WO2020242072A1 - 전자식 브레이크 시스템 및 이의 작동방법 - Google Patents
전자식 브레이크 시스템 및 이의 작동방법 Download PDFInfo
- Publication number
- WO2020242072A1 WO2020242072A1 PCT/KR2020/005812 KR2020005812W WO2020242072A1 WO 2020242072 A1 WO2020242072 A1 WO 2020242072A1 KR 2020005812 W KR2020005812 W KR 2020005812W WO 2020242072 A1 WO2020242072 A1 WO 2020242072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydraulic
- valve
- passage
- chamber
- flow
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/02—Brake-action initiating means for personal initiation
- B60T7/04—Brake-action initiating means for personal initiation foot actuated
- B60T7/042—Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/14—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
- B60T13/142—Systems with master cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/14—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
- B60T13/148—Arrangements for pressure supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/68—Electrical control in fluid-pressure brake systems by electrically-controlled valves
- B60T13/686—Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
- B60T17/221—Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/4072—Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
- B60T8/4081—Systems with stroke simulating devices for driver input
- B60T8/4086—Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K13/00—Other constructional types of cut-off apparatus; Arrangements for cutting-off
- F16K13/08—Arrangements for cutting-off not used
- F16K13/10—Arrangements for cutting-off not used by means of liquid or granular medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0603—Multiple-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/62—Pedals or like operating members, e.g. actuated by knee or hip
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G5/00—Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
- G05G5/03—Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/10—ABS control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/402—Back-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/404—Brake-by-wire or X-by-wire failsafe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/82—Brake-by-Wire, EHB
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2304/00—Optimising design; Manufacturing; Testing
- B60Y2304/05—Reducing production costs, e.g. by redesign
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/81—Braking systems
Definitions
- the present invention relates to an electronic brake system and a method of operating the same, and more particularly, to an electronic brake system for generating a braking force using an electric signal corresponding to a displacement of a brake pedal, and a method of operating the same.
- Vehicles are essentially equipped with a brake system for performing braking, and various types of brake systems have been proposed for the safety of drivers and passengers.
- the driver's brake pedal operation is generated and provided as an electrical signal in the normal operation mode, and based on this, the hydraulic pressure supply device is electrically operated and controlled to form the hydraulic pressure required for braking and transmit it to the wheel cylinder.
- the hydraulic pressure supply device is electrically operated and controlled to form the hydraulic pressure required for braking and transmit it to the wheel cylinder.
- the electronic brake system enters an abnormal operation mode when a component element fails or is in a state of inability to control.
- a mechanism in which the driver's brake pedal operation is directly linked to the wheel cylinder is required.
- the hydraulic pressure required for braking is immediately formed as the driver applies a pedal effort to the brake pedal, and it must be transmitted directly to the wheel cylinder.
- the present embodiment is to provide an electronic brake system capable of reducing the number of parts to be applied and miniaturization and weight reduction of products.
- the present embodiment is to provide an electronic brake system capable of effectively implementing braking even in various operating situations.
- the present embodiment is to provide an electronic brake system capable of stably generating a high-pressure braking pressure.
- the present embodiment is to provide an electronic brake system with improved performance and operational reliability.
- the present embodiment is to provide an electronic brake system with improved durability of a product by reducing a load applied to a component element.
- the present embodiment is to provide an electronic brake system capable of improving product assembly and productivity while reducing manufacturing cost of products.
- a reservoir in which a pressurized medium is stored;
- An integrated master cylinder in which a simulation chamber, a first master chamber, and a second master chamber are sequentially formed from the brake pedal side;
- a reservoir flow path for communicating the integrated master cylinder and the reservoir;
- a hydraulic pressure supply device for generating hydraulic pressure by driving by an electrical signal output in response to the displacement of the brake pedal;
- First and second hydraulic circuits for controlling hydraulic pressure of the wheel cylinder;
- a hydraulic control unit for controlling the flow of hydraulic pressure provided from the hydraulic pressure supply device to the first and second hydraulic circuits, wherein the integrated master cylinder is provided to be displaceable by the brake pedal to provide the simulation chamber.
- a simulation piston that pressurizes, a first master piston that presses the first master chamber and has a relatively smaller diameter than the simulation piston, and a second second that presses the second master chamber and has a relatively smaller diameter than the first master piston
- An electronic brake system including a master piston and an elastic member interposed between the simulation piston and the first master piston to provide a reaction force to the brake pedal may be provided.
- a first backup passage connecting the simulation chamber and the first hydraulic circuit;
- a second backup passage connecting the first master chamber and the second hydraulic circuit;
- an auxiliary backup passage connecting the second master chamber and the first backup passage.
- At least one outlet valve provided in the first backup passage to control the flow of the pressurized medium; And a cut valve provided in the second backup passage to control the flow of the pressurized medium.
- the electronic brake system may be provided.
- the second backup flow path may be provided with an electronic brake system connected to at least one downstream inlet flow path of the two inlet valves of the second hydraulic circuit.
- An electronic brake system in which an orifice is provided may be provided in the auxiliary backup passage.
- One of the at least one outlet valve connected to the first backup passage may be provided with an electronic brake system in which a check valve which allows the flow of the pressurized medium from the first backup passage to the wheel cylinder is connected in parallel.
- a simulation flow path that connects the simulation chamber and the reservoir and is provided with a simulator check valve that allows only the flow of the pressurized medium provided from the reservoir to the simulation chamber, and is connected in parallel to the simulator check valve and allows bidirectional flow of the pressurized medium.
- An electronic brake system may be provided that further includes a simulator bypass flow path provided with a controlling simulator valve.
- the reservoir flow path may include: a first reservoir flow path connecting the first master chamber and the reservoir; And a second reservoir flow path connecting the second master chamber and the reservoir.
- the hydraulic pressure supply device includes a first pressure chamber and a second pressure chamber that are respectively pressurized when the hydraulic piston moves forward and backward
- the hydraulic control unit includes a first hydraulic flow passage in communication with the first pressure chamber, and the second A second hydraulic flow path in communication with the pressure chamber, a third hydraulic flow path where the first hydraulic flow path and the second hydraulic flow path merge, and a fourth hydraulic oil branched from the third hydraulic flow path and connected to the first hydraulic circuit A row, a fifth hydraulic passage branched from the third hydraulic passage and connected to the second hydraulic circuit, a sixth hydraulic passage in communication with the first hydraulic circuit, and a seventh hydraulic oil in communication with the second hydraulic circuit A furnace, an eighth hydraulic passage in which the sixth hydraulic passage and the seventh hydraulic passage merge, a ninth hydraulic passage branched from the eighth hydraulic passage and connected to the first pressure chamber, and the eighth hydraulic passage
- An electronic brake system including a tenth hydraulic flow path branched from and connected to the second pressure chamber may be provided.
- the hydraulic control unit includes a first valve provided in the first hydraulic passage to control the flow of the pressurized medium, a second valve provided in the second hydraulic passage to control the flow of the pressurized medium, and provided in the fourth hydraulic passage A third valve for controlling the flow of the pressurized medium, a fourth valve provided in the fifth hydraulic passage to control the flow of the pressurized medium, a fifth valve provided in the sixth hydraulic passage to control the flow of the pressurized medium, A sixth valve provided in the seventh hydraulic passage to control the flow of the pressurized medium, a seventh valve provided in the ninth hydraulic passage to control the flow of the pressurized medium, and a flow of the pressurized medium provided in the tenth hydraulic passage An electronic brake system may be provided comprising an eighth controlling valve.
- the first valve is provided as a check valve that allows only the flow of the pressurized medium discharged from the first pressure chamber
- the second valve is provided as a check valve that allows only the flow of the pressurized medium discharged from the second pressure chamber
- the third valve is provided as a check valve that allows only the flow of the pressurized medium from the third hydraulic flow path to the first hydraulic circuit
- the fourth valve is from the third hydraulic flow path to the second hydraulic circuit.
- the fifth valve is provided as a check valve that allows only the flow of the pressurized medium discharged from the first hydraulic circuit
- the sixth valve is the second hydraulic circuit
- An electronic brake system may be provided that is provided as a check valve that allows only the flow of the pressurized medium discharged from and the seventh valve and the eighth valve are provided as solenoid valves that control the flow of the pressurized medium in both directions.
- a dump control unit provided between the reservoir and the hydraulic pressure supply device to control the flow of the pressurized medium
- the dump control unit includes a first dump passage connecting the first pressure chamber and the reservoir, and the first dump A first dump check valve provided in a flow path and allowing only the flow of a pressurized medium from the reservoir to the first pressure chamber, and a first bypass flow path connected in parallel with respect to the first dump check valve on the first dump flow path
- a first dump valve provided in the first bypass flow path to control the flow of the pressurized medium in both directions, a second dump flow path connecting the second pressure chamber and the reservoir, and provided in the second dump flow path.
- a second dump check valve that allows only the flow of the pressurized medium from the reservoir to the second pressure chamber, a second bypass flow path connected in parallel to the second dump check valve on the second dump flow path, and the second 2
- An electronic brake system including a second dump valve provided in the bypass flow path and controlling the flow of the pressurized medium in both directions may be provided.
- An electronic brake system may be provided in which the diameter of the first master chamber is smaller than the diameter of the simulation chamber and larger than the diameter of the second master chamber.
- a first braking mode for pressing the first pressure chamber, a second braking mode for pressing the second pressure chamber after the first braking mode, and a third for pressing the first pressure chamber after the second braking mode A method of operating an electronic brake system including a braking mode can be provided.
- the seventh valve, the eighth valve, and the first dump valve are closed, the second dump valve is open, and the hydraulic pressure formed in the first pressure chamber is applied to the first hydraulic flow path.
- the second hydraulic circuit is provided to the first hydraulic circuit through the third hydraulic channel and the fourth hydraulic channel in sequence, and sequentially passes through the first hydraulic channel, the third hydraulic channel, and the fifth hydraulic channel.
- the seventh valve, the eighth valve, and the second dump valve are closed, the first dump valve is open, and the hydraulic pressure formed in the second pressure chamber is applied to the second hydraulic flow path.
- the second hydraulic circuit is provided to the first hydraulic circuit through the third hydraulic channel and the fourth hydraulic channel in sequence, and sequentially passes through the second hydraulic channel, the third hydraulic channel, and the fifth hydraulic channel.
- the seventh valve and the eighth valve are opened, the first dump valve and the second dump valve are closed, and a part of the hydraulic pressure formed in the first pressure chamber is the first hydraulic oil.
- the second hydraulic circuit is provided to the first hydraulic circuit sequentially through a path, the third hydraulic channel, and the fourth hydraulic channel, and sequentially passes through the first hydraulic channel, the third hydraulic channel, and the fifth hydraulic channel.
- the remaining part of the hydraulic pressure formed in the first pressure chamber is sequentially passed through the ninth hydraulic flow path and the tenth hydraulic flow path, and is supplied to the second pressure chamber. I can.
- the cut valve and the at least one outlet valve are closed, the simulator valve is open, and the simulation piston compresses the elastic member by the operation of the brake pedal, and the reaction force of the elastic member is A method of operating an electronic brake system provided with a pedal feel to the driver may be provided.
- the cut valve and the at least one outlet valve are open, the simulator valve is in a closed state, and the pressurizing medium of the simulation chamber according to the pedal effort of the brake pedal is transferred to the first backup channel through the first backup channel.
- It is provided as a hydraulic circuit, the pressurizing medium of the first master chamber is provided to the second hydraulic circuit through the second backup passage, and the pressurizing medium of the second master chamber is the auxiliary backup passage and the first backup passage A method of operating the electronic brake system provided to the first backup passage through sequentially may be provided.
- the cut valve In the inspection mode, the cut valve is closed, and the hydraulic pressure of the hydraulic pressure supply device is provided to the simulation chamber through the first hydraulic circuit through the first backup channel, and through the auxiliary backup channel in the first backup channel.
- a method of operating an electronic brake system provided to the second master chamber may be provided.
- the electronic brake system according to the present embodiment can reduce the number of parts and achieve miniaturization and weight reduction of products.
- the electronic brake system according to the present embodiment can stably and effectively implement braking in various operating situations of a vehicle.
- the electronic brake system according to the present embodiment can stably generate a high-pressure braking pressure.
- the electronic brake system according to the present embodiment may improve product performance and operational reliability.
- the electronic brake system according to the present embodiment can stably provide a braking pressure even when a component element fails or a pressurized medium leaks.
- the electronic brake system according to the present embodiment has an effect of improving durability of a product by reducing a load applied to a component element.
- the electronic brake system according to the present embodiment can improve product assembly and productivity, and at the same time reduce the manufacturing cost of the product.
- 1 is a hydraulic circuit diagram showing an electronic brake system according to the present embodiment.
- FIG. 2 is a hydraulic circuit diagram showing an operating state of a pedal simulator of the electronic brake system according to the present embodiment.
- FIG. 3 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment performs a first braking mode.
- FIG. 4 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment performs a second braking mode.
- FIG. 5 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment performs a third braking mode.
- FIG. 6 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment releases the third braking mode.
- FIG. 7 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment releases a second braking mode.
- FIG. 8 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment releases the first braking mode.
- FIG. 9 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment performs an abnormal operation mode (fallback mode).
- FIG. 10 is a hydraulic circuit diagram showing a state in which the electronic brake system according to the present embodiment performs an inspection mode.
- FIG. 1 is a hydraulic circuit diagram showing an electronic brake system 1000 according to the present embodiment.
- the electronic brake system 1000 provides a reaction force according to the foot force of the reservoir 1100 and the brake pedal 10 in which the pressurized medium is stored, and at the same time, the brake accommodated in the inside.
- An integrated master cylinder 1200 that pressurizes and discharges a pressurized medium such as oil, and a pedal displacement sensor 11 that senses the displacement of the brake pedal 10 receives the driver's braking intention as an electrical signal to perform mechanical operation.
- the hydraulic control unit 1400 for controlling the hydraulic pressure provided from the hydraulic pressure supply device 1300, and the hydraulic pressure of the pressurized medium is transmitted to each wheel (RR, RL).
- FR, FL hydraulic circuits (1510, 1520) having a wheel cylinder (20) to perform braking, and a dump control unit provided between the hydraulic pressure supply device (1300) and the reservoir (1100) to control the flow of the pressurized medium (1800), backup flow paths (1610, 1620) hydraulically connecting the integrated master cylinder 1200 and the hydraulic circuits (1510, 1520), and the reservoir (1100) and the integrated master cylinder (1200) hydraulically connected
- an electronic control unit (ECU, not shown) that controls the hydraulic pressure supply device 1300 and various valves based on the reservoir flow path 1700 and the pedal displacement information.
- the integrated master cylinder 1200 includes a simulation chamber 1230a and a master chamber 1220a, 1240a, and when a driver applies a foot force to the brake pedal 10 for braking operation, a reaction force is provided to the driver to provide a stable It is provided to pressurize and discharge the pressurized medium accommodated in the inside while providing a pedal feel.
- the integrated master cylinder 1200 may be divided into a pedal simulation unit that provides a pedal feeling to the driver and a master cylinder unit that delivers a pressurized medium to the first hydraulic circuit 1510 to be described later.
- the integrated master cylinder 1200 is sequentially provided with a pedal simulation unit and a master cylinder unit from the brake pedal 10 side, and may be disposed coaxially within one cylinder block 1210.
- the integrated master cylinder 1200 includes a cylinder block 1210 forming a chamber inside, a simulation chamber 1230a formed on the inlet side of the cylinder block 1210 to which the brake pedal 10 is connected, and a simulation A simulation piston 1230 provided in the chamber 1230a and connected to the brake pedal 10 so as to be displaceable by the operation of the brake pedal 10, and an elastic restoring force generated during compression by being disposed in the simulation chamber 1230a
- a first master piston 1220 provided to be displaceable by the displacement of the simulation piston 1230 or the hydraulic pressure of the pressurized medium accommodated in the simulation chamber 1230a, and a first A first master spring 1220b provided in the master chamber 1220a to elastically support the first master piston 1220, and a second master chamber formed inside the first master chamber 1220a on the cylinder block 1210 ( 1240a) and a second master piston 1240 provided in the second master chamber 1240a to be displaced by the displacement of the first master piston 1220 or the hydraulic pressure of the pressurized medium accommodated in the
- the simulation chamber 1230a, the first master chamber 1220a, and the second master chamber 1240a are on the cylinder block 1210 of the integrated master cylinder 1200 from the brake pedal 10 side (right side based on FIG. 1). It may be formed sequentially inward (left with reference to FIG. 1).
- the simulation piston 1230, the first master piston 1220, and the second master piston 1240 are provided in the simulation chamber 1230a, the first master chamber 1220a, and the second master chamber 1240a, respectively, and move forward and According to the backward movement, a hydraulic pressure or negative pressure may be formed in the pressurized medium accommodated in each chamber.
- the simulation chamber 1230a may be formed on the inlet side or the outermost side (right side based on FIG. 1) of the cylinder block 1210, and the brake pedal 10 through the input rod 12 in the simulation chamber 1230a
- the simulation piston 1230 connected to the reciprocating movement may be accommodated.
- a pressurized medium may be introduced and discharged through the first hydraulic port 1280a and the second hydraulic port 1280b.
- the first hydraulic port 1280a is connected to the simulation flow path 1260 to allow the pressurized medium to flow from the reservoir 1100 to the simulation chamber 1230a
- the second hydraulic port 1280b is a first backup flow path (to be described later).
- 1610 is connected to the pressure medium may be discharged from the simulation chamber 1230a toward the first backup passage 1610 or, conversely, the pressurized medium may be introduced from the first backup passage 1610 toward the simulation chamber 1230a.
- the simulation piston 1230 is provided in the simulation chamber 1230a, but by moving forward (to the left with reference to FIG. 1), the pressurized medium accommodated in the simulation chamber 1230a is pressed to form a hydraulic pressure, or backward (based on FIG. 1). Right direction), it is possible to form a negative pressure inside the simulation chamber 1230a.
- the simulation piston 1230 may pressurize the elastic member 1250 by moving forward, and may return the elastic member 1250 to its original position and shape by moving backward.
- At least one sealing member 1290b may be provided between the inner wall of the cylinder block 1210 and the outer circumferential surface of the simulation piston 1230 to prevent leakage of the pressurized medium.
- the first master chamber 1220a may be formed inside the simulation chamber 1230a on the cylinder block 1210 (left side with reference to FIG. 1), and the first master piston 1220 in the first master chamber 1220a It can be accommodated so as to be able to reciprocate.
- a pressurized medium may be introduced and discharged through the third hydraulic port 1280c and the fourth hydraulic port 1280d.
- the third hydraulic port 1280c is connected to the first reservoir flow path 1710, which will be described later, so that the pressurized medium accommodated in the first master chamber 1220a can be discharged to the reservoir 1100, and, conversely, pressurized from the reservoir 1100. Media may enter.
- the fourth hydraulic port 1280d is connected to the second backup flow path 1620 to be described later, so that the pressurized medium accommodated in the first master chamber 1220a can be discharged to the second hydraulic circuit 1520, and conversely, the second backup flow path 1520 The pressurized medium may flow into the first master chamber 1220a from the flow path 1620.
- At least one sealing member 1290a may be provided between the inner wall of the cylinder block 1210 and the outer circumferential surface of the first master piston 1220 to prevent leakage of the pressurized medium between adjacent chambers.
- first master chamber 1220a may communicate with the reservoir 1100 through a first communication hole 1221 formed in the first master piston 1220.
- the first master chamber 1220a formed in the cylinder block 1210 may have a diameter smaller than that of the simulation chamber 1230a. Accordingly, the simulation piston 1230 pressing the simulation chamber 1230a may have a diameter larger than the diameter of the first master piston 1220 pressing the first master chamber 1220a. This is to compensate for a relatively decrease in the hydraulic pressure provided to the first backup passage 1610 than the second backup passage 1620 by the reaction force of the elastic member 1250 disposed in the simulation chamber 1230a in the fallback mode. .
- the second master chamber 1240a may be formed inside the first master chamber 1220a on the cylinder block 1210 (left side based on FIG. 1), and the second master piston ( 1240) may be accommodated to be reciprocating.
- the pressurized medium may be introduced and discharged through the fifth hydraulic port 1280e and the sixth hydraulic port 1280f.
- the fifth hydraulic port 1280e is connected to the second reservoir flow path 1720 to be described later, so that the pressurized medium may be introduced or discharged from the reservoir 1100 toward the second master chamber 1240a.
- the sixth hydraulic port (1280f) is connected to the auxiliary backup passage (1630) to be described later, the pressurized medium accommodated in the second master chamber (1240a) can be discharged to the first backup passage (1610), conversely, the first backup The pressurized medium may flow into the second master chamber 1240a from the flow path 1610.
- the second master piston 1240 is accommodated and provided in the second master chamber 1240a, but by advancing to form the hydraulic pressure of the pressurized medium accommodated in the second master chamber 1240a, or by retreating to the second master chamber 1240a It can form negative pressure.
- At least one sealing member 1290c may be provided between the inner wall of the cylinder block 1210 and the outer peripheral surface of the second master piston 1240 to prevent leakage of the pressurized medium between adjacent chambers.
- the second master chamber 1240a may communicate with the reservoir 1100 through a second communication hole 1241 formed in the second master piston 1240.
- the second master chamber 1240a formed in the cylinder block 1210 may have a diameter smaller than that of the first master chamber 1220a. Therefore, the second master piston 1240 for pressing the second master chamber 1240a may have a diameter smaller than the diameter of the first master piston 1220 for pressing the first master chamber 1220a. This is because the hydraulic pressure provided to the first backup passage 1610 is relatively lower than the second backup passage 1620 by the reaction force of the elastic member 1250 disposed in the simulation chamber 1230a in the fallback mode. It is to compensate for the drop in hydraulic pressure by providing it to the first backup passage 1610 through 1630.
- the elastic member 1250 is interposed between the simulation piston 1230 and the first master piston 1220 and is provided to provide a pedal feeling of the brake pedal 10 to the driver by its own elastic restoring force.
- the elastic member 1250 may be made of a material such as compressible and expandable rubber, and a displacement occurs in the simulation piston 1230 by the operation of the brake pedal 10, but the first master piston 1220 is in its original position. When maintained, the elastic member 1250 is compressed, and the driver can receive a stable and familiar pedal feeling by the elastic restoring force of the compressed elastic member 1250.
- the first master spring 1220b is interposed between the first master piston 1220 and the second master piston 1240, and when the first master piston 1220 advances according to the braking operation, a displacement occurs.
- the spring 1220b is compressed and returns the first master piston 1220 to its original position by an elastic restoring force when the brake is released.
- the second master spring 1220c is provided to elastically support the second master piston 1240.
- the second master spring 1220c has one end supported by the cylinder block 1210 and the other end supported by the second master piston 1240, thereby elastically supporting the second master piston 1240.
- the second master spring 1220c is compressed. After that, when the braking is released, the second master spring 1220c expands by an elastic force 2
- the master piston 1240 can return to its original position.
- the simulation flow path 1260 is provided to communicate the simulation chamber 1230a and the reservoir 1100 with each other, and the simulation flow path 1260 may be provided with a simulator check valve 1263 that allows only the flow of the braking fluid in one direction. .
- the simulator check valve 1263 allows only the flow of the braking fluid delivered from the reservoir 1100 to the simulation chamber 1230a.
- a simulator bypass flow path 1262 is connected in parallel to the simulator check valve 1263 in the simulation flow path 1260, and a simulator valve 1261 that controls the flow of the pressurized medium in both directions is provided in the simulator bypass flow path 1262.
- the simulator valve 1261 may be provided as a normally closed type solenoid valve that operates to open the valve when it receives an electrical signal from the electronic control unit after being in a normally closed state.
- the reservoir 1100 may accommodate and store a pressurized medium therein.
- the reservoir 1100 may be connected to respective component elements such as an integrated master cylinder 1200, a hydraulic pressure supply device 1300 to be described later, and a hydraulic circuit to be described later to supply or receive a pressurized medium.
- component elements such as an integrated master cylinder 1200, a hydraulic pressure supply device 1300 to be described later, and a hydraulic circuit to be described later to supply or receive a pressurized medium.
- several reservoirs 1100 are shown with the same reference numerals, but this is an example for helping understanding of the invention, and the reservoir 1100 is provided as a single component or a plurality of separate and independent components. I can.
- the reservoir flow path 1700 is provided to connect the integrated master cylinder 1200 and the reservoir 1100.
- the reservoir passage 1700 includes a first reservoir passage 1710 connecting the first master chamber 1220a and the reservoir 1100, and a second reservoir passage connecting the second master chamber 1240a and the reservoir 1100. 1720) may be included.
- one end of the first reservoir flow path 1710 is in communication with the first master chamber 1220a of the integrated master cylinder 1200, and the other end may be in communication with the reservoir 1100, and the second reservoir flow path 1720
- One end may be in communication with the second master chamber 1240a of the integrated master cylinder 1200, and the other end may be connected to the simulation flow path 1260 to communicate with the reservoir 1100.
- the second reservoir flow path 1720 is connected to a point where the simulator check valve 1263 upstream simulation flow path 1260 and the simulator bypass flow path 1262 join, and the reservoir 1100 and They may be communicated, but are not limited to the structure and may be independently connected to each other by separate flow paths.
- the hydraulic pressure supply device 1300 is provided to generate hydraulic pressure of the pressurized medium through mechanical operation by receiving the driver's braking intention as an electrical signal from the pedal displacement sensor 11 that senses the displacement of the brake pedal 10.
- the hydraulic pressure supply device 1300 includes a hydraulic pressure providing unit that provides a pressurized medium pressure transmitted to the wheel cylinder 20, a motor (not shown) that generates rotational force by an electrical signal from the pedal displacement sensor 11, and It may include a power conversion unit (not shown) that converts the rotary motion into linear motion and transmits it to the hydraulic pressure providing unit.
- the hydraulic pressure supply unit is provided between the cylinder block 1310 to accommodate the pressurized medium, the hydraulic piston 1320 accommodated in the cylinder block 1310, and the hydraulic piston 1320 and the cylinder block 1310. It includes a sealing member 1350 for sealing the 1330 and 1340, and a drive shaft 1390 for transmitting power output from the power conversion unit to the hydraulic piston 1320.
- the pressure chambers 1330 and 1340 include a first pressure chamber 1330 positioned in front of the hydraulic piston 1320 (to the left of the hydraulic piston 1320 based on FIG. 1), and the rear of the hydraulic piston 1320 ( Referring to FIG. 1, a second pressure chamber 1340 positioned on the right side of the hydraulic piston 1320 may be included. That is, the first pressure chamber 1330 is partitioned by the cylinder block 1310 and the front surface of the hydraulic piston 1320 so that the volume is changed according to the movement of the hydraulic piston 1320, and the second pressure chamber 1340 ) Is partitioned by the cylinder block 1310 and the rear surface of the hydraulic piston 1320 so that the volume varies according to the movement of the hydraulic piston 1320.
- the first pressure chamber 1330 is connected to a first hydraulic flow path 1401 to be described later through a first communication hole 1360a formed in the cylinder block 1310, and the second pressure chamber 1340 is a cylinder block 1310. ) Is connected to a second hydraulic flow path 1402 to be described later through a second communication hole 1360b formed in ).
- the sealing member is provided between the hydraulic piston 1320 and the cylinder block 1310 to seal between the first pressure chamber 1330 and the second pressure chamber 1340, a piston sealing member 1350a, a drive shaft 1390 and a cylinder. It includes a drive shaft sealing member 1350b provided between the blocks 1310 and sealing the opening of the second pressure chamber 1340 and the cylinder block 1310. Hydraulic or negative pressure of the first pressure chamber 1330 and the second pressure chamber 1340 generated by the forward or backward movement of the hydraulic piston 1320 is sealed by the piston sealing member 1350a and the drive shaft sealing member 1350b. It can be delivered to the first hydraulic flow path 1401 and the second hydraulic flow path 1402 described later without leakage.
- a motor (not shown) is provided to generate a driving force of the hydraulic piston 1320 by an electric signal output from the electronic control unit ECU.
- the motor may be provided including a stator and a rotor, and may provide power to generate displacement of the hydraulic piston 1320 by rotating in a forward or reverse direction through this.
- the rotational angular speed and rotational angle of the motor can be precisely controlled by the motor control sensor. Since the motor is a well-known technology, a detailed description will be omitted.
- the power conversion unit (not shown) is provided to convert the rotational force of the motor into linear motion.
- the power conversion unit may be provided in a structure including a worm shaft (not shown), a worm wheel (not shown), and a drive shaft 1390.
- the worm shaft may be integrally formed with the rotational shaft of the motor, and a worm may be formed on an outer circumferential surface to be coupled to mesh with the worm wheel to rotate the worm wheel.
- the worm wheel is connected to be engaged with the drive shaft 1390 to linearly move the drive shaft 1390, and the drive shaft 1390 is connected to the hydraulic piston 1320, through which the hydraulic piston 1320 is connected to the cylinder block 1310. It can be moved sliding within.
- the detected signal is transmitted to the electronic control unit, and the electronic control unit drives the motor to move the worm shaft in one direction.
- Rotate with The rotational force of the worm shaft is transmitted to the drive shaft 1390 via the worm wheel, and the hydraulic piston 1320 connected to the drive shaft 1390 advances within the cylinder block 1310 to generate hydraulic pressure in the first pressure chamber 1330.
- the electronic control unit drives the motor to rotate the worm shaft in the opposite direction. Accordingly, the worm wheel also rotates in the opposite direction, and the hydraulic piston 1320 connected to the drive shaft 1390 moves backward in the cylinder block 1310 to generate negative pressure in the first pressure chamber 1330.
- the generation of hydraulic pressure and negative pressure in the second pressure chamber 1340 may be implemented by operating in the opposite direction to the above. That is, when displacement is detected by the brake pedal 10 by the pedal displacement sensor 11, the detected signal is transmitted to the electronic control unit, and the electronic control unit drives the motor to rotate the worm shaft in the opposite direction. The rotational force of the worm shaft is transmitted to the drive shaft 1390 via the worm wheel, and the hydraulic piston 1320 connected to the drive shaft 1390 moves backward in the cylinder block 1310 to generate hydraulic pressure in the second pressure chamber 1340. have.
- the electronic control unit drives the motor in one direction to rotate the worm shaft in one direction. Accordingly, the worm wheel also rotates in the opposite direction, and the hydraulic piston 1320 connected to the drive shaft 1390 moves forward in the cylinder block 1310, thereby generating negative pressure in the second pressure chamber 1340.
- the hydraulic pressure supply device 1300 may generate hydraulic pressure or negative pressure in the first pressure chamber 1330 and the second pressure chamber 1340, respectively, depending on the rotation direction of the worm shaft by driving the motor. It can be determined by controlling the valves whether to implement braking by doing so or to release braking using negative pressure. A detailed description of this will be described later.
- the power conversion unit according to the present embodiment is not limited to any one structure as long as it can convert the rotational motion of the motor into the linear motion of the hydraulic piston 1320, and the same is understood even when it is made of various structures and devices Should be.
- the hydraulic pressure supply device 1300 may be hydraulically connected to the reservoir 1100 by the dump control unit 1800.
- the dump control unit 1800 includes a first dump passage 1810 connecting the first pressure chamber 1330 and the reservoir 1100, and a first bypass passage 1830 branched and rejoined on the first dump passage 1810. ), and a second dump passage 1820 connecting the second pressure chamber 1340 and the reservoir 1100, and a second bypass passage 1840 branched and rejoined on the second dump passage 1820 can do.
- a first dump check valve 1811 and a first dump valve 1831 for controlling the flow of the pressurized medium may be provided in the first dump passage 1810 and the first bypass passage 1830, respectively.
- the first dump check valve 1811 may be provided to allow only the flow of the pressurized medium from the reservoir 1100 to the first pressure chamber 1330 and to block the flow of the pressurized medium in the opposite direction.
- the first bypass flow path 1830 is connected in parallel with the first dump check valve 1811, and the first bypass flow path 1830 is pressed between the first pressure chamber 1330 and the reservoir 1100.
- a first dump valve 1831 for controlling the flow of the medium may be provided.
- the first bypass flow path 1830 may be connected by bypassing the front end and the rear end of the first dump check valve 1811 on the first dump flow path 1810, and the first dump valve 1831 has a first pressure. It may be provided as a two-way solenoid valve that controls the flow of the pressurized medium between the chamber 1330 and the reservoir 1100.
- the first dump valve 1831 may be provided as a normally closed type solenoid valve that operates to open the valve when it receives an electrical signal from the electronic control unit after being in a normally closed state.
- a second dump check valve 1821 and a second dump valve 1841 for controlling the flow of the pressurized medium may be provided in the second dump passage 1820 and the second bypass passage 1840, respectively.
- the second dump check valve 1821 may be provided to allow only the flow of the pressurized medium from the reservoir 1100 to the second pressure chamber 1330 and to block the flow of the pressurized medium in the opposite direction.
- a second bypass flow path 1840 is connected in parallel to the second dump check valve 1821, and the second bypass flow path 1840 is pressed between the second pressure chamber 1330 and the reservoir 1100.
- a second dump valve 1841 for controlling the flow of the medium may be provided.
- the second bypass flow path 1840 may be connected to the second dump flow path 1820 by bypassing the front and rear ends of the second dump check valve 1821, and the second dump valve 1841 has a second pressure. It may be provided as a two-way solenoid valve that controls the flow of the pressurized medium between the chamber 1330 and the reservoir 1100.
- the second dump valve 1841 may be provided as a normal open type solenoid valve that is open normally and operates to close the valve upon receiving an electrical signal from the electronic control unit.
- the hydraulic control unit 1400 may be provided to control the hydraulic pressure transmitted to each wheel cylinder 20, and the electronic control unit (ECU) is based on the hydraulic pressure information and the pedal displacement information. It is provided to control the valves.
- ECU electronice control unit
- the hydraulic control unit 1400 includes a first hydraulic circuit 1510 for controlling the flow of hydraulic pressure delivered to the first and second wheel cylinders 21 and 22 among the four wheel cylinders 20, and the third and third wheel cylinders. 4 It may be provided with a second hydraulic circuit (1520) for controlling the flow of hydraulic pressure delivered to the wheel cylinders (23, 24), and to control the hydraulic pressure transferred from the hydraulic pressure supply device (1300) to the wheel cylinder (20). Includes flow path and valve.
- the first hydraulic flow path 1401 may be provided to communicate with the first pressure chamber 1330, and the second hydraulic flow path 1402 may be provided in communication with the second pressure chamber 1340. After the first hydraulic flow path 1401 and the second hydraulic flow path 1402 are joined to the third hydraulic flow path 1403, the fourth hydraulic flow path 1404 connected to the first hydraulic circuit 1510 and the second hydraulic flow path 1402 It may be provided by branching back to the fifth hydraulic flow path 1405 connected to the circuit 1520.
- the sixth hydraulic flow path 1406 is provided to communicate with the first hydraulic circuit 1510
- the seventh hydraulic flow path 1407 is provided to communicate with the second hydraulic circuit 1520.
- the ninth hydraulic flow path 1409 communicating with the first pressure chamber 1409 and the second pressure It may be provided to branch back to the tenth hydraulic flow path 1410 communicating with the chamber 1410.
- a first valve 1431 for controlling the flow of the pressurized medium may be provided in the first hydraulic flow path 1401.
- the first valve 1431 may be provided as a check valve that allows the flow of the pressurized medium discharged from the first pressure chamber 1330 but blocks the flow of the pressurized medium in the opposite direction.
- a second valve 1432 for controlling the flow of the pressurized medium may be provided in the second hydraulic flow path 1402, and the second valve 1432 is the flow of the pressurized medium discharged from the second pressure chamber 1340. Allowed, but may be provided with a check valve that blocks the flow of the pressurized medium in the opposite direction.
- the fourth hydraulic flow path 1404 is provided by branching again from the third hydraulic flow path 1403 where the first hydraulic flow path 1401 and the second hydraulic flow path 1402 join, and connected to the first hydraulic circuit 1510.
- a third valve 1433 for controlling the flow of the pressurized medium may be provided in the fourth hydraulic flow path 1404.
- the third valve 1433 may be provided as a check valve that allows only the flow of the pressurized medium from the third hydraulic flow path 1403 to the first hydraulic circuit 1510 and blocks the flow of the pressurized medium in the opposite direction.
- the fifth hydraulic flow path 1405 is provided by branching again from the third hydraulic flow path 1403 where the first hydraulic flow path 1401 and the second hydraulic flow path 1402 join, and connected to the second hydraulic circuit 1520.
- a fourth valve 1434 for controlling the flow of the pressurized medium may be provided in the fifth hydraulic flow path 1405.
- the fourth valve 1434 may be provided as a check valve that allows only the flow of the pressurized medium from the third hydraulic flow path 1403 to the second hydraulic circuit 1520 and blocks the flow of the pressurized medium in the opposite direction.
- the sixth hydraulic flow path 1406 communicates with the first hydraulic circuit 1510, and the seventh hydraulic flow path 1407 communicates with the second hydraulic circuit 1520, and is provided to merge into the eighth hydraulic flow path 1408. .
- a fifth valve 1435 for controlling the flow of the pressurized medium may be provided in the sixth hydraulic flow path 1406.
- the fifth valve 1435 may be provided as a check valve that allows only the flow of the pressurized medium discharged from the first hydraulic circuit 1510 and blocks the flow of the pressurized medium in the opposite direction.
- a sixth valve 1436 for controlling the flow of the pressurized medium may be provided in the seventh hydraulic passage 1407.
- the sixth valve 1436 may be provided as a check valve that allows only the flow of the pressurized medium discharged from the second hydraulic circuit 1520 and blocks the flow of the pressurized medium in the opposite direction.
- the ninth hydraulic flow path 1409 is provided by branching from the eighth hydraulic flow path 1408 where the sixth hydraulic flow path 1406 and the seventh hydraulic flow path 1407 join, and connected to the first pressure chamber 1330.
- a seventh valve 1437 for controlling the flow of the pressurized medium may be provided in the ninth hydraulic flow path 1409.
- the seventh valve 1437 may be provided as a two-way control valve that controls the flow of the pressurized medium delivered along the ninth hydraulic flow path 1409.
- the seventh valve 1437 may be provided as a normally closed type solenoid valve that operates to open the valve when it receives an electrical signal from the electronic control unit after being in a normally closed state.
- the tenth hydraulic passage 1410 is provided by branching from the eighth hydraulic passage 1408 where the sixth hydraulic passage 1406 and the seventh hydraulic passage 1407 join, and connected to the second pressure chamber 1340.
- An eighth valve 1438 for controlling the flow of the pressurized medium may be provided in the tenth hydraulic flow path 1410.
- the eighth valve 1438 may be provided as a two-way control valve that controls the flow of the pressurized medium delivered along the tenth hydraulic flow path 1410.
- the eighth valve 1438 is provided as a normally closed type solenoid valve that operates to open the valve when it receives an electrical signal from the electronic control unit after being in a normally closed state. Can be.
- the hydraulic pressure formed in the first pressure chamber 1330 according to the advance of the hydraulic piston 1320 by the arrangement of the hydraulic flow path and the valve is the first hydraulic flow path 1401 and the third hydraulic flow path ( 1403), can be transferred to the first hydraulic circuit 1510 sequentially through the fourth hydraulic flow path 1404, the first hydraulic flow path 1401, the third hydraulic flow path 1403, the fifth hydraulic flow path 1405 It may be transferred to the second hydraulic circuit 1520 through sequentially.
- the hydraulic pressure formed in the second pressure chamber 1340 as the hydraulic piston 1320 moves backward is sequentially passed through the second hydraulic channel 1402, the third hydraulic channel 1403, and the fourth hydraulic channel 1404. 1 may be transferred to the hydraulic circuit 1510, and may be transferred to the second hydraulic circuit 1520 through sequentially through the second hydraulic flow path 1402, the third hydraulic flow path 1403, and the fifth hydraulic flow path 1405. have.
- the negative pressure formed in the first pressure chamber 1330 as the hydraulic piston 1320 moves backwards converts the pressurizing medium provided to the first hydraulic circuit 1510 into the sixth hydraulic flow path 1406, the eighth hydraulic flow path 1408, and
- the ninth hydraulic flow path 1409 can be sequentially recovered to the first pressure chamber 1330, and the pressurized medium provided through the second hydraulic circuit 1520 is transferred to the 7th hydraulic flow path 1407 and the 8th hydraulic flow path 1408. , It may be recovered to the first pressure chamber 1330 sequentially through the ninth hydraulic flow path 1409.
- the negative pressure formed in the second pressure chamber 1340 according to the advance of the hydraulic piston 1320 is applied to the pressurizing medium provided to the first hydraulic circuit 1510 by the sixth hydraulic flow path 1406, the eighth hydraulic flow path 1408, and 10
- the hydraulic flow path 1410 can be sequentially recovered to the first pressure chamber 1340, and the pressurized medium provided through the second hydraulic circuit 1520 is transferred to the 7th hydraulic flow path 1407, the 8th hydraulic flow path 1408, and It may be recovered to the second pressure chamber 1340 sequentially through the tenth hydraulic flow path 1410.
- the negative pressure formed in the first pressure chamber 1330 as the hydraulic piston 1320 moves backward can be supplied with a pressurizing medium from the reservoir 1100 to the first pressure chamber 1330 through the first dump passage 1810.
- the negative pressure formed in the second pressure chamber 1340 according to the advance of the hydraulic piston 1320 can be supplied with the pressurizing medium from the reservoir 1100 to the second pressure chamber 1340 through the second dump passage 1820.
- the first hydraulic circuit 1510 of the hydraulic control unit 1400 is the hydraulic pressure of the first and second wheel cylinders 21 and 22, which are two wheel cylinders 20 among the four wheels RR, RL, FR, and FL.
- the second hydraulic circuit 1520 may control the hydraulic pressure of the third and fourth wheel cylinders 23 and 24, which are two other wheel cylinders 20.
- the first hydraulic circuit 1510 may receive hydraulic pressure through the fourth hydraulic flow path 1404 and discharge the hydraulic pressure through the sixth hydraulic flow path 1406.
- the first and second inlet passages 1511 which are connected to the first wheel cylinder 21 and the second wheel cylinder 22, after the fourth hydraulic passage 1404 and the sixth hydraulic passage 1406 join. 1512) can be provided by branching.
- the second hydraulic circuit 1520 receives hydraulic pressure through the fifth hydraulic flow path 1405 and discharges the hydraulic pressure through the seventh hydraulic flow path 1407. Accordingly, the fifth hydraulic flow path 1405 and the 7 After the hydraulic flow passage 1407 joins, the third and fourth inlet flow passages 1521 and 1522 connected to the third wheel cylinder 23 and the fourth wheel cylinder 24 may be provided.
- First and second inlet valves 1511a and 1512a are provided in the first and second inlet passages 1511 and 1512 to control the flow and hydraulic pressure of the braking fluid delivered to the first and second wheel cylinders 21 and 22. It is provided, and the first and second inlet valves 1511a and 1512a may be provided as normally open type solenoid valves respectively disposed on the upstream side of the first and second wheel cylinders 21 and 22.
- First and second check valves 1513a and 1514a connected in parallel to the first and second inlet valves 1511a and 1512a may be provided in the first hydraulic circuit 1510.
- the first and second check valves 1513a and 1514a are connected to the first and second inlet valves 1511a and 1512a on the first and second inlet passages 1511 and 1512, respectively. It is provided in the second inlet bypass flow paths 1513 and 1514, allows only the flow of the pressurized medium from the first and second wheel cylinders 21 and 22 to the hydraulic pressure supply device 1300, and from the hydraulic pressure supply device 1300 The flow of the braking fluid to the first and second wheel cylinders 21 and 22 is blocked.
- the first and second check valves 1513a and 1514a can quickly remove the hydraulic pressure of the braking fluid applied to the first and second wheel cylinders 21 and 22, and the first and second inlet valves 1511a and 1512a Even when is not operating normally, the hydraulic pressure of the braking fluid applied to the first and second wheel cylinders 21 and 22 can be introduced into the hydraulic pressure supply device 1300.
- the first hydraulic circuit 1510 branches off from the first and second inlet passages 1511 and 1512, respectively, to improve performance when the first and second wheel cylinders 21 and 22 are brake released, and the first backup passage 1610 ) And first and second outlet passages 1515 and 1516 connected to each other.
- the first and second outlet passages 1515 and 1516 branch from the first and second inlet passages 1511 and 1512 on the downstream side of the first and second inlet valves 1511a and 1512a, respectively, and are branched from the first backup passage 1610. ) Can be connected.
- First and second outlet valves 1515a and 1516a are provided in the first and second outlet flow passages 1515 and 1516, respectively, and the first and second outlet valves 1515a and 1516a are respectively provided with first and second wheel It may be provided as a normally open type solenoid valve that is connected to the cylinders 21 and 22 and controls the flow of the braking fluid out of the first and second wheel cylinders 21 and 22.
- the first and second outlet valves 1515a and 1516a can also perform the function of a cut valve to block the hydraulic pressure of the first backup passage 1610 from being supplied to the first and second wheel cylinders 21 and 22. have.
- a fifth check valve 1517a connected in parallel with the first outlet valve 1515a may be provided in the first outlet flow path 1515.
- the fifth check valve 1517a is provided in a first outlet bypass flow path 1517 connecting the front and rear of the first outlet valve 1515a on the first outlet flow path 1515, and the first backup flow path 1610 It allows only the flow of the pressurized medium from and to the first wheel cylinder 21.
- the fifth check valve 1517a allows the hydraulic pressure of the first backup passage 1610 to flow into the first wheel cylinder 21 side even when the first outlet valve 1515a does not operate normally in the fallback mode.
- the first and second outlet valves 1515a and 1516a are opened when pressure reduction braking of the first and second wheel cylinders 21 and 22 is required to control the pressure reduction of the first and second wheel cylinders 21 and 22. I can.
- third and fourth inlet valves 1521a and 1522a are provided to control the flow and hydraulic pressure of the braking fluid delivered to the second and third wheel cylinders 23 and 24. It is provided, and the third and fourth inlet valves 1521a and 1522a may be provided as normally open type solenoid valves respectively disposed on the upstream side of the third and fourth wheel cylinders 23 and 24.
- the second hydraulic circuit 1520 may be provided with third and fourth check valves 1523a and 1524a connected in parallel to the third and fourth inlet valves 1521a and 1522a, respectively.
- the third and fourth check valves 1523a and 1524a are connected to the third and fourth inlet valves 1521a and 1522a on the second and third inlet passages 1521 and 1522, respectively. It is provided in the fourth inlet bypass flow paths 1523 and 1524, allows only the flow of the braking fluid from the third and fourth wheel cylinders 23 and 24 to the hydraulic pressure supply device 1300, and from the hydraulic pressure supply device 1300 The flow of the braking fluid to the third and fourth wheel cylinders 23 and 24 is blocked.
- the third and fourth check valves 1523a and 1524a can quickly remove the hydraulic pressure of the braking fluid applied to the third and fourth wheel cylinders 23 and 24, and the third and fourth inlet valves 1521a and 1522a Even when is not operating normally, the hydraulic pressure of the braking fluid applied to the third and fourth wheel cylinders 23 and 24 may be introduced into the hydraulic pressure supply device 1300.
- the second hydraulic circuit 1520 is branched from the third and fourth inlet passages 1521 and 1522 to improve performance when the third and fourth wheel cylinders 23 and 24 are braked off and connected to the reservoir 1100 It includes third and fourth outlet flow paths 1525 and 1526 that are used.
- the third and fourth outlet passages 1525 and 1526 are branched from the third and fourth inlet passages 1521 and 1522 on the downstream side of the third and fourth inlet valves 1521a and 1522a to be connected to the reservoir 1100. I can.
- Third and fourth outlet valves 1525a and 1526a are provided in the third and fourth outlet flow paths 1525 and 1526, respectively, and the third and fourth outlet valves 1525a and 1526a are respectively provided with third and fourth wheels. It may be provided as a normally closed type solenoid valve that is connected to the cylinders 23 and 24 and controls a flow through which the braking fluid escapes from the third and fourth wheel cylinders 23 and 24.
- the third and fourth outlet valves 1525a and 1526a are opened when depressurizing braking of the first and second wheel cylinders 21 and 22 is required to control the depressurization of the first and second wheel cylinders 21 and 22. I can.
- the fourth inlet passage 1522 may be connected to the second backup passage 1620 to receive the hydraulic pressure of the first master chamber 1220a through the second backup passage 1620.
- the electronic brake system 1000 is designed to implement braking by directly supplying the pressurized medium discharged from the integrated master cylinder 1200 to the wheel cylinder 20 when normal operation is impossible due to a device failure.
- the first and second backup passages 1610 and 1620 and an auxiliary backup passage 1630 may be included.
- the mode in which the hydraulic pressure of the integrated master cylinder 1200 is directly transmitted to the wheel cylinder 20 is referred to as an abnormal operation mode, that is, a fallback mode.
- the first backup passage 1610 is provided to connect the simulation chamber 1230a of the integrated master cylinder 1200 and the first hydraulic circuit 1510
- the second backup passage 1620 is the first of the integrated master cylinder 1200. It may be provided to connect the 1 master chamber 1220a and the second hydraulic circuit 1520.
- the auxiliary backup passage 1630 is provided to connect the second master chamber 1240a and the first backup passage 1620 of the integrated master cylinder 1200.
- the first backup passage 1610 has one end connected to the simulation chamber 1230a, and the other end on the first hydraulic circuit 1510 with the first outlet passage 1515 on the downstream side of the first outlet valve 1515a.
- the second outlet valve 1516a may be connected to the downstream first outlet flow path 1516
- the second backup flow path 1620 has one end connected to the first master chamber 1220a
- the other end of the second hydraulic circuit 1520 May be connected to the fourth inlet flow path 1522 on the downstream side of the fourth inlet valve 1522a.
- the auxiliary backup passage 1630 is provided so that one end is connected to the second master chamber 1240a and the other end joins the first backup passage 1610, and the pressurized medium accommodated in the second master chamber 1240a is the first backup. It may be transmitted to the flow path 1610.
- the second backup passage 1620 is provided with a cut valve 1621 for controlling the flow of the pressurized medium in both directions, and the cut valve 1621 is normally open and closes when a closing signal is received from the electronic control unit. It may be provided with a solenoid valve of a normal open type that operates so as to be operated.
- the auxiliary backup passage 1630 may be provided with an orifice 1631 for allowing the flow of the pressurized medium when a certain hydraulic pressure is exceeded.
- the pressurizing medium of the integrated master cylinder 1200 is prevented from being directly transferred to the wheel cylinder 20,
- the hydraulic pressure provided from the hydraulic pressure supply device 1300 may be supplied to the first and second hydraulic circuits 1510 and 1520 through the hydraulic control unit 1400, and the cut valve 1621 and the first and second outlets
- the valves 1515a and 1516a are opened, the pressurized medium pressurized by the integrated master cylinder 1200 is applied to the first and second hydraulic pressures through the first and second backup passages 1610 and 1620 and the auxiliary backup passage 1630. It is supplied directly to the circuits 1510 and 1520 to implement braking.
- the electronic brake system 1000 may include a pressure sensor PS that senses the hydraulic pressure of at least one of the first hydraulic circuit 1510 and the second hydraulic circuit 1520.
- FIG. 2 is a diagram showing an operating state of the pedal simulator of the electronic brake system according to an embodiment of the present invention.
- the simulation piston 1230 advances and compresses the elastic member 1250, and elastic restoring force due to compression of the elastic member 1250 can be provided to the driver as a pedal feel. have.
- the first master chamber 1220a and the second master chamber 1240a are closed by the closing operation of the cut valve 1621 and the first and second outlet valves 1515a and 1516a, so that the first master piston 1220 ) And the second master piston 1240 cannot be displaced, but the pressurized medium accommodated in the simulation chamber 1230a is transferred to the reservoir 1100 through the simulation flow path 1260, so the simulation piston 1230 advances and the displacement is reduced. Occurs, and the simulation piston 1230 compresses the elastic member 1250.
- the simulation piston 1230 After that, when the driver releases the pedal effort of the brake pedal 10, the simulation piston 1230 returns to its original position by the restoring force of the elastic member 1250.
- the operation of the electronic brake system 1000 according to the present embodiment is a normal operation mode in which various devices and valves operate normally without failure or abnormality, and an abnormal operation mode in which malfunctions or abnormalities occur in various devices and valves. Fallback mode), and an inspection mode for checking whether the integrated master cylinder 1200 or the simulator valve 1261 is leaked.
- the first braking mode to the third braking mode are classified and operated. can do.
- the first braking mode primarily provides hydraulic pressure by the hydraulic pressure supply device 1300 to the wheel cylinder 20
- the second braking mode is the hydraulic pressure by the hydraulic pressure supply device 1300 to the wheel cylinder 20
- the third braking mode is a second braking mode by thirdly providing hydraulic pressure from the hydraulic pressure supply device 1300 to the wheel cylinder 20. Higher braking pressure can be delivered.
- the first to third braking modes can be changed by changing the operation of the hydraulic pressure supply device 1300 and the hydraulic control unit 1400.
- the hydraulic pressure supply device 1300 may provide a sufficiently high hydraulic pressure of the pressurized medium without a high-spec motor by utilizing the first to third braking modes, and further, it is possible to prevent unnecessary loads applied to the motor. Accordingly, while reducing the cost and weight of the brake system, a stable braking force can be secured, and durability and operational reliability of the device can be improved.
- FIG 3 is a hydraulic circuit diagram showing a state in which the electronic brake system 1000 according to the present embodiment performs a first braking mode.
- the motor (not shown) operates to rotate in one direction, and the rotational force of the motor is transmitted to the hydraulic pressure providing unit by the power conversion unit, providing hydraulic pressure.
- the hydraulic piston 1320 of the unit advances, it generates hydraulic pressure in the first pressure chamber 1330.
- the hydraulic pressure discharged from the first pressure chamber 1330 is transmitted to each wheel cylinder 20 through the hydraulic control unit 1400, the first hydraulic circuit 1510, and the second hydraulic circuit 1520 to generate braking force. .
- the hydraulic pressure formed in the first pressure chamber 1330 is sequentially passed through the first hydraulic flow path 1401, the third hydraulic flow path 1403, and the fourth hydraulic flow path 1404 to the first hydraulic circuit 1510. It is primarily transmitted to the provided first and second wheel cylinders 21 and 22.
- the first valve 1431 allows only the flow of the pressurized medium discharged from the first pressure chamber 1330
- the third valve 1433 is the first hydraulic circuit 1510 from the third hydraulic flow path 1403. It is provided with a check valve that allows only the flow of the pressurized medium toward the bar, so that the hydraulic pressure of the pressurized medium can be smoothly transferred to the first and second wheel cylinders 21 and 22.
- first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed.
- the hydraulic pressure of the pressurized medium is prevented from leaking to the reservoir 1100.
- the hydraulic pressure of the pressurized medium formed in the first pressure chamber 1330 sequentially passes through the first hydraulic flow path 1401, the third hydraulic flow path 1403, and the fifth hydraulic flow path 1405, and the second hydraulic circuit 1520 ) Is primarily transmitted to the third and fourth wheel cylinders 23 and 24 provided in).
- the first valve 1431 allows only the flow of the pressurized medium discharged from the first pressure chamber 1330
- the fourth valve 1434 is from the third hydraulic flow path 1403 to the second hydraulic circuit ( It is provided with a check valve that allows only the flow of the pressurized medium toward 1520, and the hydraulic pressure of the pressurized medium can be smoothly transmitted to the third and fourth wheel cylinders 23 and 24.
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 remain open, and the third and fourth outlet valves 1525a and 1526a and the cut valve 1621 ) Is maintained in a closed state to prevent the hydraulic pressure of the pressurized medium from leaking to the second backup passage 1620 and the reservoir 1100.
- the seventh valve 1437 and the eighth valve 1438 are closed, it is possible to prevent the hydraulic pressure of the pressurized medium formed in the first pressure chamber 1330 from leaking to the second pressure chamber 1340. have.
- the first dump valve 1831 provided in the first bypass flow path 1830 may be kept in a closed state to prevent the hydraulic pressure formed in the first pressure chamber 1330 from leaking into the reservoir 1100.
- the second dump check valve 1821 provided in the second dump passage 1820 allows the flow of the pressurized medium from the reservoir 1100 to the second pressure chamber 1340, and the pressurized medium is the second pressure chamber ( 1340 can be stably supplied, and the second dump valve 1841 provided in the second bypass flow path 1840 is switched to an open state to transfer the pressurized medium from the reservoir 1100 to the second pressure chamber 1340. Can supply quickly.
- the cut valve 1621 and the first and second outlet valves 1515a and 1516a are closed and switched, and the integrated master cylinder
- the pressurized medium discharged from 1200 is prevented from being transferred to the wheel cylinder 20 side.
- the integrated master cylinder 1200 is operated with the pedal simulator described above.
- the electronic brake system 1000 may switch from the first braking mode to the second braking mode shown in FIG. 4 when a higher braking pressure than the first braking mode is to be provided.
- the electronic control unit is a brake pedal sensed by the pedal displacement sensor 11 ( If the displacement or operating speed of 10) is higher than the preset level or the hydraulic pressure detected by the pressure sensor is higher than the preset level, it is determined that a higher braking pressure is required and the first braking mode is the second braking mode. Can be switched to.
- the motor When switching from the first braking mode to the second braking mode, the motor operates to rotate in the other direction, and the rotational force of the motor is transmitted to the hydraulic pressure supply unit by the power conversion unit, and the hydraulic piston 1320 moves backward, thereby causing the second pressure.
- a hydraulic pressure is generated in the chamber 1340.
- the hydraulic pressure discharged from the second pressure chamber 1340 is transmitted to each wheel cylinder 20 through the hydraulic control unit 1400, the first hydraulic circuit 1510, and the second hydraulic circuit 1520 to generate braking force. .
- the hydraulic pressure formed in the second pressure chamber 1340 is sequentially passed through the second hydraulic flow path 1402, the third hydraulic flow path 1403, and the fourth hydraulic flow path 1404 to reach the first hydraulic circuit 1510. It is transmitted secondarily to the provided first and second wheel cylinders 21 and 22.
- the second valve 1432 provided in the second hydraulic flow path 1402 allows only the flow of the pressurized medium discharged from the second pressure chamber 1340, and a third valve provided in the fourth hydraulic flow path 1404
- the valve 1433 is provided as a check valve that allows only the flow of the pressurized medium from the third hydraulic passage 1403 to the first hydraulic circuit 1510, and the hydraulic pressure of the pressurized medium is applied to the first and second wheel cylinders 21 , 22) can be transferred smoothly.
- the first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. To prevent leakage of the hydraulic pressure of the pressurized medium to the first backup passage 1610.
- the hydraulic pressure formed in the second pressure chamber 1340 is provided in the second hydraulic circuit 1520 by sequentially passing through the second hydraulic flow path 1402, the third hydraulic flow path 1403, and the fifth hydraulic flow path 1405. It is transmitted secondary to the third and fourth wheel cylinders (23, 24).
- the second valve 1432 provided in the second hydraulic passage 1403 allows only the flow of the pressurized medium discharged from the second pressure chamber 1340, and is provided in the fifth hydraulic passage 1405.
- the fourth valve 1434 is provided as a check valve that allows only the flow of the pressurized medium from the third hydraulic flow path 1403 to the second hydraulic circuit 1520, and the hydraulic pressure of the pressurized medium is the third and fourth wheel cylinders. It can be transferred smoothly to (23, 24).
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 maintain an open state, and the cut valve 1621 is maintained in a closed state so that the hydraulic pressure of the pressurized medium is reduced to the reservoir. It can prevent leakage to the (1100) side.
- the seventh valve 1437 and the eighth valve 1438 are controlled to be closed, so that the hydraulic pressure of the pressurized medium formed in the second pressure chamber 1340 is prevented from leaking into the first pressure chamber 1330. Can be prevented.
- the second dump valve 1841 is switched to the closed state, it is possible to prevent the hydraulic pressure of the pressurized medium formed in the second pressure chamber 1340 from leaking to the reservoir 1100.
- the first dump check valve 1811 provided in the first dump passage 1810 allows the flow of the pressurized medium from the reservoir 1100 to the first pressure chamber 1330, and the pressurized medium is the first pressure chamber ( 1330 can be stably supplied, and the first dump valve 1831 provided in the first bypass flow path 1830 is switched to an open state to transfer the pressurized medium from the reservoir 1100 to the first pressure chamber 1330 Can supply quickly.
- the operation of the integrated master cylinder 1200 in the second braking mode is the same as the operation of the integrated master cylinder 1200 in the first braking mode of the electronic brake system described above, and a description thereof will be omitted to prevent duplication of contents.
- the electronic brake system 1000 may switch from the second braking mode to the third braking mode shown in FIG. 5 when a higher braking pressure than the second braking mode is to be provided.
- FIG. 5 is a hydraulic circuit diagram showing a state in which the electronic brake system 1000 according to the present embodiment performs a third braking mode.
- the electronic control unit is configured such that the displacement or operating speed of the brake pedal 10 detected by the pedal displacement sensor 11 is higher than a preset level, or the hydraulic pressure detected by the pressure sensor is higher than a preset level. In this case, it is determined that a higher braking pressure is required and the second braking mode can be switched to the third braking mode.
- the motor When switching from the second braking mode to the third braking mode, the motor (not shown) operates to rotate in one direction, and the rotational force of the motor is transmitted to the hydraulic pressure supply unit by the power conversion unit, and the hydraulic piston of the hydraulic pressure supply unit As the 1320 advances again, a hydraulic pressure is generated in the first pressure chamber 1330.
- the hydraulic pressure discharged from the first pressure chamber 1330 is transmitted to each wheel cylinder 20 through the hydraulic control unit 3400, the first hydraulic circuit 1510, and the second hydraulic circuit 1520 to generate braking force. .
- a part of the hydraulic pressure formed in the first pressure chamber 1330 sequentially passes through the first hydraulic flow path 1401, the third hydraulic flow path 1403, and the fourth hydraulic flow path 1404, and the first hydraulic circuit 1510 ) Is thirdly transmitted to the first and second wheel cylinders 21 and 22 provided in the).
- the first valve 1431 allows only the flow of the pressurized medium discharged from the first pressure chamber 1330
- the third valve 1433 is the first hydraulic circuit 1510 from the third hydraulic flow path 1403. It is provided with a check valve that allows only the flow of the pressurized medium toward the bar, so that the hydraulic pressure of the pressurized medium can be smoothly transferred to the first and second wheel cylinders 21 and 22.
- first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. By maintaining the state, the hydraulic pressure of the pressurized medium is prevented from leaking to the first backup passage 1610.
- part of the hydraulic pressure of the pressurized medium formed in the first pressure chamber 1330 sequentially passes through the first hydraulic flow path 1401, the third hydraulic flow path 1403, and the fifth hydraulic flow path 1405, and the second hydraulic circuit It is thirdly transmitted to the third and fourth wheel cylinders 23 and 24 provided in 1520.
- the first valve 1431 allows only the flow of the pressurized medium discharged from the first pressure chamber 1330
- the fourth valve 1434 is from the third hydraulic flow path 1403 to the second hydraulic circuit ( It is provided with a check valve that allows only the flow of the pressurized medium toward 1520, and the hydraulic pressure of the pressurized medium can be smoothly transmitted to the third and fourth wheel cylinders 23 and 24.
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 maintain an open state, and the cut valve 1621 is maintained in a closed state so that the hydraulic pressure of the pressurized medium is reduced to the reservoir. It can prevent leakage to the (1100) side.
- the third braking mode since high pressure hydraulic pressure is provided, as the hydraulic piston 1320 advances, the hydraulic pressure in the first pressure chamber 1330 also increases the force to move the hydraulic piston 1320 backward. The load will increase rapidly. Accordingly, in the third braking mode, the seventh valve 1437 and the eighth valve 1438 are opened to allow the flow of the pressurized medium through the ninth hydraulic flow path 1409 and the tenth hydraulic flow path 1410. In other words, a part of the hydraulic pressure formed in the first pressure chamber 1330 may be supplied to the second pressure chamber 1340 by passing through the ninth hydraulic passage 1409 and the tenth hydraulic passage 1410 in sequence. Through this, the first pressure chamber 1330 and the second pressure chamber 1340 communicate with each other to synchronize hydraulic pressure, thereby reducing a load applied to the motor and improving durability and reliability of the device.
- the first dump valve 1831 is switched to a closed state so that the hydraulic pressure of the pressurized medium formed in the first pressure chamber 1330 leaks into the reservoir 1100 along the first bypass flow path 1830. It can be prevented, and the second dump valve 2841 is also controlled in a closed state, thereby rapidly forming negative pressure in the second pressure chamber 1340 by the advance of the hydraulic piston 1320 from the first pressure chamber 1330 The provided pressurized medium can be smoothly supplied.
- the operation of the integrated master cylinder 1200 in the third braking mode is the same as the operation of the integrated master cylinder 1200 in the first and second braking modes of the electronic brake system described above, and the description has been omitted to prevent duplication of the contents. do.
- the pressurized medium of the first and second wheel cylinders 21 and 22 is transferred to the first hydraulic circuit.
- the first and second outlet valves 1515a and 1516a provided in 1510 are selectively opened to recover to the reservoir 1110 through the first backup passage 1610 and the simulation chamber 1230a, and the second and second outlet valves 1515a and 1516a are selectively opened. Decompression can be controlled by recovering the pressurized medium of the wheel cylinders 23 and 24 to the reservoir 1110 through the third and fourth outlet valves 1525a and 1526a provided in the second hydraulic circuit 1520.
- FIG. 6 is a hydraulic circuit diagram showing a state in which a third braking mode is released while the hydraulic piston 1320 of the electronic brake system 1000 according to the present embodiment moves backward.
- the motor when the pedal effort applied to the brake pedal 10 is released, the motor generates rotational force in another direction and transmits it to the power conversion unit, and the power conversion unit moves the hydraulic piston 1320 backward. Accordingly, while releasing the hydraulic pressure in the first pressure chamber 1330, negative pressure may be generated, and thus the pressurizing medium of the wheel cylinder 20 may be transmitted to the first pressure chamber 1330.
- the hydraulic pressure of the first wheel cylinder 21 and the second wheel cylinder 22 provided in the first hydraulic circuit 1510 is the sixth hydraulic flow path 1406, the eighth hydraulic flow path 1408, and the ninth hydraulic oil. It is recovered to the first pressure chamber 1330 by passing through the furnace 1409 in sequence.
- the fifth valve 1435 provided in the sixth hydraulic flow path 1406 is provided as a check valve that allows only the flow of the pressurized medium discharged from the first hydraulic circuit 1510, the pressurized medium can be recovered.
- the seventh valve 1437 is opened to allow the flow of the pressurized medium through the ninth hydraulic flow path 1409.
- the first dump valve 1831 is closed so as to effectively form negative pressure in the first pressure chamber 1330.
- the pressurizing medium accommodated in the second pressure chamber 1340 is sequentially passed through the tenth hydraulic passage 1410 and the ninth hydraulic passage 1409 so that the hydraulic piston 1320 can be moved back quickly and smoothly. 1 It is transmitted to the pressure chamber 1330, and for this purpose, the eighth valve 1438 provided in the tenth hydraulic flow path 1410 is also converted to an open state.
- the second dump valve 1841 may be operated to be closed to induce the pressurized medium of the second pressure chamber 1340 to be supplied to the first pressure chamber 1330.
- the first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. Keep it.
- the hydraulic pressure of the pressurized medium applied to the third wheel cylinder 23 and the fourth wheel cylinder 24 provided in the second hydraulic circuit 1520 by the negative pressure generated in the first pressure chamber 1330 is the seventh hydraulic oil.
- the furnace 1407, the eighth hydraulic flow passage 1408, and the ninth hydraulic flow passage 1409 are sequentially passed through and are recovered to the first pressure chamber 1330.
- the sixth valve 1436 provided in the seventh hydraulic flow path 1407 is provided as a check valve that allows only the flow of the pressurized medium discharged from the second hydraulic circuit 1520 so that the pressurized medium can be recovered.
- the seventh valve 1437 is opened to allow the flow of the pressurized medium through the ninth hydraulic flow path 1409.
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 are kept open.
- FIG. 7 is a hydraulic circuit diagram showing a state in which the hydraulic piston 1320 of the electronic brake system 1000 according to the present embodiment moves forward and releases the second braking mode.
- the motor when the pedal effort applied to the brake pedal 10 is released, the motor generates a rotational force in one direction and transmits it to the power conversion unit, and the power conversion unit advances the hydraulic piston 1320. Accordingly, while releasing the hydraulic pressure in the second pressure chamber 1340, negative pressure may be generated, and thus the pressurizing medium of the wheel cylinder 20 may be transmitted to the second pressure chamber 1340.
- the hydraulic pressure of the pressurized medium applied to the first wheel cylinder 21 and the second wheel cylinder 22 provided in the first hydraulic circuit 1510 is the sixth hydraulic passage 1406 and the eighth hydraulic passage 1408 , It is recovered to the second pressure chamber 1340 by passing through the tenth hydraulic flow path 1410 in sequence.
- the fifth valve 1435 provided in the sixth hydraulic passage 1406 allows only the flow of the pressurized medium discharged from the first hydraulic circuit 1510, so that the pressurized medium can be recovered, and the tenth hydraulic passage
- the eighth valve 1438 provided in the 1410 may be switched open to allow the flow of the pressurized medium delivered along the tenth hydraulic flow path 1410.
- the seventh valve 1437 is controlled in a closed state to prevent the pressurized medium recovered from the first hydraulic circuit 1510 from leaking into the first pressure chamber 1330 through the ninth hydraulic flow path 1409. have.
- the first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. Keep it.
- the hydraulic pressure of the pressurized medium applied to the third wheel cylinder 23 and the fourth wheel cylinder 24 provided in the second hydraulic circuit 1520 by the negative pressure generated in the second pressure chamber 1340 is the seventh hydraulic oil.
- the furnace 1407, the eighth hydraulic flow passage 1408, and the tenth hydraulic flow passage 1410 are sequentially passed through and are recovered to the second pressure chamber 1340.
- the sixth valve 1436 provided in the seventh hydraulic passage 1407 allows the flow of the pressurized medium discharged from the second hydraulic circuit 1520, and is provided in the tenth hydraulic passage 1410. Since the eighth valve 1438 is opened, the pressurized medium can be smoothly recovered to the second pressure chamber 1340.
- the seventh valve 1437 is controlled in a closed state to prevent the pressurized medium recovered from the first hydraulic circuit 1510 from leaking into the first pressure chamber 1330 through the ninth hydraulic flow path 1409. have.
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 are maintained in an open state, and the third and fourth outlet valves 1525a and 1526a are maintained in a closed state. .
- the first dump valve 1831 is opened to facilitate smooth forward movement of the hydraulic piston 1320, and the second pressure chamber 1340 is controlled to rapidly form negative pressure. 2
- the dump valve 1841 can be switched to a closed state.
- FIG. 8 is a hydraulic circuit diagram showing a state in which the hydraulic piston 1320 of the electronic brake system 1000 according to the present embodiment is retracted again and releases the first braking mode.
- the motor when the pedal effort applied to the brake pedal 10 is released, the motor generates rotational force in another direction and transmits it to the power conversion unit, and the power conversion unit moves the hydraulic piston 1320 backward.
- negative pressure may be generated in the first pressure chamber 1330, whereby the pressure medium of the wheel cylinder 20 may be transmitted to the first pressure chamber 1330.
- the hydraulic pressure of the first wheel cylinder 21 and the second wheel cylinder 22 provided in the first hydraulic circuit 1510 is the sixth hydraulic flow path 1406, the eighth hydraulic flow path 1408, and the ninth hydraulic oil. It is recovered to the first pressure chamber 1330 by passing through the furnace 1409 in sequence.
- the fifth valve 1435 provided in the sixth hydraulic flow path 1406 is provided as a check valve that allows only the flow of the pressurized medium discharged from the first hydraulic circuit 1510, the pressurized medium can be transmitted,
- the seventh valve 1437 is opened to allow the flow of the pressurized medium through the ninth hydraulic flow path 1409.
- the first inlet valve 1511a and the second inlet valve 1512a provided in the first hydraulic circuit 1510 remain open, and the first outlet valve 1515a and the second outlet valve 1516a are closed. Keep it.
- the eighth valve 1438 is controlled in a closed state to prevent the pressurized medium recovered from the first hydraulic circuit 1510 from leaking into the second pressure chamber 1340 through the tenth hydraulic flow path 1410.
- the first dump valve 1831 is closed to effectively form a negative pressure in the first pressure chamber 1330.
- the hydraulic pressure of the pressurized medium applied to the third wheel cylinder 23 and the fourth wheel cylinder 24 provided in the second hydraulic circuit 1520 by the negative pressure generated in the first pressure chamber 1330 is the seventh hydraulic flow path ( 1407), the eighth hydraulic flow passage 1408, and the ninth hydraulic flow passage 1409 are sequentially passed, and are recovered to the first pressure chamber 1330.
- the sixth valve 1436 provided in the seventh hydraulic flow path 1407 is provided as a check valve that allows only the flow of the pressurized medium discharged from the second hydraulic circuit 1520 so that the pressurized medium can be recovered.
- the seventh valve 1437 is opened to allow the flow of the pressurized medium through the ninth hydraulic flow path 1409.
- the third inlet valve 1521a and the fourth inlet valve 1522a provided in the second hydraulic circuit 1520 are kept open. Furthermore, the eighth valve 1438 is controlled in a closed state to prevent leakage of the pressurized medium recovered from the second hydraulic circuit 1520 to the second pressure chamber 1340 through the tenth hydraulic passage 1410. . The third inlet valve 1521a and the fourth inlet valve 1521b provided in the second hydraulic circuit 1520 are kept open.
- the second dump valve 1841 is opened so that the hydraulic piston 1320 can be moved back quickly and smoothly, so that the pressurized medium accommodated in the second pressure chamber 1340 passes through the second bypass flow path 1840. It may be discharged to the reservoir 1100.
- FIG. 9 is a hydraulic circuit diagram showing an operating state in an abnormal operation mode (fallback mode) when normal operation of the electronic brake system 1000 according to the present embodiment is impossible due to a device failure or the like.
- each of the valves is controlled to a non-operating state of the braking initial state.
- the simulation piston 1230 connected to the brake pedal 10 advances and displacement occurs.
- the pressurized medium accommodated in the simulation chamber 1230a by the advance of the simulation piston 1230 is along the first backup passage 1610, the first wheel cylinder 21 and the second wheel cylinder 22 of the first hydraulic circuit 1510. ) To implement braking.
- the pressurized medium accommodated in the simulation chamber 1230a advances the first master piston 1220 to generate displacement, thereby allowing the pressurized medium accommodated in the first master chamber 1220a to flow along the second backup passage 1620 It is transmitted to the third wheel cylinder 23 and the fourth wheel cylinder 24 of the second hydraulic circuit 1520 to implement braking.
- the second master piston 1240 also advances due to the displacement of the first master piston 1220 to generate the displacement, so that the pressurized medium accommodated in the second master chamber 1240a is first moved along the auxiliary backup passage 1630. It may be joined to the backup passage 1610 and provided as the first hydraulic circuit 1510.
- the hydraulic pressure of the pressurized medium pressurized in the simulation chamber 1230a by the reaction force of the elastic member 1250 disposed in the simulation chamber 1230a is higher than that of the pressurized medium pressurized in the first master chamber 1220a.
- What is provided in the lowered state is compensated by the hydraulic pressure of the pressurized medium pressurized in the second master chamber 1240a, so that the balance of the hydraulic pressure provided to the first and second backup passages 1610 and 1620 can be stably maintained.
- by providing different diameters of the simulation piston 1230 and the first and second master pistons 1220 and 1240 it is possible to achieve stable braking by eliminating an imbalance in hydraulic pressure due to a difference in displacement of the piston.
- the electronic brake system 1000 is an integrated master cylinder 1200 or a simulator valve. It is possible to perform a test mode for checking whether the 1261 is leaked.
- the electronic control unit controls to supply the hydraulic pressure generated from the hydraulic pressure supply device 1300 to the simulation chamber 1230a and the second master chamber 1240a of the integrated master cylinder 1200.
- the electronic control unit generates hydraulic pressure in the first pressure chamber 1330 by operating to advance the hydraulic piston 1320 while each valve is controlled in an initial braking state in a non-operation state, and cuts The valve 1621 and the third and fourth inlet valves 1521a and 1522a are switched to a closed state. Accordingly, the hydraulic pressure formed in the first pressure chamber 1330 is transmitted to the first hydraulic circuit 1510 through sequentially passing through the first hydraulic flow path 1401, the third hydraulic flow path 1403, and the fourth hydraulic flow path 1404. , The pressurized medium delivered to the second hydraulic circuit 1520 flows into the simulation chamber 1230a through the first backup flow path 1610, and flows into the second master chamber 1240a through the auxiliary backup flow path 1630. . At this time, the simulator valve 1261 maintains a closed state to induce the first master chamber 1220a to be closed.
- the first master Since a part of the hydraulic pressure of the pressurized medium applied to the chamber 1220a is lost, it is determined that a leak exists in the integrated master cylinder 1200 or the simulator valve 1261, and this may be notified to the driver.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Regulating Braking Force (AREA)
- Braking Systems And Boosters (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
Abstract
전자식 브레이크 시스템에 개시된다. 본 발명의 일 실시 예에 의한 전자식 브레이크 시스템은 브레이크 페달 측으로부터 시뮬레이션 챔버, 제1 마스터 챔버, 제2 마스터 챔버가 순차적으로 형성된 통합형 마스터 실린더를 포함하고, 통합형 마스터 실린더는 브레이크 페달에 의해 변위 가능하게 마련되어 시뮬레이션 챔버를 가압하는 시뮬레이션 피스톤과, 제1 마스터 챔버를 가압하며 시뮬레이션 피스톤보다 상대적으로 직경이 작은 제1 마스터 피스톤과, 제2 마스터 챔버를 가압하며 제1 마스터 피스톤보다 상대적으로 직경이 작은 제2 마스터 피스톤과, 시뮬레이션 피스톤과 제1 마스터 피스톤 사이에 개재되어 브레이크 페달에 반력을 제공하는 탄성부재를 포함한다.
Description
본 발명은 전자식 브레이크 시스템 및 이의 작동방법에 관한 것으로서, 보다 상세하게는 브레이크 페달의 변위에 대응하는 전기적 신호를 이용하여 제동력을 발생시키는 전자식 브레이크 시스템 및 이의 작동방법에 관한 것이다.
차량에는 제동을 수행하기 위한 브레이크 시스템이 필수적으로 장착되며, 운전자 및 승객의 안전을 위해 다양한 방식의 브레이크 시스템이 제안되고 있다.
종래의 브레이크 시스템은 운전자가 브레이크 페달을 밟으면 기계적으로 연결된 부스터를 이용하여 휠 실린더에 제동에 필요한 액압을 공급하는 방식이 주로 이용되었다. 그러나 차량의 운용 환경에 세밀하게 대응하여 다양한 제동 기능을 구현하고자 하는 시장의 요구가 증대됨에 따라, 최근에는 운전자가 브레이크 페달을 밟으면 브레이크 페달의 변위를 감지하는 페달 변위센서로부터 운전자의 제동의지를 전기적 신호로 전달받고, 이에 근거하여 액압 공급장치를 작동시켜 제동에 필요한 액압을 휠 실린더로 공급하는 전자식 브레이크 시스템이 널리 보급되고 있다.
이와 같은 전자식 브레이크 시스템은 정상 작동모드 시 운전자의 브레이크 페달 작동이 전기적 신호로 발생 및 제공되고, 이에 근거하여 액압 공급장치가 전기적으로 작동 및 제어됨으로써 제동에 필요한 액압을 형성하여 휠 실린더로 전달한다. 이와 같이, 이러한 전자식 브레이크 시스템 및 작동방법은 전기적으로 작동 및 제어되는 바 복잡하면서도 다양한 제동 작용을 구현할 수 있기는 하지만, 전장 부품요소에 기술적 문제점이 발생하는 경우 제동에 필요한 액압이 안정적으로 형성되지 않아 승객의 안전을 위협할 우려가 있다.
따라서 전자식 브레이크 시스템은 일 부품요소가 고장나거나 제어 불능의 상태에 해당하는 경우 비정상 작동모드에 돌입하게 되며, 이 때는 운전자의 브레이크 페달 작동이 휠 실린더로 직접 연동되어야 하는 메커니즘이 요구된다. 즉, 전자식 브레이크 시스템의 비정상 작동모드에서는 운전자가 브레이크 페달에 답력을 가함에 따라 제동에 필요한 액압을 곧바로 형성하고, 이를 휠 실린더로 직접 전달될 수 있어야 한다.
본 실시 예는 적용되는 부품 수를 절감하고 제품의 소형화 및 경량화를 도모할 수 있는 전자식 브레이크 시스템을 제공하고자 한다.
본 실시 예는 다양한 운용상황에서도 제동을 효과적으로 구현할 수 있는 전자식 브레이크 시스템을 제공하고자 한다.
본 실시 예는 고압의 제동압력을 안정적으로 발생시킬 수 있는 전자식 브레이크 시스템을 제공하고자 한다.
본 실시 예는 성능 및 작동 신뢰성이 향상된 전자식 브레이크 시스템을 제공하고자 한다.
본 실시 예는 부품요소에 가해지는 부하를 저감하여 제품의 내구성이 향상된 전자식 브레이크 시스템을 제공하고자 한다.
본 실시 예는 제품의 조립성 및 생산성을 향상시킴과 동시에, 제품의 제조원가를 절감할 수 있는 전자식 브레이크 시스템을 제공하고자 한다.
본 발명의 일 측면에 의하면, 가압매체가 저장되는 리저버; 브레이크 페달 측으로부터 시뮬레이션 챔버, 제1 마스터 챔버, 제2 마스터 챔버가 순차적으로 형성된 통합형 마스터 실린더; 상기 통합형 마스터 실린더와 상기 리저버를 연통시키는 리저버 유로; 상기 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 구동하여 액압을 발생시키는 액압 공급장치; 휠 실린더의 액압을 제어하는 제1 및 제2 유압서킷; 및 상기 액압 공급장치에서 상기 제1 및 제2 유압서킷으로 제공되는 액압의 흐름을 제어하는 유압 제어유닛;을 포함하고, 상기 통합형 마스터 실린더는, 상기 브레이크 페달에 의해 변위 가능하게 마련되어 상기 시뮬레이션 챔버를 가압하는 시뮬레이션 피스톤과, 상기 제1 마스터 챔버를 가압하며 상기 시뮬레이션 피스톤보다 상대적으로 직경이 작은 제1 마스터 피스톤과, 상기 제2 마스터 챔버를 가압하며 상기 제1 마스터 피스톤보다 상대적으로 직경이 작은 제2 마스터 피스톤과, 상기 시뮬레이션 피스톤과 상기 제1 마스터 피스톤 사이에 개재되어 상기 브레이크 페달에 반력을 제공하는 탄성부재를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 시뮬레이션 챔버와 상기 제1 유압서킷을 연결하는 제1 백업유로; 상기 제1 마스터 챔버와 상기 제2 유압서킷을 연결하는 제2 백업유로; 및 상기 제2 마스터 챔버와 상기 제1 백업유로를 연결하는 보조 백업유로를 더 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 백업유로에 마련되어 가압매체의 흐름을 제어하는 적어도 하나의 아웃렛밸브; 및 상기 제2 백업유로에 마련되어 가압매체의 흐름을 제어하는 컷 밸브;를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제2 백업유로는 상기 제2 유압서킷의 두 개의 인렛밸브 중 적어도 하나의 하류측 인렛유로와 연결되는 전자식 브레이크 시스템이 제공될 수 있다.
상기 보조 백업유로에는 오리피스가 마련되는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 백업유로와 연결되는 상기적어도 하나의 아웃렛밸브 중 하나는 상기 제1 백업유로에서 상기 휠 실린더로 가압매체의 흐름을 허용하는 체크밸브가 병렬 연결된 전자식 브레이크 시스템이 제공될 수 있다.
상기 시뮬레이션 챔버와 상기 리저버를 연결하며 상기 리저버로부터 상기 시뮬레이션 챔버로 제공되는 가압매체의 흐름만을 허용하는 시뮬레이터 체크밸브가 마련된 시뮬레이션 유로와, 상기 시뮬레이터 체크밸브에 대해 병렬로 연결되며 가압매체의 양방향 흐름을 제어하는 시뮬레이터 밸브가 마련된 시뮬레이터 바이패스 유로를 더 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 리저버 유로는, 상기 제1 마스터 챔버와 상기 리저버를 연결하는 제1 리저버 유로; 및 상기 제2 마스터 챔버와 상기 리저버를 연결하는 제2 리저버 유로;를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 액압 공급장치는 유압피스톤의 전진 및 후진 이동시 각각 가압되는 제1 압력챔버 및 제2 압력챔버를 포함하고, 상기 유압 제어유닛은 상기 제1 압력챔버와 연통되는 제1 유압유로와, 상기 제2 압력챔버와 연통되는 제2 유압유로와, 상기 제1 유압유로와 상기 제2 유압유로가 합류하는 제3 유압유로와, 상기 제3 유압유로에서 분기되어 상기 제1 유압서킷으로 연결되는 제4 유압유로와, 상기 제3 유압유로에서 분기되어 상기 제2 유압서킷으로 연결되는 제5 유압유로와, 상기 제1 유압서킷과 연통되는 제6 유압유로와, 상기 제2 유압서킷과 연통되는 제7 유압유로와, 상기 제6 유압유로와 상기 제7 유압유로가 합류하는 제8 유압유로와, 상기 제8 유압유로에서 분기되어 상기 제1 압력챔버와 연결되는 제9 유압유로와, 상기 제8 유압유로에서 분기되어 상기 제2 압력챔버와 연결되는 제10 유압유로를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 유압 제어유닛은 상기 제1 유압유로에 마련되어 가압매체의 흐름을 제어하는 제1 밸브와, 상기 제2 유압유로에 마련되어 가압매체의 흐름을 제어하는 제2 밸브와, 상기 제4 유압유로에 마련되어 가압매체의 흐름을 제어하는 제3 밸브와, 상기 제5 유압유로에 마련되어 가압매체의 흐름을 제어하는 제4 밸브와, 상기 제6 유압유로에 마련되어 가압매체의 흐름을 제어하는 제5 밸브와, 상기 제7 유압유로에 마련되어 가압매체의 흐름을 제어하는 제6 밸브와, 상기 제9 유압유로에 마련되어 가압매체의 흐름을 제어하는 제7 밸브와, 상기 제10 유압유로에 마련되어 가압매체의 흐름을 제어하는 제8 밸브를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 밸브는 상기 제1 압력챔버로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제2 밸브는 상기 제2 압력챔버로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제3 밸브는 상기 제3 유압유로로부터 상기 제1 유압서킷으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제4 밸브는 상기 제3 유압유로로부터 상기 제2 유압서킷으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제5 밸브는 상기 제1 유압서킷으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제6 밸브는 상기 제2 유압서킷으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고, 상기 제7 밸브 및 상기 제8 밸브는 가압매체의 양 방향 흐름을 제어하는 솔레노이드 밸브로 마련되는 전자식 브레이크 시스템이 제공될 수 있다.
상기 리저버와 상기 액압 공급장치 사이에 마련되어 가압매체의 흐름을 제어하는 덤프제어부;를 더 포함하고, 상기 덤프제어부는 상기 제1 압력챔버와 상기 리저버를 연결하는 제1 덤프유로와, 상기 제1 덤프유로에 마련되어 상기 리저버로부터 상기 제1 압력챔버로 향하는 가압매체의 흐름만을 허용하는 제1 덤프 체크밸브와, 상기 제1 덤프유로 상에서 상기 제1 덤프 체크밸브에 대해 병렬로 연결되는 제1 바이패스 유로와, 상기 제1 바이패스 유로에 마련되어 가압매체의 양 방향 흐름을 제어하는 제1 덤프밸브와, 상기 제2 압력챔버와 상기 리저버를 연결하는 제2 덤프유로와, 상기 제2 덤프유로에 마련되어 상기 리저버로부터 상기 제2 압력챔버로 향하는 가압매체의 흐름만을 허용하는 제2 덤프 체크밸브와, 상기 제2 덤프유로 상에서 상기 제2 덤프 체크밸브에 대해 병렬로 연결되는 제2 바이패스 유로와, 상기 제2 바이패스 유로에 마련되어 가압매체의 양 방향 흐름을 제어하는 제2 덤프밸브를 포함하는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 마스터 챔버의 직경은 상기 시뮬레이션 챔버의 직경보다 작고, 상기 제2 마스터 챔버의 직경보다 크게 형성되는 전자식 브레이크 시스템이 제공될 수 있다.
상기 제1 압력챔버를 가압하는 제1 제동모드와, 상기 제1 제동모드 후 상기 제2 압력챔버를 가압하는 제2 제동모드와, 상기 제2 제동모드 후 상기 제1 압력챔버를 가압하는 제3 제동모드를 포함하는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제1 제동모드는, 상기 제7 밸브, 상기 제8 밸브 및 상기 제1 덤프밸브는 닫히고, 상기 제2 덤프밸브는 열린 상태이며, 상기 제1 압력챔버에 형성된 액압은 상기 제1 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제1 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제2 제동모드는, 상기 제7 밸브, 상기 제8 밸브 및 상기 제2 덤프밸브는 닫히고, 상기 제1 덤프밸브는 열린 상태이며, 상기 제2 압력챔버에 형성된 액압은 상기 제2 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제2 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
상기 제3 제동모드는, 상기 제7 밸브 및 상기 제8 밸브를 열리고, 상기 제1 덤프밸브 및 상기 제2 덤프밸브는 닫힌 상태이며, 상기 제1 압력챔버에 형성된 액압의 일부는 상기 제1 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제1 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되되, 상기 제1 압력챔버에 형성된 액압의 나머지 일부는 상기 제9 유압유로와 상기 제10 유압유로를 순차적으로 거쳐 상기 제2 압력챔버로 공급되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
정상 작동모드 시, 상기 컷 밸브, 상기 적어도 하나의 아웃렛밸브는 닫히고, 상기 시뮬레이터 밸브는 열린 상태이며, 상기 브레이크 페달의 작동에 의해 상기 시뮬레이션 피스톤이 상기 탄성부재를 압축시키고, 상기 탄성부재의 반력이 운전자에게 페달감으로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
비정상 작동모드 시, 상기 컷 밸브, 상기 적어도 하나의 아웃렛밸브는 열리고, 상기 시뮬레이터 밸브는 닫힌 상태이며, 상기 브레이크 페달의 답력에 따라 상기 시뮬레이션 챔버의 가압매체는 상기 제1 백업유로를 통해 상기 제1 유압서킷으로 제공되고, 상기 제1 마스터 챔버의 가압매체는 상기 제2 백업유로를 통해 상기 제2 유압서킷으로 제공되며, 상기 제2 마스터 챔버의 가압매체는 상기 보조 백업유로와 상기 제1 백업유로를 순차적으로 거쳐 상기 제1 백업유로에 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
검사모드 시, 상기 컷 밸브는 닫히고, 상기 액압 공급장치의 액압이 상기 제1 유압서킷을 통해 상기 제1 백업유로를 거쳐 상기 시뮬레이션 챔버로 제공되고, 상기 제1 백업유로에서 상기 보조 백업유로를 통해 상기 제2 마스터 챔버로 제공되는 전자식 브레이크 시스템의 작동방법이 제공될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 의해 부품 수를 절감하고 제품의 소형화 및 경량화를 도모할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 차량의 다양한 운용상황에서 제동을 안정적이고 효과적으로 구현할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 고압의 제동압력을 안정적으로 발생시킬 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 제품의 성능 및 작동 신뢰성이 향상될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 부품요소의 고장 또는 가압매체의 누출 시에도 제동압력을 안정적으로 제공할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템은 부품요소에 가해지는 부하를 저감하여 제품의 내구성이 향상되는 효과를 가진다.
본 실시 예에 의한 전자식 브레이크 시스템은 제품의 조립성 및 생산성을 향상시킴과 동시에, 제품의 제조원가를 절감할 수 있다.
도 1은 본 실시 예에 의한 전자식 브레이크 시스템을 나타내는 유압회로도이다.
도 2는 본 실시 예에 의한 전자식 브레이크 시스템의 페달 시뮬레이터 동작상태를 나타내는 유압회로도이다.
도 3은 본 실시 예에 의한 전자식 브레이크 시스템이 제1 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 4는 본 실시 예에 의한 전자식 브레이크 시스템이 제2 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 5는 본 실시 예에 의한 전자식 브레이크 시스템이 제3 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 6은 본 실시 예에 의한 전자식 브레이크 시스템이 제3 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 7은 본 실시 예에 의한 전자식 브레이크 시스템이 제2 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 8은 본 실시 예에 의한 전자식 브레이크 시스템이 제1 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 9는 본 실시 예에 의한 전자식 브레이크 시스템이 비정상 작동모드(폴백모드)를 수행하는 상태를 나타내는 유압회로도이다.
도 10은 본 실시 예에 의한 전자식 브레이크 시스템이 검사모드를 수행하는 상태를 나타내는 유압회로도이다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
도 1은 본 실시 예에 의한 전자식 브레이크 시스템(1000)을 나타내는 유압회로도이다.
도 1을 참조하면, 본 실시 예에 의한 전자식 브레이크 시스템(1000)은 가압매체가 저장되는 리저버(1100)와, 브레이크 페달(10)의 답력에 따른 반력을 운전자에게 제공함과 동시에, 내측에 수용된 브레이크 오일 등의 가압매체를 가압 및 토출하는 통합형 마스터 실린더(1200)와, 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(11)에 의해 운전자의 제동의지를 전기적 신호로 전달받아 기계적인 작동을 통해 가압매체의 액압을 발생시키는 액압 공급장치(1300)와, 액압 공급장치(1300)에서 제공되는 액압을 제어하는 유압 제어유닛(1400)과, 가압매체의 액압이 전달되어 각 차륜(RR, RL, FR, FL)의 제동을 수행하는 휠 실린더(20)를 구비하는 유압서킷(1510, 1520)과, 액압 공급장치(1300)와 리저버(1100) 사이에 마련되어 가압매체의 흐름을 제어하는 덤프제어부(1800)와, 통합형 마스터 실린더(1200)와 유압서킷(1510, 1520)을 유압적으로 연결하는 백업유로(1610, 1620)와, 리저버(1100)와 통합형 마스터 실린더(1200)를 유압적으로 연결하는 리저버 유로(1700)와, 액압 정보 및 페달 변위 정보에 근거하여 액압 공급장치(1300)와 각종 밸브들을 제어하는 전자제어유닛(ECU, 미도시)을 포함한다.
통합형 마스터 실린더(1200)는 시뮬레이션 챔버(1230a)와 마스터 챔버(1220a,1240a)를 구비하여, 운전자가 제동작동을 위해 브레이크 페달(10)에 답력을 가할 경우, 이에 대한 반력을 운전자에게 제공하여 안정적인 페달감을 제공함과 동시에, 내측에 수용된 가압매체를 가압 및 토출하도록 마련된다.
통합형 마스터 실린더(1200)는 운전자에게 페달감을 제공하는 페달 시뮬레이션부와, 후술하는 제1 유압서킷(1510) 측으로 가압매체를 전달하는 마스터 실린더부로 구분될 수 있다. 통합형 마스터 실린더(1200)는 브레이크 페달(10) 측으로부터 페달 시뮬레이션부와, 마스터 실린더부가 순차적으로 마련되되, 하나의 실린더블록(1210) 내에서 동축 상에 배치될 수 있다.
구체적으로, 통합형 마스터 실린더(1200)는 내측에 챔버를 형성하는 실린더블록(1210)과, 브레이크 페달(10)이 연결되는 실린더블록(1210)의 입구 측에 형성되는 시뮬레이션 챔버(1230a)와, 시뮬레이션 챔버(1230a)에 마련되고 브레이크 페달(10)과 연결되어 브레이크 페달(10)의 작동에 의해 변위 가능하게 마련되는 시뮬레이션 피스톤(1230)과, 시뮬레이션 챔버(1230a)에 배치되어 압축 시 발생하는 탄성 복원력을 통해 페달감을 제공하는 탄성부재(1250)와, 시뮬레이션 피스톤(1230)의 변위 또는 시뮬레이션 챔버(1230a)에 수용된 가압매체의 액압에 의해 변위 가능하게 마련되는 제1 마스터 피스톤(1220)과, 제1 마스터 챔버(1220a)에 마련되어 제1 마스터 피스톤(1220)을 탄성 지지하는 제1 마스터 스프링(1220b)과, 실린더블록(1210) 상에서 제1 마스터 챔버(1220a)보다 내측에 형성되는 제2 마스터 챔버(1240a)와, 제2 마스터 챔버(1240a)에 마련되어 제1 마스터 피스톤(1220)의 변위 또는 제1 마스터 챔버(1220a)에 수용된 가압매체의 액압에 의해 변위 가능하게 마련되는 제2 마스터 피스톤(1240)과, 제2 마스터 챔버(1240a)에 배치되어 제2 마스터 피스톤(1240)을 탄성 지지하는 제2 마스터 스프링(1220c)과, 시뮬레이션 챔버(1230a)와 리저버(1100)를 연결하는 시뮬레이션 유로(1260) 를 포함할 수 있다.
시뮬레이션 챔버(1230a)와 제1 마스터 챔버(1220a)와 제2 마스터 챔버(1240a)는 통합형 마스터 실린더(1200)의 실린더블록(1210) 상에서 브레이크 페달(10) 측(도 1을 기준으로 우측)으로부터 내측(도 1을 기준으로 좌측)으로 순차적으로 형성될 수 있다. 또한 시뮬레이션 피스톤(1230)과 제1 마스터 피스톤(1220)과 제2 마스터 피스톤(1240)은 각각 시뮬레이션 챔버(1230a)와 제1 마스터 챔버(1220a) 및 제2 마스터 챔버(1240a)에 각각 마련되어 전진 및 후진 이동에 따라 각 챔버에 수용된 가압매체에 액압을 형성하거나 부압을 형성할 수 있다.
시뮬레이션 챔버(1230a)는 실린더블록(1210)의 입구 측 또는 최외측(도 1을 기준으로 우측)에 형성될 수 있으며, 시뮬레이션 챔버(1230a)에는 인풋로드(12)를 매개로 브레이크 페달(10)과 연결되는 시뮬레이션 피스톤(1230)이 왕복 이동 가능하게 수용될 수 있다.
시뮬레이션 챔버(1230a)는 제1 유압포트(1280a) 및 제2 유압포트(1280b)를 통해 가압매체가 유입 및 토출될 수 있다. 제1 유압포트(1280a)는 시뮬레이션 유로(1260)에 연결되어 리저버(1100)로부터 시뮬레이션 챔버(1230a)로 가압매체가 유입될 수 있으며, 제2 유압포트(1280b)는 후술하는 제1 백업유로(1610)와 연결되어 시뮬레이션 챔버(1230a)로부터 제1 백업유로(1610) 측으로 가압매체가 토출되거나 반대로 제1 백업유로(1610)로부터 시뮬레이션 챔버(1230a) 측으로 가압매체가 유입될 수 있다.
시뮬레이션 피스톤(1230)은 시뮬레이션 챔버(1230a)에 마련되되, 전진(도 1을 기준으로 좌측 방향)함으로써 시뮬레이션 챔버(1230a)에 수용된 가압매체를 가압하여 액압을 형성하거나, 후진(도 1을 기준으로 우측 방향)함으로써 시뮬레이션 챔버(1230a)의 내부에 부압을 형성할 수 있다.
또한 시뮬레이션 피스톤(1230)은 전진함으로써 탄성부재(1250)를 가압할 수 있으며, 후진함으로써 탄성부재(1250)를 원 위치 및 형태로 복귀시킬 수 있다. 실린더블록(1210)의 내벽과 시뮬레이션 피스톤(1230)의 외주면 사이에는 가압매체의 누출을 방지하도록 적어도 하나의 실링부재(1290b)가 마련될 수 있다.
제1 마스터 챔버(1220a)는 실린더블록(1210) 상에서 시뮬레이션 챔버(1230a)의 내측(도 1을 기준으로 좌측)에 형성될 수 있으며, 제1 마스터 챔버(1220a)에는 제1 마스터 피스톤(1220)이 왕복 이동 가능하게 수용될 수 있다.
제1 마스터 챔버(1220a)는 제3 유압포트(1280c) 및 제4 유압포트(1280d)를 통해 가압매체가 유입 및 토출될 수 있다. 제3 유압포트(1280c)는 후술하는 제1 리저버 유로(1710)와 연결되어 제1 마스터 챔버(1220a)에 수용된 가압매체가 리저버(1100) 측으로 토출될 수 있으며, 반대로, 리저버(1100) 로부터 가압매체가 유입될 수 있다. 또한 제4 유압포트(1280d)는 후술하는 제2 백업유로(1620)와 연결되어 제1 마스터 챔버(1220a)에 수용된 가압매체가 제2 유압서킷(1520) 측으로 토출될 수 있으며, 반대로 제2 백업유로(1620)로부터 제1 마스터 챔버(1220a) 측으로 가압매체가 유입될 수 있다.
실린더블록(1210)의 내벽과 제1 마스터 피스톤(1220)의 외주면 사이에는 인접하는 챔버 간에 가압매체의 누출을 방지하도록 적어도 하나의 실링부재(1290a)가 마련될 수 있다.
또한 제1 마스터 챔버(1220a)는 제1 마스터 피스톤(1220)에 형성된 제1 연통홀(1221)을 통해 리저버(1100)와 연통될 수 있다.
실린더블록(1210)에 형성된 제1 마스터 챔버(1220a)는 시뮬레이션 챔버(1230a)보다 작은 직경을 가질 수 있다. 따라서, 시뮬레이션 챔버(1230a)를 가압하는 시뮬레이션 피스톤(1230)은 제1 마스터 챔버(1220a)를 가압하는 제1 마스터 피스톤(1220)의 직경보다 큰 직경을 가질 수 있다. 이는 폴백모드 시 시뮬레이션 챔버(1230a)에 배치되는 탄성부재(1250)의 반력에 의해 제2 백업유로(1620)보다 제1 백업유로(1610)로 제공되는 액압이 상대적으로 저하되는 것을 보상하기 위함이다.
제2 마스터 챔버(1240a)는 실린더블록(1210) 상에서 제1 마스터 챔버(1220a)의 내측(도 1을 기준으로 좌측)에 형성될 수 있으며, 제2 마스터 챔버(1240a)에는 제2 마스터 피스톤(1240)이 왕복 이동 가능하게 수용될 수 있다.
제2 마스터 챔버(1240a)는 제5 유압포트(1280e) 및 제6 유압포트(1280f)를 통해 가압매체가 유입 및 토출될 수 있다. 구체적으로 제5 유압포트(1280e)는 후술하는 제2 리저버 유로(1720)에 연결되어 리저버(1100)로부터 제2 마스터 챔버(1240a) 측으로 가압매체가 유입되거나 토출될 수 있다. 또한, 제6 유압포트(1280f)는 후술하는 보조 백업유로(1630)와 연결되어 제2 마스터 챔버(1240a)에 수용된 가압매체가 제1 백업유로(1610) 측으로 토출될 수 있으며, 반대로 제1 백업유로(1610)로부터 제2 마스터 챔버(1240a) 측으로 가압매체가 유입될 수 있다.
제2 마스터 피스톤(1240)은 제2 마스터 챔버(1240a)에 수용되어 마련되되, 전진함으로써 제2 마스터 챔버(1240a)에 수용된 가압매체의 액압을 형성하거나, 후진함으로써 제2 마스터 챔버(1240a)에 부압을 형성할 수 있다.
실린더블록(1210)의 내벽과 제2 마스터 피스톤(1240)의 외주면 사이에는 인접하는 챔버 간에 가압매체의 누출을 방지하도록 적어도 하나의 실링부재(1290c)가 마련될 수 있다.
또한 제2 마스터 챔버(1240a)는 제2 마스터 피스톤(1240)에 형성된 제2 연통홀(1241)을 통해 리저버(1100)와 연통될 수 있다.
실린더블록(1210)에 형성된 제2 마스터 챔버(1240a)는 제1 마스터 챔버(1220a)보다 작은 직경을 가질 수 있다. 따라서, 제2 마스터 챔버(1240a)를 가압하는 제2 마스터 피스톤(1240)은 제1 마스터 챔버(1220a)를 가압하는 제1 마스터 피스톤(1220)의 직경보다 작은 직경을 가질 수 있다. 이는 폴백모드 시 시뮬레이션 챔버(1230a)에 배치되는 탄성부재(1250)의 반력에 의해 제2 백업유로(1620)보다 제1 백업유로(1610)로 제공되는 액압이 상대적으로 저하되는 것을 보조 백업유로(1630)를 통해 제1 백업유로(1610)에 제공하여 액압 저하를 보상하기 위함이다.
탄성부재(1250)는 시뮬레이션 피스톤(1230)과 제1 마스터 피스톤(1220) 사이에 개재되고, 자체의 탄성 복원력에 의해 운전자에게 브레이크 페달(10)의 페달감을 제공하도록 마련된다. 탄성부재(1250)는 압축 및 팽창 가능한 고무 등의 재질로 이루어질 수 있으며, 브레이크 페달(10)의 작동에 의해 시뮬레이션 피스톤(1230)에 변위가 발생하되, 제1 마스터 피스톤(1220)은 원 위치를 유지하게 되면 탄성부재(1250)가 압축되고, 압축된 탄성부재(1250)의 탄성 복원력에 의해 운전자는 안정적이고 익숙한 페달감을 전달받을 수 있다.
제1 마스터 스프링(1220b)은 제1 마스터 피스톤(1220)과 제2 마스터 피스톤(1240) 사이에 개재되고, 제동 작동에 따라 제1 마스터 피스톤(1220)이 전진하여 변위가 발생하는 경우 제1 마스터 스프링(1220b)은 압축되며, 제동 해제 시 탄성 복원력에 의해 제1 마스터 피스톤(1220)을 원 위치로 복귀시킨다.
제2 마스터 스프링(1220c)은 제2 마스터 피스톤(1240)을 탄성 지지하도록 마련된다. 제2 마스터 스프링(1220c)은 일단이 실린더블록(1210)에 지지되고, 타단이 제2 마스터 피스톤(1240)에 지지됨으로써, 제2 마스터 피스톤(1240)을 탄성적으로 지지시킬 수 있다. 제동 작동에 따라 제2 마스터 피스톤(1240)이 전진하여 변위가 발생하는 경우 제2 마스터 스프링(1220c)은 압축되며, 이 후 제동이 해제되면 제2 마스터 스프링(1220c)이 탄성력에 의해 팽창하면서 제2 마스터 피스톤(1240)이 원 위치로 복귀할 수 있다.
시뮬레이션 유로(1260)는 시뮬레이션 챔버(1230a)와 리저버(1100)를 서로 연통시키도록 마련되며, 시뮬레이션 유로(1260)에는 일 방향 제동유체의 흐름만을 허용하는 시뮬레이터 체크밸브(1263)가 마련될 수 있다.
시뮬레이터 체크밸브(1263)는 리저버(1100)로부터 시뮬레이션 챔버(1230a)로 전달되는 제동유체의 흐름만을 허용한다.
시뮬레이션 유로(1260)에는 시뮬레이터 바이패스 유로(1262)가 시뮬레이터 체크밸브(1263)에 대해 병렬로 연결되고, 시뮬레이터 바이패스 유로(1262)에는 가압매체의 양 방향 흐름을 제어하는 시뮬레이터 밸브(1261)가 마련될 수 있다. 시뮬레이터 밸브(1261)는 평상 시 폐쇄 상태로 있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
리저버(1100)는 내측에 가압매체를 수용 및 저장할 수 있다. 리저버(1100)는 통합형 마스터 실린더(1200)와, 후술하는 액압 공급장치(1300)와, 후술하는 유압서킷 등 각각의 부품요소와 연결되어 가압매체를 공급하거나 전달받을 수 있다. 도면에는 여러 개의 리저버(1100)가 동일한 도면부호로 도시되어 있으나, 이는 발명에 대한 이해를 돕기 위한 일 예로서, 리저버(1100)는 단일의 부품으로 마련되거나, 별개의 독립된 복수의 부품으로 마련될 수 있다.
리저버 유로(1700)는 통합형 마스터 실린더(1200)와 리저버(1100)를 연결하도록 마련된다.
리저버 유로(1700)는 제1 마스터 챔버(1220a)와 리저버(1100)를 연결하는 제1 리저버 유로(1710)와, 제2 마스터 챔버(1240a)와 리저버(1100)를 연결하는 제2 리저버 유로(1720)를 포함할 수 있다. 이를 위해 제1 리저버 유로(1710)의 일단은 통합형 마스터 실린더(1200)의 제1 마스터 챔버(1220a)와 연통되고, 타단은 리저버(1100)와 연통될 수 있으며, 제2 리저버 유로(1720)의 일단은 통합형 마스터 실린더(1200)의 제2 마스터 챔버(1240a)와 연통되고, 타단은 시뮬레이션 유로(1260)와 연결되어 리저버(1100)와 연통될 수 있다. 한편, 제2 리저버 유로(1720)는 도면에 도시된 바와 같이, 시뮬레이터 체크밸브(1263) 상류측 시뮬레이션 유로(1260)와 시뮬레이터 바이패스 유로(1262)가 합류하는 지점에 연결되어 리저버(1100)와 연통될 수 있으나, 당해 구조에 한정되는 것은 아니며 서로 별개의 유로로 독립적으로 연결될 수도 있다.
액압 공급장치(1300)는 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(11)로부터 운전자의 제동의지를 전기적 신호로 전달받아 기계적인 작동을 통해 가압매체의 액압을 발생시키도록 마련된다.
액압 공급장치(1300)는 휠 실린더(20)로 전달되는 가압매체 압력을 제공하는 액압 제공유닛과, 페달 변위센서(11)의 전기적 신호에 의해 회전력을 발생시키는 모터(미도시)와, 모터의 회전운동을 직선운동으로 변환하여 액압 제공유닛에 전달하는 동력변환부(미도시)를 포함할 수 있다.
액압 제공유닛은 가압매체가 수용 가능하게 마련되는 실린더블록(1310)과, 실린더블록(1310) 내에 수용되는 유압피스톤(1320)과, 유압피스톤(1320)과 실린더블록(1310) 사이에 마련되어 압력챔버(1330, 1340)를 밀봉하는 실링부재(1350)와, 동력변환부에서 출력되는 동력을 유압피스톤(1320)으로 전달하는 구동축(1390)을 포함한다.
압력챔버(1330, 1340)는 유압피스톤(1320)의 전방(도 1을 기준으로 유압피스톤(1320)의 좌측 방향)에 위치하는 제1 압력챔버(1330)와, 유압피스톤(1320)의 후방(도 1을 기준으로 유압피스톤(1320)의 우측 방향)에 위치하는 제2 압력챔버(1340)를 포함할 수 있다. 즉, 제1 압력챔버(1330)는 실린더블록(1310)과 유압피스톤(1320)의 전방면에 의해 구획 마련되어 유압피스톤(1320)의 이동에 따라 체적이 달라지도록 마련되고, 제2 압력챔버(1340)는 실린더블록(1310)과 유압피스톤(1320)의 후방면에 의해 구획 마련되어 유압피스톤(1320)의 이동에 따라 체적이 달라지도록 마련된다.
제1 압력챔버(1330)는 실린더블록(1310)에 형성되는 제1 연통홀(1360a)을 통해 후술하는 제1 유압유로(1401)에 연결되고, 제2 압력챔버(1340)는 실린더블록(1310)에 형성되는 제2 연통홀(1360b)을 통해 후술하는 제2 유압유로(1402)에 연결된다.
실링부재는 유압피스톤(1320)과 실린더블록(1310) 사이에 마련되어 제1 압력챔버(1330)와 제2 압력챔버(1340) 사이를 밀봉하는 피스톤 실링부재(1350a)와, 구동축(1390)과 실린더블록(1310) 사이에 마련되어 제2 압력챔버(1340)와 실린더블록(1310)의 개구를 밀봉하는 구동축 실링부재(1350b)를 포함한다. 유압피스톤(1320)의 전진 또는 후진에 의해 발생하는 제1 압력챔버(1330) 및 제2 압력챔버(1340)의 액압 또는 부압은 피스톤 실링부재(1350a) 및 구동축 실링부재(1350b)에 의해 밀봉되어 누설되지 않고 후술하는 제1 유압유로(1401) 및 제2 유압유로(1402)에 전달될 수 있다.
모터(미도시)는 전자제어유닛(ECU)으로부터 출력되는 전기적 신호에 의해 유압피스톤(1320)의 구동력을 발생시키도록 마련된다. 모터는 스테이터와 로터를 포함하여 마련될 수 있으며, 이를 통해 정방향 또는 역방향으로 회전함으로써 유압피스톤(1320)의 변위를 발생시키는 동력을 제공할 수 있다. 모터의 회전 각속도와 회전각은 모터 제어센서에 의해 정밀하게 제어될 수 있다. 모터는 이미 널리 알려진 공지의 기술이므로 상세한 설명은 생략하기로 한다.
동력변환부(미도시)는 모터의 회전력을 직선운동으로 변환하도록 마련된다. 동력변환부는 일 예로, 웜샤프트(미도시)와 웜휠(미도시)과 구동축(1390)을 포함하는 구조로 마련될 수 있다.
웜샤프트는 모터의 회전축과 일체로 형성될 수 있고, 외주면에 웜이 형성되어 웜휠과 맞물리도록 결합하여 웜휠을 회전시킬 수 있다. 웜휠은 구동축(1390)과 맞물리도록 연결되어 구동축(1390)을 직선 이동 시킬 수 있으며, 구동축(1390)은 유압피스톤(1320)과 연결되는 바, 이를 통해 유압피스톤(1320)이 실린더블록(1310) 내에서 슬라이딩 이동될 수 있다.
이상의 동작들을 다시 설명하면, 페달 변위센서(11)에 의해 브레이크 페달(10)에 변위가 감지되면, 감지된 신호가 전자제어유닛으로 전달되고, 전자제어유닛은 모터를 구동하여 웜샤프트를 일 방향으로 회전시킨다. 웜샤프트의 회전력은 웜휠을 거쳐 구동축(1390)에 전달되고, 구동축(1390)과 연결된 유압피스톤(1320)이 실린더블록(1310) 내에서 전진하면서 제1 압력챔버(1330)에 액압을 발생시킬 수 있다.
반대로, 브레이크 페달(10)의 답력이 해제되면 전자제어유닛은 모터를 구동하여 웜샤프트를 반대 방향으로 회전시킨다. 따라서 웜휠 역시 반대 방향으로 회전하고 구동축(1390)과 연결된 유압피스톤(1320)이 실린더블록(1310) 내에서 후진하면서 제1 압력챔버(1330)에 부압을 발생시킬 수 있다.
제2 압력챔버(1340)의 액압과 부압의 발생은 위와 반대 방향으로 작동함으로써 구현할 수 있다. 즉, 페달 변위센서(11)에 의해 브레이크 페달(10)에 변위가 감지되면, 감지된 신호가 전자제어유닛으로 전달되고, 전자제어유닛은 모터를 구동하여 웜샤프트를 반대 방향으로 회전시킨다. 웜샤프트의 회전력은 웜휠을 거쳐 구동축(1390)에 전달되고, 구동축(1390)과 연결된 유압피스톤(1320)이 실린더블록(1310) 내에서 후진하면서 제2 압력챔버(1340)에 액압을 발생시킬 수 있다.
반대로, 브레이크 페달(10)의 답력이 해제되면 전자제어유닛은 모터를 일 방향으로 구동하여 웜샤프트를 일 방향으로 회전시킨다. 따라서 웜휠 역시 반대로 회전하고 구동축(1390)과 연결된 유압피스톤(1320)이 실린더블록(1310) 내에서 전진하면서 제2 압력챔버(1340)에 부압을 발생시킬 수 있다.
이처럼 액압 공급장치(1300)는 모터가 구동에 의한 웜샤프트의 회전 방향에 따라 제1 압력챔버(1330) 및 제2 압력챔버(1340)에 각각 액압이 발생하거나 부압이 발생할 수 있는데, 액압을 전달하여 제동을 구현할 것인지, 아니면 부압을 이용하여 제동을 해제할 것인지는 밸브들을 제어함으로써 결정할 수 있다. 이에 대한 상세한 설명은 후술하도록 한다.
한편, 본 실시 예에 의한 동력변환부는 모터의 회전운동을 유압피스톤(1320)의 직선운동으로 변환시킬 수 있다면 어느 하나의 구조에 한정되지 않으며, 다양한 구조 및 방식의 장치로 이루어지는 경우에도 동일하게 이해되어야 할 것이다.
액압 공급장치(1300)는 덤프제어부(1800)에 의해 리저버(1100)와 유압적으로 연결될 수 있다. 덤프제어부(1800)는 제1 압력챔버(1330)와 리저버(1100)를 연결하는 제1 덤프유로(1810)와, 제1 덤프유로(1810) 상에서 분기 후 재합류되는 제1 바이패스 유로(1830)와, 제2 압력챔버(1340)와 리저버(1100)를 연결하는 제2 덤프유로(1820)와, 제2 덤프유로(1820) 상에서 분기 후 재합류되는 제2 바이패스 유로(1840)를 포함할 수 있다.
제1 덤프유로(1810) 및 제1 바이패스 유로(1830)에는 가압매체의 흐름을 제어하는 제1 덤프 체크밸브(1811) 및 제1 덤프밸브(1831)가 각각 마련될 수 있다. 제1 덤프 체크밸브(1811)는 리저버(1100)로부터 제1 압력챔버(1330)로 향하는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하도록 마련될 수 있다 제1 덤프유로(1810)에는 제1 바이패스 유로(1830)가 제1 덤프 체크밸브(1811)에 대해 병렬로 연결되고, 제1 바이패스 유로(1830)에는 제1 압력챔버(1330)와 리저버(1100) 사이의 가압매체의 흐름을 제어하는 제1 덤프밸브(1831)가 마련될 수 있다. 다시 말해, 제1 바이패스 유로(1830)는 제1 덤프유로(1810) 상에서 제1 덤프 체크밸브(1811)의 전단과 후단을 우회하여 연결할 수 있으며, 제1 덤프밸브(1831)는 제1 압력챔버(1330)와 리저버(1100) 사이의 가압매체의 흐름을 제어하는 양 방향 솔레노이드 밸브로 마련될 수 있다. 제1 덤프밸브(1831)는 평상 시 폐쇄 상태로 있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
제2 덤프유로(1820) 및 제2 바이패스 유로(1840)에는 가압매체의 흐름을 제어하는 제2 덤프 체크밸브(1821) 및 제2 덤프밸브(1841)가 각각 마련될 수 있다. 제2 덤프 체크밸브(1821)는 리저버(1100)로부터 제2 압력챔버(1330)로 향하는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하도록 마련될 수 있다 제2 덤프유로(1820)에는 제2 바이패스 유로(1840)가 제2 덤프 체크밸브(1821)에 대해 병렬로 연결되고, 제2 바이패스 유로(1840)에는 제2 압력챔버(1330)와 리저버(1100) 사이의 가압매체의 흐름을 제어하는 제2 덤프밸브(1841)가 마련될 수 있다. 다시 말해, 제2 바이패스 유로(1840)는 제2 덤프유로(1820) 상에서 제2 덤프 체크밸브(1821)의 전단과 후단을 우회하여 연결할 수 있으며, 제2 덤프밸브(1841)는 제2 압력챔버(1330)와 리저버(1100) 사이의 가압매체의 흐름을 제어하는 양 방향 솔레노이드 밸브로 마련될 수 있다. 제2 덤프밸브(1841)는 평상 시 개방되어 있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입(Normal Open Type)의 솔레노이드 밸브로 마련될 수 있다.
유압 제어유닛(1400)은 각각의 휠 실린더(20)로 전달되는 액압을 제어하도록 마련될 수 있으며, 전자제어유닛(ECU)은 액압 정보 및 페달 변위 정보에 근거하여 액압 공급장치(1300)와 각종 밸브들을 제어하도록 마련된다.
유압 제어유닛(1400)은 네 개의 휠 실린더(20) 중, 제1 및 제2 휠 실린더(21, 22)로 전달되는 액압의 흐름을 제어하는 제1 유압서킷(1510)과, 제3 및 제4 휠 실린더(23, 24)로 전달되는 액압의 흐름을 제어하는 제2 유압서킷(1520)을 구비할 수 있으며, 액압 공급장치(1300)로부터 휠 실린더(20)로 전달되는 액압을 제어하도록 다수의 유로 및 밸브를 포함한다.
제1 유압유로(1401)는 제1 압력챔버(1330)와 연통하도록 마련되며, 제2 유압유로(1402)는 제2 압력챔버(1340)와 연통되어 마련될 수 있다. 제1 유압유로(1401) 및 제2 유압유로(1402)는 제3 유압유로(1403)로 합류한 후, 제1 유압서킷(1510)에 연결되는 제4 유압유로(1404)와, 제2 유압서킷(1520)에 연결되는 제5 유압유로(1405)로 다시 분기되어 마련될 수 있다.
제6 유압유로(1406)는 제1 유압서킷(1510)과 연통하도록 마련되며, 제7 유압유로(1407)는 제2 유압서킷(1520)과 연통하도록 마련된다. 제6 유압유로(1406) 및 제7 유압유로(1407)은 제8 유압유로(1408)로 합류한 후, 제1 압력챔버(1409)와 연통하는 제9 유압유로(1409)와, 제2 압력챔버(1410)와 연통하는 제10 유압유로(1410)로 다시 분기되어 마련될 수 있다.
제1 유압유로(1401)에는 가압매체의 흐름을 제어하는 제1 밸브(1431)가 마련될 수 있다. 제1 밸브(1431)는 제1 압력챔버(1330)로부터 배출되는 가압매체의 흐름은 허용하되, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다. 또한 제2 유압유로(1402)에는 가압매체의 흐름을 제어하는 제2 밸브(1432)가 마련될 수 있으며, 제2 밸브(1432)는 제2 압력챔버(1340)로부터 배출되는 가압매체의 흐름은 허용하되, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다.
제4 유압유로(1404)는 제1 유압유로(1401)와 제2 유압유로(1402)가 합류하는 제3 유압유로(1403)로부터 재차 분기되어 제1 유압서킷(1510)으로 연결되어 마련된다. 제4 유압유로(1404)에는 가압매체의 흐름을 제어하는 제3 밸브(1433)가 마련될 수 있다. 제3 밸브(1433)는 제3 유압유로(1403)로부터 제1 유압서킷(1510)으로 향하는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다.
제5 유압유로(1405)는 제1 유압유로(1401)와 제2 유압유로(1402)가 합류하는 제3 유압유로(1403)로부터 재차 분기되어 제2 유압서킷(1520)으로 연결되어 마련된다. 제5 유압유로(1405)에는 가압매체의 흐름을 제어하는 제4 밸브(1434)가 마련될 수 있다. 제4 밸브(1434)는 제3 유압유로(1403)로부터 제2 유압서킷(1520)으로 향하는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다.
제6 유압유로(1406)는 제1 유압서킷(1510)과 연통되고, 제7 유압유로(1407)는 제2 유압서킷(1520)가 연통되며, 제8 유압유로(1408)로 합류하도록 마련된다. 제6 유압유로(1406)에는 가압매체의 흐름을 제어하는 제5 밸브(1435)가 마련될 수 있다. 제5 밸브(1435)는 제1 유압서킷(1510)으로부터 배출되는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다. 또한 제7 유압유로(1407)에는 가압매체의 흐름을 제어하는 제6 밸브(1436)가 마련될 수 있다. 제6 밸브(1436)는 제2 유압서킷(1520)으로부터 배출되는 가압매체의 흐름만을 허용하고, 반대 방향의 가압매체 흐름은 차단하는 체크밸브로 마련될 수 있다.
제9 유압유로(1409)는 제6 유압유로(1406)와 제7 유압유로(1407)가 합류하는 제8 유압유로(1408)로부터 분기되어 제1 압력챔버(1330)로 연결되어 마련된다. 제9 유압유로(1409)에는 가압매체의 흐름을 제어하는 제7 밸브(1437)가 마련될 수 있다. 제7 밸브(1437)는 제9 유압유로(1409)를 따라 전달되는 가압매체의 흐름을 제어하는 양 방향 제어밸브로 마련될 수 있다. 제7 밸브(1437)는 평상 시 폐쇄 상태로 있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
제10 유압유로(1410)는 제6 유압유로(1406)와 제7 유압유로(1407)가 합류하는 제8 유압유로(1408)로부터 분기되어 제2 압력챔버(1340)로 연결되어 마련된다. 제10 유압유로(1410)에는 가압매체의 흐름을 제어하는 제8 밸브(1438)가 마련될 수 있다. 제8 밸브(1438)는 제10 유압유로(1410)를 따라 전달되는 가압매체의 흐름을 제어하는 양 방향 제어밸브로 마련될 수 있다. 제8 밸브(1438)는 제7 밸브(1437)와 마찬가지로, 평상 시 폐쇄 상태로 있다가 전자제어유닛으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
유압 제어유닛(1400)은 이와 같은 유압유로 및 밸브의 배치에 의해 유압피스톤(1320)의 전진에 따라 제1 압력챔버(1330)에 형성된 액압은 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 거쳐 제1 유압서킷(1510)으로 전달될 수 있으며, 제1 유압유로(1401), 제3 유압유로(1403), 제5 유압유로(1405)를 순차적으로 거쳐 제2 유압서킷(1520)으로 전달될 수 있다. 또한, 유압피스톤(1320)의 후진에 따라 제2 압력챔버(1340)에 형성된 액압은 제2 유압유로(1402), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 거쳐 제1 유압서킷(1510)으로 전달될 수 있으며, 제2 유압유로(1402), 제3 유압유로(1403), 제5 유압유로(1405)를 순차적으로 거쳐 제2 유압서킷(1520)으로 전달될 수 있다.
반대로, 유압피스톤(1320)의 후진에 따라 제1 압력챔버(1330)에 형성된 부압은 제1 유압서킷(1510)으로 제공된 가압매체를 제6 유압유로(1406), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 제1 압력챔버(1330)로 회수할 수 있으며, 제2 유압서킷(1520)으로 제공된 가압매체를 제7 유압유로(1407), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 거쳐 제1 압력챔버(1330)로 회수할 수 있다. 또한 유압피스톤(1320)의 전진에 따라 제2 압력챔버(1340)에 형성된 부압은 제1 유압서킷(1510)으로 제공된 가압매체를 제6 유압유로(1406), 제8 유압유로(1408), 제10 유압유로(1410)를 순차적으로 제1 압력챔버(1340)로 회수할 수 있으며, 제2 유압서킷(1520)으로 제공된 가압매체를 제7 유압유로(1407), 제8 유압유로(1408), 제10 유압유로(1410)를 순차적으로 거쳐 제2 압력챔버(1340)로 회수할 수 있다.
또한, 유압피스톤(1320)의 후진에 따라 제1 압력챔버(1330)에 형성된 부압은 제1 덤프유로(1810)를 통해 리저버(1100)로부터 제1 압력챔버(1330)로 가압매체를 공급받을 수 있으며, 유압피스톤(1320)의 전진에 따라 제2 압력챔버(1340)에 형성된 부압은 제2 덤프유로(1820)를 통해 리저버(1100)로부터 제2 압력챔버(1340)로 가압매체를 공급받을 수 있다.
유압 제어유닛(1400)의 제1 유압서킷(1510)은 네 개의 차륜(RR, RL, FR, FL) 중 두 개의 휠 실린더(20)인 제1 및 제2 휠 실린더(21, 22)의 액압을 제어하고, 제2 유압서킷(1520)은 다른 두 개의 휠 실린더(20)인 제3 및 제4 휠 실린더(23, 24)의 액압을 제어할 수 있다.
제1 유압서킷(1510)은 제4 유압유로(1404)를 통해 액압을 제공받고, 제6 유압유로(1406)을 통해 액압을 배출할 수 있다. 이를 위해, 제4 유압유로(1404)와 제6 유압유로(1406)는 합류한 후 제1 휠 실린더(21)와 제2 휠 실린더(22)로 연결되는 제1 및 제2 인렛유로(1511,1512)로 로 분기되어 마련될 수 있다.
또한 제2 유압서킷(1520)은 제5 유압유로(1405)를 통해 액압을 제공받고, 제7 유압유로(1407)를 통해 액압을 배출할 수 있으며, 이에 따라 제5 유압유로(1405)와 제7 유압유로(1407)가 합류한 후 제3 휠 실린더(23)와 제4 휠 실린더(24)로 연결되는 제3 및 제4 인렛유로(1521,1522)로 분기되어 마련될 수 있다.
제1 및 제2 인렛유로(1511,1512)에는 제1 및 제2 휠 실린더(21,22)로 전달되는 제동유체의 흐름 및 액압을 제어하도록 제1 및 제2 인렛밸브(1511a,1512a)가 마련되고, 제1 및 제2 인렛밸브(1511a,1512a)는 제1 및 제2 휠 실린더(21,22)의 상류 측에 각각 배치되는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제1 유압서킷(1510)에는 제1 및 제2 인렛밸브(1511a,1512a)에 대해 각각 병렬 연결되는 제1 및 제2 체크밸브(1513a,1514a)가 마련될 수 있다.
제1 및 제2 체크밸브(1513a,1514a)는 제1 및 제2 인렛유로(1511,1512) 상에서 제1 및 제2 인렛밸브(1511a,1512a)에 대해 각각 전방과 후방을 연결하는 제1 및 제2 인렛 바이패스 유로(1513,1514)에 마련되고, 제1 및 제2 휠 실린더(21,22)로부터 액압 공급장치(1300)로의 가압매체의 흐름만을 허용하고, 액압 공급장치(1300)로부터 제1 및 제2 휠 실린더(21,22)로의 제동유체의 흐름은 차단한다.
제1 및 제2 체크밸브(1513a,1514a)는 제1 및 제2 휠 실린더(21,22)에 가해진 제동유체의 액압을 신속하게 빼낼 수 있으며, 제1 및 제2 인렛밸브(1511a,1512a)가 정상적으로 작동하지 않는 경우에도 제1 및 제2 휠 실린더(21,22)에 가해진 제동유체의 액압이 액압 공급장치(1300)로 유입될 수 있도록 한다.
제1 유압서킷(1510)은 제1 및 제2 휠 실린더(21,22)의 제동 해제 시 성능 향상을 위해 제1 및 제2 인렛유로(1511,1512)에서 각각 분기되어 제1 백업유로(1610)와 연결되는 제1 및 제2 아웃렛유로(1515,1516)를 포함한다.
제1 및 제2 아웃렛유로(1515,1516)는 각각 제1 및 제2 인렛밸브(1511a,1512a)의 하류측 제1 및 제2 인렛유로(1511,1512)에서 분기되어 제1 백업유로(1610) 와 연결될 수 있다.
제1 및 제2 아웃렛유로(1515,1516)에는 각각 제1 및 제2 아웃렛밸브(1515a,1516a)가 마련되고, 제1 및 제2 아웃렛밸브(1515a,1516a)는 각각 제1 및 제2 휠 실린더(21,22)와 연결되어 제1 및 제2 휠 실린더(21,22)로부터 제동유체가 빠져나가는 흐름을 제어하는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제1 및 제2 아웃렛밸브(1515a,1516a)는 제1 백업유로(1610)의 액압이 제1 및 제2 휠 실린더(21,22)로 제공되는 것을 차단하는 컷 밸브의 기능을 더불어 수행할 수 있다.
제1 아웃렛유로(1515)에는 제1 아웃렛밸브(1515a)에 대해 병렬 연결되는 제5 체크밸브(1517a)가 마련될 수 있다.
제5 체크밸브(1517a)는 제1 아웃렛유로(1515) 상에서 제1 아웃렛밸브(1515a)의 전방과 후방을 연결하는 제1 아웃렛 바이패스 유로(1517)에 마련되고, 제1 백업유로(1610)로부터 제1 휠 실린더(21)로의 가압매체의 흐름만을 허용한다. 제5 체크밸브(1517a)는 폴백모드 시 제1 아웃렛밸브(1515a)가 정상적으로 작동하지 않는 경우에도 제1 휠 실린더(21) 측으로 제1 백업유로(1610)의 액압이 유입될 수 있도록 한다.
제1 및 제2 아웃렛밸브(1515a,1516a)는 제1 및 제2 휠 실린더(21,22)의 감압제동이 필요한 경우 개방되어 제1 및 제2 휠 실린더(21,22)의 감압을 제어할 수 있다.
제3 및 제4 인렛유로(1521,1522)에는 제2 및 제3 휠 실린더(23,24)로 전달되는 제동유체의 흐름 및 액압을 제어하도록 제3 및 제4 인렛밸브(1521a,1522a)가 마련되고, 제3 및 제4 인렛밸브(1521a,1522a)는 제3 및 제4 휠 실린더(23,24)의 상류 측에 각각 배치되는 노말 오픈 타입의 솔레노이드 밸브로 마련될 수 있다.
제2 유압서킷(1520)에는 제3 및 제4 인렛밸브(1521a,1522a)에 대해 각각 병렬 연결되는 제3 및 제4 체크밸브(1523a,1524a)가 마련될 수 있다.
제3 및 제4 체크밸브(1523a,1524a)는 제2 및 제3 인렛유로(1521,1522) 상에서 제3 및 제4 인렛밸브(1521a,1522a)에 대해 각각 전방과 후방을 연결하는 제3 및 제4 인렛 바이패스 유로(1523,1524)에 마련되고, 제3 및 제4 휠 실린더(23,24)로부터 액압 공급장치(1300)로의 제동유체의 흐름만을 허용하고, 액압 공급장치(1300)로부터 제3 및 제4 휠 실린더(23,24)로의 제동유체의 흐름은 차단한다.
제3 및 제4 체크밸브(1523a,1524a)는 제3 및 제4 휠 실린더(23,24)에 가해진 제동유체의 액압을 신속하게 빼낼 수 있으며, 제3 및 제4 인렛밸브(1521a,1522a)가 정상적으로 작동하지 않는 경우에도 제3 및 제4 휠 실린더(23,24)에 가해진 제동유체의 액압이 액압 공급장치(1300)로 유입될 수 있도록 한다.
제2 유압서킷(1520)은 제3 및 제4 휠 실린더(23,24)의 제동 해제 시 성능 향상을 위해 제3 및 제4 인렛유로(1521,1522)에서 각각 분기되어 리저버(1100)와 연결되는 제3 및 제4 아웃렛유로(1525,1526)를 포함한다.
제3 및 제4 아웃렛유로(1525,1526)는 각각 제3 및 제4 인렛밸브(1521a,1522a)의 하류측 제3 및 제4 인렛유로(1521,1522)에서 분기되어 리저버(1100)와 연결될 수 있다.
제3 및 제4 아웃렛유로(1525,1526)에는 각각 제3 및 제4 아웃렛밸브(1525a,1526a)가 마련되고, 제3 및 제4 아웃렛밸브(1525a,1526a)는 각각 제3 및 제4 휠 실린더(23,24)와 연결되어 제3 및 제4 휠 실린더(23,24)로부터 제동유체가 빠져나가는 흐름을 제어하는 노말 클로즈 타입의 솔레노이드 밸브로 마련될 수 있다.
제3 및 제4 아웃렛밸브(1525a,1526a)는 제1 및 제2 휠 실린더(21,22)의 감압제동이 필요한 경우 개방되어 제1 및 제2 휠 실린더(21,22)의 감압을 제어할 수 있다.
한편, 제4 인렛유로(1522)는 제2 백업유로(1620)와 연결되어, 제2 백업유로(1620)를 통해 제1 마스터 챔버(1220a)의 액압을 제공받을 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 장치의 고장 등에 의해 정상적인 작동이 불가능한 경우, 통합형 마스터 실린더(1200)로부터 토출되는 가압매체를 직접 휠 실린더(20)로 공급하여 제동을 구현할 수 있도록 제1 및 제2 백업유로(1610, 1620)와 보조 백업유로(1630)를 포함할 수 있다. 통합형 마스터 실린더(1200)의 액압이 휠 실린더(20)로 직접 전달되는 모드를 비정상 작동모드, 다시 말해 폴백 모드(Fallback mode)라 한다.
제1 백업유로(1610)는 통합형 마스터 실린더(1200)의 시뮬레이션 챔버(1230a)와 제1 유압서킷(1510)을 연결하도록 마련되고, 제2 백업유로(1620)는 통합형 마스터 실린더(1200)의 제1 마스터 챔버(1220a)와 제2 유압서킷(1520)을 연결하도록 마련될 수 있다. 또한 보조 백업유로(1630)는 통합형 마스터 실린더(1200)의 제2 마스터 챔버(1240a)와 제1 백업유로(1620)를 연결하도록 마련된다.
구체적으로, 제1 백업유로(1610)는 일단이 시뮬레이션 챔버(1230a)에 연결되고, 타단이 제1 유압서킷(1510) 상에서 제1 아웃렛밸브(1515a)의 하류측 제1 아웃렛유로(1515)와 제2 아웃렛밸브(1516a) 하류측 제1 아웃렛유로(1516)에 연결될 수 있으며, 제2 백업유로(1620)는 일단이 제1 마스터 챔버(1220a)에 연결되고, 타단이 제2 유압서킷(1520) 상에서 제4 인렛밸브(1522a) 하류측 제4 인렛유로(1522)에 연결될 수 있다. 또한 보조 백업유로(1630)는 일단이 제2 마스터 챔버(1240a)에 연결되고, 타단이 제1 백업유로(1610)에 합류하도록 마련되어, 제2 마스터 챔버(1240a)에 수용된 가압매체가 제1 백업유로(1610)로 전달될 수 있다.
제2 백업유로(1620)에는 가압매체의 양 방향 흐름을 제어하는 컷 밸브(1621)가 마련되고, 컷 밸브(1621)는 평상 시에는 개방되어 있다가 전자제어유닛에서 폐쇄신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입(Normal Open type)의 솔레노이드 밸브로 마련될 수 있다.
보조 백업유로(1630)에는 일정 액압을 초과하는 경우 가압매체의 흐름을 허용하기 위한 오리피스(1631)가 마련될 수 있다.
이로써 컷 밸브(1621)와, 제1 및 제2 아웃렛밸브(1515a,1516a)를 폐쇄하는 경우에는 통합형 마스터 실린더(1200)의 가압매체가 휠 실린더(20)로 직접 전달되는 것을 방지함과 동시에, 액압 공급장치(1300)에서 제공되는 액압이 유압 제어유닛(1400)을 거쳐 제1 및 제2 유압서킷(1510, 1520) 측으로 공급될 수 있으며, 컷 밸브(1621)와, 제1 및 제2 아웃렛밸브(1515a,1516a)를 개방하는 경우에는 통합형 마스터 실린더(1200)에서 가압된 가압매체가 제1 및 제2 백업유로(1610,1620)와 보조 백업유로(1630)을 통해 제1 및 제2 유압서킷(1510, 1520) 측으로 직접 공급되어 제동을 구현할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제1 유압서킷(1510) 및 제2 유압서킷(1520) 중 적어도 어느 하나의 액압을 감지하는 압력센서(PS)를 포함할 수 있다.
이하에서는 본 발명의 실시 예에 따른 전자식 브레이크 시스템의 페달 시뮬레이션 작동에 대하여 설명한다.
도 2는 본 발명의 실시 예에 따른 전자식 브레이크 시스템의 페달 시뮬레이터 작동 상태를 나타낸 것이다.
도 2를 참조하면, 통합형 마스터 실린더(1200)에 의한 페달 시뮬레이션 작동에 대해 설명하면, 정상 작동 시 운전자가 브레이크 페달(10)을 작동함과 동시에 후술하는 제2 백업유로(1620)에 마련되는 컷 밸브(1621)와, 제1 및 제2 아웃렛밸브(1515a,1516a)는 폐쇄되며, 반면 시뮬레이터 밸브(1261)는 개방된다.
브레이크 페달(10)의 작동이 진행됨에 따라 시뮬레이션 피스톤(1230)은 전진하게 되면서 탄성부재(1250)를 압축시키게 되고, 탄성부재(1250)의 압축에 의한 탄성 복원력이 운전자에게 페달감으로 제공될 수 있다.
이 경우, 컷 밸브(1621)와 제1 및 제2 아웃렛밸브(1515a,1516a)의 폐쇄 동작에 의해 제1 마스터 챔버(1220a)와 제2 마스터 챔버(1240a)는 밀폐됨으로써 제1 마스터 피스톤(1220)과 제2 마스터 피스톤(1240)은 변위가 발생하지 못하나, 시뮬레이션 챔버(1230a)에 수용된 가압매체는 시뮬레이션 유로(1260)를 통해 리저버(1100)로 전달되므로 시뮬레이션 피스톤(1230)이 전진하여 변위가 발생하고, 시뮬레이션 피스톤(1230)은 탄성부재(1250)를 압축시키게 된다.
이 후 운전자가 브레이크 페달(10)의 답력을 해제하면 탄성부재(1250)의 복원력에 의해 시뮬레이션 피스톤(1230)은 원 위치로 복귀하게 된다.
이하에서는 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 작동방법에 대해 설명한다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)의 작동은 각종 장치 및 밸브 고장이나 이상 없이 정상적으로 작동하는 정상 작동모드와, 각종 장치 및 밸브에 고장이나 이상이 발생하여 비 정상적으로 작동하는 비 정상 작동모드(폴백모드)와, 통합형 마스터 실린더(1200) 또는 시뮬레이터 밸브(1261)의 리크(leak) 여부를 검사하는 검사모드를 포함할 수 있다.
먼저 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 작동방법 중 정상 작동모드에 대해 설명한다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)의 정상 작동모드는 액압 공급장치(1300)로부터 휠 실린더(20)로 전달되는 액압이 증가함에 따라, 제1 제동모드 내지 제3 제동모드를 구분하여 작동할 수 있다. 구체적으로, 제1 제동모드는 액압 공급장치(1300)에 의한 액압을 휠 실린더(20)로 1차적으로 제공하고, 제2 제동모드는 액압 공급장치(1300)에 의한 액압을 휠 실린더(20)로 2차적으로 제공하여 제1 제동모드보다 고압의 제동압력을 전달할 수 있으며, 제3 제동모드는 액압 공급장치(1300)에 의한 액압을 휠 실린더(20)로 3차적으로 제공하여 제2 제동모드보다 고압의 제동압력을 전달할 수 있다.
제1 제동모드 내지 제3 제동모드는 액압 공급장치(1300) 및 유압 제어유닛(1400)의 동작을 달리함으로써 변경할 수 있다. 액압 공급장치(1300)는 제1 내지 제3 제동모드를 활용함으로써 고사양의 모터 없이도 충분히 높은 가압매체의 액압을 제공할 수 있으며, 나아가 모터에 가해지는 불필요한 부하를 방지할 수 있다. 이로써, 브레이크 시스템의 원가와 무게를 저감하면서도 안정적인 제동력을 확보할 수 있으며, 장치의 내구성 및 작동 신뢰성이 향상될 수 있다.
도 3은 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 제1 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 3을 참조하면, 제동 초기에 운전자가 브레이크 페달(10)을 밟으면 모터(미도시)가 일 방향으로 회전하도록 동작하고, 모터의 회전력이 동력변환부에 의해 액압 제공유닛으로 전달되며, 액압 제공유닛의 유압피스톤(1320)이 전진하면서 제1 압력챔버(1330)에 액압을 발생시킨다. 제1 압력챔버(1330)로부터 토출되는 액압은 유압 제어유닛(1400)과 제1 유압서킷(1510)과 제2 유압서킷(1520)을 거쳐 각각의 휠 실린더(20)로 전달되어 제동력을 발생시킨다.
구체적으로, 제1 압력챔버(1330)에 형성된 액압은 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 통과하여 제1 유압서킷(1510)에 마련되는 제1 및 제2 휠 실린더(21, 22)에 1차적으로 전달된다. 이 때, 제1 밸브(1431)는 제1 압력챔버(1330)로부터 배출되는 가압매체의 흐름만을 허용하고, 제3 밸브(1433)는 제3 유압유로(1403)로부터 제1 유압서킷(1510)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제1 및 제2 휠 실린더(21, 22)로 원활하게 전달될 수 있다. 또한 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하며, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지하여 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지한다.
또한, 제1 압력챔버(1330)에 형성된 가압매체의 액압은 제1 유압유로(1401), 제3 유압유로(1403), 제5 유압유로(1405)를 순차적으로 통과하여 제2 유압서킷(1520)에 마련되는 제3 및 제4 휠 실린더(23, 24)에 1차적으로 전달된다. 앞서 설명한 바와 같이, 제1 밸브(1431)는 제1 압력챔버(1330)로부터 배출되는 가압매체의 흐름만을 허용하고, 제4 밸브(1434)는 제3 유압유로(1403)로부터 제2 유압서킷(1520)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제3 및 제4 휠 실린더(23, 24)로 원활하게 전달될 수 있다. 또한 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지하며, 제3 및 제4 아웃렛밸브(1525a,1526a)와 컷 밸브(1621)는 폐쇄 상태로 유지되어 가압매체의 액압이 제2 백업유로(1620)와 리저버(1100) 측으로 누설되는 것을 방지할 수 있다.
제1 제동모드에서 제7 밸브(1437)와 제8 밸브(1438)는 폐쇄 상태이므로 제1 압력챔버(1330)에 형성된 가압매체의 액압이 제2 압력챔버(1340)로 누설되는 것을 방지할 수 있다. 또한, 제1 바이패스 유로(1830)에 마련되는 제1 덤프밸브(1831)는 폐쇄 상태를 유지하여 제1 압력챔버(1330)에 형성된 액압이 리저버(1100)로 누설되는 것을 방지할 수 있다.
한편, 유압피스톤(1320)의 전진에 따라 제2 압력챔버(1340)에는 부압이 발생하여 제2 덤프유로(1820)를 통해 리저버(1100)로부터 제2 압력챔버(1340)로 가압매체의 액압이 전달되어 후술하는 제2 제동모드를 준비할 수 있다. 제2 덤프유로(1820)에 마련되는 제2 덤프 체크밸브(1821)는 리저버(1100)로부터 제2 압력챔버(1340)로 향하는 가압매체의 흐름은 허용하는 바, 가압매체가 제2 압력챔버(1340)로 안정적으로 공급될 수 있으며, 제2 바이패스 유로(1840)에 마련되는 제2 덤프밸브(1841)는 개방 상태로 전환되어 리저버(1100)로부터 제2 압력챔버(1340)로 가압매체를 신속하게 공급할 수 있다.
액압 공급장치(1300)에 의해 휠 실린더(20)의 제동을 구현하는 제1 제동모드에서는 컷 밸브(1621)와 제1 및 제2 아웃렛밸브(1515a,1516a)는 폐쇄 전환되는 바, 통합형 마스터 실린더(1200)에서 토출되는 가압매체가 휠 실린더(20) 측으로 전달되는 것이 방지된다. 이 경우, 통합형 마스터 실린더(1200)는 전술한 페달 시뮬레이터 작동이 이루어진다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제1 제동모드보다 고압의 제동압력이 제공되어야 하는 경우 제1 제동모드에서 도 4에 도시된 제2 제동모드로 전환할 수 있다.
도 4는 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 제2 제동모드를 수행하는 상태를 나타내는 유압회로도로서, 도 4를 참조하면 전자제어유닛은 페달 변위센서(11)가 감지한 브레이크 페달(10)의 변위 또는 작동속도가 기 설정된 수준보다 높거나, 압력센서에 의해 감지한 액압이 기 설정된 수준보다 높은 경우, 보다 고압의 제동압력을 요구하는 것으로 판단하여 제1 제동모드에서 제2 제동모드로 전환할 수 있다.
제1 제동모드에서 제2 제동모드로 전환하게 되면, 모터가 타 방향으로 회전하도록 동작하고, 모터의 회전력이 동력변환부에 의해 액압 제공유닛으로 전달되어 유압피스톤(1320)이 후진함으로써 제2 압력챔버(1340)에 액압을 발생시킨다. 제2 압력챔버(1340)로부터 토출되는 액압은 유압 제어유닛(1400)과 제1 유압서킷(1510)과 제2 유압서킷(1520)을 거쳐 각각의 휠 실린더(20)로 전달되어 제동력을 발생시킨다.
구체적으로, 제2 압력챔버(1340)에 형성된 액압은 제2 유압유로(1402), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 통과하여 제1 유압서킷(1510)에 마련되는 제1 및 제2 휠 실린더(21, 22)에 2차적으로 전달된다. 이 때, 제2 유압유로(1402)에 마련되는 제2 밸브(1432)는 제2 압력챔버(1340)로부터 배출되는 가압매체의 흐름만을 허용하고, 제4 유압유로(1404)에 마련되는 제3 밸브(1433)는 제3 유압유로(1403)로부터 제1 유압서킷(1510)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제1 및 제2 휠 실린더(21, 22)로 원활하게 전달될 수 있다. 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하며, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지하여 가압매체의 액압이 제1 백업유로(1610) 측으로 누설되는 것을 방지한다.
또한, 제2 압력챔버(1340)에 형성된 액압은 제2 유압유로(1402), 제3 유압유로(1403), 제5 유압유로(1405)를 순차적으로 통과하여 제2 유압서킷(1520)에 마련되는 제3 및 제4 휠 실린더(23, 24)에 2차적으로 전달된다. 앞서 설명한 바와 같이, 제2 유압유로(1403)에 마련되는 제2 밸브(1432)는 제2 압력챔버(1340)로부터 배출되는 가압매체의 흐름만을 허용하며, 제5 유압유로(1405)에 마련되는 제4 밸브(1434)는 제3 유압유로(1403)로부터 제2 유압서킷(1520)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제3 및 제4 휠 실린더(23, 24)로 원활하게 전달될 수 있다. 또한 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지하며, 컷 밸브(1621)는 폐쇄 상태로 유지되어 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지할 수 있다.
제2 제동모드에서 제7 밸브(1437)와 제8 밸브(1438)는 폐쇄 상태로 제어되어, 제2 압력챔버(1340)에 형성된 가압매체의 액압이 제1 압력챔버(1330)로 누설되는 것을 방지할 수 있다. 또한 제2 덤프밸브(1841)는 폐쇄 상태로 전환됨으로써, 제2 압력챔버(1340)에 형성된 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지할 수 있다.
한편, 유압피스톤(1320)의 후진에 따라 제1 압력챔버(1330)에는 부압이 발생하여 제1 덤프유로(1810)를 통해 리저버(1100)로부터 제1 압력챔버(1330)로 가압매체의 액압이 전달되어 후술하는 제3 제동모드를 준비할 수 있다. 제1 덤프유로(1810)에 마련되는 제1 덤프 체크밸브(1811)는 리저버(1100)로부터 제1 압력챔버(1330)로 향하는 가압매체의 흐름은 허용하는 바, 가압매체가 제1 압력챔버(1330)로 안정적으로 공급될 수 있으며, 제1 바이패스 유로(1830)에 마련되는 제1 덤프밸브(1831)는 개방 상태로 전환되어 리저버(1100)로부터 제1 압력챔버(1330)로 가압매체를 신속하게 공급할 수 있다.
제2 제동모드에서 통합형 마스터 실린더(1200)의 작동은 앞서 설명한 전자식 브레이크 시스템의 제1 제동모드에서의 통합형 마스터 실린더(1200)의 작동과 동일하며 내용의 중복을 방지하기 위해 설명을 생략한다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제2 제동모드보다 고압의 제동압력이 제공되어야 하는 경우 제2 제동모드에서 도 5에 도시된 제3 제동모드로 전환할 수 있다.
도 5는 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 제3 제동모드를 수행하는 상태를 나타내는 유압회로도이다.
도 5를 참조하면, 전자제어유닛은 페달 변위센서(11)가 감지한 브레이크 페달(10)의 변위 또는 작동속도가 기 설정된 수준보다 높거나, 압력센서에 의해 감지한 액압이 기 설정된 수준보다 높은 경우, 보다 고압의 제동압력을 요구하는 것으로 판단하여 제2 제동모드에서 제3 제동모드로 전환할 수 있다.
제2 제동모드에서 제3 제동모드로 전환하게 되면, 모터(미도시)가 일 방향으로 회전하도록 동작하고, 모터의 회전력이 동력변환부에 의해 액압 제공유닛으로 전달되며, 액압 제공유닛의 유압피스톤(1320)이 다시 전진하면서 제1 압력챔버(1330)에 액압을 발생시킨다. 제1 압력챔버(1330)로부터 토출되는 액압은 유압 제어유닛(3400)과 제1 유압서킷(1510)과 제2 유압서킷(1520)을 거쳐 각각의 휠 실린더(20)로 전달되어 제동력을 발생시킨다.
구체적으로, 제1 압력챔버(1330)에 형성된 액압의 일부는 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 통과하여 제1 유압서킷(1510)에 마련되는 제1 및 제2 휠 실린더(21, 22)에 3차적으로 전달된다. 이 때, 제1 밸브(1431)는 제1 압력챔버(1330)로부터 배출되는 가압매체의 흐름만을 허용하고, 제3 밸브(1433)는 제3 유압유로(1403)로부터 제1 유압서킷(1510)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제1 및 제2 휠 실린더(21, 22)로 원활하게 전달될 수 있다. 또한 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하며, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지하여 가압매체의 액압이 제1 백업유로(1610) 측으로 누설되는 것을 방지한다.
또한, 제1 압력챔버(1330)에 형성된 가압매체의 액압의 일부는 제1 유압유로(1401), 제3 유압유로(1403), 제5 유압유로(1405)를 순차적으로 통과하여 제2 유압서킷(1520)에 마련되는 제3 및 제4 휠 실린더(23, 24)에 3차적으로 전달된다. 앞서 설명한 바와 같이, 제1 밸브(1431)는 제1 압력챔버(1330)로부터 배출되는 가압매체의 흐름만을 허용하고, 제4 밸브(1434)는 제3 유압유로(1403)로부터 제2 유압서킷(1520)으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되는 바, 가압매체의 액압이 제3 및 제4 휠 실린더(23, 24)로 원활하게 전달될 수 있다. 또한 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지하며, 컷 밸브(1621)는 폐쇄 상태로 유지되어 가압매체의 액압이 리저버(1100) 측으로 누설되는 것을 방지할 수 있다.
한편, 제3 제동모드는 고압의 액압이 제공되는 상태이므로 유압피스톤(1320)이 전진할수록 제1 압력챔버(1330) 내의 액압이 유압피스톤(1320)을 후진시키려는 힘 역시 증가하게 되어 모터에 가해지는 부하가 급격히 증가하게 된다. 이에 제3 제동모드에서는 제7 밸브(1437)와 제8 밸브(1438)를 개방 작동하여, 제9 유압유로(1409) 및 제10 유압유로(1410)을 통한 가압매체 흐름을 허용할 수 있다. 다시 말해, 제1 압력챔버(1330)에 형성된 액압의 일부가 제9 유압유로(1409) 및 제10 유압유로(1410)를 순차적으로 통과하여 제2 압력챔버(1340)로 공급될 수 있으며, 이를 통해 제1 압력챔버(1330)와 제2 압력챔버(1340)가 서로 연통되어 액압을 동기화시킴으로써 모터에 가해지는 부하를 저감하고 장치의 내구성 및 신뢰성을 향상시킬 수 있다.
제3 제동모드에서는 제1 덤프밸브(1831)는 폐쇄 상태로 전환되어 제1 압력챔버(1330)에 형성된 가압매체의 액압이 제1 바이패스 유로(1830)를 따라 리저버(1100)로 누설되는 것을 방지할 수 있으며, 제2 덤프밸브(2841) 역시 폐쇄 상태로 제어됨으로써, 유압피스톤(1320)의 전진에 의해 제2 압력챔버(1340)에 부압을 신속하게 형성하여 제1 압력챔버(1330)로부터 제공되는 가압매체를 원활하게 공급받을 수 있다.
제3 제동모드에서 통합형 마스터 실린더(1200)의 작동은 앞서 설명한 전자식 브레이크 시스템의 제1 및 제2 제동모드에서의 통합형 마스터 실린더(1200)의 작동과 동일하며 내용의 중복을 방지하기 위해 설명을 생략한다.
한편, 제1 및 제3 제동모드에서 휠 실린더(20)의 제동압력을 감지하여 ABS 덤프모드 등 감압제동이 필요한 경우 제1 및 제2 휠 실린더(21,22)의 가압매체를 제1 유압서킷(1510)에 마련된 제1 및 제2 아웃렛밸브(1515a,1516a)를 선택적으로 개방하여 제1 백업유로(1610)와 시뮬레이션 챔버(1230a)를 통해 리저버(1110)로 회수하고, 제2 및 제2 휠 실린더(23,24)의 가압매체를 제2 유압서킷(1520)에 마련된 제3 및 제4 아웃렛밸브(1525a,1526a)를 통해 리저버(1110)로 회수함으로써 감압을 제어할 수 있다.
이하에서는 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 정상 작동모드에서 제동을 해제하는 작동방법에 대해 설명한다.
도 6은 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 유압피스톤(1320) 후진하면서 제3 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 6을 참조하면, 브레이크 페달(10)에 가해진 답력이 해제되면 모터가 타 방향으로 회전력을 발생하여 동력변환부로 전달하고, 동력변환부는 유압피스톤(1320)을 후진시킨다. 이로써, 제1 압력챔버(1330)의 액압을 해제함과 동시에, 부압을 발생시킬 수 있으며, 이로써 휠 실린더(20)의 가압매체는 제1 압력챔버(1330)로 전달될 수 있다.
구체적으로, 제1 유압서킷(1510)에 마련되는 제1 휠 실린더(21) 및 제2 휠 실린더(22)의 액압은 제6 유압유로(1406), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 이 때, 제6 유압유로(1406)에 마련되는 제5 밸브(1435)는 제1 유압서킷(1510)으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되므로 가압매체가 회수될 수 있으며, 제9 유압유로(1409)를 통한 가압매체의 흐름을 허용하도록 제7 밸브(1437)는 개방된다. 또한 제1 압력챔버(1330)에 부압을 효과적으로 형성하도록 제1 덤프밸브(1831)는 폐쇄 작동된다.
이와 동시에, 유압피스톤(1320)의 신속하고 원활한 후진을 도모할 수 있도록 제2 압력챔버(1340)에 수용된 가압매체는 제10 유압유로(1410), 제9 유압유로(1409)를 순차적으로 거쳐 제1 압력챔버(1330)로 전달되며, 이를 위해 제10 유압유로(1410)에 마련되는 제8 밸브(1438) 역시 개방 상태로 전환된다. 이 때, 제2 덤프밸브(1841)는 폐쇄 작동되어 제2 압력챔버(1340)의 가압매체가 제1 압력챔버(1330)로 공급되도록 유도할 수 있다. 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하고, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지한다.
또한, 제1 압력챔버(1330)에 발생되는 부압에 의해 제2 유압서킷(1520)에 마련되는 제3 휠 실린더(23) 및 제4 휠 실린더(24)에 가해진 가압매체의 액압은 제7 유압유로(1407), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 앞서 설명한 바와 같이, 제7 유압유로(1407)에 마련되는 제6 밸브(1436)는 제2 유압서킷(1520)으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되므로 가압매체가 회수될 수 있으며, 제9 유압유로(1409)를 통한 가압매체의 흐름을 허용하도록 제7 밸브(1437)는 개방된다. 또한 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지한다.
제3 제동모드의 해제를 완료한 후에는 휠 실린더의 제동압력을 보다 낮추기 위해 도 7에 도시된 제2 제동모드의 해제 동작으로 전환할 수 있다.
도 7은 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 유압피스톤(1320)이 전진하면서 제2 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 7을 참조하면, 브레이크 페달(10)에 가해진 답력이 해제되면 모터가 일 방향으로 회전력을 발생하여 동력변환부로 전달하고, 동력변환부는 유압피스톤(1320)을 전진시킨다. 이로써, 제2 압력챔버(1340)의 액압을 해제함과 동시에, 부압을 발생시킬 수 있으며, 이로써 휠 실린더(20)의 가압매체는 제2 압력챔버(1340)로 전달될 수 있다.
구체적으로, 제1 유압서킷(1510)에 마련되는 제1 휠 실린더(21) 및 제2 휠 실린더(22)에 가해진 가압매체의 액압은 제6 유압유로(1406), 제8 유압유로(1408), 제10 유압유로(1410)를 순차적으로 통과하여 제2 압력챔버(1340)로 회수된다. 이 때, 제6 유압유로(1406)에 마련되는 제5 밸브(1435)는 제1 유압서킷(1510)으로부터 배출되는 가압매체의 흐름만을 허용하는 바 가압매체가 회수될 수 있으며, 제10 유압유로(1410)에 마련되는 제8 밸브(1438)는 개방 전환되어 제10 유압유로(1410)를 따라 전달되는 가압매체의 흐름을 허용할 수 있다. 또한, 제7 밸브(1437)은 폐쇄 상태로 제어되어 제1 유압서킷(1510)으로부터 회수되는 가압매체가 제9 유압유로(1409)를 거쳐 제1 압력챔버(1330)로 누설되는 것을 방지할 수 있다. 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하고, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지한다.
또한, 제2 압력챔버(1340)에 발생되는 부압에 의해 제2 유압서킷(1520)에 마련되는 제3 휠 실린더(23) 및 제4 휠 실린더(24)에 가해진 가압매체의 액압은 제7 유압유로(1407), 제8 유압유로(1408), 제10 유압유로(1410)를 순차적으로 통과하여 제2 압력챔버(1340)로 회수된다. 앞서 설명한 바와 같이, 제7 유압유로(1407)에 마련되는 제6 밸브(1436)는 제2 유압서킷(1520)으로부터 배출되는 가압매체의 흐름은 허용하며, 제10 유압유로(1410)에 마련되는 제8 밸브(1438)는 개방되는 바, 가압매체가 제2 압력챔버(1340)로 원활하게 회수될 수 있다. 나아가, 제7 밸브(1437)은 폐쇄 상태로 제어되어 제1 유압서킷(1510)으로부터 회수되는 가압매체가 제9 유압유로(1409)를 거쳐 제1 압력챔버(1330)로 누설되는 것을 방지할 수 있다. 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지하고, 제3 및 제4 아웃렛밸브(1525a,1526a)는 폐쇄 상태로 유지된다.
한편, 제2 제동모드의 해제 시 제1 덤프밸브(1831)는 개방되어 유압피스톤(1320)의 원활한 전진 이동을 도모할 수 있으며, 제2 압력챔버(1340)에 신속한 부압을 형성할 수 있도록 제2 덤프밸브(1841)는 폐쇄 상태로 전환할 수 있다.
제2 제동모드의 해제를 완료한 후에는 휠 실린더(20)에 가해진 제동압을 완전히 해제하기 위해 도 8에 도시된 제1 제동모드의 해제 동작으로 전환할 수 있다.
도 8은 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 유압피스톤(1320)이 다시 후진하면서 제1 제동모드를 해제하는 상태를 나타내는 유압회로도이다.
도 8을 참조하면, 브레이크 페달(10)에 가해진 답력이 해제되면 모터가 타 방향으로 회전력을 발생하여 동력변환부로 전달하고, 동력변환부는 유압피스톤(1320)을 후진시킨다. 이로써, 제1 압력챔버(1330)에 부압을 발생시킬 수 있으며, 이로써 휠 실린더(20)의 가압매체는 제1 압력챔버(1330)로 전달될 수 있다.
구체적으로, 제1 유압서킷(1510)에 마련되는 제1 휠 실린더(21) 및 제2 휠 실린더(22)의 액압은 제6 유압유로(1406), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 이 때, 제6 유압유로(1406)에 마련되는 제5 밸브(1435)는 제1 유압서킷(1510)으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되므로 가압매체가 전달될 수 있으며, 제9 유압유로(1409)를 통한 가압매체의 흐름을 허용하도록 제7 밸브(1437)는 개방된다. 제1 유압서킷(1510)에 마련되는 제1 인렛밸브(1511a) 및 제2 인렛밸브(1512a)는 개방 상태를 유지하고, 제1 아웃렛밸브(1515a) 및 제2 아웃렛밸브(1516a)는 폐쇄 상태를 유지한다. 또한 제8 밸브(1438)은 폐쇄 상태로 제어되어 제1 유압서킷(1510)으로부터 회수되는 가압매체가 제10 유압유로(1410)를 거쳐 제2 압력챔버(1340)로 누설되는 것을 방지할 수 있으며, 제1 압력챔버(1330)에 부압을 효과적으로 형성하도록 제1 덤프밸브(1831)는 폐쇄 작동된다.
제1 압력챔버(1330)에 발생되는 부압에 의해 제2 유압서킷(1520)에 마련되는 제3 휠 실린더(23) 및 제4 휠 실린더(24)에 가해진 가압매체의 액압은 제7 유압유로(1407), 제8 유압유로(1408), 제9 유압유로(1409)를 순차적으로 통과하여 제1 압력챔버(1330)로 회수된다. 앞서 설명한 바와 같이, 제7 유압유로(1407)에 마련되는 제6 밸브(1436)는 제2 유압서킷(1520)으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되므로 가압매체가 회수될 수 있으며, 제9 유압유로(1409)를 통한 가압매체의 흐름을 허용하도록 제7 밸브(1437)는 개방된다. 또한 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1522a)는 개방 상태를 유지한다. 나아가 제8 밸브(1438)은 폐쇄 상태로 제어되어 제2 유압서킷(1520)으로부터 회수되는 가압매체가 제10 유압유로(1410)를 거쳐 제2 압력챔버(1340)로 누설되는 것을 방지할 수 있다. 제2 유압서킷(1520)에 마련되는 제3 인렛밸브(1521a) 및 제4 인렛밸브(1521b)는 개방 상태를 유지한다.
이와 동시에, 유압피스톤(1320)의 신속하고 원활한 후진을 도모할 수 있도록 제2 덤프밸브(1841)은 개방되어 제2 압력챔버(1340)에 수용된 가압매체가 제2 바이패스 유로(1840)를 거쳐 리저버(1100)로 배출될 수 있다.
이하에서는 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 정상적으로 작동하지 않는 경우, 즉 폴백모드(fall-back mode)의 작동상태에 대해 설명한다.
도 9는 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 장치의 고장 등에 의해 정상적인 작동이 불가능한 경우 비 정상 작동모드(폴백 모드)에서의 작동 상태를 나타내는 유압회로도이다.
도 9를 참조하면, 비 정상 작동모드에서 각각의 밸브들은 비 작동상태인 제동초기 상태로 제어된다. 이 때, 운전자가 브레이크 페달(10)에 답력을 가하면 브레이크 페달(10)과 연결된 시뮬레이션 피스톤(1230)이 전진하며 변위가 발생한다. 시뮬레이션 피스톤(1230)의 전진에 의해 시뮬레이션 챔버(1230a)에 수용된 가압매체는 제1 백업유로(1610)를 따라 제1 유압서킷(1510)의 제1 휠 실린더(21) 및 제2 휠 실린더(22)로 전달되어 제동을 구현할 수 있다.
또한, 시뮬레이션 챔버(1230a)에 수용된 가압매체는 제1 마스터 피스톤(1220)을 전진시켜 변위를 발생시키게 되고, 이로써 제1 마스터 챔버(1220a)에 수용된 가압매체가 제2 백업유로(1620)를 따라 제2 유압서킷(1520)의 제3 휠 실린더(23) 및 제4 휠 실린더(24)로 전달되어 제동을 구현할 수 있다. 이와 동시에, 제1 마스터 피스톤(1220)의 변위에 의해 제2 마스터 피스톤(1240)도 전진하여 변위가 발생함으로써 제2 마스터 챔버(1240a)에 수용된 가압매체가 보조 백업유로(1630)를 따라 제1 백업유로(1610)로 합류하여 제1 유압서킷(1510)으로 제공될 수 있다.
이러한 구성을 통해, 시뮬레이션 챔버(1230a)에 배치된 탄성부재(1250)의 반력에 의해 시뮬레이션 챔버(1230a)에서 가압되는 가압매체의 액압이 제1 마스터 챔버(1220a)에서 가압되는 가압매체의 액압보다 낮아진 상태에서 제공되는 것은 제2 마스터 챔버(1240a)에서 가압되는 가압매체의 액압으로 보상함에 따라 제1 및 제2 백업유로(1610,1620)로 제공되는 액압의 균형을 안정적으로 유지할 수 있게 된다. 또한 이 경우, 시뮬레이션 피스톤(1230), 제1 및 제2 마스터 피스톤(1220,1240)의 직경을 서로 다르게 구비함으로써 피스톤의 변위 차이로 인한 액압의 불균형을 해소하여 안정적 제동이 이루어질 수 있게 된다.
이하에서는 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 검사모드에 대해 설명한다.
도 10은 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 검사모드 상태를 나타내는 유압회로도로서, 도 10을 참조하면 본 실시 예에 의한 전자식 브레이크 시스템(1000)은 통합형 마스터 실린더(1200) 또는 시뮬레이터 밸브(1261)의 리크(leak) 여부를 검사하는 검사모드를 수행할 수 있다. 검사모드 수행 시 전자제어유닛은 액압 공급장치(1300)로부터 발생된 액압을 통합형 마스터 실린더(1200)의 시뮬레이션 챔버(1230a)와 제2 마스터 챔버(1240a)로 공급하도록 제어한다.
구체적으로, 전자제어유닛은 각 밸브들은 비 작동상태인 제동초기 상태로 제어된 상태에서, 유압피스톤(1320)을 전진시키도록 작동하여 제1 압력챔버(1330)에 액압을 발생시킴과 동시에, 컷 밸브(1621)와 제3 및 제4 인렛밸브(1521a,1522a) 는 폐쇄 상태로 전환시킨다. 이로써 제1 압력챔버(1330)에 형성된 액압은 제1 유압유로(1401), 제3 유압유로(1403), 제4 유압유로(1404)를 순차적으로 통과하여 제1 유압서킷(1510) 측으로 전달되며, 제2 유압서킷(1520)에 전달된 가압매체는 제1 백업유로(1610)를 거쳐 시뮬레이션 챔버(1230a)로 유입되며, 보조 백업유로(1630)를 거쳐 제2 마스터 챔버(1240a)로 유입된다. 이 때, 시뮬레이터 밸브(1261)는 폐쇄 상태를 유지하여 제1 마스터 챔버(1220a)는 밀폐된 상태로 유도한다.
이 상태에서 유압피스톤(1320)의 변위에 의해 발생이 예상되는 가압매체의 액압수치와 압력센서(PS)가 측정한 제1 유압서킷(1510) 또는 제1 마스터 챔버(1220a) 액압수치를 대비함으로써, 통합형 마스터 실린더(1200) 또는 시뮬레이터 밸브(1261)의 리크를 진단할 수 있다. 구체적으로, 유압피스톤(1320)의 변위량 또는 모터 제어센서(미도시)가 측정한 회전각에 근거하여 계산된 예상 액압수치와, 압력센서(PS)가 측정한 실제 액압수치을 대비하여, 두 액압수치가 일치할 경우 통합형 마스터 실린더(1200) 또는 시뮬레이터 밸브(1261)에 리크가 없는 것으로 판단할 수 있다. 이와는 달리, 유압피스톤(1320)의 변위량 또는 모터 제어센서(미도시)가 측정한 회전각에 근거하여 계산된 예상 액압수치 보다 압력센서(PS)가 측정한 실제 액압수치가 낮을 경우, 제1 마스터 챔버(1220a)로 가해진 가압매체의 액압 일부가 손실되는 것이므로 통합형 마스터 실린더(1200) 또는 시뮬레이터 밸브(1261)에 리크가 존재하는 것으로 판단하고, 이를 운전자에게 알릴 수 있다.
Claims (20)
- 가압매체가 저장되는 리저버;브레이크 페달 측으로부터 시뮬레이션 챔버, 제1 마스터 챔버, 제2 마스터 챔버가 순차적으로 형성된 통합형 마스터 실린더;상기 통합형 마스터 실린더와 상기 리저버를 연통시키는 리저버 유로;상기 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 구동하여 액압을 발생시키는 액압 공급장치;휠 실린더의 액압을 제어하는 제1 및 제2 유압서킷; 및상기 액압 공급장치에서 상기 제1 및 제2 유압서킷으로 제공되는 액압의 흐름을 제어하는 유압 제어유닛;을 포함하고,상기 통합형 마스터 실린더는,상기 브레이크 페달에 의해 변위 가능하게 마련되어 상기 시뮬레이션 챔버를 가압하는 시뮬레이션 피스톤과, 상기 제1 마스터 챔버를 가압하며 상기 시뮬레이션 피스톤보다 상대적으로 직경이 작은 제1 마스터 피스톤과, 상기 제2 마스터 챔버를 가압하며 상기 제1 마스터 피스톤보다 상대적으로 직경이 작은 제2 마스터 피스톤과, 상기 시뮬레이션 피스톤과 상기 제1 마스터 피스톤 사이에 개재되어 상기 브레이크 페달에 반력을 제공하는 탄성부재를 포함하는 전자식 브레이크 시스템.
- 제1항에 있어서,상기 시뮬레이션 챔버와 상기 제1 유압서킷을 연결하는 제1 백업유로;상기 제1 마스터 챔버와 상기 제2 유압서킷을 연결하는 제2 백업유로; 및상기 제2 마스터 챔버와 상기 제1 백업유로를 연결하는 보조 백업유로를 더 포함하는 전자식 브레이크 시스템.
- 제2항에 있어서,상기 제1 백업유로에 마련되어 가압매체의 흐름을 제어하는 적어도 하나의 아웃렛밸브; 및상기 제2 백업유로에 마련되어 가압매체의 흐름을 제어하는 컷 밸브;를 포함하는 전자식 브레이크 시스템.
- 제3항에 있어서,상기 제2 백업유로는 상기 제2 유압서킷의 두 개의 인렛밸브 중 적어도 하나의 하류측 인렛유로와 연결되는 전자식 브레이크 시스템.
- 제4항에 있어서,상기 보조 백업유로에는 오리피스가 마련되는 전자식 브레이크 시스템.
- 제5항에 있어서,상기 제1 백업유로와 연결되는 상기적어도 하나의 아웃렛밸브 중 하나는 상기 제1 백업유로에서 상기 휠 실린더로 가압매체의 흐름을 허용하는 체크밸브가 병렬 연결된 전자식 브레이크 시스템.
- 제3항에 있어서,상기 시뮬레이션 챔버와 상기 리저버를 연결하며 상기 리저버로부터 상기 시뮬레이션 챔버로 제공되는 가압매체의 흐름만을 허용하는 시뮬레이터 체크밸브가 마련된 시뮬레이션 유로와, 상기 시뮬레이터 체크밸브에 대해 병렬로 연결되며 가압매체의 양방향 흐름을 제어하는 시뮬레이터 밸브가 마련된 시뮬레이터 바이패스 유로를 더 포함하는 전자식 브레이크 시스템.
- 제1항에 있어서,상기 리저버 유로는,상기 제1 마스터 챔버와 상기 리저버를 연결하는 제1 리저버 유로; 및상기 제2 마스터 챔버와 상기 리저버를 연결하는 제2 리저버 유로;를 포함하는 전자식 브레이크 시스템.
- 제1항에 있어서,상기 액압 공급장치는 유압피스톤의 전진 및 후진 이동시 각각 가압되는 제1 압력챔버 및 제2 압력챔버를 포함하고,상기 유압 제어유닛은상기 제1 압력챔버와 연통되는 제1 유압유로와, 상기 제2 압력챔버와 연통되는 제2 유압유로와, 상기 제1 유압유로와 상기 제2 유압유로가 합류하는 제3 유압유로와, 상기 제3 유압유로에서 분기되어 상기 제1 유압서킷으로 연결되는 제4 유압유로와, 상기 제3 유압유로에서 분기되어 상기 제2 유압서킷으로 연결되는 제5 유압유로와, 상기 제1 유압서킷과 연통되는 제6 유압유로와, 상기 제2 유압서킷과 연통되는 제7 유압유로와, 상기 제6 유압유로와 상기 제7 유압유로가 합류하는 제8 유압유로와, 상기 제8 유압유로에서 분기되어 상기 제1 압력챔버와 연결되는 제9 유압유로와, 상기 제8 유압유로에서 분기되어 상기 제2 압력챔버와 연결되는 제10 유압유로를 포함하는 전자식 브레이크 시스템.
- 제9항에 있어서,상기 유압 제어유닛은상기 제1 유압유로에 마련되어 가압매체의 흐름을 제어하는 제1 밸브와, 상기 제2 유압유로에 마련되어 가압매체의 흐름을 제어하는 제2 밸브와, 상기 제4 유압유로에 마련되어 가압매체의 흐름을 제어하는 제3 밸브와, 상기 제5 유압유로에 마련되어 가압매체의 흐름을 제어하는 제4 밸브와, 상기 제6 유압유로에 마련되어 가압매체의 흐름을 제어하는 제5 밸브와, 상기 제7 유압유로에 마련되어 가압매체의 흐름을 제어하는 제6 밸브와, 상기 제9 유압유로에 마련되어 가압매체의 흐름을 제어하는 제7 밸브와, 상기 제10 유압유로에 마련되어 가압매체의 흐름을 제어하는 제8 밸브를 포함하는 전자식 브레이크 시스템.
- 제10항에 있어서,상기 제1 밸브는 상기 제1 압력챔버로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제2 밸브는 상기 제2 압력챔버로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제3 밸브는 상기 제3 유압유로로부터 상기 제1 유압서킷으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제4 밸브는 상기 제3 유압유로로부터 상기 제2 유압서킷으로 향하는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제5 밸브는 상기 제1 유압서킷으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제6 밸브는 상기 제2 유압서킷으로부터 배출되는 가압매체의 흐름만을 허용하는 체크밸브로 마련되고,상기 제7 밸브 및 상기 제8 밸브는 가압매체의 양 방향 흐름을 제어하는 솔레노이드 밸브로 마련되는 전자식 브레이크 시스템.
- 제11항에 있어서,상기 리저버와 상기 액압 공급장치 사이에 마련되어 가압매체의 흐름을 제어하는 덤프제어부;를 더 포함하고,상기 덤프제어부는상기 제1 압력챔버와 상기 리저버를 연결하는 제1 덤프유로와, 상기 제1 덤프유로에 마련되어 상기 리저버로부터 상기 제1 압력챔버로 향하는 가압매체의 흐름만을 허용하는 제1 덤프 체크밸브와, 상기 제1 덤프유로 상에서 상기 제1 덤프 체크밸브에 대해 병렬로 연결되는 제1 바이패스 유로와, 상기 제1 바이패스 유로에 마련되어 가압매체의 양 방향 흐름을 제어하는 제1 덤프밸브와, 상기 제2 압력챔버와 상기 리저버를 연결하는 제2 덤프유로와, 상기 제2 덤프유로에 마련되어 상기 리저버로부터 상기 제2 압력챔버로 향하는 가압매체의 흐름만을 허용하는 제2 덤프 체크밸브와, 상기 제2 덤프유로 상에서 상기 제2 덤프 체크밸브에 대해 병렬로 연결되는 제2 바이패스 유로와, 상기 제2 바이패스 유로에 마련되어 가압매체의 양 방향 흐름을 제어하는 제2 덤프밸브를 포함하는 전자식 브레이크 시스템.
- 제1항에 있어서,상기 제1 마스터 챔버의 직경은 상기 시뮬레이션 챔버의 직경보다 작고, 상기 제2 마스터 챔버의 직경보다 크게 형성되는 전자식 브레이크 시스템.
- 제12항에 의한 전자식 브레이크 시스템의 작동방법에 있어서,상기 제1 압력챔버를 가압하는 제1 제동모드와, 상기 제1 제동모드 후 상기 제2 압력챔버를 가압하는 제2 제동모드와, 상기 제2 제동모드 후 상기 제1 압력챔버를 가압하는 제3 제동모드를 포함하는 전자식 브레이크 시스템의 작동방법.
- 제14항에 있어서,상기 제1 제동모드는,상기 제7 밸브, 상기 제8 밸브 및 상기 제1 덤프밸브는 닫히고, 상기 제2 덤프밸브는 열린 상태이며,상기 제1 압력챔버에 형성된 액압은 상기 제1 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제1 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법.
- 제14항에 있어서,상기 제2 제동모드는,상기 제7 밸브, 상기 제8 밸브 및 상기 제2 덤프밸브는 닫히고, 상기 제1 덤프밸브는 열린 상태이며,상기 제2 압력챔버에 형성된 액압은 상기 제2 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제2 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되는 전자식 브레이크 시스템의 작동방법.
- 제14항에 있어서,상기 제3 제동모드는,상기 제7 밸브 및 상기 제8 밸브를 열리고, 상기 제1 덤프밸브 및 상기 제2 덤프밸브는 닫힌 상태이며,상기 제1 압력챔버에 형성된 액압의 일부는 상기 제1 유압유로와 상기 제3 유압유로와 상기 제4 유압유로를 순차적으로 거쳐 상기 제1 유압서킷으로 제공되고, 상기 제1 유압유로와 상기 제3 유압유로와 상기 제5 유압유로를 순차적으로 거쳐 상기 제2 유압서킷으로 제공되되,상기 제1 압력챔버에 형성된 액압의 나머지 일부는 상기 제9 유압유로와 상기 제10 유압유로를 순차적으로 거쳐 상기 제2 압력챔버로 공급되는 전자식 브레이크 시스템의 작동방법.
- 제7항에 따른 전자식 브레이크 시스템의 작동방법에 있어서,정상 작동모드 시,상기 컷 밸브, 상기 적어도 하나의 아웃렛밸브는 닫히고, 상기 시뮬레이터 밸브는 열린 상태이며, 상기 브레이크 페달의 작동에 의해 상기 시뮬레이션 피스톤이 상기 탄성부재를 압축시키고, 상기 탄성부재의 반력이 운전자에게 페달감으로 제공되는 전자식 브레이크 시스템의 작동방법.
- 제18항에 있어서,비정상 작동모드 시,상기 컷 밸브, 상기 적어도 하나의 아웃렛밸브는 열리고, 상기 시뮬레이터 밸브는 닫힌 상태이며, 상기 브레이크 페달의 답력에 따라 상기 시뮬레이션 챔버의 가압매체는 상기 제1 백업유로를 통해 상기 제1 유압서킷으로 제공되고, 상기 제1 마스터 챔버의 가압매체는 상기 제2 백업유로를 통해 상기 제2 유압서킷으로 제공되며, 상기 제2 마스터 챔버의 가압매체는 상기 보조 백업유로와 상기 제1 백업유로를 순차적으로 거쳐 상기 제1 백업유로에 제공되는 전자식 브레이크 시스템의 작동방법.
- 제18항에 있어서,검사모드 시,상기 컷 밸브는 닫히고, 상기 액압 공급장치의 액압이 상기 제1 유압서킷을 통해 상기 제1 백업유로를 거쳐 상기 시뮬레이션 챔버로 제공되고, 상기 제1 백업유로에서 상기 보조 백업유로를 통해 상기 제2 마스터 챔버로 제공되는 전자식 브레이크 시스템의 작동방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080038565.2A CN113874263B (zh) | 2019-05-31 | 2020-04-29 | 电子制动系统及其操作方法 |
DE112020002647.7T DE112020002647T5 (de) | 2019-05-31 | 2020-04-29 | Elektronisches bremssystem und verfahren zum betreiben desselben |
US17/614,370 US20220242381A1 (en) | 2019-05-31 | 2020-04-29 | Electronic brake system and method for operating same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190064831A KR102625043B1 (ko) | 2019-05-31 | 2019-05-31 | 전자식 브레이크 시스템 및 이의 작동방법 |
KR10-2019-0064831 | 2019-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020242072A1 true WO2020242072A1 (ko) | 2020-12-03 |
Family
ID=73552002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/005812 WO2020242072A1 (ko) | 2019-05-31 | 2020-04-29 | 전자식 브레이크 시스템 및 이의 작동방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220242381A1 (ko) |
KR (1) | KR102625043B1 (ko) |
CN (1) | CN113874263B (ko) |
DE (1) | DE112020002647T5 (ko) |
WO (1) | WO2020242072A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102674522B1 (ko) * | 2019-05-02 | 2024-06-13 | 에이치엘만도 주식회사 | 전자식 브레이크 시스템 및 이의 작동방법 |
KR102682469B1 (ko) * | 2019-05-31 | 2024-07-08 | 에이치엘만도 주식회사 | 전자식 브레이크 시스템 및 작동방법 |
KR102710847B1 (ko) * | 2019-05-31 | 2024-09-27 | 에이치엘만도 주식회사 | 전자식 브레이크 시스템 및 작동방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5729979A (en) * | 1996-09-25 | 1998-03-24 | General Motors Corporation | Variable rate brake pedal feel emulator |
US20030222497A1 (en) * | 2000-06-20 | 2003-12-04 | Wolfgang Fey | Electrohydraulic brake system for motor vehicles |
KR20160028043A (ko) * | 2014-09-02 | 2016-03-11 | 현대모비스 주식회사 | 전자식 유압 브레이크 장치 |
KR20180109179A (ko) * | 2017-03-27 | 2018-10-08 | 주식회사 만도 | 전자식 브레이크 시스템 |
KR20190029050A (ko) * | 2017-09-11 | 2019-03-20 | 주식회사 만도 | 전자식 브레이크 시스템 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502925A1 (de) * | 1995-01-31 | 1996-08-01 | Teves Gmbh Alfred | Verfahren zum Betrieb eines elektronisch regelbaren Bremsbetätigungssystems |
US6978869B2 (en) * | 2003-05-15 | 2005-12-27 | Advics Co., Ltd. | Master cylinder with a braking stroke simulator |
JP4375139B2 (ja) * | 2004-06-23 | 2009-12-02 | トヨタ自動車株式会社 | ブレーキ液圧発生装置およびブレーキシステム |
JP4706291B2 (ja) * | 2005-03-16 | 2011-06-22 | 株式会社アドヴィックス | ブレーキ装置用ストロークシミュレータ |
JP4661476B2 (ja) * | 2005-09-14 | 2011-03-30 | トヨタ自動車株式会社 | 車両用制動制御装置および車両用制動制御方法 |
JP4736706B2 (ja) * | 2005-10-17 | 2011-07-27 | トヨタ自動車株式会社 | マスタシリンダ |
JP2008265431A (ja) * | 2007-04-17 | 2008-11-06 | Toyota Motor Corp | マスタシリンダおよび液圧制御システム |
KR101107510B1 (ko) * | 2008-01-10 | 2012-02-06 | 주식회사 만도 | 전자유압브레이크시스템의 제동장치 |
CN102582601A (zh) * | 2012-03-02 | 2012-07-18 | 同济大学 | 采用一体式制动主缸总成的电液复合制动系统 |
US20140265544A1 (en) * | 2013-03-15 | 2014-09-18 | Kelsey-Hayes Company | Vehicle Brake System With Plunger Assembly |
DE102013205627A1 (de) * | 2013-03-28 | 2014-10-02 | Robert Bosch Gmbh | Bremsgerät für ein Bremssystem eines Fahrzeugs und Bremssystem für ein Fahrzeug |
DE102013209733A1 (de) * | 2013-05-24 | 2014-11-27 | Robert Bosch Gmbh | Hauptbremszylindersystem und Bremssystem für ein Fahrzeug |
KR102435304B1 (ko) * | 2015-10-19 | 2022-08-24 | 주식회사 만도 | 전자식 브레이크 시스템 |
KR20170059039A (ko) * | 2015-11-19 | 2017-05-30 | 주식회사 만도 | 전자식 브레이크 시스템 |
KR20170065827A (ko) * | 2015-12-04 | 2017-06-14 | 주식회사 만도 | 전자식 브레이크 시스템 및 이의 누설 검사방법 |
DE102016224934A1 (de) * | 2016-12-14 | 2018-06-14 | Continental Teves Ag & Co. Ohg | Hauptbremszylinder für eine Fahrzeugbremsanlage sowie Kraftfahrzeugbremsanlage |
CN106985805A (zh) * | 2017-04-12 | 2017-07-28 | 潘泓冰 | 带踏板感模拟器的多腔制动主缸系统 |
KR102356598B1 (ko) * | 2017-05-23 | 2022-01-28 | 주식회사 만도 | 전자식 브레이크 시스템 및 그 제어 방법 |
KR102443084B1 (ko) * | 2017-09-26 | 2022-09-14 | 주식회사 만도 | 전자식 브레이크 시스템 |
KR102431715B1 (ko) * | 2017-09-25 | 2022-08-12 | 주식회사 만도 | 전자식 브레이크 시스템 |
US10696281B2 (en) * | 2017-09-25 | 2020-06-30 | Mando Corporation | Electric brake system and operating method thereof |
KR102424997B1 (ko) * | 2017-09-29 | 2022-07-26 | 주식회사 만도 | 전자식 브레이크 시스템 |
-
2019
- 2019-05-31 KR KR1020190064831A patent/KR102625043B1/ko active IP Right Grant
-
2020
- 2020-04-29 WO PCT/KR2020/005812 patent/WO2020242072A1/ko active Application Filing
- 2020-04-29 US US17/614,370 patent/US20220242381A1/en active Pending
- 2020-04-29 CN CN202080038565.2A patent/CN113874263B/zh active Active
- 2020-04-29 DE DE112020002647.7T patent/DE112020002647T5/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5729979A (en) * | 1996-09-25 | 1998-03-24 | General Motors Corporation | Variable rate brake pedal feel emulator |
US20030222497A1 (en) * | 2000-06-20 | 2003-12-04 | Wolfgang Fey | Electrohydraulic brake system for motor vehicles |
KR20160028043A (ko) * | 2014-09-02 | 2016-03-11 | 현대모비스 주식회사 | 전자식 유압 브레이크 장치 |
KR20180109179A (ko) * | 2017-03-27 | 2018-10-08 | 주식회사 만도 | 전자식 브레이크 시스템 |
KR20190029050A (ko) * | 2017-09-11 | 2019-03-20 | 주식회사 만도 | 전자식 브레이크 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR20200138579A (ko) | 2020-12-10 |
DE112020002647T5 (de) | 2022-03-17 |
US20220242381A1 (en) | 2022-08-04 |
CN113874263B (zh) | 2024-04-16 |
KR102625043B1 (ko) | 2024-01-16 |
CN113874263A (zh) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020242072A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2020185012A1 (ko) | 전자식 브레이크 시스템 및 작동방법 | |
WO2020204510A1 (ko) | 전자식 브레이크 시스템 및 그 제어 방법 | |
WO2020106114A1 (ko) | 전자식 브레이크 시스템 및 작동방법 | |
WO2020242070A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2020222580A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2020242071A1 (ko) | 전자식 브레이크 시스템 및 작동방법 | |
WO2020242069A1 (ko) | 전자식 브레이크 시스템 및 작동방법 | |
WO2020204509A1 (en) | Brake system | |
WO2020184967A1 (ko) | 전자식 브레이크 시스템 | |
WO2021194286A1 (ko) | 전자식 브레이크 시스템 | |
WO2012169676A1 (ko) | 건설기계용 유압시스템 | |
WO2022092959A1 (ko) | 전자식 브레이크 시스템 | |
WO2020256338A1 (ko) | 조향 제어 장치 및 이를 포함하는 조향 보조 시스템 | |
WO2022010272A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2021215772A1 (ko) | 오일 세정 기능을 구비한 액츄에이터의 건전성 진단모듈 | |
WO2021158035A1 (ko) | 전자식 브레이크 시스템 및 그 제어방법 | |
WO2021080366A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2022146051A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 | |
WO2021210967A1 (ko) | 체크 밸브 및 이를 포함하는 브레이크 시스템 | |
WO2022146054A1 (ko) | 전자식 브레이크 시스템 | |
WO2015152434A1 (ko) | 건설기계용 작업장치 합류 유량 제어장치 및 그 제어방법 | |
WO2020226443A1 (ko) | 브레이크 장치 및 그 제어 방법 | |
WO2020184925A1 (ko) | 마스터 실린더 및 이를 구비하는 전자식 브레이크 시스템 | |
WO2020242068A1 (ko) | 전자식 브레이크 시스템 및 이의 작동방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20815586 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20815586 Country of ref document: EP Kind code of ref document: A1 |