it must be transmitted directly to the wheel cylinder.
  • the present embodiment is to provide an electronic brake system and operation method capable of reducing the number of parts and miniaturization and weight reduction of products by integrating a master cylinder and a simulation device into one.
  • the present embodiment is to provide an electronic brake system and operation method capable of implementing stable and effective braking even in various operating situations.
  • the present embodiment is to provide an electronic brake system and operation method capable of stably generating a high-pressure braking pressure.
  • the present embodiment is to provide an electronic brake system and operating method with improved performance and operational reliability.
  • the present embodiment is to provide an electronic brake system and an operating method capable of improving product assembly and productivity while reducing manufacturing cost of a product.
  • a reservoir in which a pressurized medium is stored;
  • An integrated master cylinder having a master chamber and a simulation chamber;
  • a reservoir flow path for communicating the integrated master cylinder and the reservoir;
  • a hydraulic pressure supply device having a first pressure chamber and a second pressure chamber partitioned by hydraulic pistons moving in the cylinder block by an electrical signal output in response to the displacement of the brake pedal;
  • First and second hydraulic circuits for controlling hydraulic pressure of the wheel cylinder;
  • a hydraulic control unit for controlling a flow of hydraulic pressure provided from the hydraulic pressure supply device to the first and second hydraulic circuits, wherein the hydraulic control unit controls the hydraulic pressure of the first pressure chamber to the first and second hydraulic circuits.
  • a second hydraulic channel branched from the first hydraulic channel and connected to the other one of the first and second hydraulic circuits to provide the hydraulic pressure of the first hydraulic channel to the other one of the first and second hydraulic circuits;
  • a third hydraulic channel branched from the first hydraulic channel upstream of a branch point of the second hydraulic channel to connect the second pressure chamber to provide the hydraulic pressure of the second pressure chamber to the first hydraulic channel;
  • An electronic brake system including a may be provided.
  • the hydraulic control unit may include: a first valve provided in the first hydraulic channel positioned between each branch point of the third hydraulic channel and the fourth hydraulic channel to control the flow of the pressurized medium; A second valve provided in the second hydraulic flow path to control the flow of the pressurized medium; A third valve provided in the third hydraulic flow path upstream of a point where the third hydraulic flow path and the fourth hydraulic flow path merge to control the flow of the pressurized medium; And a fourth valve provided in the fourth hydraulic passage and controlling the flow of the pressurized medium.
  • the first valve includes a check valve that allows only the flow of the pressurized medium from the hydraulic pressure supply device toward the wheel cylinder, and the second to fourth valves include solenoid valves that control the flow of the pressurized medium in both directions.
  • a system can be provided.
  • the integrated master cylinder may include a master piston that is displaceable by a brake pedal and pressurizes the master chamber; A simulation piston provided to be displaceable by the hydraulic pressure of the pressurized medium accommodated in the master chamber and pressurizing the simulation chamber; And an elastic member provided in the simulation chamber and providing a reaction force to the simulation piston, wherein the master piston, the simulation piston, and the elastic member are sequentially arranged in a row within the cylinder block of the integrated master cylinder.
  • An electronic brake system can be provided.
  • the electronic brake system may further include.
  • the reservoir flow path may include: a first reservoir flow path connecting the reservoir and the master chamber; And a second reservoir flow path connecting the reservoir and the simulation chamber.
  • a simulator bypass channel connected in parallel with the simulator valve on the simulation channel and provided with a simulator check valve that allows only the flow of the braking fluid transmitted from the second reservoir channel to the second backup channel. Can be provided.
  • the first hydraulic circuit may include first and second inlet passages branched from the second hydraulic passage and connected to first and second wheel cylinders, respectively, and each having first and second inlet valves;
  • the first and second check valves are connected in parallel to the first and second inlet valves on the first and second inlet passages, respectively, and are provided with first and second check valves that allow only the flow of the pressurized medium directed toward the second hydraulic passage.
  • a second inlet bypass flow path a second inlet bypass flow path.
  • An electronic brake system including first and second outlet passages branched from the first and second inlet passages on the downstream side of the first and second inlet valves and connected to the reservoir, respectively, and each provided with first and second outlet valves Can be provided.
  • the second hydraulic circuit may include third and fourth inlet passages branched from the first hydraulic passage and connected to third and fourth wheel cylinders, respectively, and respectively provided with third and fourth inlet valves;
  • the third and fourth check valves are connected in parallel to the third and fourth inlet valves on the third and fourth inlet passages, respectively, and are provided with third and fourth check valves that allow only the flow of the pressurized medium toward the first hydraulic passage.
  • a fourth inlet bypass flow path may be provided.
  • a dump passage connected between the first pressure chamber and the reservoir and provided with a dump check valve that allows the flow of the pressurized medium only toward the first pressure chamber; And a dump bypass channel connected in parallel to the dump check valve on the dump channel and provided with a dump valve for controlling the flow of the pressurized medium.
  • the electronic brake system may be provided.
  • the hydraulic control unit further includes a fifth hydraulic channel connecting the third hydraulic channel and the second hydraulic channel to provide the pressurizing medium of the third hydraulic channel to the other one of the first and second hydraulic circuits.
  • An electronic brake system may be provided.
  • the hydraulic control unit further includes a fifth valve provided in the fifth hydraulic passage to control the flow of the pressurized medium, wherein the fifth valve allows only the flow of the pressurized medium from the hydraulic pressure supply device toward the wheel cylinder.
  • An electronic brake system comprising a check valve may be provided.
  • An operating method of an electronic brake system comprising a first braking mode in which the hydraulic piston presses the first pressure chamber, and a second braking mode in which the hydraulic piston presses the second pressure chamber after the first braking mode. Can be provided.
  • the second valve, the third valve, and the fourth valve are opened, and the hydraulic pressure of the first pressure chamber is provided to the second pressure chamber through the third hydraulic flow path.
  • a method of operating an electronic brake system provided to the first and second hydraulic circuits through 1 hydraulic flow path and the second hydraulic flow path may be provided.
  • the second valve and the third valve are opened, the fourth valve is closed, and the hydraulic pressure of the second pressure chamber is applied to the first and second hydraulic oils through the third hydraulic flow path.
  • a method of operating an electronic brake system provided to each of the first and second hydraulic circuits through a furnace may be provided.
  • the release of the first braking mode is performed by moving the hydraulic piston to pressurize the second pressure chamber in the first braking mode to form a negative pressure in the first pressure chamber, thereby causing the first and second hydraulic circuits.
  • a method of operating an electronic brake system for recovering the provided pressurized medium and the pressurized medium of the second pressure chamber to the first pressure chamber may be provided.
  • the release of the second braking mode is performed by moving the hydraulic piston to pressurize the first pressure chamber in the second braking mode state to form a negative pressure in the second pressure chamber, thereby causing the first and second hydraulic circuits to There may be provided a method of operating an electronic brake system that recovers the provided pressurized medium to the second pressure chamber and provides the pressurized medium of the first pressure chamber to the reservoir.
  • a method of operating an electronic brake system may be provided in which the elastic member is compressed by moving and the reaction force of the elastic member is provided to the driver as a pedal feel.
  • the first cut valve, the second cut valve, and the simulator valve are opened, and the hydraulic pressure of the master chamber pressurized by the master piston by the operation of the brake pedal decreases the first backup passage.
  • the hydraulic pressure of the simulation chamber provided to the first hydraulic circuit and pressurized by the simulation piston may be provided with a method of operating an electronic brake system provided to the second hydraulic circuit through the second backup passage.
  • the electronic brake system and operation method according to the present exemplary embodiment can reduce the number of parts and achieve miniaturization and weight reduction of products.
  • the electronic brake system and operation method according to the present embodiment can implement stable and effective braking in various operating situations of a vehicle.
  • the electronic brake system and operation method according to the present embodiment can stably generate a high-pressure braking pressure.
  • the electronic brake system and operation method according to the present embodiment may improve product performance and operational reliability.
  • the electronic brake system and operation method according to the present embodiment can stably provide braking pressure even when a component element fails or a pressurized medium leaks.
  • the electronic brake system and operation method according to an exemplary embodiment of the present invention can improve product assembly and productivity, and at the same time reduce the manufacturing cost of the product.
  • FIG. 1 is a hydraulic circuit diagram showing an electronic brake system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an operating state of the pedal simulator of the electronic brake system according to the first embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention performs a first braking mode.
  • FIG. 4 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention performs a second braking mode.
  • FIG. 5 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention releases a second braking mode.
  • FIG. 6 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention releases the first braking mode.
  • FIG. 7 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention performs an abnormal operation mode (fallback mode).
  • FIG. 8 is a hydraulic circuit diagram showing an electronic brake system according to a second embodiment of the present invention.
  • FIG. 1 is a hydraulic circuit diagram showing an electronic brake system according to a first embodiment of the present invention.
  • the electronic brake system 1000 provides a reservoir 1100 that stores a pressurized medium therein and a reaction force according to the foot force of the brake pedal 10 to the driver,
  • An integrated master cylinder 1200 that pressurizes and discharges a pressurized medium such as brake oil contained inside, and a pedal displacement sensor 11 that senses the displacement of the brake pedal 10, receives the driver's braking intention as an electrical signal.
  • the hydraulic pressure supply device 1300 for generating hydraulic pressure of the pressurized medium through mechanical operation, the hydraulic control unit 1400 for controlling the hydraulic pressure provided from the hydraulic pressure supply device 1300, and the hydraulic pressure of the pressurized medium are transmitted to each wheel Hydraulic circuits (1510, 1520) having a wheel cylinder (20) for performing braking of, and a dump control unit (1800) provided between the hydraulic pressure supply device (1300) and the reservoir (1100) to control the flow of the pressurized medium, Backup flow paths 1610 and 1620 hydraulically connecting the integrated master cylinder 1200 and the hydraulic circuits 1510 and 1520, and a reservoir flow path 1700 hydraulically connecting the reservoir 1100 and the integrated master cylinder 1200 ), and an electronic control unit (ECU, not shown) that controls the hydraulic pressure supply device 1300 and various valves based on the hydraulic pressure information and pedal displacement information.
  • ECU electronice control unit
  • the integrated master cylinder 1200 includes a simulation chamber 1230a and a master chamber 1220a, and when the driver applies a foot force to the brake pedal 10 for braking operation, a reaction force is provided to the driver to provide a stable pedal feel. At the same time, it is provided to pressurize and discharge the pressurized medium accommodated in the inside.
  • the integrated master cylinder 1200 elasticizes the master chamber 1220a, the master piston 1220 provided in the master chamber 1220a and displaceable by the operation of the brake pedal 10, and the master piston 1220.
  • the master chamber 1220a and the simulation chamber 1230a may be sequentially formed on the cylinder block 1210 of the integrated master cylinder 1200 from the brake pedal 10 side to the inner side.
  • the simulation piston 1230 and the master piston 1220 may be disposed in the simulation chamber 1230a and the master chamber 1220a, respectively, to pressurize the pressurized medium contained in each chamber or form negative pressure according to the forward and backward movement.
  • braking fluid may be introduced and discharged through the first hydraulic port 1280a and the second hydraulic port 1280b, and the simulation chamber 1230a includes a third hydraulic port 1280c and a fourth hydraulic pressure.
  • the braking fluid may be introduced and discharged through the port 1280d.
  • the first hydraulic port 1280a may be connected to the first reservoir flow path 1710, and the second hydraulic port 1280b may be connected to the first backup flow path 1610.
  • the third hydraulic port 1280c may be connected to the second reservoir flow path 1720, and the fourth hydraulic port 1280d may be connected to the second backup flow path 1620.
  • the first reservoir flow path 1710 connects the reservoir 1100 and the master chamber 1220a, and the second reservoir flow path 1720 connects the reservoir 1100 and the simulation chamber 1230a.
  • the simulation chamber 1230a may communicate with the reservoir 1100 through a communication hole 1231 formed in the simulation piston 1230.
  • a support member 1240 accommodating one end of the elastic member 1250 is provided at an end of the integrated master cylinder 1200, and the other end of the elastic member 1250 may be supported by the simulation piston 1230.
  • Both ends of the simulator spring 1270 disposed in the simulation chamber 1230a may be elastically supported by the support member 1240 and the simulation piston 1230, respectively.
  • the master piston 1220 moves, and at this time, the master spring 1221 is compressed. Thereafter, when the pedal effort of the brake pedal 10 is released, the master piston 1220 may return to its original position while expanding by the elastic force of the master spring 1221.
  • the simulation piston 1230 is provided to have a certain range of displacement within the simulation chamber 1230a by the hydraulic pressure of the braking fluid pressurized in the master chamber 1220a, and the elastic member 1250 prevents the movement of the simulation piston 1230. Accordingly, it is provided to be compressible and deformable.
  • the elastic member 1250 may be made of a material such as compressible and expandable rubber according to the displacement of the simulation piston 1230.
  • the simulation flow path 1260 may be provided to connect the second backup flow path 1620 and the second reservoir flow path 1720.
  • a simulator valve 1261 for controlling the flow of the braking fluid may be provided in the simulation flow path 1260.
  • the simulator valve 1261 may be provided as a normal close type solenoid valve that is normally closed and operates to close the valve upon receiving an electrical signal from the electronic control unit.
  • a simulator bypass flow path 1262 is connected in parallel to the simulator valve 1261 in the simulation flow path 1260, and a simulator check valve 1263 that allows only one-way braking fluid flow is provided in the simulator bypass flow path 1262. Can be provided.
  • the simulator check valve 1263 allows the flow of the braking fluid delivered from the second reservoir flow path 1720 to the second backup flow path 1620, but goes from the second backup flow path 1620 to the second reservoir flow path 1720. It can be provided to block the flow of the braking fluid.
  • the hydraulic pressure supply device 1300 receives the driver's braking intention as an electrical signal from the pedal displacement sensor 11 that senses the displacement of the brake pedal 10 and generates hydraulic pressure of the braking fluid through mechanical operation.
  • the hydraulic pressure supply device 1300 includes a hydraulic pressure providing unit that provides a pressurized medium pressure transmitted to the wheel cylinder 20, a motor (not shown) that generates rotational force by an electrical signal from the pedal displacement sensor 11, and It includes a power conversion unit (not shown) that converts the rotational motion into linear motion and transmits it to the hydraulic pressure providing unit.
  • the hydraulic pressure providing unit includes a cylinder block 1310 having a pressure chamber receiving and storing a braking fluid, a hydraulic piston 1320 accommodated in the cylinder block 1310, and between the hydraulic piston 1320 and the cylinder block 1310. It includes a sealing member provided in the sealing member for sealing the pressure chamber, and a drive shaft 1390 for transmitting the power output from the actuator to the hydraulic piston 1320.
  • the actuator may include a motor that generates rotational force by an electrical signal from the pedal displacement sensor 11 and a power conversion unit that converts the rotational motion of the motor into linear motion and transmits it to the hydraulic pressure supply device 1300.
  • the power conversion unit includes a worm and a circular gear or a rack and pinion gear.
  • the pressure chamber includes a first pressure chamber 1330 positioned in front of the hydraulic piston 1320 (left side of the drawing) and a second pressure chamber 1340 positioned behind the hydraulic piston 1320.
  • the sealing member is provided between the hydraulic piston 1320 and the cylinder block 1310 to seal between the first pressure chamber 1330 and the second pressure chamber 1340, a piston sealing member 1350a, a drive shaft 1390 and a cylinder. It includes a drive shaft sealing member 1350b provided between the blocks 1310 and sealing the opening of the second pressure chamber 1340 and the cylinder block 1310.
  • the first pressure chamber 1330 is connected to the reservoir 1100 through the dump control unit 1800 and receives and receives the braking fluid from the reservoir 1100 or receives the braking fluid of the first pressure chamber 1330 in the reservoir 1100. Can be delivered to.
  • the dump control unit 1800 includes a dump passage 1810 connecting the reservoir 1100 and the first pressure chamber 1330, and a dump bypass passage 1820 connected in parallel from the dump passage 1810.
  • the dump passage 1810 may be provided with a dump check valve 1811 that allows the flow of the braking fluid from the reservoir 1100 to the first pressure chamber 1330 only, and the dump bypass passage 1820 may be provided with a dump passage ( A dump valve 1821 may be provided which is connected in parallel to the dump check valve 1811 at 1810 and controls the flow of the braking fluid.
  • the dump valve 1821 includes a two-way solenoid valve that controls the flow of the braking fluid between the first pressure chamber 1330 and the reservoir 1100, and the valve opens when an electrical signal is received from the electronic control unit in a normally closed state. It can be provided in a normal open type.
  • the second pressure chamber 1340 is connected to the first pressure chamber 1330 through the hydraulic control unit 1400, and receives and receives the braking fluid from the first pressure chamber 1330 or to the first pressure chamber 1330. It can deliver braking fluid.
  • Reference numeral 1830 denotes a flow path for recovering to the reservoir 1100 when the pressurized medium leaks between the sealing members.
  • the hydraulic control unit 1400 connects between the hydraulic pressure supply device 1300 and the hydraulic circuits 1510 and 1520 that control the hydraulic pressure of the wheel cylinder 20, and the hydraulic pressure supply device 1300 and the hydraulic circuits 1510, 1520 It is possible to control the flow of braking fluid between.
  • the hydraulic control unit 1400 can transmit the hydraulic pressure provided from the hydraulic pressure supply device 1300 to the wheel cylinders 21, 22, 23, 24 through the hydraulic circuits 1510, 1520, and also the hydraulic control unit ( 1400 may control the flow of the braking fluid between the first pressure chamber 1330 and the second pressure chamber 1340.
  • the hydraulic circuits 1510 and 1520 include a first hydraulic circuit 1510 that controls the flow of the braking fluid transmitted to the two wheel cylinders 21 and 22, and the brake transmitted to the other two wheel cylinders 23 and 24. It includes a second hydraulic circuit (1520) for controlling the flow of the fluid.
  • the hydraulic control unit 1400 comprises a first hydraulic channel 1401 connecting the first pressure chamber 1330 and the second hydraulic circuit 1520, and the first hydraulic channel 1401 and the first hydraulic circuit 1510.
  • a second hydraulic flow path 1402 connected, a third hydraulic flow path 1403 connecting the second pressure chamber 1340 and the first hydraulic flow path 1401, and a first hydraulic flow path 1401 and a third hydraulic flow path
  • a fourth hydraulic passage 1404 connecting the 1403 and a fifth hydraulic passage 1405 connecting the third hydraulic passage 1403 and the second hydraulic passage 1402.
  • a first valve 1411 for controlling the flow of the braking fluid may be provided in the first hydraulic flow path 1401.
  • the first valve 1411 includes a check valve that allows only the flow of the pressurized medium in a direction from the first pressure chamber 1330 to the hydraulic circuits 1510 and 1520.
  • the second hydraulic flow path 1402 may be branched from the first hydraulic flow path 1401 on the downstream side of the first valve 1411 to be connected to the first hydraulic circuit 1510.
  • a second valve 1412 for controlling the flow of the pressurized medium may be provided in the second hydraulic flow path 1402.
  • the second valve 1412 may be provided as a normally closed type solenoid valve that opens when an electric signal is received from the electronic control unit in a normally closed state.
  • the third hydraulic flow path 1403 may be connected to the second pressure chamber 1340 and the first hydraulic flow path 1401 downstream of the first valve 1411.
  • a third valve 1413 for controlling the flow of the braking fluid may be provided in the third hydraulic flow path 1403.
  • the third valve 1413 may be provided as a normally open type solenoid valve in which the valve is closed when an electric signal is received from the electronic control unit in the normally open state.
  • the fourth hydraulic flow path 1404 may connect the first hydraulic flow path 1401 on the upstream side of the first valve 1411 and the third hydraulic flow path 1403 on the downstream side of the third valve 1413.
  • a fourth valve 1414 for controlling the flow of the braking fluid may be provided in the fourth hydraulic flow path 1404.
  • the fourth valve 1414 may be provided as a normally closed type solenoid valve that opens when an electric signal is received from the electronic control unit in a normally closed state.
  • the fifth hydraulic flow path 1405 may connect a third hydraulic flow path 1403 on the downstream side of the third valve 1413 and a second hydraulic flow path 1402 on the downstream side of the second valve 1412.
  • a fifth valve 1415 for controlling the flow of the braking fluid may be provided in the fifth hydraulic flow path 1405.
  • the fifth valve 1415 includes a check valve that allows only the flow of the pressurized medium from the third hydraulic flow path 1403 toward the second hydraulic flow path 1402.
  • the first hydraulic circuit 1510 receives hydraulic pressure from the hydraulic pressure supply device 1300 through the second hydraulic flow path 1402, and the second hydraulic flow path 1402 includes the first wheel cylinder 21 and the second wheel cylinder. It may be provided by branching into the first and second inlet passages 1511 and 1512 connected to 22).
  • the second hydraulic circuit 1520 receives hydraulic pressure from the hydraulic pressure supply device 1300 through the first hydraulic flow path 1401, and the first hydraulic flow path 1401 includes a third wheel cylinder 23 and a fourth wheel cylinder. It may be provided by branching into the third and fourth inlet passages 1521 and 1522 that are connected to 24).
  • First and second inlet valves 1511a and 1512a are provided in the first and second inlet passages 1511 and 1512 to control the flow and hydraulic pressure of the braking fluid delivered to the first and second wheel cylinders 21 and 22. It is provided, and the first and second inlet valves 1511a and 1512a may be provided as normally open type solenoid valves respectively disposed on the upstream side of the first and second wheel cylinders 21 and 22.
  • First and second check valves 1513a and 1514a connected in parallel to the first and second inlet valves 1511a and 1512a may be provided in the first hydraulic circuit 1510.
  • the first and second check valves 1513a and 1514a are connected to the first and second inlet valves 1511a and 1512a on the first and second inlet passages 1511 and 1512, respectively. It is provided in the second inlet bypass flow paths 1513 and 1514, allows only the flow of the braking fluid from the first and second wheel cylinders 21 and 22 to the hydraulic pressure supply device 1300, and from the hydraulic pressure supply device 1300 The flow of the braking fluid to the first and second wheel cylinders 21 and 22 is blocked.
  • the first and second check valves 1513a and 1514a can quickly remove the hydraulic pressure of the braking fluid applied to the first and second wheel cylinders 21 and 22, and the first and second inlet valves 1511a and 1512a Even when is not operating normally, the hydraulic pressure of the braking fluid applied to the first and second wheel cylinders 21 and 22 can be introduced into the hydraulic pressure supply device 1300.
  • the first hydraulic circuit 1510 is branched from the first and second inlet passages 1511 and 1512 and connected to the reservoir 1100 to improve performance when the first and second wheel cylinders 21 and 22 are brake released. It includes first and second outlet flow paths 1515 and 1516 that are used.
  • the first and second outlet flow paths 1515 and 1516 are connected to the first and second inlet flow paths 1511 and 1512 and the first and second inlet flow paths from the downstream side of the first and second inlet valves 1511a and 1512a, respectively. It may be branched at the confluence point of the pass flow paths 1513 and 1514 to be connected to the reservoir 1100.
  • First and second outlet valves 1515a and 1516a are provided in the first and second outlet flow passages 1515 and 1516, respectively, and the first and second outlet valves 1515a and 1516a are respectively provided with first and second wheel It may be provided as a normally closed type solenoid valve that is connected to the cylinders 21 and 22 and controls the flow through which the braking fluid escapes from the first and second wheel cylinders 21 and 22.
  • the first and second outlet valves 1515a and 1516a are selectively opened when pressure reduction braking of the first and second wheel cylinders 21 and 22 is required to reduce the pressure reduction of the first and second wheel cylinders 21 and 22. Can be controlled.
  • first inlet bypass flow path 1513 on the downstream side of the first check valve 1513a may be connected to the first backup flow path 1610.
  • third and fourth inlet valves 1521a and 1522a are provided to control the flow and hydraulic pressure of the braking fluid delivered to the second and third wheel cylinders 23 and 24. It is provided, and the third and fourth inlet valves 1521a and 1522a may be provided as normally open type solenoid valves respectively disposed on the upstream side of the third and fourth wheel cylinders 23 and 24.
  • the second hydraulic circuit 1520 may be provided with third and fourth check valves 1523a and 1524a connected in parallel to the third and fourth inlet valves 1521a and 1522a, respectively.
  • the third and fourth check valves 1523a and 1524a are connected to the third and fourth inlet valves 1521a and 1522a on the second and third inlet passages 1521 and 1522, respectively. It is provided in the fourth inlet bypass flow paths 1523 and 1524, allows only the flow of the braking fluid from the third and fourth wheel cylinders 23 and 24 to the hydraulic pressure supply device 1300, and from the hydraulic pressure supply device 1300 The flow of the braking fluid to the third and fourth wheel cylinders 23 and 24 is blocked.
  • the third and fourth check valves 1523a and 1524a can quickly remove the hydraulic pressure of the braking fluid applied to the third and fourth wheel cylinders 23 and 24, and the third and fourth inlet valves 1521a and 1522a Even when is not operating normally, the hydraulic pressure of the braking fluid applied to the third and fourth wheel cylinders 23 and 24 may be introduced into the hydraulic pressure supply device 1300.
  • the second hydraulic circuit 1520 is branched from the third and fourth inlet passages 1521 and 1522 to improve performance when the third and fourth wheel cylinders 23 and 24 are braked off and connected to the reservoir 1100 It includes third and fourth outlet flow paths 1525 and 1526 that are used.
  • the third and fourth outlet flow paths 1525 and 1526 are formed by the third and fourth inlet flow paths 1521 and 1522 and the third and fourth inlet flow paths from the downstream side of the third and fourth inlet valves 1521a and 1522a, respectively. It may be branched at the confluence of the pass flow paths 1523 and 1524 to be connected to the reservoir 1100.
  • Second cut valves 1525a and 1526a are provided in the third and fourth outlet passages 1525 and 1526, respectively, and the second cut valves 1525a and 1526a are respectively provided with third and fourth wheel cylinders 23 and 24 It may be provided as a normally open type solenoid valve that is connected to and controls a flow through which the braking fluid escapes from the third and fourth wheel cylinders 23 and 24.
  • the second cut valves 1525a and 1526a are opened when the pressure-reducing braking of the first and second wheel cylinders 21 and 22 is required to control the pressure reduction of the first and second wheel cylinders 21 and 22.
  • the second cut valves 1525a and 1526a may be connected to the second backup passage 1620 and connected to the reservoir 1100 through the second backup passage 1620.
  • the first backup passage 1610 and the second backup passage 1620 directly supply the braking fluid discharged from the integrated master cylinder 1200 to the wheel cylinder in the case of a fallback mode in which normal operation is impossible due to a device failure. So that braking can be implemented.
  • the first backup passage 1610 connects the master chamber 1220a of the integrated master cylinder 1200 and the first hydraulic circuit 1510, and the second backup passage 1620 is a simulation chamber of the integrated master cylinder 1200 ( 1230a) and the second hydraulic circuit 1520 are connected.
  • the first backup passage 1610 is connected to the first inlet bypass passage 1513 on the downstream side of the first check valve 1513a on the first hydraulic circuit 1510, and the second backup passage 1620 is a second hydraulic circuit.
  • the second cut valve 1525a is connected to the third outlet flow path 1525 on the downstream side and the fourth outlet flow path 1526 on the downstream side of the second cut valve 1526a on 1520.
  • a first cut valve 1611 for controlling the flow of the braking fluid is provided in the first backup passage 1610, and the first cut valve 1611 is normally open, and the valve is opened when a signal is received from the electronic control unit. It may be provided with a normally open type solenoid valve that operates to close.
  • a first cut valve for controlling the flow of the pressurized medium is not provided in the second backup passage 1620, and the second cut valves 1525a and 1526a installed on the second hydraulic circuit 1520 are Function can be performed.
  • FIG. 2 shows a pedal simulation operating state according to an embodiment of the present invention.
  • the first cut valve 1611 provided in the first backup passage 1610 is closed, and the simulator valve 1261 is opened.
  • the second cut valves 1525a and 1526a are closed.
  • the master piston 1220 moves according to the displacement of the brake pedal 10 to pressurize the braking fluid in the master chamber 1220a, and the hydraulic pressure pressurizes the simulation piston 1230.
  • the displacement of the simulation piston 1230 compresses the elastic member 1250, and the braking fluid of the simulation chamber 1230a is transmitted to the reservoir 1100 through the simulation flow path 1260 through the second backup flow path 1620. Accordingly, a pedal feeling can be provided to the driver by the elastic restoring force by compression of the elastic member 1250.
  • the first braking mode and the second braking mode may be operated.
  • hydraulic pressure from the hydraulic pressure supply device 1300 is first provided to the wheel cylinder, and in the second braking mode, hydraulic pressure from the hydraulic pressure supply device 1300 is secondarily provided to the wheel cylinder. It delivers high-pressure braking pressure.
  • the first braking mode and the second braking mode can be changed by changing the operation of the hydraulic pressure supply device 1300 and the hydraulic control unit 1400.
  • the hydraulic pressure supply device 1300 can provide a sufficiently high hydraulic pressure of a pressurized medium without a high-spec motor by utilizing the first and second braking modes, and further, it is possible to prevent unnecessary loads applied to the motor. Accordingly, while reducing the cost and weight of the brake system, a stable braking force can be secured, and durability and operational reliability of the device can be improved.
  • FIG. 3 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention performs a first braking mode.
  • the motor (not shown) operates to rotate in one direction, and the rotational force of the motor is transmitted to the hydraulic pressure supply device 1300 by the power conversion unit.
  • the hydraulic piston 1320 of the hydraulic pressure supply device 1300 advances, a hydraulic pressure is generated in the first pressure chamber 1330.
  • the hydraulic pressure discharged from the first pressure chamber 1330 is transmitted to each wheel cylinder 20 through the hydraulic control unit 1400, the first hydraulic circuit 1510, and the second hydraulic circuit 1520 to generate braking force. .
  • the simulator valve 1261 In the first braking mode, the simulator valve 1261 is switched to an open state, and the first cut valve 1611 and the second cut valves 1525a and 1526a provided in the second hydraulic circuit 1520 are switched to a closed state. do.
  • the second cut valves 1525a and 1526a function as a first cut valve that blocks the braking fluid provided to the second hydraulic circuit 1620 through the second backup passage 1620. Accordingly, the integrated master cylinder 1200 performs the operation of the pedal simulator described above.
  • the second valve 1412 and the fourth valve 1414 of the hydraulic control unit 1400 are switched to an open state. Accordingly, as the hydraulic piston 1320 advances, the hydraulic pressure formed in the first pressure chamber 1330 sequentially passes through the first hydraulic flow path 1401 and the second hydraulic flow path 1402, thereby forming the first hydraulic circuit 1510 and the second hydraulic circuit 1510. 2 It is primarily transmitted to the wheel cylinder 20 provided in the hydraulic circuit 1520.
  • the first inlet valve 1511a and the second inlet valve 1511b provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. To prevent leakage of the hydraulic pressure of the pressurized medium toward the reservoir 1100.
  • the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 maintain an open state, and the second cut valve 1525a and the second cut valve 1526a are closed. It is converted into to prevent the hydraulic pressure of the pressurized medium from leaking to the reservoir (1100).
  • the dump check valve 1821 provided in the dump passage 1820 connected to the first pressure chamber 1330 prevents the flow of the pressurized medium from the reservoir 1100 to the first pressure chamber 1330.
  • the flow of the pressurized medium from the first pressure chamber 1330 to the reservoir 1100 is blocked, and the hydraulic pressure of the pressurized medium formed in the first pressure chamber 1330 by the advance of the hydraulic piston 1320 is All of them are delivered to the first hydraulic flow path 1401, so that quick braking can be implemented.
  • the electronic brake system 1000 may switch from the first braking mode to the second braking mode when a higher braking pressure than the first braking mode is to be provided.
  • FIG. 4 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the first embodiment of the present invention performs a second braking mode.
  • the electronic control unit is configured such that the displacement or operating speed of the brake pedal 10 detected by the pedal displacement sensor 11 is higher than a preset level, or the hydraulic pressure detected by the pressure sensor is higher than a preset level. In this case, it is determined that a higher braking pressure is required, and the first braking mode can be switched to the second braking mode.
  • the motor When switching from the first braking mode to the second braking mode, the motor operates to rotate in the other direction, and the rotational force of the motor is transmitted to the hydraulic pressure supply unit by the power conversion unit, and the hydraulic piston 1320 moves backward, thereby causing the second pressure.
  • a hydraulic pressure is generated in the chamber 1340.
  • the hydraulic pressure discharged from the second pressure chamber 1340 is transmitted to each wheel cylinder 20 through the hydraulic control unit 1400, the first hydraulic circuit 1510, and the second hydraulic circuit 1520 to generate braking force. .
  • the simulator valve 1261 In the case of the second braking mode, the simulator valve 1261 is in an open state, and the first cut valve 1611 and the second cut valves 1525a and 1526a provided in the second hydraulic circuit 1520 are closed.
  • the master cylinder 1200 operates in a pedal simulator.
  • the fourth valve 1414 of the hydraulic control unit 1400 is converted to a closed state, the second valve 1412 is maintained in an open state, and the dump valve 1821 is converted to an open state. Therefore, as the hydraulic piston 1320 moves backward, the hydraulic pressure formed in the second pressure chamber 1340 is secondary to the second hydraulic circuit 1520 through the first hydraulic channel 1401 through the third hydraulic channel 1403. A portion of the hydraulic pressure provided to the first hydraulic flow path 1401 is secondarily supplied to the first hydraulic circuit 1510 through the second hydraulic flow path 1402. In this case, a part of the hydraulic pressure flowing in the third hydraulic flow path 1403 may be provided to the first hydraulic circuit 1510 through the fifth hydraulic flow path 1405. This makes it possible to stably provide hydraulic pressure toward the first hydraulic circuit 1510 even in a state in which the second valve 1412 is fixed and fails.
  • the first inlet valve 1511a and the second inlet valve 1511b provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1512a and the second outlet valve 1512b are closed. To prevent leakage of the hydraulic pressure of the pressurized medium toward the reservoir 1100.
  • the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 are provided in an open state, and the second cut valve 1525a and the second cut valve 1526a are closed. To prevent leakage of hydraulic pressure.
  • the dump check valve 1811 provided in the dump flow path 1810 connected to the first pressure chamber 1330 and the dump valve 1821 provided in the dump bypass flow path 1820 are a reservoir ( The flow of the braking fluid from 1100 to the first pressure chamber 1330 is allowed.
  • FIG. 5 is a hydraulic circuit diagram showing a state in which a second braking mode is released while the hydraulic piston of the electronic brake system according to the first embodiment of the present invention advances.
  • the motor when the pedal effort applied to the brake pedal 10 is released, the motor generates a rotational force in one direction and transmits it to the power conversion unit, and the power conversion unit advances the hydraulic piston 1320. Accordingly, while releasing the hydraulic pressure in the second pressure chamber 1340, negative pressure may be generated, and thus the pressurizing medium of the wheel cylinder 20 may be transmitted to the second pressure chamber 1340.
  • the first cut valve 1611, the fourth valve 1414, and the second cut valve 1525a and 1526a are closed, and the simulator valve 1261, the dump valve 1821, and The second valve 1412 and the third valve 1413 are open.
  • the hydraulic pressure of the pressurized medium applied to the first wheel cylinder 21 and the second wheel cylinder 22 provided in the first hydraulic circuit 1510 is the first and second inlet passages 1511 and 1512, the second The hydraulic flow path 1402, the first hydraulic flow path 1401, and the third hydraulic flow path 1403 are sequentially passed through and are recovered to the second pressure chamber 1340.
  • the first inlet valve 1511a and the second inlet valve 1511b provided in the first hydraulic circuit 1510 are kept open, and the first outlet valve 1512a and the second outlet valve 1512b Remains closed.
  • the hydraulic pressure of the pressurized medium applied to the third wheel cylinder 23 and the fourth wheel cylinder 24 provided in the second hydraulic circuit 1520 by the negative pressure generated in the second pressure chamber 1340 is the third and The fourth inlet flow paths 1521 and 1522, the first hydraulic flow path 1401, and the third hydraulic flow path 1403 are sequentially passed through and are recovered to the second pressure chamber 1340.
  • the third inlet valve 1521a and the fourth inlet valve 1521b provided in the second hydraulic circuit 1520 are kept open, and the second cut valve 1525a and the second cut valve 1526a are closed. Is maintained.
  • the dump valve 1821 provided in the dump bypass flow path 1820 is converted to an open state, and the pressurizing medium of the first pressure chamber 1330 according to the forward movement of the hydraulic piston 1320 is stored in the reservoir.
  • the reservoir Provided as (1100).
  • FIG. 6 is a hydraulic circuit diagram showing a state in which the hydraulic piston of the electronic brake system according to the first embodiment of the present invention moves backward and releases the first braking mode.
  • the motor when the pedal effort applied to the brake pedal 10 is released, the motor generates rotational force in another direction and transmits it to the power conversion unit, and the power conversion unit moves the hydraulic piston 1320 backward.
  • negative pressure may be generated in the first pressure chamber 1330, whereby the pressure medium of the wheel cylinder 20 may be transmitted to the first pressure chamber 1330.
  • the first cut valve 1611 and the dump valve 1821 are closed, and the simulator valve 1261, the second valve 1412, the third valve 1413, and the fourth valve ( 1414) is open.
  • the hydraulic pressure of the first wheel cylinder 21 and the second wheel cylinder 22 provided in the first hydraulic circuit 1510 is the first and second inlet passages 1511 and 1512, the second hydraulic passage 1402 ), the first hydraulic flow path 1401, the third hydraulic flow path 1403, the fourth hydraulic flow path 1404, and the first hydraulic flow path 1401 are sequentially passed and are recovered to the first pressure chamber 1330.
  • the first inlet valve 1511a and the second inlet valve 1511b provided in the first hydraulic circuit 1510 are kept open, and the first outlet valve 1512a and the second outlet valve 1512b Remains closed.
  • the hydraulic pressure of the pressurized medium applied to the third wheel cylinder 23 and the fourth wheel cylinder 24 provided in the second hydraulic circuit 1520 by the negative pressure generated in the first pressure chamber 1330 is the third and The fourth inlet flow path (1521, 1522), the first valve (1411) downstream, the first hydraulic flow path (1401), the third hydraulic flow path (1403), the fourth hydraulic flow path (1404), the first valve (1411) upstream It is recovered to the first pressure chamber 1330 by passing through the first hydraulic flow path 1401 sequentially.
  • the third inlet valve 1521a and the fourth inlet valve 1522a, and the second cut valve 1525a and the second cut valve 1526a provided in the second hydraulic circuit 1520 are maintained in an open state. Accordingly, the hydraulic pressure of the third and fourth wheel cylinders 23 and 24 may be provided to the reservoir 1100 through the second backup passage 1620.
  • the pressurized medium accommodated in the second pressure chamber 1340 by the backward movement of the hydraulic piston 1320 is discharged to the first pressure chamber 1330 through the third hydraulic passage 1403 and the fourth hydraulic passage 1404. In this way, the hydraulic piston 1320 can be moved back quickly and smoothly.
  • FIG. 7 is a hydraulic circuit diagram showing an operating state in an abnormal operation mode (fallback mode) when normal operation of the electronic brake system according to the present embodiment is impossible due to a device failure or the like.
  • each of the valves is controlled to a non-operational braking initial state.
  • the master piston 1220 connected to the brake pedal 10 advances and displacement occurs.
  • the pressurized medium accommodated in the master chamber 1220a by the advance of the master piston 1220 is subjected to the first hydraulic pressure along the first backup passage 1610.
  • Braking may be implemented by being transmitted to the first wheel cylinder 21 and the second wheel cylinder 22 of the circuit 1510.
  • the pressurized medium accommodated in the master chamber 1220a advances the simulation piston 1230 to generate displacement
  • the pressurized medium accommodated in the simulation chamber 1230a by the displacement of the simulation piston 1230 is a second backup passage ( Braking may be implemented by being transmitted to the third wheel cylinder 23 and the fourth wheel cylinder 24 of the second hydraulic circuit 1520 through 1620 ).
  • the first to fourth inlet valves 1511a, 1511b, 1521a, 1521b provided in the first and second hydraulic circuits 1510 and 1520 and the second cut valves 1525a and 1526a are open Therefore, since the hydraulic pressure transmitted from the master chamber 1220a and the simulation chamber 1230a of the integrated master cylinder 1200 can be directly transferred to each wheel cylinder 20, braking stability can be improved and quick braking can be achieved.
  • a hydraulic control unit 2400 according to an embodiment of the present invention includes a first pressure chamber 1330 and a 1 A first hydraulic channel 2401 connecting the hydraulic circuit 1510, a second hydraulic channel 2402 connecting the first hydraulic channel 2401 and the second hydraulic circuit 1520, and a second pressure chamber ( A third hydraulic channel 1403 connecting the 1340 and the first hydraulic channel 2401, and a fourth hydraulic channel 1404 and a third connecting the first hydraulic channel 2401 and the third hydraulic channel 1403 And a fifth hydraulic passage 1405 connecting the hydraulic passage 1403 and the second hydraulic passage 2402.
  • the first hydraulic circuit 1510 receives hydraulic pressure from the hydraulic pressure supply device 1300 through the first hydraulic flow path 2401, and the first hydraulic flow path 2401 includes the first wheel cylinder 21 and the second It may be provided to branch into the first and second inlet flow passages 1511 and 1512 connected to the wheel cylinder 22.
  • the second hydraulic circuit 1520 receives hydraulic pressure from the hydraulic pressure supply device 1300 through the second hydraulic flow path 2402, and the second hydraulic flow path 2402 includes the third wheel cylinder 23 and the fourth wheel cylinder. It may be provided by branching into the third and fourth inlet passages 1521 and 1522 that are connected to 24).
  • the hydraulic piston 1320 moves forward or backward while the hydraulic pressure formed in the first pressure chamber 1330 and the second pressure chamber 1340, respectively, is applied to the first hydraulic flow path ( It is provided as a first hydraulic circuit 1510 through 2401 and a second hydraulic circuit 1520 through a second hydraulic flow path 2402.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)

Abstract

전자식 브레이크 시스템이 개시된다. 본 발명의 실시 예에 따른 전자식 브레이크 시스템은 유압피스톤에 의해 구획된 제1 압력챔버와 제2 압력챔버를 갖는 액압 공급장치와, 휠 실린더의 액압을 제어하는 제1 및 제2 유압서킷으로 제공되는 액압의 흐름을 제어하는 유압 제어유닛은 제1 압력챔버와 제1 및 제2 유압서킷 중 하나를 연결하는 제1 유압유로와, 제1 유압유로에서 분기되어 제1 및 제2 유압서킷 중 다른 하나와 연결되는 제2 유압유로와, 제2 유압유로의 분기지점 상류측 제1 유압유로에서 분기되어 제2 압력챔버를 연결하는 제3 유압유로와, 제3 유압유로의 분기지점 상류측 제1 유압유로에서 분기되어 제3 유압유로를 연결하는 제4 유압유로를 포함한다.

Description

전자식 브레이크 시스템 및 작동방법
본 발명은 전자식 브레이크 시스템 및 작동방법에 관한 것으로서, 보다 상세하게는 브레이크 페달의 변위에 대응하는 전기적 신호를 이용하여 제동력을 발생시키는 전자식 브레이크 시스템 및 작동방법에 관한 것이다.
차량에는 제동을 수행하기 위한 브레이크 시스템이 필수적으로 장착되며, 운전자 및 승객의 안전을 위해 다양한 방식의 브레이크 시스템이 제안되고 있다.
종래의 브레이크 시스템은 운전자가 브레이크 페달을 밟으면 기계적으로 연결된 부스터를 이용하여 휠 실린더에 제동에 필요한 액압을 공급하는 방식이 주로 이용되었다. 그러나 차량의 운용 환경에 세밀하게 대응하여 다양한 제동 기능을 구현하고자 하는 시장의 요구가 증대됨에 따라, 최근에는 운전자가 브레이크 페달을 밟으면 브레이크 페달의 변위를 감지하는 페달 변위센서로부터 운전자의 제동의지를 전기적 신호로 전달받아 제동에 필요한 액압을 휠 실린더로 공급하는 액압 공급장치를 포함하는 전자식 브레이크 시스템 및 작동방법이 널리 보급되고 있다.
이와 같은 전자식 브레이크 시스템 및 작동방법은 정상 작동모드 시 운전자의 브레이크 페달 작동이 전기적 신호로 발생 및 제공되고, 이에 근거하여 액압 공급장치가 전기적으로 작동 및 제어됨으로써 제동에 필요한 액압을 형성하여 휠 실린더로 전달한다. 이와 같이, 이러한 전자식 브레이크 시스템 및 작동방법은 전기적으로 작동 및 제어되는 바 복잡하면서도 다양한 제동 작용을 구현할 수 있기는 하지만, 전장 부품요소에 기술적 문제점이 발생하는 경우 제동에 필요한 액압이 안정적으로 형성되지 않아 승객의 안전을 위협할 우려가 있다. 따라서 전자식 브레이크 시스템 및 작동방법은 일 부품요소가 고장나거나 제어 불능의 상태에 해당하는 경우 비정상 작동모드에 돌입하게 되며, 이 때는 운전자의 브레이크 페달 작동이 휠 실린더로 직접 연동되어야 하는 메커니즘이 요구된다. 즉, 전자식 브레이크 시스템 및 작동방법의 비정상 작동모드에서는 운전자가 브레이크 페달에 답력을 가함에 따라 제동에 필요한 액압을 곧바로 형성하고, 이를 휠 실린더로 직접 전달될 수 있어야 한다.
본 실시 예는 마스터 실린더와 시뮬레이션 장치를 하나로 통합하여 부품 수를 절감하고 제품의 소형화 및 경량화를 도모할 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 다양한 운용상황에서도 안정적이고 효과적인 제동을 구현할 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 고압의 제동압력을 안정적으로 발생시킬 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 성능 및 작동 신뢰성이 향상된 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 제품의 조립성 및 생산성을 향상시킴과 동시에, 제품의 제조원가를 절감할 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 발명의 일 측면에 의하면, 가압매체가 저장되는 리저버; 마스터 챔버와, 시뮬레이션 챔버를 갖는 통합형 마스터 실린더; 상기 통합형 마스터 실린더와 상기 리저버를 연통시키는 리저버 유로; 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 실린더블록 내에서 이동하는 유압피스톤에 의해 구획된 제1 압력챔버와 제2 압력챔버를 갖는 액압 공급장치; 휠 실린더의 액압을 제어하는 제1 및 제2 유압서킷; 상기 액압 공급장치에서 상기 제1 및 제2 유압서킷으로 제공되는 액압의 흐름을 제어하는 유압 제어유닛;을 포함하고, 상기 유압 제어유닛은, 상기 제1 압력챔버의 액압을 상기 제1 및 제2 유압서킷 중 하나에 제공하도록 상기 제1 압력챔버와 상기 제1 및 제2 유압서킷 중 하나를 연결하는 제1 유압유로; 상기 제1 유압유로의 액압을 상기 제1 및 제2 유압서킷 중 다른 하나에 제공하도록 상기 제1 유압유로에서 분기되어 상기 제1 및 제2 유압서킷 중 다른 하나와 연결되는 제2 유압유로; 상기 제2 압력챔버의 액압을 상기 제1 유압유로에 제공하도록 상기 제2 유압유로의 분기지점 상류측 상기 제1 유압유로에서 분기되어 상기 제2 압력챔버를 연결하는 제3 유압유로; 및 상기 제1 압력챔버와 상기 제2 압력챔버 사이의 선택적 가압매체 흐름을 위해 상기 제3 유압유로의 분기지점 상류측 상기 제1 유압유로에서 분기되어 상기 제3 유압유로를 연결하는 제4 유압유로; 를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 유압 제어유닛은, 상기 제3 유압유로와 상기 제4 유압유로의 각 분기지점 사이에 위치하는 상기 제1 유압유로에 마련되어 가압매체의 흐름을 제어하는 제1 밸브; 상기 제2 유압유로에 마련되어 가압매체의 흐름을 제어하는 제2 밸브; 상기 제3 유압유로와 상기 제4 유압유로의 합류지점 상류측 상기 제3 유압유로에 마련되어 가압매체의 흐름을 제어하는 제3 밸브; 및 상기 제4 유압유로에 마련되어 가압매체의 흐름을 제어하는 제4 밸브;를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 밸브는 상기 액압 공급장치로부터 상기 휠 실린더 쪽으로 향하는 가압매체의 흐름만을 허용하는 체크밸브를 포함하고, 상기 제2 내지 4 밸브는 가압매체의 양방향 흐름을 제어하는 솔레노이드 밸브를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 통합형 마스터 실린더는, 브레이크 페달에 의해 변위 가능하게 마련되며, 상기 마스터 챔버를 가압하는 마스터 피스톤; 상기 마스터 챔버에 수용된 가압매체의 액압에 의해 변위 가능하게 마련되며, 상기 시뮬레이션 챔버를 가압하는 시뮬레이션 피스톤; 및 상기 시뮬레이션 챔버에 마련되며, 상기 시뮬레이션 피스톤에 반력을 제공하는 탄성부재;를 포함하고, 상기 마스터 피스톤, 상기 시뮬레이션 피스톤 및 상기 탄성부재는 상기 통합형 마스터 실린더의 실린더블록 내에서 일렬로 순차적으로 배치되는 전자식 브레이크 시스템이 제공될 수 있다.
상기 마스터 챔버와 상기 제1 유압서킷을 연결하며, 가압매체의 흐름을 제어하는 제1 컷밸브가 마련되는 제1 백업유로; 및 상기 시뮬레이션 챔버와 상기 제2 유압서킷을 연결하며, 가압매체의 흐름을 제어하는 제2 컷밸브가 마련되는 제2 백업유로;를 더 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 리저버 유로는, 상기 리저버와 상기 마스터 챔버를 연결하는 제1 리저버 유로; 및 상기 리저버와 상기 시뮬레이션 챔버를 연결하는 제2 리저버 유로;를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제2 백업유로와 상기 제2 리저버 유로를 연결하는 시뮬레이션 유로; 상기 시뮬레이션 유로의 가압매체 흐름을 제어하도록 상기 시뮬레이션 유로에 마련되는 시뮬레이터 밸브; 및 상기 시뮬레이션 유로 상에서 상기 시뮬레이터 밸브와 병렬 연결되며 상기 제2 리저버 유로로부터 상기 제2 백업유로로 전달되는 제동유체의 흐름만을 허용하는 시뮬레이터 체크밸브가 마련된 시뮬레이터 바이패스유로;를 더 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 유압서킷은, 상기 제2 유압유로에서 분기되어 각각 제1 및 제2 휠 실린더로 연결되며, 각각 제1 및 제2 인렛밸브가 마련되는 제1 및 제2 인렛유로; 상기 제1 및 제2 인렛유로 상에서 상기 제1 및 제2 인렛밸브에 대해 각각 병렬 연결되며, 각각 상기 제2 유압유로 쪽으로 향하는 가압매체의 흐름만을 허용하는 제1 및 제2 체크밸브가 마련된 제1 및 제2 인렛 바이패스 유로; 상기 제1 및 제2 인렛밸브 하류측 상기 제1 및 제2 인렛유로에서 각각 분기되어 리저버와 연결되며 각각 제1 및 제2 아웃렛밸브가 마련되는 제1 및 제2 아웃렛유로를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제2 유압서킷은, 상기 제1 유압유로에서 분기되어 각각 제3 및 제4 휠 실린더로 연결되며, 각각 제3 및 제4 인렛밸브가 마련되는 제3 및 제4 인렛유로; 상기 제3 및 제4 인렛유로 상에서 상기 제3 및 제4 인렛밸브에 대해 각각 병렬 연결되며, 각각 상기 제1 유압유로 쪽으로 향하는 가압매체의 흐름만을 허용하는 제3 및 제4 체크밸브가 마련된 제3 및 제4 인렛 바이패스 유로; 상기 제3 및 제4 인렛밸브 하류측 상기 제3 및 제4 인렛유로에서 각각 분기되어 상기 제2 백업유로와 연결되는 제3 및 제4 아웃렛유로를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 압력챔버와 상기 리저버 사이를 연결하며, 상기 제1 압력챔버 쪽으로만 가압매체의 흐름을 허용하는 덤프 체크밸브가 마련되는 덤프유로; 및 상기 덤프유로 상에서 상기 덤프 체크밸브에 대해 병렬 연결되며, 가압매체의 흐름을 제어하는 덤프밸브가 마련되는 덤프 바이패스 유로;를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 유압 제어유닛은 상기 제3 유압유로의 가압매체를 상기 제1 및 제2 유압서킷 중 다른 하나에 제공하도록 상기 제3 유압유로와 상기 제2 유압유로를 연결하는 제5 유압유로;를 더 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 유압 제어유닛은 상기 제5 유압유로에 마련되어 가압매체의 흐름을 제어하는 제5 밸브;를 더 포함하고, 상기 제5 밸브는 상기 액압 공급장치로부터 상기 휠 실린더 쪽으로 향하는 가압매체의 흐름만을 허용하는 체크밸브를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 유압피스톤이 상기 제1 압력챔버를 가압하는 제1 제동모드와, 상기 제1 제동모드 이후 상기 유압피스톤이 상기 제2 압력챔버를 가압하는 제2 제동모드를 포함하는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제1 제동모드는, 상기 제2 밸브, 상기 제3 밸브 및 상기 제4 밸브를 개방시키고, 상기 제1 압력챔버의 액압은 상기 제3 유압유로를 통해 상기 제2 압력챔버로 제공되면서 상기 제1 유압유로, 상기 제2 유압유로를 통해 상기 제1 및 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제2 제동모드는, 상기 제2 밸브 및 상기 제3 밸브를 개방시키고, 상기 제4 밸브는 폐쇄시키며, 상기 제2 압력챔버의 액압은 상기 제3 유압유로를 거쳐 상기 제1 및 제2 유압유로를 통해 각각 상기 제1 및 제2 유압서킷에 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제1 제동모드의 해제는, 상기 제1 제동모드 상태에서 상기 유압피스톤이 상기 제2 압력챔버를 가압하도록 이동하여 상기 제1 압력챔버에 부압을 형성함에 의해 상기 제1 및 제2 유압서킷에 제공된 가압매체와 상기 제2 압력챔버의 가압매체를 상기 제1 압력챔버로 회수하는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제2 제동모드의 해제는, 상기 제2 제동모드 상태에서 상기 유압피스톤이 상기 제1 압력챔버를 가압하도록 이동하여 상기 제2 압력챔버에 부압을 형성함에 의해 상기 제1 및 제2 유압서킷에 제공된 가압매체를 제2 압력챔버로 회수하면서 상기 제1 압력챔버의 가압매체를 상기 리저버로 제공하는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
정상 작동모드 시, 상기 제1 컷밸브, 상기 제2 컷밸브는 닫히고, 상기 시뮬레이터 밸브는 개방되며, 상기 브레이크 페달의 작동에 의해 상기 마스터 피스톤에 의해 가압된 상기 마스터 챔버의 액압이 상기 시뮬레이션 피스톤을 이동시켜 상기 탄성부재를 압축시키고, 상기 탄성부재의 반력이 운전자에게 페달감으로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
비정상 작동모드 시, 상기 제1 컷밸브, 상기 제2 컷밸브, 상기 시뮬레이터 밸브는 개방되고, 상기 브레이크 페달의 작동에 의해 상기 마스터 피스톤에 의해 가압된 상기 마스터 챔버의 액압은 상기 제1 백업유로를 통해 상기 제1 유압서킷에 제공되고, 상기 시뮬레이션 피스톤에 의해 가압된 상기 시뮬레이션 챔버의 액압은 상기 제2 백업유로를 통해 상기 제2 유압서킷에 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 부품 수를 절감하고 제품의 소형화 및 경량화를 도모할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 차량의 다양한 운용상황에서 안정적이고 효과적인 제동을 구현할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 고압의 제동압력을 안정적으로 발생시킬 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 제품의 성능 및 작동 신뢰성이 향상될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 부품요소의 고장 또는 가압매체의 누출 시에도 제동압력을 안정적으로 제공할 수 있다.
본 발명의 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 제품의 조립성 및 생산성을 향상시킴과 동시에, 제품의 제조원가를 절감할 수 있다.
도 1은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템을 나타내는 유압회로도이다.
도 2는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템의 페달 시뮬레이터 작동 상태를 나타낸 것이다.
도 3은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제1 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 4는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제2 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 5는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제2 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 6은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제1 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 7은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 비정상 작동모드(폴백모드)를 수행하는 상태를 나타내는 유압회로도이다.
도 8은 본 발명의 제2 실시 예에 의한 전자식 브레이크 시스템을 나타내는 유압회로도이다.
이하에서는 본 발명의 실시 예들을 첨부 도면을 참조하여 상세히 설명한다. 이하에 소개되는 실시 예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 도면에서 생략하였으며 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 제1 실시 예에 따른 전자식 브레이크 시스템을 나타내는 유압회로도이다.
도 1을 참조하면, 본 발명의 실시 예에 의한 전자식 브레이크 시스템(1000)은 내부에 가압매체를 저장하는 리저버(1100)와, 브레이크 페달(10)의 답력에 따른 반력을 운전자에게 제공함과 동시에, 내측에 수용된 브레이크 오일 등의 가압매체를 가압 및 토출하는 통합형 마스터 실린더(1200)와, 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(11)에 의해 운전자의 제동의지를 전기적 신호로 전달받아 기계적인 작동을 통해 가압매체의 액압을 발생시키는 액압 공급장치(1300)와, 액압 공급장치(1300)에서 제공되는 액압을 제어하는 유압 제어유닛(1400)과, 가압매체의 액압이 전달되어 각 차륜의 제동을 수행하는 휠 실린더(20)를 구비하는 유압서킷(1510,1520)과, 액압 공급장치(1300)와 리저버(1100) 사이에 마련되어 가압매체의 흐름을 제어하는 덤프제어부(1800)와, 통합형 마스터 실린더(1200)와 유압서킷(1510,1520)을 유압적으로 연결하는 백업유로(1610,1620)와, 리저버(1100)와 통합형 마스터 실린더(1200)를 유압적으로 연결하는 리저버 유로(1700)와, 액압 정보 및 페달 변위 정보에 근거하여 액압 공급장치(1300)와 각종 밸브들을 제어하는 전자제어유닛(ECU, 미도시)을 포함한다.
통합형 마스터 실린더(1200)는 시뮬레이션 챔버(1230a)와 마스터 챔버(1220a)를 구비하여, 운전자가 제동작동을 위해 브레이크 페달(10)에 답력을 가할 경우, 이에 대한 반력을 운전자에게 제공하여 안정적인 페달감을 제공함과 동시에, 내측에 수용된 가압매체를 가압 및 토출하도록 마련된다.
통합형 마스터 실린더(1200)는 마스터 챔버(1220a)와, 마스터 챔버(1220a)에 마련되고 브레이크 페달(10)의 작동에 의해 변위 가능하게 마련되는 마스터 피스톤(1220)과, 마스터 피스톤(1220)을 탄성 지지하는 마스터 스프링(1221)과, 시뮬레이션 챔버(1230a)와, 시뮬레이션 챔버(1230a)에 마련되고 마스터 챔버(1220a)에 수용된 제동유체의 액압에 의해 변위 가능하게 마련되는 시뮬레이션 피스톤(1230)과, 시뮬레이션 챔버(1230a)에 마련되어 압축 시 발생하는 탄성 복원력을 통해 페달감을 제공하는 탄성부재(1250)와, 시뮬레이션 피스톤(1230)을 탄성 지지하는 시뮬레이터 스프링(1270)을 포함한다.
마스터 챔버(1220a)와, 시뮬레이션 챔버(1230a)는 통합형 마스터 실린더(1200)의 실린더블록(1210) 상에서 브레이크 페달(10) 측으로부터 내측으로 순차적으로 형성될 수 있다. 또한 시뮬레이션 피스톤(1230)과 마스터 피스톤(1220)은 각각 시뮬레이션 챔버(1230a)와 마스터 챔버(1220a)에 배치되어 전진 및 후진 이동에 따라 각 챔버에 수용된 가압매체를 가압하거나 부압을 형성할 수 있다.
마스터 챔버(1220a)는 제1 유압포트(1280a) 및 제2 유압포트(1280b)에 의해 제동유체가 유입 및 토출될 수 있으며, 시뮬레이션 챔버(1230a)는 제3 유압포트(1280c) 및 제4 유압포트(1280d)에 의해 제동유체가 유입 및 토출될 수 있다.
제1 유압포트(1280a)는 제1 리저버 유로(1710)에 연결되고, 제2 유압포트(1280b)는 제1 백업유로(1610)에 연결될 수 있다. 또한 제3 유압포트(1280c)는 제2 리저버 유로(1720)에 연결되고, 제4 유압포트(1280d)는 제2 백업유로(1620)에 연결될 수 있다.
제1 리저버 유로(1710)는 리저버(1100)와 마스터 챔버(1220a)를 연결하고, 제2 리저버 유로(1720)는 리저버(1100)와 시뮬레이션 챔버(1230a)를 연결한다. 시뮬레이션 챔버(1230a)는 시뮬레이션 피스톤(1230)에 형성된 연통홀(1231)을 통해 리저버(1100)와 연통될 수 있다.
통합형 마스터 실린더(1200)의 끝단에는 탄성부재(1250)의 일단부를 수용하는 지지부재(1240)가 마련되고, 탄성부재(1250)의 타단부는 시뮬레이션 피스톤(1230)에 지지될 수 있다.
시뮬레이션 챔버(1230a)에 배치된 시뮬레이터 스프링(1270)은 양단이 각각 지지부재(1240)와 시뮬레이션 피스톤(1230)에 탄력 지지될 수 있다.
운전자가 브레이크 페달(10)을 작동하여 변위가 달라짐에 따라 마스터 피스톤(1220)이 이동하며, 이때 마스터 스프링(1221)이 압축된다. 이후 브레이크 페달(10)의 답력이 해제되면, 마스터 스프링(1221)의 탄성력에 의해 팽창하면서 마스터 피스톤(1220)이 원 위치로 복귀할 수 있다.
시뮬레이션 피스톤(1230)은 마스터 챔버(1220a)에서 가압된 제동유체의 액압에 의해 시뮬레이션 챔버(1230a) 내에서 일정 범위의 변위를 갖도록 마련되며, 탄성부재(1250)는 시뮬레이션 피스톤(1230)의 이동에 따라 압축 변형 가능하게 마련된다.
탄성부재(1250)는 시뮬레이션 피스톤(1230)의 변위에 따라 압축 및 팽창 가능한 고무 등의 재질로 마련될 수 있다.
시뮬레이션 유로(1260)는 제2 백업유로(1620)와 제2 리저버 유로(1720)를 연결하도록 마련될 수 있다. 시뮬레이션 유로(1260)에는 제동유체의 흐름을 제어하는 시뮬레이터 밸브(1261)가 마련될 수 있다.
시뮬레이터 밸브(1261)는 평상 시 닫혀있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 닫히도록 작동하는 노말 클로즈 타입(Normal Close Type)의 솔레노이드 밸브로 마련될 수 있다.
시뮬레이션 유로(1260)에는 시뮬레이터 바이패스 유로(1262)가 시뮬레이터 밸브(1261)에 대해 병렬로 연결되고, 시뮬레이터 바이패스 유로(1262)에는 일 방향 제동유체의 흐름만을 허용하는 시뮬레이터 체크밸브(1263)가 마련될 수 있다.
시뮬레이터 체크밸브(1263)는 제2 리저버 유로(1720)로부터 제2 백업유로(1620)로 전달되는 제동유체의 흐름은 허용하되, 제2 백업유로(1620)로부터 제2 리저버 유로(1720)로 향하는 제동유체의 흐름은 차단하도록 마련될 수 있다.
액압 공급장치(1300)는 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(11)로부터 운전자의 제동의지를 전기적 신호로 전달받아 기계적인 작동을 통해 제동유체의 액압을 발생시킨다.
액압 공급장치(1300)는 휠 실린더(20)로 전달되는 가압매체 압력을 제공하는 액압 제공유닛과, 페달 변위센서(11)의 전기적 신호에 의해 회전력을 발생시키는 모터(미도시)와, 모터의 회전운동을 직선운동으로 변환하여 액압 제공유닛에 전달하는 동력변환부(미도시)를 포함한다.
액압 제공유닛은 제동유체를 공급받아 저장하는 압력챔버를 구비하는 실린더블록(1310)과, 실린더블록(1310) 내에 수용되는 유압피스톤(1320)과, 유압피스톤(1320)과 실린더블록(1310) 사이에 마련되어 압력챔버를 밀봉하는 실링부재와, 엑츄에이터에서 출력되는 동력을 유압피스톤(1320)으로 전달하는 구동축(1390)을 포함한다. 여기서 엑츄에이터는 페달 변위센서(11)의 전기적 신호에 의해 회전력을 발생시키는 모터와, 모터의 회전운동을 직선운동으로 변환하여 액압 공급장치(1300)에 전달하는 동력변환부를 포함할 수 있다. 동력변환부는 웜과 원기어 또는 랙 앤 피니언 기어 등을 포함한다.
압력챔버는 유압피스톤(1320)의 전방(도면의 좌측)에 위치하는 제1 압력챔버(1330)와, 유압피스톤(1320)의 후방에 위치하는 제2 압력챔버(1340)를 포함한다.
실링부재는 유압피스톤(1320)과 실린더블록(1310) 사이에 마련되어 제1 압력챔버(1330)와 제2 압력챔버(1340) 사이를 밀봉하는 피스톤 실링부재(1350a)와, 구동축(1390)과 실린더블록(1310) 사이에 마련되어 제2 압력챔버(1340)와 실린더블록(1310)의 개구를 밀봉하는 구동축 실링부재(1350b)를 포함한다.
제1 압력챔버(1330)는 덤프제어부(1800)를 통해 리저버(1100)와 연결되며, 리저버(1100)로부터 제동유체를 공급받아 수용하거나 제1 압력챔버(1330)의 제동유체를 리저버(1100)로 전달할 수 있다.
덤프제어부(1800)는 리저버(1100)와 제1 압력챔버(1330)를 연결하는 덤프유로(1810)와, 덤프유로(1810)에서 병렬 연결된 덤프 바이패스 유로(1820)를 포함한다.
덤프유로(1810)에는 리저버(1100)로부터 제1 압력챔버(1330) 쪽으로만 제동유체의 흐름을 허용하는 덤프 체크밸브(1811)가 마련될 수 있고, 덤프 바이패스 유로(1820)는 덤프유로(1810)에서 덤프 체크밸브(1811)에 대해 병렬로 연결되어 제동유체의 흐름을 제어하는 덤프밸브(1821)가 마련될 수 있다.
덤프밸브(1821)는 제1 압력챔버(1330)와 리저버(1100) 사이의 제동유체의 흐름을 제어하는 양방향 솔레노이드 밸브를 포함하고, 평상 시 닫힌 상태에서 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리는 노말 오픈 타입으로 마련될 수 있다.
제2 압력챔버(1340)는 유압 제어유닛(1400)을 통해 제1 압력챔버(1330)와 연결되며, 제1 압력챔버(1330)로부터 제동유체를 공급받아 수용하거나 제1 압력챔버(1330)로 제동유체를 전달할 수 있다.
도면번호 1830은 실링부재 사이에 가압매체 누설 시 리저버(1100)로 회수하기 위한 유로이다.
유압 제어유닛(1400)은 액압 공급장치(1300)와 휠 실린더(20)의 액압을 제어하는 유압서킷(1510,1520) 사이를 연결하며, 액압 공급장치(1300)와 유압서킷(1510,1520) 사이에서의 제동유체의 흐름을 제어할 수 있다.
즉, 유압 제어유닛(1400)은 액압 공급장치(1300)로부터 제공되는 액압을 유압서킷(1510,1520)을 통해 휠 실린더(21,22,23,24)로 전달할 수 있고, 또한 유압 제어유닛(1400)은 제1 압력챔버(1330)와 제2 압력챔버(1340) 사이에서의 제동유체의 흐름을 제어할 수 있다.
유압서킷(1510,1520)은 두 개의 휠 실린더(21,22)로 전달되는 제동유체의 흐름을 제어하는 제1 유압서킷(1510)과, 다른 두 개의 휠 실린더(23,24)로 전달되는 제동유체의 흐름을 제어하는 제2 유압서킷(1520)을 포함한다.
유압 제어유닛(1400)은 제1 압력챔버(1330)와 제2 유압서킷(1520)을 연결하는 제1 유압유로(1401)와, 제1 유압유로(1401)와 제1 유압서킷(1510)을 연결하는 제2 유압유로(1402)와, 제2 압력챔버(1340)와 제1 유압유로(1401)를 연결하는 제3 유압유로(1403)와, 제1 유압유로(1401)와 제3 유압유로(1403)를 연결하는 제4 유압유로(1404) 및 제3 유압유로(1403)와 제2 유압유로(1402)를 연결하는 제5 유압유로(1405)를 포함한다.
제1 유압유로(1401)에는 제동유체의 흐름을 제어하는 제1 밸브(1411)가 마련될 수 있다. 제1 밸브(1411)는 제1 압력챔버(1330)로부터 유압서킷(1510,1520)으로 향하는 방향의 가압매체 흐름만을 허용하는 체크밸브를 포함한다.
제2 유압유로(1402)는 제1 밸브(1411)의 하류측 제1 유압유로(1401)에서 분기되어 제1 유압서킷(1510)과 연결될 수 있다.
제2 유압유로(1402)에는 가압매체의 흐름을 제어하는 제2 밸브(1412)가 마련될 수 있다. 제2 밸브(1412)는 평상 시 닫힌 상태에서 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리는 노말 클로즈 타입의 솔레노이드 밸브로 마련될 수 있다.
제3 유압유로(1403)는 제2 압력챔버(1340)와 제1 밸브(1411) 하류측 제1 유압유로(1401)와 연결될 수 있다.
제3 유압유로(1403)에는 제동유체의 흐름을 제어하는 제3 밸브(1413)가 마련될 수 있다. 제3 밸브(1413)는 평상 시 열린 상태에서 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 닫히는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제4 유압유로(1404)는 제1 밸브(1411)의 상류측 제1 유압유로(1401)와 제3 밸브(1413)의 하류측 제3 유압유로(1403)를 연결할 수 있다.
제4 유압유로(1404)에는 제동유체의 흐름을 제어하는 제4 밸브(1414)가 마련될 수 있다. 제4 밸브(1414)는 평상시 닫힌 상태에서 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리는 노말 클로즈 타입의 솔레노이드 밸브로 마련될 수 있다.
제5 유압유로(1405)는 제3 밸브(1413)의 하류측 제3 유압유로(1403)와, 제2 밸브(1412)의 하류측 제2 유압유로(1402)를 연결할 수 있다.
제5 유압유로(1405)에는 제동유체의 흐름을 제어하는 제5 밸브(1415)가 마련될 수 있다. 제5 밸브(1415)는 제3 유압유로(1403)로부터 제2 유압유로(1402) 쪽으로 향하는 가압매체의 흐름만을 허용하는 체크밸브를 포함한다.
제1 유압서킷(1510)은 제2 유압유로(1402)를 통해 액압 공급장치(1300)로부터 액압을 제공받고, 제2 유압유로(1402)는 제1 휠 실린더(21)와 제2 휠 실린더(22)로 연결되는 제1 및 제2 인렛유로(1511,1512)로 분기되어 마련될 수 있다.
제2 유압서킷(1520)은 제1 유압유로(1401)를 통해 액압 공급장치(1300)로부터 액압을 제공받고, 제1 유압유로(1401)는 제3 휠 실린더(23)와 제4 휠 실린더(24)로 연결되는 제3 및 제4 인렛유로(1521,1522)로 분기되어 마련될 수 있다.
제1 및 제2 인렛유로(1511,1512)에는 제1 및 제2 휠 실린더(21,22)로 전달되는 제동유체의 흐름 및 액압을 제어하도록 제1 및 제2 인렛밸브(1511a,1512a)가 마련되고, 제1 및 제2 인렛밸브(1511a,1512a)는 제1 및 제2 휠 실린더(21,22)의 상류 측에 각각 배치되는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제1 유압서킷(1510)에는 제1 및 제2 인렛밸브(1511a,1512a)에 대해 각각 병렬 연결되는 제1 및 제2 체크밸브(1513a,1514a)가 마련될 수 있다.
제1 및 제2 체크밸브(1513a,1514a)는 제1 및 제2 인렛유로(1511,1512) 상에서 제1 및 제2 인렛밸브(1511a,1512a)에 대해 각각 전방과 후방을 연결하는 제1 및 제2 인렛 바이패스 유로(1513,1514)에 마련되고, 제1 및 제2 휠 실린더(21,22)로부터 액압 공급장치(1300)로의 제동유체의 흐름만을 허용하고, 액압 공급장치(1300)로부터 제1 및 제2 휠 실린더(21,22)로의 제동유체의 흐름은 차단한다.
제1 및 제2 체크밸브(1513a,1514a)는 제1 및 제2 휠 실린더(21,22)에 가해진 제동유체의 액압을 신속하게 빼낼 수 있으며, 제1 및 제2 인렛밸브(1511a,1512a)가 정상적으로 작동하지 않는 경우에도 제1 및 제2 휠 실린더(21,22)에 가해진 제동유체의 액압이 액압 공급장치(1300)로 유입될 수 있도록 한다.
제1 유압서킷(1510)은 제1 및 제2 휠 실린더(21,22)의 제동 해제 시 성능 향상을 위해 제1 및 제2 인렛유로(1511,1512)에서 각각 분기되어 리저버(1100)와 연결되는 제1 및 제2 아웃렛유로(1515,1516)를 포함한다.
제1 및 제2 아웃렛유로(1515,1516)는 각각 제1 및 제2 인렛밸브(1511a,1512a)의 하류측에서 제1 및 제2 인렛유로(1511,1512)와 제1 및 제2 인렛 바이패스 유로(1513,1514)의 합류지점에서 분기되어 리저버(1100)와 연결될 수 있다.
제1 및 제2 아웃렛유로(1515,1516)에는 각각 제1 및 제2 아웃렛밸브(1515a,1516a)가 마련되고, 제1 및 제2 아웃렛밸브(1515a,1516a)는 각각 제1 및 제2 휠 실린더(21,22)와 연결되어 제1 및 제2 휠 실린더(21,22)로부터 제동유체가 빠져나가는 흐름을 제어하는 노말 클로즈 타입의 솔레노이드 밸브로 마련될 수 있다.
제1 및 제2 아웃렛밸브(1515a,1516a)는 제1 및 제2 휠 실린더(21,22)의 감압제동이 필요한 경우 선택적으로 개방되어 제1 및 제2 휠 실린더(21,22)의 감압을 제어할 수 있다.
한편, 제1 체크밸브(1513a) 하류측 제1 인렛 바이패스 유로(1513)는 제1 백업유로(1610)와 연결될 수 있다.
제3 및 제4 인렛유로(1521,1522)에는 제2 및 제3 휠 실린더(23,24)로 전달되는 제동유체의 흐름 및 액압을 제어하도록 제3 및 제4 인렛밸브(1521a,1522a)가 마련되고, 제3 및 제4 인렛밸브(1521a,1522a)는 제3 및 제4 휠 실린더(23,24)의 상류 측에 각각 배치되는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제2 유압서킷(1520)에는 제3 및 제4 인렛밸브(1521a,1522a)에 대해 각각 병렬 연결되는 제3 및 제4 체크밸브(1523a,1524a)가 마련될 수 있다.
제3 및 제4 체크밸브(1523a,1524a)는 제2 및 제3 인렛유로(1521,1522) 상에서 제3 및 제4 인렛밸브(1521a,1522a)에 대해 각각 전방과 후방을 연결하는 제3 및 제4 인렛 바이패스 유로(1523,1524)에 마련되고, 제3 및 제4 휠 실린더(23,24)로부터 액압 공급장치(1300)로의 제동유체의 흐름만을 허용하고, 액압 공급장치(1300)로부터 제3 및 제4 휠 실린더(23,24)로의 제동유체의 흐름은 차단한다.
제3 및 제4 체크밸브(1523a,1524a)는 제3 및 제4 휠 실린더(23,24)에 가해진 제동유체의 액압을 신속하게 빼낼 수 있으며, 제3 및 제4 인렛밸브(1521a,1522a)가 정상적으로 작동하지 않는 경우에도 제3 및 제4 휠 실린더(23,24)에 가해진 제동유체의 액압이 액압 공급장치(1300)로 유입될 수 있도록 한다.
제2 유압서킷(1520)은 제3 및 제4 휠 실린더(23,24)의 제동 해제 시 성능 향상을 위해 제3 및 제4 인렛유로(1521,1522)에서 각각 분기되어 리저버(1100)와 연결되는 제3 및 제4 아웃렛유로(1525,1526)를 포함한다.
제3 및 제4 아웃렛유로(1525,1526)는 각각 제3 및 제4 인렛밸브(1521a,1522a)의 하류측에서 제3 및 제4 인렛유로(1521,1522)와 제3 및 제4 인렛 바이패스 유로(1523,1524)의 합류지점에서 분기되어 리저버(1100)와 연결될 수 있다.
제3 및 제4 아웃렛유로(1525,1526)에는 각각 제2 컷밸브(1525a,1526a)가 마련되고, 제2 컷밸브(1525a,1526a)는 각각 제3 및 제4 휠 실린더(23,24)와 연결되어 제3 및 제4 휠 실린더(23,24)로부터 제동유체가 빠져나가는 흐름을 제어하는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제2 컷밸브(1525a,1526a)는 제1 및 제2 휠 실린더(21,22)의 감압제동이 필요한 경우 개방되어 제1 및 제2 휠 실린더(21,22)의 감압을 제어할 수 있다.
한편, 제2 컷밸브(1525a,1526a)는 제2 백업유로(1620)와 연결되어, 제2 백업유로(1620)를 통해 리저버(1100)와 연결될 수 있다.
제1 백업유로(1610)와 제2 백업유로(1620)는 장치의 고장 등에 의해 정상적인 작동이 불가능한 폴백 모드(Fallback mode)경우, 통합형 마스터 실린더(1200)로부터 토출된 제동유체를 직접 휠 실린더로 공급하여 제동을 구현할 수 있도록 한다.
제1 백업유로(1610)는 통합형 마스터 실린더(1200)의 마스터 챔버(1220a)와 제1 유압서킷(1510)을 연결하고, 제2 백업유로(1620)는 통합형 마스터 실린더(1200)의 시뮬레이션 챔버(1230a)와 제2 유압서킷(1520)을 연결한다.
제1 백업유로(1610)는 제1 유압서킷(1510) 상에서 제1 체크밸브(1513a) 하류측 제1 인렛 바이패스 유로(1513)에 연결되고, 제2 백업유로(1620)는 제2 유압서킷(1520) 상에서 제2 컷밸브(1525a) 하류측 제3 아웃렛유로(1525) 및 제2 컷밸브(1526a) 하류측 제4 아웃렛유로(1526)와 연결된다.
제1 백업유로(1610)에는 제동유체의 흐름을 제어하는 제1 컷밸브(1611)가 마련되고, 제1 컷밸브(1611)는 평상 시에는 개방되어 있다가 전자제어유닛에서 신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제2 백업유로(1620)에는 가압매체의 흐름을 제어하기 위한 제1 컷밸브가 마련되지 않고, 제2 유압서킷(1520) 상에 설치된 제2 컷밸브(1525a,1526a)가 제1 컷밸브의 기능을 수행할 수 있다.
이하에서는 본 발명의 제1 실시 예에 따른 전자식 브레이크 시스템의 페달 시뮬레이션 작동에 대하여 설명한다.
도 2는 본 발명의 실시 예에 따른 페달 시뮬레이션 작동상태를 도시한 것이다.
도 2를 참조하면, 정상 작동 시 운전자가 브레이크 페달(10)을 작동하여 답력을 가하면 제1 백업유로(1610)에 마련된 제1 컷밸브(1611)는 폐쇄되고, 시뮬레이터 밸브(1261)는 개방되며, 제2 컷밸브(1525a,1526a)는 폐쇄된다.
브레이크 페달(10)의 변위에 따라 마스터 피스톤(1220)이 이동하여 마스터 챔버(1220a) 내의 제동유체가 가압되며, 그 액압은 시뮬레이션 피스톤(1230)을 가압한다.
시뮬레이션 피스톤(1230)의 변위는 탄성부재(1250)를 압축시키고, 시뮬레이션 챔버(1230a)의 제동유체는 제2 백업유로(1620)를 거쳐 시뮬레이션 유로(1260)를 통해 리저버(1100)로 전달된다. 따라서, 탄성부재(1250)의 압축에 의한 탄성 복원력에 의해 운전가에게 페달감을 제공할 수 있다.
이후 운전자가 브레이크 페달(10)의 답력을 해제하면 시뮬레이터 스프링(1270)과 탄성부재(1250)의 복원력에 의해 시뮬레이션 피스톤(1230)과 마스터 피스톤(1220)은 원 위치로 복귀하게 된다.
이하에서는 본 발명의 제1 실시 예에 따른 전자식 브레이크 시스템이 정상 작동모드에서 제동압력을 제공하는 작동상태에 대해 설명한다.
제1 실시 예의 전자식 브레이크 시스템의 정상 작동모드는 액압 공급장치(1300)로부터 휠 실린더로 전달되는 액압이 증가함에 따라, 제1 제동모드 및 제2 제동모드로 구분하여 작동할 수 있다.
제1 제동모드는 액압 공급장치(1300)에 의한 액압을 휠 실린더로 1차 제공하고, 제2 제동모드는 액압 공급장치(1300)에 의한 액압을 휠 실린더로 2차 제공하여 제1 제동모드보다 고압의 제동압력을 전달한다.
제1 제동모드 및 제2 제동모드는 액압 공급장치(1300) 및 유압 제어유닛(1400)의 동작을 달리함으로써 변경할 수 있다. 액압 공급장치(1300)는 제1 및 제2 제동모드를 활용함으로써 고사양의 모터 없이도 충분히 높은 가압매체의 액압을 제공할 수 있으며, 나아가 모터에 가해지는 불필요한 부하를 방지할 수 있다. 이로써, 브레이크 시스템의 원가와 무게를 저감하면서도 안정적인 제동력을 확보할 수 있으며, 장치의 내구성 및 작동 신뢰성이 향상될 수 있다.
도 3은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제1 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 3을 참조하면, 제동 초기에 운전자가 브레이크 페달(10)을 밟으면 모터(미도시)가 일 방향으로 회전하도록 동작하고, 모터의 회전력이 동력변환부에 의해 액압 공급장치(1300)로 전달되며, 액압 공급장치(1300)의 유압피스톤(1320)이 전진하면서 제1 압력챔버(1330)에 액압을 발생시킨다. 제1 압력챔버(1330)로부터 토출되는 액압은 유압 제어유닛(1400)과 제1 유압서킷(1510)과 제2 유압서킷(1520)을 거쳐 각각의 휠 실린더(20)로 전달되어 제동력을 발생시킨다.
제1 제동모드의 경우 시뮬레이터 밸브(1261)는 열린 상태로 전환되고, 제1 컷밸브(1611)와, 제2 유압서킷(1520)에 마련된 제2 컷밸브(1525a,1526a)는 닫힌 상태로 전환된다. 여기서, 제2 컷밸브(1525a,1526a)는 제2 백업유로(1620)를 통해 제2 유압서킷(1620)으로 제공되는 제동유체를 차단하는 제1 컷밸브의 기능을 수행한다. 이에 따라, 통합형 마스터 실린더(1200)는 전술한 페달 시뮬레이터의 동작이 이루어진다.
그리고, 유압 제어유닛(1400)의 제2 밸브(1412)와 제4 밸브(1414)는 열린 상태로 전환된다. 따라서, 유압피스톤(1320)이 전진하면서 제1 압력챔버(1330)에 형성된 액압은 제1 유압유로(1401), 제2 유압유로(1402)를 순차적으로 통과하여 제1 유압서킷(1510)과 제2 유압서킷(1520)에 마련되는 휠 실린더(20)에 1차적으로 전달된다.
구체적으로, 유압피스톤(1320)이 전진하면서 제1 압력챔버(1330)에 형성된 액압의 일부는 제4 유압유로(1404)를 거쳐 제3 유압유로(1403)를 통해 제2 압력챔버(1340)로 제공되고, 다른 일부는 제1 유압유로(1401)를 통해 제2 유압서킷(1520)으로 제공되며, 또 다른 일부는 제2 유압유로(1402)를 통해 제1 유압서킷(1510)으로 제공된다. 이 경우, 제3 유압유로(1403)에 흐르는 액압의 일부는 제5 유압유로(1405)를 통해 제1 유압서킷(1510)으로 제공될 수 있다. 이는, 제1 제동모드에서 제2 밸브(1412)가 고착되어 미 작동 상태에서도 안정적으로 제1 유압서킷(1510) 쪽으로 액압을 제공할 수 있도록 한다.
제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1511b)는 개방 상태를 유지하며, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지하여 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지한다.
제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지하며, 제2 컷밸브(1525a) 및 제2 컷밸브(1526a)는 폐쇄 상태로 전환되어 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지할 수 있다.
제1 제동모드 시, 제1 압력챔버(1330)에 연결되는 덤프유로(1820)에 마련되는 덤프 체크밸브(1821)는 리저버(1100)로부터 제1 압력챔버(1330)로 향하는 가압매체의 흐름을 허용하되, 제1 압력챔버(1330)로부터 리저버(1100)로 향하는 가압매체의 흐름을 차단하는 바, 유압피스톤(1320)의 전진에 의해 제1 압력챔버(1330)에 형성되는 가압매체의 액압은 제1 유압유로(1401)로 모두 전달되어 신속한 제동을 구현할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제1 제동모드보다 고압의 제동압력이 제공되어야 하는 경우 제1 제동모드에서 제2 제동모드로 전환할 수 있다.
도 4는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 제2 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 4를 참조하면, 전자제어유닛은 페달 변위센서(11)가 감지한 브레이크 페달(10)의 변위 또는 작동속도가 기 설정된 수준보다 높거나, 압력센서에 의해 감지한 액압이 기 설정된 수준보다 높은 경우, 보다 고압의 제동압력을 요구하는 것으로 판단하여 제1 제동모드에서 제2 제동모드로 전환할 수 있다.
제1 제동모드에서 제2 제동모드로 전환하게 되면, 모터가 타 방향으로 회전하도록 동작하고, 모터의 회전력이 동력변환부에 의해 액압 제공유닛으로 전달되어 유압피스톤(1320)이 후진함으로써 제2 압력챔버(1340)에 액압을 발생시킨다. 제2 압력챔버(1340)로부터 토출되는 액압은 유압 제어유닛(1400)과 제1 유압서킷(1510)과 제2 유압서킷(1520)을 거쳐 각각의 휠 실린더(20)로 전달되어 제동력을 발생시킨다.
제2 제동모드의 경우, 시뮬레이터 밸브(1261)는 열린 상태이고, 제1 컷밸브(1611)와, 제2 유압서킷(1520)에 마련된 제2 컷밸브(1525a,1526a)는 닫힌 상태로서, 통합형 마스터 실린더(1200)는 페달 시뮬레이터의 동작이 이루어진다.
그리고, 유압 제어유닛(1400)의 제4 밸브(1414)는 닫힌 상태로 전환되고, 제2 밸브(1412)는 열린 상태를 유지하며, 덤프밸브(1821)는 열린 상태로 전환된다. 따라서, 유압피스톤(1320)이 후진하면서 제2 압력챔버(1340)에 형성된 액압은 제3 유압유로(1403)를 통해 제1 유압유로(1401)를 거쳐 제2 유압서킷(1520)에 2차적으로 제공되고, 제1 유압유로(1401)에 제공된 액압의 일부는 제2 유압유로(1402)를 거쳐 제1 유압서킷(1510)에 2차적으로 제공된다. 이 경우, 제3 유압유로(1403)에 흐르는 액압의 일부는 제5 유압유로(1405)를 통해 제1 유압서킷(1510)으로 제공될 수 있다. 이는, 제2 밸브(1412)가 고착되어 고장난 상태에서도 안정적으로 제1 유압서킷(1510) 쪽으로 액압을 제공할 수 있게 된다.
제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1511b)는 개방 상태를 유지하며, 제1 아웃렛밸브(1512a) 및 제2 아웃렛밸브(1512b)는 폐쇄 상태를 유지하여 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지한다.
제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태로 마련되며, 제2 컷밸브(1525a) 및 제2 컷밸브(1526a)는 폐쇄 상태로 유지되어 액압이 누설되는 것을 방지할 수 있다.
한편 제2 제동모드 시, 제1 압력챔버(1330)에 연결되는 덤프유로(1810)에 마련되는 덤프 체크밸브(1811)와, 덤프 바이패스 유로(1820)에 마련된 덤프밸브(1821)는 리저버(1100)로부터 제1 압력챔버(1330)쪽으로 제동유체의 흐름을 허용한다.
이하에서는 제1 실시 예에 의한 전자식 브레이크 시스템(1000)의 정상 작동모드에서 제동을 해제하는 작동방법에 대해 설명한다.
도 5는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템의 유압피스톤이 전진하면서 제2 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 5를 참조하면, 브레이크 페달(10)에 가해진 답력이 해제되면 모터가 일 방향으로 회전력을 발생하여 동력변환부로 전달하고, 동력변환부는 유압피스톤(1320)을 전진시킨다. 이로써, 제2 압력챔버(1340)의 액압을 해제함과 동시에, 부압을 발생시킬 수 있으며, 이로써 휠 실린더(20)의 가압매체는 제2 압력챔버(1340)로 전달될 수 있다.
제2 제동 해제모드의 경우, 제1 컷밸브(1611), 제4 밸브(1414), 제2 컷밸브(1525a,1526a)는 닫힌 상태이고, 시뮬레이터 밸브(1261), 덤프밸브(1821), 제2 밸브(1412) 및 제3 밸브(1413)는 열린 상태이다.
구체적으로, 제1 유압서킷(1510)에 마련되는 제1 휠 실린더(21) 및 제2 휠 실린더(22)에 가해진 가압매체의 액압은 제1 및 제2 인렛유로(1511,1512), 제2 유압유로(1402), 제1 유압유로(1401), 제3 유압유로(1403)를 순차적으로 통과하여 제2 압력챔버(1340)로 회수된다. 이 때, 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1511b)는 개방 상태를 유지하고, 제1 아웃렛밸브(1512a) 및 제2 아웃렛밸브(1512b)는 폐쇄 상태를 유지한다.
또한, 제2 압력챔버(1340)에 발생되는 부압에 의해 제2 유압서킷(1520)에 마련되는 제3 휠 실린더(23) 및 제4 휠 실린더(24)에 가해진 가압매체의 액압은 제3 및 제4 인렛유로(1521,1522), 제1 유압유로(1401), 제3 유압유로(1403)를 순차적으로 통과하여 제2 압력챔버(1340)로 회수된다. 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1521b)는 개방 상태를 유지하고, 제2 컷밸브(1525a) 및 제2 컷밸브(1526a)는 폐쇄 상태로 유지된다.
제2 제동모드의 해제 시, 덤프 바이패스 유로(1820)에 마련된 덤프밸브(1821)는 개방 상태로 전환되어 유압피스톤(1320)의 전진 이동에 따른 제1 압력챔버(1330)의 가압매체를 리저버(1100)로 제공한다.
제2 제동모드의 해제를 완료한 후에는 휠 실린더(20)에 가해진 제동압을 완전히 해제하기 위해 제1 제동모드의 해제 동작으로 전환할 수 있다.
도 6은 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템의 유압피스톤이 후진하면서 제1 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 6을 참조하면, 브레이크 페달(10)에 가해진 답력이 해제되면 모터가 타 방향으로 회전력을 발생하여 동력변환부로 전달하고, 동력변환부는 유압피스톤(1320)을 후진시킨다. 이로써, 제1 압력챔버(1330)에 부압을 발생시킬 수 있으며, 이로써 휠 실린더(20)의 가압매체는 제1 압력챔버(1330)로 전달될 수 있다.
제1 제동 해제모드의 경우, 제1 컷밸브(1611) 및 덤프밸브(1821)는 닫힌 상태이고, 시뮬레이터 밸브(1261), 제2 밸브(1412), 제3 밸브(1413), 제4 밸브(1414)는 열린 상태이다.
구체적으로, 제1 유압서킷(1510)에 마련되는 제1 휠 실린더(21) 및 제2 휠 실린더(22)의 액압은 제1 및 제2 인렛유로(1511,1512), 제2 유압유로(1402), 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404), 제1 유압유로(1401)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 이 때, 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1511b)는 개방 상태를 유지하고, 제1 아웃렛밸브(1512a) 및 제2 아웃렛밸브(1512b)는 폐쇄 상태를 유지한다.
또한, 제1 압력챔버(1330)에 발생되는 부압에 의해 제2 유압서킷(1520)에 마련되는 제3 휠 실린더(23) 및 제4 휠 실린더(24)에 가해진 가압매체의 액압은 제3 및 제4 인렛유로(1521,1522), 제1 밸브(1411) 하류측 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404), 제1 밸브(1411) 상류측 제1 유압유로(1401)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)와, 제2 컷밸브(1525a) 및 제2 컷밸브(1526a)는 개방 상태로 유지된다. 따라서, 제3 및 제4 휠 실린더(23,24)의 액압은 제2 백업유로(1620)를 통해 리저버(1100)로 제공될 수 있다.
그리고, 유압피스톤(1320)의 후진에 의해 제2 압력챔버(1340)에 수용된 가압매체는 제3 유압유로(1403)와 제4 유압유로(1404)를 통해 제1 압력챔버(1330)로 배출될 수 있으며, 이로써 유압피스톤(1320)의 후진이 신속하고 원활하게 이루어질 수 있다.
이하에서는 본 발명의 제1 실시 예에 의한 전자식 브레이크 시스템이 정상적으로 작동하지 않는 경우, 즉 폴백모드(fall-back mode)의 작동상태에 대해 설명한다.
도 7은 본 실시 예에 의한 전자식 브레이크 시스템이 장치의 고장 등에 의해 정상적인 작동이 불가능한 경우 비 정상 작동모드(폴백 모드)에서의 작동 상태를 나타내는 유압회로도이다.
도 7을 참조하면, 비 정상 작동모드에서 각각의 밸브들은 비 작동상태인 제동초기 상태로 제어된다. 이 때, 운전자가 브레이크 페달(10)에 답력을 가하면 브레이크 페달(10)과 연결된 마스터 피스톤(1220)이 전진하며 변위가 발생한다. 비 작동상태에서 제1 컷밸브(1611)는 개방된 상태로 마련되므로, 마스터 피스톤(1220)의 전진에 의해 마스터 챔버(1220a)에 수용된 가압매체는 제1 백업유로(1610)를 따라 제1 유압서킷(1510)의 제1 휠 실린더(21) 및 제2 휠 실린더(22)로 전달되어 제동을 구현할 수 있다.
또한, 마스터 챔버(1220a)에 수용된 가압매체는 시뮬레이션 피스톤(1230)을 전진시켜 변위를 발생시키게 되고, 시뮬레이션 피스톤(1230)의 변위에 의해 시뮬레이션 챔버(1230a)에 수용된 가압매체는 제2 백업유로(1620)를 통해 제2 유압서킷(1520)의 제3 휠 실린더(23) 및 제4 휠 실린더(24)로 전달되어 제동을 구현할 수 있다.
비정상 작동모드 시, 제1 및 제2 유압서킷(1510, 1520)에 마련되는 제1 내지 제4 인렛밸브(1511a, 1511b, 1521a, 1521b)와, 제2 컷밸브(1525a,1526a)는 개방 상태이므로 통합형 마스터 실린더(1200)의 마스터 챔버(1220a) 및 시뮬레이션 챔버(1230a)로부터 전달되는 액압이 곧바로 각 휠 실린더(20)로 전달될 수 있으므로 제동 안정성 향상과 더불어 신속한 제동을 도모할 수 있다.
이하에서는 본 발명의 제2 실시 예에 따른 전자식 브레이크 시스템에 대하여 설명한다. 이하에서는 전술한 실시 예와 동일한 구성요소에 대하여는 동일한 도면번호를 부여하고, 상세한 설명은 생략한다.
도 8은 본 발명의 제2 실시 예에 의한 전자식 브레이크 시스템을 나타내는 유압 회로도로서, 도 8을 참조하면, 본 발명의 실시 예에 의한 유압 제어유닛(2400)은 제1 압력챔버(1330)와 제1 유압서킷(1510)을 연결하는 제1 유압유로(2401)와, 제1 유압유로(2401)와 제2 유압서킷(1520)을 연결하는 제2 유압유로(2402)와, 제2 압력챔버(1340)와 제1 유압유로(2401)를 연결하는 제3 유압유로(1403)와, 제1 유압유로(2401)와 제3 유압유로(1403)를 연결하는 제4 유압유로(1404) 및 제3 유압유로(1403)와 제2 유압유로(2402)를 연결하는 제5 유압유로(1405)를 포함한다.
본 실시 예에서는 제1 유압유로(2401)가 제1 유압서킷(1510)과 연결되고, 제2 유압유로(2402)가 제2 유압서킷(1520)과 연결되는 것을 제외하고 전술한 제1 실시 예와 동일한 유압 회로도를 갖는다.
구체적으로, 제1 유압서킷(1510)은 제1 유압유로(2401)를 통해 액압 공급장치(1300)로부터 액압을 제공받고, 제1 유압유로(2401)는 제1 휠 실린더(21)와 제2 휠 실린더(22)로 연결되는 제1 및 제2 인렛유로(1511,1512)로 분기되어 마련될 수 있다.
제2 유압서킷(1520)은 제2 유압유로(2402)를 통해 액압 공급장치(1300)로부터 액압을 제공받고, 제2 유압유로(2402)는 제3 휠 실린더(23)와 제4 휠 실린더(24)로 연결되는 제3 및 제4 인렛유로(1521,1522)로 분기되어 마련될 수 있다.
이러한 구성을 통해, 제1 및 제2 제동모드의 경우, 유압피스톤(1320)이 전진 또는 후진하면서 제1 압력챔버(1330)와 제2 압력챔버(1340)에 각각 형성된 액압은 제1 유압유로(2401)를 통해 제1 유압서킷(1510)으로 제공되며 제2 유압유로(2402)를 통해 제2 유압서킷(1520)으로 제공된다.
이상에서는 특정의 실시 예에 대하여 도시하고 설명하였다. 그러나 상기한 실시 예에만 한정되지 않으며 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 발명의 기술적 사상의 요지를 벗어남이 없이 얼마든지 다양하게 변경 실시할 수 있을 것이다.

Claims (19)

  1. 가압매체가 저장되는 리저버;
    마스터 챔버와, 시뮬레이션 챔버를 갖는 통합형 마스터 실린더;
    상기 통합형 마스터 실린더와 상기 리저버를 연통시키는 리저버 유로;
    브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 실린더블록 내에서 이동하는 유압피스톤에 의해 구획된 제1 압력챔버와 제2 압력챔버를 갖는 액압 공급장치;
    휠 실린더의 액압을 제어하는 제1 및 제2 유압서킷;
    상기 액압 공급장치에서 상기 제1 및 제2 유압서킷으로 제공되는 액압의 흐름을 제어하는 유압 제어유닛;을 포함하고,
    상기 유압 제어유닛은,
    상기 제1 압력챔버의 액압을 상기 제1 및 제2 유압서킷 중 하나에 제공하도록 상기 제1 압력챔버와 상기 제1 및 제2 유압서킷 중 하나를 연결하는 제1 유압유로;
    상기 제1 유압유로의 액압을 상기 제1 및 제2 유압서킷 중 다른 하나에 제공하도록 상기 제1 유압유로에서 분기되어 상기 제1 및 제2 유압서킷 중 다른 하나와 연결되는 제2 유압유로;
    상기 제2 압력챔버의 액압을 상기 제1 유압유로에 제공하도록 상기 제2 유압유로의 분기지점 상류측 상기 제1 유압유로에서 분기되어 상기 제2 압력챔버를 연결하는 제3 유압유로; 및
    상기 제1 압력챔버와 상기 제2 압력챔버 사이의 선택적 가압매체 흐름을 위해 상기 제3 유압유로의 분기지점 상류측 상기 제1 유압유로에서 분기되어 상기 제3 유압유로를 연결하는 제4 유압유로;를 포함하는 전자식 브레이크 시스템.
  2. 제1항에 있어서,
    상기 유압 제어유닛은,
    상기 제3 유압유로와 상기 제4 유압유로의 각 분기지점 사이에 위치하는 상기 제1 유압유로에 마련되어 가압매체의 흐름을 제어하는 제1 밸브;
    상기 제2 유압유로에 마련되어 가압매체의 흐름을 제어하는 제2 밸브;
    상기 제3 유압유로와 상기 제4 유압유로의 합류지점 상류측 상기 제3 유압유로에 마련되어 가압매체의 흐름을 제어하는 제3 밸브; 및
    상기 제4 유압유로에 마련되어 가압매체의 흐름을 제어하는 제4 밸브;를 포함하는 전자식 브레이크 시스템.
  3. 제2항에 있어서,
    상기 제1 밸브는 상기 액압 공급장치로부터 상기 휠 실린더 쪽으로 향하는 가압매체의 흐름만을 허용하는 체크밸브를 포함하고,
    상기 제2 내지 4 밸브는 가압매체의 양방향 흐름을 제어하는 솔레노이드 밸브를 포함하는 전자식 브레이크 시스템.
  4. 제1항에 있어서,
    상기 통합형 마스터 실린더는,
    브레이크 페달에 의해 변위 가능하게 마련되며, 상기 마스터 챔버를 가압하는 마스터 피스톤;
    상기 마스터 챔버에 수용된 가압매체의 액압에 의해 변위 가능하게 마련되며, 상기 시뮬레이션 챔버를 가압하는 시뮬레이션 피스톤; 및
    상기 시뮬레이션 챔버에 마련되며, 상기 시뮬레이션 피스톤에 반력을 제공하는 탄성부재;를 포함하고,
    상기 마스터 피스톤, 상기 시뮬레이션 피스톤 및 상기 탄성부재는 상기 통합형 마스터 실린더의 실린더블록 내에서 일렬로 순차적으로 배치되는 전자식 브레이크 시스템.
  5. 제4항에 있어서,
    상기 마스터 챔버와 상기 제1 유압서킷을 연결하며, 가압매체의 흐름을 제어하는 제1 컷밸브가 마련되는 제1 백업유로; 및
    상기 시뮬레이션 챔버와 상기 제2 유압서킷을 연결하며, 가압매체의 흐름을 제어하는 제2 컷밸브가 마련되는 제2 백업유로;를 더 포함하는 전자식 브레이크 시스템.
  6. 제5항에 있어서,
    상기 리저버 유로는,
    상기 리저버와 상기 마스터 챔버를 연결하는 제1 리저버 유로; 및
    상기 리저버와 상기 시뮬레이션 챔버를 연결하는 제2 리저버 유로;를 포함하는 전자식 브레이크 시스템.
  7. 제6항에 있어서,
    상기 제2 백업유로와 상기 제2 리저버 유로를 연결하는 시뮬레이션 유로;
    상기 시뮬레이션 유로의 가압매체 흐름을 제어하도록 상기 시뮬레이션 유로에 마련되는 시뮬레이터 밸브; 및
    상기 시뮬레이션 유로 상에서 상기 시뮬레이터 밸브와 병렬 연결되며 상기 제2 리저버 유로로부터 상기 제2 백업유로로 전달되는 제동유체의 흐름만을 허용하는 시뮬레이터 체크밸브가 마련된 시뮬레이터 바이패스유로;를 더 포함하는 전자식 브레이크 시스템.
  8. 제5항에 있어서,
    상기 제1 유압서킷은,
    상기 제2 유압유로에서 분기되어 각각 제1 및 제2 휠 실린더로 연결되며, 각각 제1 및 제2 인렛밸브가 마련되는 제1 및 제2 인렛유로;
    상기 제1 및 제2 인렛유로 상에서 상기 제1 및 제2 인렛밸브에 대해 각각 병렬 연결되며, 각각 상기 제2 유압유로 쪽으로 향하는 가압매체의 흐름만을 허용하는 제1 및 제2 체크밸브가 마련된 제1 및 제2 인렛 바이패스 유로;
    상기 제1 및 제2 인렛밸브 하류측 상기 제1 및 제2 인렛유로에서 각각 분기되어 리저버와 연결되며 각각 제1 및 제2 아웃렛밸브가 마련되는 제1 및 제2 아웃렛유로를 포함하는 전자식 브레이크 시스템.
  9. 제8항에 있어서,
    상기 제2 유압서킷은,
    상기 제1 유압유로에서 분기되어 각각 제3 및 제4 휠 실린더로 연결되며, 각각 제3 및 제4 인렛밸브가 마련되는 제3 및 제4 인렛유로;
    상기 제3 및 제4 인렛유로 상에서 상기 제3 및 제4 인렛밸브에 대해 각각 병렬 연결되며, 각각 상기 제1 유압유로 쪽으로 향하는 가압매체의 흐름만을 허용하는 제3 및 제4 체크밸브가 마련된 제3 및 제4 인렛 바이패스 유로;
    상기 제3 및 제4 인렛밸브 하류측 상기 제3 및 제4 인렛유로에서 각각 분기되어 상기 제2 백업유로와 연결되는 제3 및 제4 아웃렛유로를 포함하는 전자식 브레이크 시스템.
  10. 제9항에 있어서,
    상기 제1 압력챔버와 상기 리저버 사이를 연결하며, 상기 제1 압력챔버 쪽으로만 가압매체의 흐름을 허용하는 덤프 체크밸브가 마련되는 덤프유로; 및
    상기 덤프유로 상에서 상기 덤프 체크밸브에 대해 병렬 연결되며, 가압매체의 흐름을 제어하는 덤프밸브가 마련되는 덤프 바이패스 유로;를 포함하는 전자식 브레이크 시스템.
  11. 제3항에 있어서,
    상기 유압 제어유닛은
    상기 제3 유압유로의 가압매체를 상기 제1 및 제2 유압서킷 중 다른 하나에 제공하도록 상기 제3 유압유로와 상기 제2 유압유로를 연결하는 제5 유압유로;를 더 포함하는 전자식 브레이크 시스템.
  12. 제11항에 있어서,
    상기 유압 제어유닛은
    상기 제5 유압유로에 마련되어 가압매체의 흐름을 제어하는 제5 밸브;를 더 포함하고,
    상기 제5 밸브는
    상기 액압 공급장치로부터 상기 휠 실린더 쪽으로 향하는 가압매체의 흐름만을 허용하는 체크밸브를 포함하는 전자식 브레이크 시스템.
  13. 제3항에 의한 전자식 브레이크 시스템의 작동방법에 있어서,
    상기 유압피스톤이 상기 제1 압력챔버를 가압하는 제1 제동모드와, 상기 제1 제동모드 이후 상기 유압피스톤이 상기 제2 압력챔버를 가압하는 제2 제동모드를 포함하는 전자식 브레이크 시스템의 작동방법.
  14. 제13항에 있어서,
    상기 제1 제동모드는,
    상기 제2 밸브, 상기 제3 밸브 및 상기 제4 밸브를 개방시키고, 상기 제1 압력챔버의 액압은 상기 제3 유압유로를 통해 상기 제2 압력챔버로 제공되면서 상기 제1 유압유로, 상기 제2 유압유로를 통해 상기 제1 및 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법.
  15. 제14항에 있어서,
    상기 제2 제동모드는,
    상기 제2 밸브 및 상기 제3 밸브를 개방시키고, 상기 제4 밸브는 폐쇄시키며, 상기 제2 압력챔버의 액압은 상기 제3 유압유로를 거쳐 상기 제1 및 제2 유압유로를 통해 각각 상기 제1 및 제2 유압서킷에 제공되는 전자식 브레이크 시스템의 작동방법.
  16. 제14항에 있어서,
    상기 제1 제동모드의 해제는,
    상기 제1 제동모드 상태에서 상기 유압피스톤이 상기 제2 압력챔버를 가압하도록 이동하여 상기 제1 압력챔버에 부압을 형성함에 의해 상기 제1 및 제2 유압서킷에 제공된 가압매체와 상기 제2 압력챔버의 가압매체를 상기 제1 압력챔버로 회수하는 전자식 브레이크 시스템의 작동방법.
  17. 제15항에 있어서,
    상기 제2 제동모드의 해제는,
    상기 제2 제동모드 상태에서 상기 유압피스톤이 상기 제1 압력챔버를 가압하도록 이동하여 상기 제2 압력챔버에 부압을 형성함에 의해 상기 제1 및 제2 유압서킷에 제공된 가압매체를 제2 압력챔버로 회수하면서 상기 제1 압력챔버의 가압매체를 상기 리저버로 제공하는 전자식 브레이크 시스템의 작동방법.
  18. 제7항에 따른 전자식 브레이크 시스템의 작동방법에 있어서,
    정상 작동모드 시,
    상기 제1 컷밸브, 상기 제2 컷밸브는 닫히고, 상기 시뮬레이터 밸브는 개방되며, 상기 브레이크 페달의 작동에 의해 상기 마스터 피스톤에 의해 가압된 상기 마스터 챔버의 액압이 상기 시뮬레이션 피스톤을 이동시켜 상기 탄성부재를 압축시키고, 상기 탄성부재의 반력이 운전자에게 페달감으로 제공되는 전자식 브레이크 시스템의 작동방법.
  19. 제18항에 있어서,
    비정상 작동모드 시,
    상기 제1 컷밸브, 상기 제2 컷밸브, 상기 시뮬레이터 밸브는 개방되고, 상기 브레이크 페달의 작동에 의해 상기 마스터 피스톤에 의해 가압된 상기 마스터 챔버의 액압은 상기 제1 백업유로를 통해 상기 제1 유압서킷에 제공되고, 상기 시뮬레이션 피스톤에 의해 가압된 상기 시뮬레이션 챔버의 액압은 상기 제2 백업유로를 통해 상기 제2 유압서킷에 제공되는 전자식 브레이크 시스템의 작동방법.
PCT/KR2020/005806 2019-05-31 2020-04-29 전자식 브레이크 시스템 및 작동방법 WO2020242069A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/614,284 US12049207B2 (en) 2019-05-31 2020-04-29 Electronic brake system and operation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0064851 2019-05-31
KR1020190064851A KR20200138582A (ko) 2019-05-31 2019-05-31 전자식 브레이크 시스템 및 작동방법

Publications (1)

Publication Number Publication Date
WO2020242069A1 true WO2020242069A1 (ko) 2020-12-03

Family

ID=73552904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005806 WO2020242069A1 (ko) 2019-05-31 2020-04-29 전자식 브레이크 시스템 및 작동방법

Country Status (3)

Country Link
US (1) US12049207B2 (ko)
KR (1) KR20200138582A (ko)
WO (1) WO2020242069A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441936B1 (ko) * 2020-11-06 2022-09-07 현대모비스 주식회사 전자식 유압 브레이크 장치
US12024139B2 (en) * 2021-07-02 2024-07-02 ZF Active Safety US Inc. Apparatus and method for selectively actuating wheel brakes of a hydraulic brake system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729979A (en) * 1996-09-25 1998-03-24 General Motors Corporation Variable rate brake pedal feel emulator
JP2006256408A (ja) * 2005-03-16 2006-09-28 Advics:Kk ブレーキ装置用ストロークシミュレータ
KR20150138295A (ko) * 2013-03-28 2015-12-09 로베르트 보쉬 게엠베하 차량의 제동 시스템용 제동 장치 및 차량용 제동 시스템
KR20160028043A (ko) * 2014-09-02 2016-03-11 현대모비스 주식회사 전자식 유압 브레이크 장치
KR20170130995A (ko) * 2016-05-20 2017-11-29 주식회사 만도 전자식 브레이크 시스템

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343386B4 (de) * 1993-12-18 2004-04-22 Robert Bosch Gmbh Hydraulische Bremsanlage für Straßenfahrzeuge, insbesondere Personenkraftwagen
ES2206892T5 (es) * 1997-02-07 2009-09-25 Kelsey Hayes Company Simulador de pedal que utiliza un resorte de respuesta no lineal.
JP3972859B2 (ja) * 2003-05-14 2007-09-05 株式会社アドヴィックス ストロークシミュレータ
JP2005145280A (ja) * 2003-11-17 2005-06-09 Advics:Kk ストロークシミュレータ内蔵マスタシリンダ
JP5003608B2 (ja) * 2008-06-20 2012-08-15 トヨタ自動車株式会社 車両用制動装置
KR101417376B1 (ko) * 2012-10-26 2014-07-08 현대자동차주식회사 다단 직렬형 스프링을 이용한 페달 시뮬레이터
KR20170059039A (ko) * 2015-11-19 2017-05-30 주식회사 만도 전자식 브레이크 시스템
KR102475862B1 (ko) * 2015-12-04 2022-12-09 에이치엘만도 주식회사 전자식 브레이크 시스템
DE102016205407A1 (de) * 2016-04-01 2017-10-05 Robert Bosch Gmbh Bremskraftsimulator für ein Kraftfahrzeug
KR102588921B1 (ko) * 2016-10-26 2023-10-13 에이치엘만도 주식회사 전자식 브레이크 시스템
CN109552291B (zh) * 2017-09-25 2022-12-23 株式会社万都 电子制动系统以及工作方法
KR102431715B1 (ko) * 2017-09-25 2022-08-12 주식회사 만도 전자식 브레이크 시스템
KR102424997B1 (ko) * 2017-09-29 2022-07-26 주식회사 만도 전자식 브레이크 시스템
US10857988B2 (en) * 2017-09-29 2020-12-08 Mando Corporation Electric brake system and operating method thereof
US11046294B2 (en) * 2017-09-29 2021-06-29 Mando Corporation Electronic brake system and method for operating the same
KR102068995B1 (ko) * 2018-03-08 2020-02-11 주식회사 만도 전자식 브레이크 시스템 및 그 제어방법
KR102227216B1 (ko) * 2019-04-18 2021-03-12 현대모비스 주식회사 전자식 브레이크 장치
KR102625043B1 (ko) * 2019-05-31 2024-01-16 에이치엘만도 주식회사 전자식 브레이크 시스템 및 이의 작동방법
US11780417B2 (en) * 2019-11-20 2023-10-10 Hyundai Mobis Co., Ltd. Electric brake device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729979A (en) * 1996-09-25 1998-03-24 General Motors Corporation Variable rate brake pedal feel emulator
JP2006256408A (ja) * 2005-03-16 2006-09-28 Advics:Kk ブレーキ装置用ストロークシミュレータ
KR20150138295A (ko) * 2013-03-28 2015-12-09 로베르트 보쉬 게엠베하 차량의 제동 시스템용 제동 장치 및 차량용 제동 시스템
KR20160028043A (ko) * 2014-09-02 2016-03-11 현대모비스 주식회사 전자식 유압 브레이크 장치
KR20170130995A (ko) * 2016-05-20 2017-11-29 주식회사 만도 전자식 브레이크 시스템

Also Published As

Publication number Publication date
US20220250601A1 (en) 2022-08-11
US12049207B2 (en) 2024-07-30
KR20200138582A (ko) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2020242072A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020185012A1 (ko) 전자식 브레이크 시스템 및 작동방법
WO2020242069A1 (ko) 전자식 브레이크 시스템 및 작동방법
WO2020242070A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020184967A1 (ko) 전자식 브레이크 시스템
WO2020204510A1 (ko) 전자식 브레이크 시스템 및 그 제어 방법
WO2020106114A1 (ko) 전자식 브레이크 시스템 및 작동방법
WO2020222580A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020204509A1 (en) Brake system
WO2022092959A1 (ko) 전자식 브레이크 시스템
WO2020242071A1 (ko) 전자식 브레이크 시스템 및 작동방법
WO2021194286A1 (ko) 전자식 브레이크 시스템
EP0781222B1 (en) Improvements in hydraulic braking systems for vehicles
WO2021080366A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
US5962931A (en) Electric brake system and method for operating the same
WO2022146054A1 (ko) 전자식 브레이크 시스템
WO2021210967A1 (ko) 체크 밸브 및 이를 포함하는 브레이크 시스템
WO2020184925A1 (ko) 마스터 실린더 및 이를 구비하는 전자식 브레이크 시스템
WO2020184968A1 (ko) 전자식 브레이크 시스템
WO2021158035A1 (ko) 전자식 브레이크 시스템 및 그 제어방법
WO2018021689A1 (ko) 브레이크 장치 및 방법
WO2022146051A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020226443A1 (ko) 브레이크 장치 및 그 제어 방법
WO2022146053A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2022146049A1 (ko) 전자식 브레이크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813520

Country of ref document: EP

Kind code of ref document: A1