WO2020241603A1 - 炭素繊維前駆体用処理剤及び炭素繊維前駆体 - Google Patents

炭素繊維前駆体用処理剤及び炭素繊維前駆体 Download PDF

Info

Publication number
WO2020241603A1
WO2020241603A1 PCT/JP2020/020637 JP2020020637W WO2020241603A1 WO 2020241603 A1 WO2020241603 A1 WO 2020241603A1 JP 2020020637 W JP2020020637 W JP 2020020637W WO 2020241603 A1 WO2020241603 A1 WO 2020241603A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber precursor
treatment agent
amino
mass
Prior art date
Application number
PCT/JP2020/020637
Other languages
English (en)
French (fr)
Inventor
章弘 土井
啓一郎 大島
Original Assignee
竹本油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹本油脂株式会社 filed Critical 竹本油脂株式会社
Priority to RU2021101933A priority Critical patent/RU2765182C1/ru
Priority to EP20814481.6A priority patent/EP3822405A4/en
Priority to CN202080003962.6A priority patent/CN112424418B/zh
Priority to MX2021001031A priority patent/MX2021001031A/es
Priority to US17/264,448 priority patent/US11447634B2/en
Priority to KR1020217000413A priority patent/KR102481838B1/ko
Publication of WO2020241603A1 publication Critical patent/WO2020241603A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/16Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the present invention relates to a carbon fiber precursor treatment agent capable of suppressing fluffing in the spinning process of the carbon fiber precursor, and a carbon fiber precursor to which such a carbon fiber precursor treatment agent is attached.
  • carbon fiber is widely used in various fields such as building materials and transportation equipment as a carbon fiber composite material combined with a matrix resin such as an epoxy resin.
  • the carbon fiber is produced as a carbon fiber precursor through, for example, a step of spinning acrylic fiber, a step of stretching the fiber, a flame resistance treatment step, and a carbonization treatment step.
  • a treatment agent for a carbon fiber precursor may be used in order to suppress the adhesion or fusion between the fibers that occurs in the carbon fiber manufacturing process.
  • Patent Document 1 describes a polyalkylene polyamine fatty acid condensate obtained by reacting a polyalkylene polyamine with a fatty acid having a saturated or unsaturated linear or branched chain and having 8 to 24 carbon atoms.
  • a sizing agent composition for carbon fibers containing a Japanese salt is disclosed.
  • Patent Document 2 discloses an oil for carbon fiber precursor fibers containing an amino-modified silicone having a kinematic viscosity of 1500 cSt, a nonionic surfactant, a dimethyl silicone having a kinematic viscosity of 100,000 cSt, and the like.
  • the conventional treatment agent for carbon fiber precursors still has an insufficient effect of suppressing yarn fluff in the spinning process of carbon fiber precursors.
  • the problem to be solved by the present invention is a carbon fiber precursor treatment agent capable of suppressing yarn fluff in the spinning process of the carbon fiber precursor, and a carbon fiber precursor to which the carbon fiber precursor treatment agent is attached. It is in the place to provide.
  • a treatment agent for a carbon fiber precursor containing a nonionic surfactant, an amino-modified silicone, and a dimethyl silicone having a specific viscosity is correctly suitable. I found that.
  • a treatment agent for a carbon fiber precursor which contains a nonionic surfactant, an amino-modified silicone, and a dimethyl silicone having a kinematic viscosity of 5 to 200 mm 2 / s at 25 ° C. Is provided.
  • the kinematic viscosity of the amino-modified silicone at 25 ° C. is preferably 50 to 800 mm 2 / s.
  • the treatment agent for carbon fiber precursor contains 9 to 85 parts by mass of the nonionic surfactant, assuming that the total content of the nonionic surfactant, the amino-modified silicone, and the dimethyl silicone is 100 parts by mass. It is preferable that the amino-modified silicone is contained in an amount of 10 to 90.9 parts by mass and the dimethyl silicone is contained in an amount of 0.1 to 5 parts by mass.
  • a carbon fiber precursor to which the treatment agent for carbon fiber precursor is attached is provided.
  • the treatment agent of the present embodiment contains amino-modified silicone and dimethyl silicone having a kinematic viscosity at 25 ° C. of 5 to 200 mm 2 / s as essential components.
  • the type of the nonionic surfactant is not particularly limited, and examples thereof include alcohols or carboxylic acids to which an alkylene oxide is added.
  • alcohols used as raw materials for nonionic surfactants include (1) methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, and tetradecanol.
  • carboxylic acids used as raw materials for nonionic surfactants include (6) octyl acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, and heptadecane.
  • Linear alkylcarboxylic acids such as acids, octadecanoic acid, nonadecanic acid, eicosanoic acid, heneicosanoic acid, docosanoic acid, (7) 2-ethylhexanoic acid, isododecanoic acid, isotoridecanic acid, isotetradecanoic acid, isohexadecanoic acid, isooctadecanoic acid Branched alkylcarboxylic acids such as (8) octadecenoic acid, octadecadienoic acid, linear alkenylcarboxylic acids such as octadecatrienoic acid, (9) phenol, benzyl alcohol, monostyrene phenol, distyrene phenol, tristyrene Examples thereof include aromatic alcohols such as phenol, and aromatic carboxylic acids such as (10) benzoic acid.
  • alkylene oxide used as a raw material for the nonionic surfactant include ethylene oxide and propylene oxide.
  • nonionic surfactants butanol, pentanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol , Eikosanol, Isobutanol, Isohexanol, 2-Ethylhexanol, Isononanol, Isodecanol, Isotridecanol, Isotetradecanol, Tetradecanol, Hexadecenol, Heptadesenol, Octadesenol, Nonadecenol and other linear alkenyl alcohols, phenols, benzyl alcohols, mono It is preferable that ethylene oxide is added at a
  • Amino-modified silicone has a polysiloxane skeleton composed of repeating (-Si-O-), and a part of the alkyl side chain of the silicon atom is modified by an amino-modified group.
  • the amino modifying group may be bonded to the side chain of the silicone which is the main chain, may be bonded to the terminal, or may be bonded to both of them.
  • Examples of the amino-modifying group include an amino group and an organic group having an amino group. Examples of the organic group having an amino group include Chemical formula 1 below.
  • R 1 and R 2 are alkylene groups having 2 to 4 carbon atoms, which may be the same or different from each other.
  • Z is an integer of 0 or 1.
  • Specific examples of the amino-modified silicone having the amino-modified group of Chemical formula 1 include, for example, a dimethylsiloxane / methyl (aminopropyl) siloxane copolymer (aminopropyldimethicone) and an aminoethylaminopropylmethylsiloxane / dimethylsiloxane copolymer (amodimethicone). Dimethicone) and the like.
  • the lower limit of the kinematic viscosity of the amino-modified silicone at 25 ° C. is not particularly limited, but is preferably 20 mm 2 / s or more, and more preferably 50 mm 2 / s or more.
  • the upper limit of the kinematic viscosity of the amino-modified silicone at 25 ° C. is not particularly limited, but is preferably 4000 mm 2 / s or less, and more preferably 800 mm 2 / s or less.
  • Dimethylsilicone represents dimethylpolysiloxane in which the side chains and ends of polysiloxane are all methyl groups.
  • the type of dimethyl silicone is not particularly limited, and known ones can be appropriately adopted.
  • the lower limit of the kinematic viscosity of dimethyl silicone at 25 ° C. is 5 mm 2 / s or more, preferably 10 mm 2 / s or more.
  • the upper limit of the kinematic viscosity of dimethyl silicone at 25 ° C. is 200 mm 2 / s or less, preferably 100 mm 2 / s or less.
  • the blending ratio of the nonionic surfactant, the amino-modified silicone, and the dimethyl silicone there is no particular limitation on the blending ratio of the nonionic surfactant, the amino-modified silicone, and the dimethyl silicone. From the viewpoint of further improving the strength of the carbon fibers obtained from the carbon fiber precursor to which the treatment agent is applied, assuming that the total content of the nonionic surfactant, the amino-modified silicone, and the dimethyl silicone is 100 parts by mass. It is preferable to contain the nonionic surfactant in a proportion of 9 to 85 parts by mass, the amino-modified silicone in an amount of 10 to 90.9 parts by mass, and the dimethyl silicone in a proportion of 0.1 to 5 parts by mass.
  • nonionic surfactant in a proportion of 9 to 60 parts by mass, the amino-modified silicone in an amount of 36 to 90.9 parts by mass, and the dimethyl silicone in a proportion of 0.1 to 4 parts by mass.
  • the above-mentioned treatment agent is adhered to the raw material fibers of the carbon fiber precursor to obtain the carbon fiber precursor, and then the yarn-making step is performed. Will be.
  • a carbonization treatment step is carried out in which carbonization is carried out in an inert atmosphere at 300 to 2000 ° C., preferably 300 to 1300 ° C.
  • the yarn-making step is a step of spinning a carbon fiber precursor obtained by adhering the treatment agent of the first embodiment to the raw material fibers of the carbon fiber precursor, and includes an adhesion treatment step and a drawing step.
  • the adhesion treatment step is a step in which the raw material fiber of the carbon fiber precursor is spun and then the treatment agent is attached. That is, the treatment agent is adhered to the raw material fiber of the carbon fiber precursor in the adhesion treatment step. Further, the raw material fiber of this carbon fiber precursor is stretched immediately after spinning, and the high-magnification stretching after the adhesion treatment step is particularly called a "stretching step".
  • the stretching step may be a moist heat stretching method using high-temperature steam, or a dry heat stretching method using a hot roller.
  • the raw material fiber of the carbon fiber precursor examples include acrylic fiber and the like.
  • the acrylic fiber is preferably composed of a fiber containing polyacrylonitrile as a main component, which is obtained by copolymerizing at least 90 mol% or more of acrylonitrile and 10 mol% or less of a flame resistance promoting component.
  • a flame resistance promoting component for example, a vinyl group-containing compound having copolymerizability with acrylonitrile can be preferably used.
  • the single fiber fineness of the carbon fiber precursor is not particularly limited, but is preferably 0.1 to 2.0 dTex from the viewpoint of the balance between performance and manufacturing cost.
  • the number of single fibers constituting the fiber bundle of the carbon fiber precursor is also not particularly limited, but is preferably 1,000 to 96,000 from the viewpoint of the balance between performance and manufacturing cost.
  • the treatment agent may be attached to the raw material fibers of the carbon fiber precursor at any stage of the silk reeling process, but it is preferable to attach the treatment agent once before the drawing process. Further, it may be attached at any stage as long as it is a stage before the stretching step. For example, it may be attached immediately after spinning. Further, it may be reattached at any stage after the stretching step. For example, it may be reattached immediately after the stretching step, may be reattached at the winding step, or may be reattached immediately before the flame resistance treatment step.
  • the number of times of adhesion is not particularly limited.
  • the ratio of the treatment agent of the first embodiment to the carbon fiber precursor is not particularly limited, but the treatment agent (without solvent) is attached so as to be 0.1 to 2% by mass with respect to the carbon fiber precursor. It is preferable to allow it to adhere, and it is more preferable to attach it so that the content is 0.3 to 1.2% by mass. With such a configuration, the effect of the present invention is further improved.
  • a method for adhering the treatment agent of the first embodiment a known method can be applied, and examples thereof include a spray refueling method, an immersion refueling method, a roller refueling method, a guide refueling method using a measuring pump, and the like.
  • Examples of the form for adhering the treatment agent of the first embodiment to the fiber include an organic solvent solution and an aqueous solution.
  • the fluff of the yarn to which the treatment agent is applied can be suppressed in the spinning process of the carbon fiber precursor. It also improves the strength of the carbon fibers obtained from the carbon fiber precursor to which the treatment agent has been applied. In addition, the emulsion stability of the treatment agent is further improved.
  • the treatment agent of the present embodiment includes a binder, an antioxidant, an ultraviolet absorber, etc. as a stabilizer and an antistatic agent for maintaining the quality of the treatment agent within a range that does not impair the effect of the present invention. Ingredients usually used in the treatment agent may be further added.
  • Test Category 1 (Preparation of treatment agent for carbon fiber precursor) (Example 1) 178 g of amino-modified silicone (A-1), 2 g of dimethyl silicone (B-1), and 20 g of nonionic surfactant (N-1) were added to the beaker and mixed well. A 30% aqueous solution of the treatment agent for the carbon fiber precursor of Example 1 was prepared by gradually adding ion-exchanged water so that the solid content concentration became 30% while continuing stirring.
  • Each of the treatment agents for carbon fiber precursors of Examples 2 to 9 and Comparative Examples 1 to 5 used each component shown in Table 1 and was prepared in the same manner as in Example 1.
  • A-1 is an amino-modified silicone having a kinematic viscosity of 90 mm 2 / s at 25 ° C. and an amino equivalent of 4000.
  • A-2 is an amino-modified silicone having a kinematic viscosity at 25 ° C. of 650 mm 2 / s and an amino equivalent of 2000.
  • A-3 is an amino-modified silicone having a kinematic viscosity at 25 ° C. of 3500 mm 2 / s and an amino equivalent of 2000.
  • A-4 is an amino-modified silicone having a kinematic viscosity at 25 ° C. of 1500 mm 2 / s and an amino equivalent of 3800.
  • A-5 is an amino-modified silicone having a kinematic viscosity of 40 mm 2 / s at 25 ° C. and an amino equivalent of 4000.
  • B-1 is a polydimethylsiloxane having a viscosity of 10 mm 2 / s at 25 ° C.
  • B-2 is a polydimethylsiloxane having a viscosity of 100 mm 2 / s at 25 ° C.
  • rb-1 is a polydimethylsiloxane having a viscosity of 1000 mm 2 / s at 25 ° C.
  • rb-2 is a polydimethylsiloxane having a viscosity of 2 mm 2 / s at 25 ° C.
  • N-1 represents a nonionic surfactant in which 10 mol of ethylene oxide is added to an aliphatic alcohol having 12 carbon atoms.
  • Test Category 2 Manufacture of carbon fiber precursor and carbon fiber
  • the carbon fiber precursor and the carbon fiber were produced using the treatment agent for the carbon fiber precursor prepared in Test Category 1.
  • a copolymer having an ultimate viscosity of 1.80 consisting of 95% by mass of acrylonitrile, 3.5% by mass of methyl acrylate, and 1.5% by mass of methacrylic acid is dissolved in dimethylacetamide (DMAC) to have a polymer concentration of 21.0% by mass. %
  • DMAC dimethylacetamide
  • a spinning stock solution having a viscosity at 60 ° C. of 500 poise was prepared. The spinning stock solution was discharged into a coagulation bath of a 70% by mass aqueous solution of DMAC maintained at a spinning bath temperature of 35 ° C. from a spinning cap having a pore diameter (inner diameter) of 0.075 mm and a hole number of 12,000 at a draft ratio of 0.8.
  • the coagulated yarn was stretched 5 times in a water washing tank at the same time as desolvation to prepare a water-swelled acrylic fiber strand.
  • the solid content of the carbon fiber precursor treatment agent is 1% by mass (without solvent). I refueled like this.
  • the acrylic fiber strands are dried and densified with a heating roller at 130 ° C., further stretched 1.7 times between the heating rollers at 170 ° C., and then wound around a thread tube to form a carbon fiber precursor. Obtained.
  • the yarn is unwound from this carbon fiber precursor, flameproofed in a flameproofing furnace having a temperature gradient of 230 to 270 ° C. for 1 hour in an air atmosphere, and then continuously subjected to flameproofing treatment in a nitrogen atmosphere at 300 to 1,300 ° C. It was fired in a carbonization furnace having a temperature gradient to convert it into carbon fibers, and then wound on a thread tube.
  • a flameproofing furnace having a temperature gradient of 230 to 270 ° C. for 1 hour in an air atmosphere
  • flameproofing treatment in a nitrogen atmosphere at 300 to 1,300 ° C. It was fired in a carbonization furnace having a temperature gradient to convert it into carbon fibers, and then wound on a thread tube.
  • the emulsion stability of the treatment agent for the carbon fiber precursor and the strength of the carbon fiber were evaluated as shown below.
  • Test category 3 evaluation of fluff
  • DT-105 manufactured by Toray Engineering Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明の炭素繊維前駆体用処理剤は、非イオン界面活性剤、アミノ変性シリコーン、及び25℃での動粘度が5~200mm2/sのジメチルシリコーンを含有する。前記ジメチルシリコーンの含有量に対する前記アミノ変性シリコーンの含有量の質量比は、前記アミノ変性シリコーン/前記ジメチルシリコーン=99.9/0.1~90/10であってよい。また、本発明の炭素繊維前駆体は、前記炭素繊維前駆体用処理剤が付着していることを特徴とする。

Description

炭素繊維前駆体用処理剤及び炭素繊維前駆体
 本発明は、炭素繊維前駆体の紡糸工程における毛羽を抑制できる炭素繊維前駆体用処理剤、及びかかる炭素繊維前駆体用処理剤が付着している炭素繊維前駆体に関する。
 一般に、炭素繊維は、例えばエポキシ樹脂等のマトリクス樹脂と組み合わせた炭素繊維複合材料として、建材、輸送機器等の各分野において広く利用されている。通常、炭素繊維は、炭素繊維前駆体として、例えばアクリル繊維を紡糸する工程、繊維を延伸する工程、耐炎化処理工程、及び炭素化処理工程を経て製造される。炭素繊維前駆体には、炭素繊維の製造工程において生ずる繊維間の膠着又は融着を抑制するために、炭素繊維前駆体用処理剤が用いられることがある。
 従来、特許文献1,2に開示される炭素繊維前駆体用処理剤が知られている。特許文献1は、ポリアルキレンポリアミンと、飽和若しくは不飽和の直鎖又は分岐鎖を有し、かつ炭素数が8~24である脂肪酸とを反応させることにより得られるポリアルキレンポリアミン脂肪酸縮合物の中和塩を含有する炭素繊維用集束剤組成物について開示する。特許文献2は、動粘度が1500cStのアミノ変性シリコーン、ノニオン性界面活性剤、動粘度が100,000cStのジメチルシリコーン等を含有する炭素繊維前駆体繊維用油剤について開示する。
特開2008-138296号公報 特開2007-113141号公報
 しかし、従来の炭素繊維前駆体用処理剤は、炭素繊維前駆体の紡糸工程における糸の毛羽抑制効果が未だ不十分であった。
 本発明が解決しようとする課題は、炭素繊維前駆体の紡糸工程における糸の毛羽を抑制できる炭素繊維前駆体用処理剤、かかる炭素繊維前駆体用処理剤が付着している炭素繊維前駆体を提供する処にある。
 しかして本発明者らは、前記の課題を解決するべく研究した結果、非イオン界面活性剤、アミノ変性シリコーン、及び特定粘度のジメチルシリコーンを含有する炭素繊維前駆体用処理剤が正しく好適であることを見出した。
 すなわち本発明の一態様では、非イオン界面活性剤、アミノ変性シリコーン、及び25℃での動粘度が5~200mm/sのジメチルシリコーンを含有することを特徴とする炭素繊維前駆体用処理剤が提供される。
 前記炭素繊維前駆体用処理剤は、前記ジメチルシリコーンの含有量に対する前記アミノ変性シリコーンの含有量の質量比が、前記アミノ変性シリコーン/前記ジメチルシリコーン=99.9/0.1~90/10であることが好ましい。
 前記炭素繊維前駆体用処理剤において、前記アミノ変性シリコーンの25℃の動粘度は50~800mm/sであることが好ましい。
 前記炭素繊維前駆体用処理剤は、前記非イオン界面活性剤、前記アミノ変性シリコーン、及び前記ジメチルシリコーンの含有割合の合計を100質量部とすると、非イオン界面活性剤を9~85質量部、前記アミノ変性シリコーンを10~90.9質量部、及び前記ジメチルシリコーンを0.1~5質量部の割合で含有することが好ましい。
 本発明の別の態様では、前記炭素繊維前駆体用処理剤が付着している炭素繊維前駆体が提供される。
 本発明によれば、紡糸工程における糸の毛羽を抑制できる。
 (第1実施形態)
 以下、本発明の炭素繊維前駆体用処理剤(以下、単に処理剤という)を具体化した第1実施形態を説明する。
 本実施形態の処理剤は、非イオン界面活性剤の他、アミノ変性シリコーン及び25℃での動粘度が5~200mm/sのジメチルシリコーンを必須成分として含有する。その非イオン界面活性剤の種類に特に制限はなく、例えばアルコール類又はカルボン酸類にアルキレンオキサイドを付加させたものが挙げられる。
 非イオン界面活性剤の原料として用いられるアルコール類の具体例としては、例えば(1)メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘンエイコサノール、ドコサノール、トリコサノール、テトラコサノール、ペンタコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、ノナコサノール、トリアコンタノール等の直鎖アルキルアルコール、(2)イソプロパノール、イソブタノール、イソヘキサノール、2-エチルヘキサノール、イソノナノール、イソデカノール、イソトリデカノール、イソテトラデカノール、イソトリアコンタノール、イソヘキサデカノール、イソヘプタデカノール、イソオクタデカノール、イソノナデカノール、イソエイコサノール、イソヘンエイコサノール、イソドコサノール、イソトリコサノール、イソテトラコサノール、イソペンタコサノール、イソヘキサコサノール、イソヘプタコサノール、イソオクタコサノール、イソノナコサノール、イソペンタデカノール等の分岐アルキルアルコール、(3)テトラデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール等の直鎖アルケニルアルコール、(4)イソヘキサデセノール、イソオクタデセノール等の分岐アルケニルアルコール、(5)シクロペンタノール、シクロヘキサノール等の環状アルキルアルコール等が挙げられる。
 非イオン界面活性剤の原料として用いられるカルボン酸類の具体例としては、例えば(6)オクチル酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ヘンエイコサン酸、ドコサン酸等の直鎖アルキルカルボン酸、(7)2-エチルヘキサン酸、イソドデカン酸、イソトリデカン酸、イソテトラデカン酸、イソヘキサデカン酸、イソオクタデカン酸等の分岐アルキルカルボン酸、(8)オクタデセン酸、オクタデカジエン酸、オクタデカトリエン酸等の直鎖アルケニルカルボン酸、(9)フェノール、ベンジルアルコール、モノスチレン化フェノール、ジスチレン化フェノール、トリスチレン化フェノール等の芳香族系アルコール、(10)安息香酸等の芳香族系カルボン酸等が挙げられる。
 非イオン界面活性剤の原料として用いられるアルキレンオキサイドの具体例としては、例えばエチレンオキサイド、プロピレンオキサイド等が挙げられる。
 これらの非イオン界面活性剤の中でも、ブタノール、ペンタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、イソブタノール、イソヘキサノール、2-エチルヘキサノール、イソノナノール、イソデカノール、イソトリデカノール、イソテトラデカノール、テトラデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール等の直鎖アルケニルアルコール、フェノール、ベンジルアルコール、モノスチレン化フェノール、ジスチレン化フェノール、トリスチレン化フェノール等の芳香族系アルコール等の炭素数4~40の有機アルコール1モルに対しエチレンオキサイドを1~50モルの割合で付加反応させたものが好ましい。これらの非イオン界面活性剤は、単独で用いることも、また2種以上を併用することもできる。
 アミノ変性シリコーンとは、(-Si-O-)の繰り返しからなるポリシロキサン骨格を持ち、そのケイ素原子のアルキル側鎖の一部がアミノ変性基により変性されたものである。アミノ変性基は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、またその両方と結合していてもよい。アミノ変性基としては、例えばアミノ基、アミノ基を有する有機基等が挙げられる。アミノ基を有する有機基としては、下記の化1が例示される。
Figure JPOXMLDOC01-appb-C000001
 (化1中、R及びRは、炭素数2~4のアルキレン基であり、それぞれ同じでも異なっていてもよい。zは、0又は1の整数である。)
 化1のアミノ変性基を有するアミノ変性シリコーンの具体例としては、例えばジメチルシロキサン・メチル(アミノプロピル)シロキサン共重合体(アミノプロピルジメチコン)、アミノエチルアミノプロピルメチルシロキサン・ジメチルシロキサン共重合体(アモジメチコン)等が挙げられる。
 アミノ変性シリコーンの25℃の動粘度の下限は、特に制限はないが、好ましくは20mm/s以上、より好ましくは50mm/s以上である。アミノ変性シリコーンの25℃の動粘度の上限は、特に制限はないが、好ましくは4000mm/s以下、より好ましくは800mm/s以下である。動粘度をかかる範囲に規定することにより、処理剤が付与された糸の毛羽の抑制効果をより向上させる。また、処理剤が付与された炭素繊維前駆体から得られた炭素繊維の強度をより向上させる。
 ジメチルシリコーンは、ポリシロキサンの側鎖、末端がすべてメチル基であるジメチルポリシロキサンを示す。ジメチルシリコーンの種類は、特に限定されず、公知のものを適宜採用できる。ジメチルシリコーンの25℃での動粘度の下限は、5mm/s以上、好ましくは10mm/s以上である。ジメチルシリコーンの25℃での動粘度の上限は、200mm/s以下、好ましくは100mm/s以下である。動粘度をかかる範囲に規定することにより、処理剤が付与された糸の毛羽の抑制効果をより向上させる。また、処理剤が付与された炭素繊維前駆体から得られた炭素繊維の強度をより向上させる。また、処理剤の乳化安定性をより向上させる。これらジメチルシリコーンは、単独で用いることも、また2種以上を併用することもできる。
 処理剤中における前記アミノ変性シリコーンと前記ジメチルシリコーンとの配合比率は、特に制限はない。処理剤が付与された炭素繊維前駆体から得られた炭素繊維の強度をより向上させる観点から、ジメチルシリコーンの含有量に対するアミノ変性シリコーンの含有量の質量比は、アミノ変性シリコーン/ジメチルシリコーン=99.9/0.1~90/10であることが好ましい。
 前記非イオン界面活性剤、前記アミノ変性シリコーン、及び前記ジメチルシリコーンの配合比率に特に制限はない。処理剤が付与された炭素繊維前駆体から得られた炭素繊維の強度をより向上させる観点から、非イオン界面活性剤、アミノ変性シリコーン、及びジメチルシリコーンの含有割合の合計を100質量部とすると、非イオン界面活性剤を9~85質量部、アミノ変性シリコーンを10~90.9質量部、及びジメチルシリコーンを0.1~5質量部の割合で含有することが好ましい。また、非イオン界面活性剤を9~60質量部、アミノ変性シリコーンを36~90.9質量部、及びジメチルシリコーンを0.1~4質量部の割合で含有することがより好ましい。
 (第2実施形態)
 次に、本発明に係る炭素繊維前駆体を具体化した第2実施形態について説明する。本実施形態の炭素繊維前駆体には第1実施形態の処理剤が付着している。
 本実施形態の炭素繊維前駆体を用いた炭素繊維の製造方法は、まず炭素繊維前駆体の原料繊維に上記の処理剤を付着させて炭素繊維前駆体を得た後、製糸する製糸工程が行われる。次に、その製糸工程で製造された炭素繊維前駆体を200~300℃、好ましくは230~270℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300~2000℃、好ましくは300~1300℃の不活性雰囲気中で炭化させる炭素化処理工程が行われる。
 製糸工程は、炭素繊維前駆体の原料繊維に第1実施形態の処理剤を付着させて得られた炭素繊維前駆体を製糸する工程であり、付着処理工程と延伸工程とを含む。
 付着処理工程は、炭素繊維前駆体の原料繊維を紡糸した後、処理剤を付着させる工程である。つまり、付着処理工程で炭素繊維前駆体の原料繊維に処理剤を付着させる。またこの炭素繊維前駆体の原料繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気を用いた湿熱延伸法でもよいし、熱ローラーを用いた乾熱延伸法でもよい。
 炭素繊維前駆体の原料繊維は、例えばアクリル繊維等が挙げられる。アクリル繊維は、少なくとも90モル%以上のアクリロニトリルと、10モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とする繊維から構成されることが好ましい。耐炎化促進成分としては、例えばアクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。炭素繊維前駆体の単繊維繊度については、特に限定はないが、性能及び製造コストのバランスの観点から、好ましくは0.1~2.0dTexである。また、炭素繊維前駆体の繊維束を構成する単繊維の本数についても特に限定はないが、性能及び製造コストのバランスの観点から、好ましくは1,000~96,000本である。
 処理剤は、製糸工程のどの段階で炭素繊維前駆体の原料繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。また、延伸工程前の段階であればどの段階で付着させてもよい。例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよい。例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化処理工程の直前に再度付着させてもよい。製糸工程中、付着させる回数は特に限定されない。
 第1実施形態の処理剤を炭素繊維前駆体に付着させる割合に特に制限はないが、処理剤(溶媒を含まない)を炭素繊維前駆体に対し0.1~2質量%となるように付着させることが好ましく、0.3~1.2質量%となるように付着させることがより好ましい。かかる構成により、本発明の効果をより向上させる。第1実施形態の処理剤の付着方法としては公知の方法が適用でき、これには例えば、スプレー給油法、浸漬給油法、ローラー給油法、計量ポンプを用いたガイド給油法等が挙げられる。第1実施形態の処理剤を繊維に付着させる際の形態としては、例えば有機溶媒溶液、水性液等が挙げられる。
 本実施形態の炭素繊維前駆体用処理剤及び炭素繊維前駆体の作用及び効果について説明する。
 (1)本実施形態では、炭素繊維前駆体の紡糸工程において処理剤が付与された糸の毛羽を抑制できる。また、処理剤が付与された炭素繊維前駆体から得られた炭素繊維の強度を向上させる。また、処理剤の乳化安定性をより向上させる。
 なお、上記実施形態は以下のように変更してもよい。
 ・本実施形態の処理剤には、本発明の効果を阻害しない範囲内において、処理剤の品質保持のための安定化剤や制電剤として、つなぎ剤、酸化防止剤、紫外線吸収剤等の処理剤に通常用いられる成分をさらに配合してもよい。
 以下、本発明の構成及び効果をより具体的に説明するため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例及び比較例の説明において、部は質量部を、また%は質量%を意味する。
 試験区分1(炭素繊維前駆体用処理剤の調製)
 (実施例1)
 アミノ変性シリコーン(A-1)178g、ジメチルシリコーン(B-1)2g、非イオン界面活性剤(N-1)20gをビーカーに加えてよく混合した。撹拌を続けながら固形分濃度が30%となるようにイオン交換水を徐々に添加することで実施例1の炭素繊維前駆体用処理剤の30%水性液を調製した。
 実施例2~9及び比較例1~5の各炭素繊維前駆体用処理剤は、表1に示される各成分を使用し、実施例1と同様の方法にて調整した。
Figure JPOXMLDOC01-appb-T000002
 表1において、
 A-1は、25℃での動粘度が90mm/s、アミノ当量4000のアミノ変性シリコーン、
 A-2は、25℃での動粘度が650mm/s、アミノ当量2000のアミノ変性シリコーン、
 A-3は、25℃での動粘度が3500mm/s、アミノ当量2000のアミノ変性シリコーン、
 A-4は、25℃での動粘度が1500mm/s、アミノ当量3800のアミノ変性シリコーン、
 A-5は、25℃での動粘度が40mm/s、アミノ当量4000のアミノ変性シリコーン、
 B-1は、25℃で粘度が10mm/sのポリジメチルシロキサン、
 B-2は、25℃で粘度が100mm/sのポリジメチルシロキサン、
 rb-1は、25℃で粘度が1000mm/sのポリジメチルシロキサン、
 rb-2は、25℃で粘度が2mm/sのポリジメチルシロキサン、
 N-1は、炭素数12の脂肪族アルコールにエチレンオキサイドが10モル付加した非イオン性界面活性剤、を示す。
 試験区分2(炭素繊維前駆体及び炭素繊維の製造)
 試験区分1で調製した炭素繊維前駆体用処理剤を用いて、炭素繊維前駆体及び炭素繊維を製造した。
 アクリロニトリル95質量%、アクリル酸メチル3.5質量%、メタクリル酸1.5質量%からなる極限粘度1.80の共重合体を、ジメチルアセトアミド(DMAC)に溶解してポリマー濃度が21.0質量%、60℃における粘度が500ポイズの紡糸原液を作成した。紡糸原液は、紡浴温度35℃に保たれたDMACの70質量%水溶液の凝固浴中に孔径(内径)0.075mm、ホール数12,000の紡糸口金よりドラフト比0.8で吐出した。
 凝固糸を水洗槽の中で脱溶媒と同時に5倍に延伸して水膨潤状態のアクリル繊維ストランドを作成した。これを試験区分1で調製した炭素繊維前駆体用処理剤の4%イオン交換水溶液を浸漬法にて炭素繊維前駆体用処理剤の固形分付着量が1質量%(溶媒を含まない)となるように給油した。その後、このアクリル繊維ストランドを130℃の加熱ローラーで乾燥緻密化処理を行い、さらに170℃の加熱ローラー間で1.7倍の延伸を施した後に糸管に巻き取ることで炭素繊維前駆体を得た。この炭素繊維前駆体から糸を解舒し、230~270℃の温度勾配を有する耐炎化炉で空気雰囲気下1時間耐炎化処理した後、連続して窒素雰囲気下で300~1,300℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換後、糸管に巻き取った。炭素繊維前駆体の毛羽の他、炭素繊維前駆体用処理剤の乳化安定性、炭素繊維の強度を以下に示されるように評価した。
 試験区分3(評価)
 ・毛羽の評価
 炭素繊維前駆体の製造において、巻き取り装置の直前に設置した毛羽計数装置(東レエンジニアリング社製のDT-105)により測定した1時間当たりの毛羽数を以下の基準で評価した。結果を表1の「毛羽」欄に示した。
 ・毛羽の評価基準
◎(優):毛羽数が0~5個。
○(良):毛羽数が6~10個。
×(不良):毛羽数が11個以上。
 ・乳化安定性の評価
 試験区分1で調製した固形分濃度が30%の炭素繊維前駆体用処理剤の水性液を25℃で3か月間静置した後、その外観を肉眼で観察し、以下の基準で評価した。結果を表1の「乳化安定性」欄に示した。
 ・乳化安定性の評価基準
◎(優):ほとんど分離、沈殿は見られず、良好な乳化性を保っていた。
○(良):わずかに沈殿が見られるが、乳化性は良好であり実用上問題ないレベルであった。
×(不良):乳化が壊れて沈殿、分離が発生した。
 ・炭素繊維強度の評価
 JIS R 7606に準じて上記得られた炭素繊維の強度を測定し、以下の基準で評価した。結果を表1の「炭素繊維強度」及び「炭素繊維強度の評価」欄に示した。
 ・炭素繊維強度の評価基準
◎(優):3.65GPa以上。
○(良):3.3GPa以上且つ3.65GPa未満。
×(不良):3.3GPa未満。
 以上表1の結果からも明らかなように、本発明によれば、炭素繊維前駆体の紡糸工程における糸の毛羽抑制及び炭素繊維の強度低下抑制をできると共に、乳化安定性に優れるという効果がある。

Claims (5)

  1.  非イオン界面活性剤、アミノ変性シリコーン、及び25℃での動粘度が5~200mm/sのジメチルシリコーンを含有し、
     前記ジメチルシリコーンの含有量に対する前記アミノ変性シリコーンの含有量の質量比は、前記アミノ変性シリコーン/前記ジメチルシリコーン=99.9/0.1~90/10であることを特徴とする炭素繊維前駆体用処理剤。
  2.  前記非イオン界面活性剤、前記アミノ変性シリコーン、及び前記ジメチルシリコーンの含有割合の合計を100質量部とすると、非イオン界面活性剤を9~85質量部、前記アミノ変性シリコーンを10~90.9質量部、及び前記ジメチルシリコーンを0.1~5質量部の割合で含有する請求項1に記載の炭素繊維前駆体用処理剤。
  3.  非イオン界面活性剤、アミノ変性シリコーン、及び25℃での動粘度が5~200mm/sのジメチルシリコーンを含有し、
     前記非イオン界面活性剤、前記アミノ変性シリコーン、及び前記ジメチルシリコーンの含有割合の合計を100質量部とすると、非イオン界面活性剤を9~85質量部、前記アミノ変性シリコーンを10~90.9質量部、及び前記ジメチルシリコーンを0.1~5質量部の割合で含有することを特徴とする炭素繊維前駆体用処理剤。
  4.  前記アミノ変性シリコーンの25℃の動粘度が、50~800mm/sのものである請求項1~3のいずれか一項に記載の炭素繊維前駆体用処理剤。
  5.  請求項1~4のいずれか一項に記載の炭素繊維前駆体用処理剤が付着していることを特徴とする炭素繊維前駆体。
PCT/JP2020/020637 2019-05-30 2020-05-26 炭素繊維前駆体用処理剤及び炭素繊維前駆体 WO2020241603A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2021101933A RU2765182C1 (ru) 2019-05-30 2020-05-26 Средство для обработки предшественника углеродного волокна и предшественник углеродного волокна
EP20814481.6A EP3822405A4 (en) 2019-05-30 2020-05-26 TREATMENT PRODUCTS FOR PRECURSORS CARBON FIBER AND PRECURSORS CARBON FIBER
CN202080003962.6A CN112424418B (zh) 2019-05-30 2020-05-26 碳纤维前体用处理剂及碳纤维前体
MX2021001031A MX2021001031A (es) 2019-05-30 2020-05-26 Agente de tratamiento para precursor de fibra de carbono y el precursor de fibra de carbono.
US17/264,448 US11447634B2 (en) 2019-05-30 2020-05-26 Treatment agent for carbon fiber precursor and carbon fiber precursor
KR1020217000413A KR102481838B1 (ko) 2019-05-30 2020-05-26 탄소 섬유 전구체용 처리제 및 탄소 섬유 전구체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101341 2019-05-30
JP2019101341A JP6671698B1 (ja) 2019-05-30 2019-05-30 炭素繊維前駆体用処理剤及び炭素繊維前駆体

Publications (1)

Publication Number Publication Date
WO2020241603A1 true WO2020241603A1 (ja) 2020-12-03

Family

ID=70000767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020637 WO2020241603A1 (ja) 2019-05-30 2020-05-26 炭素繊維前駆体用処理剤及び炭素繊維前駆体

Country Status (9)

Country Link
US (1) US11447634B2 (ja)
EP (1) EP3822405A4 (ja)
JP (1) JP6671698B1 (ja)
KR (1) KR102481838B1 (ja)
CN (1) CN112424418B (ja)
MX (1) MX2021001031A (ja)
RU (1) RU2765182C1 (ja)
TW (1) TWI718953B (ja)
WO (1) WO2020241603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447634B2 (en) 2019-05-30 2022-09-20 Takemoto Yushi Kabushiki Kaisha Treatment agent for carbon fiber precursor and carbon fiber precursor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763566B (zh) * 2021-07-23 2022-05-01 臺灣塑膠工業股份有限公司 碳纖維的製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172879A (ja) * 1999-10-08 2001-06-26 Sanyo Chem Ind Ltd 炭素繊維製造工程用油剤
JP2007113141A (ja) 2005-10-20 2007-05-10 Toray Ind Inc 炭素繊維前駆体繊維束の製造方法。
JP2008138296A (ja) 2006-11-30 2008-06-19 Toho Chem Ind Co Ltd 炭素繊維用毛羽立ち防止剤
JP2011058129A (ja) * 2009-09-11 2011-03-24 Matsumoto Yushi Seiyaku Co Ltd 弾性繊維用処理剤および弾性繊維
JP2012102429A (ja) * 2010-11-10 2012-05-31 Matsumoto Yushi Seiyaku Co Ltd 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
WO2014050639A1 (ja) * 2012-09-27 2014-04-03 松本油脂製薬株式会社 炭素繊維製造用アクリル繊維処理剤及びその用途
CN103806131A (zh) * 2012-11-06 2014-05-21 中国科学院化学研究所 用于制备聚丙烯腈基碳纤维的有机硅纺丝油剂
JP2015030931A (ja) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686707B2 (ja) 1984-09-14 1994-11-02 竹本油脂株式会社 炭素繊維の製造における前駆体繊維の融着防止方法
RU2432422C2 (ru) * 2005-08-09 2011-10-27 Торей Индастриз, Инк. Огнестойкое волокно, углеродное волокно и способ их получения
JP4921766B2 (ja) * 2005-10-12 2012-04-25 株式会社パーカーコーポレーション 車両表面用コーティング剤組成物
JP4907304B2 (ja) * 2006-11-13 2012-03-28 花王株式会社 繊維製品処理剤
PT2208821E (pt) * 2007-11-07 2014-07-04 Mitsubishi Rayon Co Composição de agente oleoso para fibras acrílicas precursoras de fibras de carbono, feixe de fibras acrílicas precursoras de fibras de carbono e método para a sua produção
KR101653160B1 (ko) * 2009-06-04 2016-09-01 마쓰모토유시세이야쿠 가부시키가이샤 탄소섬유 제조용 아크릴섬유 유제, 탄소섬유 제조용 아크릴섬유 및 탄소섬유의 제조방법
JP5659597B2 (ja) 2009-07-24 2015-01-28 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物、および炭素繊維前駆体アクリル繊維束とその製造方法
RU2416682C1 (ru) * 2009-07-28 2011-04-20 Марина Владимировна Соболева Способ стабилизации углеродсодержащего волокна и способ получения углеродного волокна
RU2515856C1 (ru) * 2011-11-28 2014-05-20 Торэй Индастриз, Инк. Способ получения полиакрилонитрильного волокна и способ получения углеродного волокна
CN104179019A (zh) * 2014-08-25 2014-12-03 中复神鹰碳纤维有限责任公司 一种碳纤维原丝油剂的制备方法
JP6671698B1 (ja) 2019-05-30 2020-03-25 竹本油脂株式会社 炭素繊維前駆体用処理剤及び炭素繊維前駆体
CN111139555B (zh) * 2019-12-26 2022-09-09 中复神鹰碳纤维股份有限公司 一种高耐热性油剂及其聚丙烯腈碳纤维的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172879A (ja) * 1999-10-08 2001-06-26 Sanyo Chem Ind Ltd 炭素繊維製造工程用油剤
JP2007113141A (ja) 2005-10-20 2007-05-10 Toray Ind Inc 炭素繊維前駆体繊維束の製造方法。
JP2008138296A (ja) 2006-11-30 2008-06-19 Toho Chem Ind Co Ltd 炭素繊維用毛羽立ち防止剤
JP2011058129A (ja) * 2009-09-11 2011-03-24 Matsumoto Yushi Seiyaku Co Ltd 弾性繊維用処理剤および弾性繊維
JP2012102429A (ja) * 2010-11-10 2012-05-31 Matsumoto Yushi Seiyaku Co Ltd 炭素繊維製造用アクリル繊維油剤、炭素繊維製造用アクリル繊維および炭素繊維の製造方法
WO2014050639A1 (ja) * 2012-09-27 2014-04-03 松本油脂製薬株式会社 炭素繊維製造用アクリル繊維処理剤及びその用途
CN103806131A (zh) * 2012-11-06 2014-05-21 中国科学院化学研究所 用于制备聚丙烯腈基碳纤维的有机硅纺丝油剂
JP2015030931A (ja) * 2013-08-01 2015-02-16 三菱レイヨン株式会社 炭素繊維前駆体アクリル繊維用油剤組成物と炭素繊維前駆体アクリル繊維用油剤組成物分散液、および炭素繊維前駆体アクリル繊維束の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822405A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447634B2 (en) 2019-05-30 2022-09-20 Takemoto Yushi Kabushiki Kaisha Treatment agent for carbon fiber precursor and carbon fiber precursor

Also Published As

Publication number Publication date
TWI718953B (zh) 2021-02-11
JP2020193423A (ja) 2020-12-03
CN112424418A (zh) 2021-02-26
JP6671698B1 (ja) 2020-03-25
EP3822405A1 (en) 2021-05-19
TW202104718A (zh) 2021-02-01
KR102481838B1 (ko) 2022-12-27
MX2021001031A (es) 2021-11-08
US11447634B2 (en) 2022-09-20
EP3822405A4 (en) 2021-09-29
CN112424418B (zh) 2021-11-19
RU2765182C1 (ru) 2022-01-26
KR20210018456A (ko) 2021-02-17
US20220089875A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
EP2208821B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
HUE035239T2 (hu) Olaj adalékanyag szénszál prekurzor akrilszálhoz, feldogozott olaj oldat szénszál prekurzor akrilszálakhoz, szénszál prekurzor akrilszál fátyol, és eljárás szénszál fátyol elõállítására, szénszál prekurzor akrilszál fátyol alkalmazásával
CN111676700B (zh) 碳纤维前体用处理剂以及碳纤维前体
WO2020241603A1 (ja) 炭素繊維前駆体用処理剤及び炭素繊維前駆体
WO2021070796A1 (ja) 炭素繊維前駆体用処理剤の水性液及び炭素繊維前駆体
WO2022255433A1 (ja) 合成繊維用処理剤、及び合成繊維
JP6587272B1 (ja) 炭素繊維前駆体用処理剤、及び炭素繊維前駆体
JP2010024582A (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP2023164559A (ja) 炭素繊維前駆体用処理剤及び炭素繊維前駆体
JP2010174409A (ja) 炭素繊維製造用アクリル繊維油剤およびそれを用いた炭素繊維の製造方法
JP6798734B1 (ja) 炭素繊維前駆体用処理剤、炭素繊維前駆体、及び耐炎化繊維の製造方法
JP6973837B1 (ja) 炭素繊維前駆体用処理剤、及び炭素繊維前駆体
JP6795228B1 (ja) 処理剤、耐炎化繊維不織布、炭素繊維不織布、及びそれらの製造方法
JP6914745B2 (ja) アクリル繊維処理剤及びその用途
JP6587273B1 (ja) 炭素繊維前駆体用処理剤、及び炭素繊維前駆体
WO2021251236A1 (ja) 炭素繊維前駆体用処理剤、炭素繊維前駆体用処理剤の水性液、炭素繊維前駆体、及び炭素繊維の製造方法
JP6745556B1 (ja) 処理剤、耐炎化繊維不織布、炭素繊維不織布、及びそれらの製造方法
WO2022255435A1 (ja) 合成繊維用処理剤、及び合成繊維
JP2004143644A (ja) 炭素繊維前駆体アクリル繊維の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217000413

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020814481

Country of ref document: EP

Effective date: 20210211

NENP Non-entry into the national phase

Ref country code: DE