WO2020241184A1 - Iii族化合物基板の製造方法及びiii族化合物基板 - Google Patents

Iii族化合物基板の製造方法及びiii族化合物基板 Download PDF

Info

Publication number
WO2020241184A1
WO2020241184A1 PCT/JP2020/018471 JP2020018471W WO2020241184A1 WO 2020241184 A1 WO2020241184 A1 WO 2020241184A1 JP 2020018471 W JP2020018471 W JP 2020018471W WO 2020241184 A1 WO2020241184 A1 WO 2020241184A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
group iii
iii compound
gan
substrate
Prior art date
Application number
PCT/JP2020/018471
Other languages
English (en)
French (fr)
Inventor
芳宏 久保田
永田 和寿
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP20814676.1A priority Critical patent/EP3978659A4/en
Priority to KR1020217034388A priority patent/KR20220012226A/ko
Priority to US17/613,653 priority patent/US20220235489A1/en
Priority to CN202080039330.5A priority patent/CN113840949A/zh
Publication of WO2020241184A1 publication Critical patent/WO2020241184A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds

Definitions

  • the present invention relates to a method for producing a high-quality group III compound substrate such as AlN, Ga2O3, and GaN and the substrate thereof, and particularly to a GaN crystal substrate.
  • Substrates of group III compounds such as crystalline AlN, Ga 2 O 3 , and GaN have a wide bandgap, and have excellent high-frequency characteristics such as ultra-short wavelength luminescence and high withstand voltage. For this reason, group III compound substrates are expected to be applied to devices such as lasers, Schottky diodes, power devices, and high-frequency devices.
  • group III compound substrates are expected to be applied to devices such as lasers, Schottky diodes, power devices, and high-frequency devices.
  • a bulk GaN substrate in which GaN crystals are grown in a liquid such as liquid ammonia or Na flux is generally of relatively high quality, but it is difficult to increase the diameter.
  • GaN is placed on a substrate such as a sapphire substrate, a GaAs substrate, or an AlN substrate.
  • a substrate such as a sapphire substrate, a GaAs substrate, or an AlN substrate.
  • a large-diameter GaN thin film can be obtained by heteroepitaxially growing the mixture.
  • the heteroepitaxial growth method when the film thickness is increased in order to obtain a high-quality substrate, lattice defects, warpage, and cracks are likely to occur.
  • Non-Patent Document 1 a plurality of small-diameter GaN substrates produced by the Na flux method are bonded in a honeycomb shape on a susceptor made of thermally decomposed graphite (PG), which is used as a seed substrate, and the HVPE method is used on the plurality of small-diameter GaN substrates. It is described that a large-diameter GaN substrate was obtained by growing GaN in.
  • PG thermally decomposed graphite
  • Non-Patent Document 2 describes a production method in which a SCAM (ScAlMgO 4 ) (0001) substrate is used as a seed crystal and GaN is epitaxially grown on it by the MOVPE method (organic metal vapor phase epitaxy method).
  • Patent Document 1 a GaN crystal is epitaxially grown on a sapphire substrate, a plurality of the crystals are cut into a honeycomb shape, and the seed is attached to a susceptor such as PG with an adhesive containing heat-resistant ceramics and an inorganic polymer as main components.
  • a susceptor such as PG with an adhesive containing heat-resistant ceramics and an inorganic polymer as main components.
  • the above-mentioned prior art had two more common problems. That is, even if the GaN crystal is grown and then cooled to peel off and recover the GaN crystal generated from the seed crystal, the two are strongly bonded to each other, so that the desired GaN crystal can be obtained in good yield and is expensive. It was difficult to recover the seed crystals.
  • a GaN crystal grown from a seed crystal such as sapphire or GaN is forcibly peeled off and recovered, the GaN crystal itself generated at that time is damaged, or the GaN crystal generated in the subsequent process or handling during processing becomes , It was easy for damage to occur.
  • the seed crystal is strongly attached not only to the generated GaN but also to the susceptor, and a strong thermal stress is applied to the generated GaN crystal, and the thermal stress causes the generated GaN crystal to warp or crack. It was.
  • the present invention has been made in view of the above circumstances, and a manufacturing method for growing a high-quality group III compound substrate such as AlN or GaN crystal with a large diameter and a thick thickness, and a group III compound substrate obtained by the method, particularly a GaN substrate, are used.
  • the purpose is to provide.
  • the present invention provides the following method for producing a group III compound substrate and the substrate thereof.
  • a method for producing a Group III compound substrate which comprises using a substance having a cleaving property that can be peeled off from the member of the above.
  • the susceptor at least the surface on which the seed crystal is placed is composed of the substance having the peelable cleavage property, and the substance having the peelable cleavage property is thermally decomposed boron nitride (PBN).
  • the method for producing a group III compound substrate according to (1) above which is characterized by the above.
  • the crystal growth rate is higher than that of the first crystal growth step.
  • III according to any one of (1) to (4) above, which comprises a second crystal growth step of growing a crystal of a group III compound in the seed crystal at a low second crystal rate. A method for producing a group compound substrate.
  • a third crystal step of growing a crystal of a Group III compound in the seed crystal at a third crystal rate is included, and the third crystal step is included.
  • a higher quality large group III compound substrate can be obtained at low cost while taking advantage of the high film formation rate, which is a feature of the vapor phase growth method. That is, since an extremely thick group III compound substrate having a large diameter and no variation can be produced, a large-diameter group III compound substrate having excellent crystal characteristics and low cost can be easily obtained.
  • FIG. 1 is a schematic diagram for explaining a method for producing a group III compound substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of a method for producing a group III compound substrate according to an embodiment of the present invention.
  • the method for producing a Group III compound substrate of the present invention is a method for producing a Group III compound substrate in which crystals of a Group III compound are grown on a seed crystal placed and fixed on a susceptor by a vapor phase growth method. And at least one member of the seed crystal is characterized by using a substance having a releasable cleavage property.
  • part or all of the susceptor may be composed of a cleaving substance that can be peeled off.
  • a part or all of the seed crystal may be made of a substance having a cleaving property that can be peeled off.
  • the production method of the present invention is effective for group III compounds such as AlN, Ga 2 O 3 , and GaN, but is particularly suitable for GaN crystal growth.
  • the group III compound has a fast crystal growth rate, a large diameter, and a thick material. It relates to a gas phase growth method suitable for production, particularly a hydride gas phase growth method (HVPE method, THVPE method, etc.).
  • the GaN crystal is grown and then cooled, and the generated GaN crystal is peeled off and recovered from the seed crystal such as sapphire or GaN.
  • the two are strongly bonded, it was extremely difficult to obtain a good yield without damaging the target GaN crystal and to recover an expensive seed crystal.
  • the generated GaN crystal was forcibly peeled from the seed crystal such as sapphire or GaN and attempted to be recovered, an unreasonable force was applied, and the precious GaN crystal was often cracked or damaged.
  • the seed crystal strongly adheres not only to the generated GaN crystal but also to the susceptor structure, and strong thermal stress is applied to the GaN crystal after the reaction and cooling, which is a major cause of various property deterioration, warpage, and cracking.
  • these phenomena become more prominent, which has become a major bottleneck in improving the characteristics and reducing the cost of the GaN substrate.
  • the present inventor has solved the above problem by using a substance having a cleaving property that can be peeled off from one or both of the seed crystal and the susceptor on which the seed crystal is placed. That is, if a material having a cleavage property that can be peeled off is used for the seed crystal, the seed crystal can be easily peeled off from the cleavage plane of the seed crystal when the generated GaN crystal is peeled off, and the generated GaN crystal and the seed crystal can be easily recovered. can do.
  • the susceptor can be easily peeled off from the cleavage surface of the susceptor when the generated GaN crystal is peeled off, and the generated GaN crystal and the seed crystal can be easily recovered. Can be done.
  • a large-scale GaN crystal substrate of higher quality can be obtained at low cost while taking advantage of the high film formation rate, which is a feature of the vapor phase growth method. That is, since an extremely thick GaN crystal substrate having a large diameter and no variation can be produced, a large diameter GaN substrate having excellent crystal characteristics and low cost can be easily obtained.
  • At least the surface on which the seed crystal is placed may be composed of the above-mentioned substance having a peelable cleavage property. Therefore, the entire susceptor does not need to be composed of the above-mentioned material having a peelable cleavage property.
  • the cleaving substance used for the susceptor is preferably a layered substance.
  • the layered material as the susceptor, when the generated GaN crystal is peeled off, the susceptor can be easily peeled off between the network planes of the layered structure of the layered material, and the generated GaN crystal and the seed crystal can be recovered more easily. .. Further, by using a substance having a layered substance for the susceptor, the thermal stress generated by the adhesion between the generated GaN crystal and the susceptor can be appropriately absorbed between the layers or alleviated by delamination.
  • the "substance having cleaving property” is a substance that cleaves the group III compound substrate and the seed crystal with a mechanical impact that does not crack or damage the seed crystal, or between the group III compound substrate and the seed crystal. It is a substance that is cleaved by the thermal stress generated by the difference in the coefficient of thermal expansion.
  • the GaN base (handle) substrate portion 11 is formed at a relatively high crystal growth rate at first, and then the GaN crystal body portion 12 is thickened at a low speed (see FIG. 1). .. According to this, the GaN base (handle) substrate portion 11 serves as a barrier layer for diffusion of impurities from the seed crystal 3 and the susceptor 2, and (ii) the thicker the crystal growth, the more crystal defects in the upper layer. Due to the crystal growth property of decreasing crystal growth, it can be used as a "sacrificial layer" to reduce crystal defects in the target GaN crystal body portion 12, and (iii) mechanically during peeling after crystal growth and subsequent processing steps.
  • the target GaN crystal main body portion can grow at a lower speed, thereby suppressing deterioration of characteristics such as lattice defects and variation in other characteristics, which is preferable.
  • the peelable cleavage substance used for the susceptor is a layered compound with high purity and not affected by the reaction gas.
  • Pyrolysis boron nitride (PBN) is preferable, and PBN or a composite composition of carbon and PBN produced by intentionally weakening the interlayer bonding force of PBN or a composite of it and carbon is cost effective (large size, high strength). More preferred.
  • hexagonal boron nitride is a layered compound.
  • a PBN film on the surface of a carbon substrate to prepare a PBN / carbon composite for example, the method described in JP-A-4-79992 can be used.
  • the pressure inside the furnace is increased or decreased in a pulsed manner to weaken the bonding force between the surfaces in the layered structure in which atoms are bonded in a planar manner.
  • a layer can be formed.
  • the GaN crystal It is close to the lattice constant and thermal expansion rate of the GaN crystal, has resistance to the raw material gas, is relatively inexpensive, and has the releasable cleavage property used for the seed crystal from the viewpoint of ease of peeling and recovery from the produced GaN crystal.
  • SCAM SCAM
  • the substrate surface may be coated with SiO 2 , AlN, or the like.
  • the susceptor on which the seed crystal is placed is a substance having a releasable cleavage property
  • a GaN substrate having a manufacturing method selected from the MOCVD method, the Na flux method, and the liquid Anne method can also be used as the seed substrate.
  • the seed crystal when the seed crystal is a substance having a peelable cleavage property, it is not necessary to use a substance having a peelable cleavage property as the susceptor.
  • the GaN substrate itself, pyrolytic graphite (PG), ceramics such as corundum, and the like can also be used as the susceptor.
  • PG is a layered substance and has cleavability, it does not easily peel off because the network planes of the layered structure are strongly bonded to each other.
  • the crystal growth rate is such that the GaN base (handle) substrate portion 11 is first produced at a relatively high speed, and then the GaN crystal body portion 12 is thickened at a low speed. Is this good. Furthermore, in order to change from high speed to low speed, it is possible to reduce the speed in multiple steps and / or continuously because it is economical and efficient, stress generation in the produced GaN crystal can be suppressed, and characteristics can be improved. Particularly preferable (see the crystal growth rate transition portion 13 in FIG. 1).
  • Example 1 An alumina mat-like heat insulating material is placed in a stainless steel reactor (inner surface is coated with zirconia sprayed very thinly in advance) with an inner diameter of 1500 mm and a height of 1800 mm, which has a water-cooled jacket and an exhaust port, and a cylindrical rod inside.
  • a heating device inner diameter 1000 mm x height 1300 mm
  • a gas supply pipe having a shape-like SiC heater (center tube 61 made of the same material as the above reaction device; inner diameter ⁇ 30 mm, second tube 62; An inner diameter of ⁇ 40 mm, an outermost tube 63; an inner diameter of ⁇ 50 mm) was provided.
  • ⁇ 520 mm in which three susceptors (see reference numeral 2 in FIG. 2) made of PBN (manufactured by pulsatile fluctuation of the furnace pressure during PBN production), which are easily delaminated with a diameter of 170 mm, are arranged and stored at intervals of 120 °.
  • PBN-coated graphite susceptor revolution jig (see reference numeral 5 in FIG. 2) was prepared.
  • the susceptor surface is processed into a tile shape from a 2-inch SCAM crystal as a seed substrate (see reference numeral 3 in FIG. 2), and an alumina-based adhesive (see reference numeral 4 in FIG. 1) is attached to the back surface to bond it in a 6-inch disk shape.
  • the susceptor revolution jig 5 rotates at 10 rpm to revolve the susceptor 2, and the force of the revolution gear is used to rotate each of the three susceptors 2 at 30 rpm to reach the temperature.
  • the reaction was carried out at a rate of about 300 ⁇ m / h for 1 hour (see reference numeral 11 in FIG. 1), and then the raw material gas was sequentially squeezed for 2 hours so that the growth rate was finally reached about 100 ⁇ m / h. After adjustment (see reference numeral 13 in FIG. 1), a slow reaction was carried out for 45 hours (see reference numeral 12 in FIG. 1).
  • the obtained GaN crystal was easily peeled from the SCAM crystal due to the cleavage property of the seed crystal SCAM, and the seed crystal SCAM was recovered and used for reuse. Since the delaminated GaN crystal absorbed thermal stress by delamination of the layered PBN susceptor, almost no warpage occurred, so it can be easily processed by cylindrical grinding, high-speed reaction part, speed transition part, low speed. A base material substrate having a diameter of 6 inches and a thickness of 5 mm composed of a reaction part was produced.
  • a smooth GaN substrate having a thickness of 625 ⁇ m was obtained by appropriately slicing and polishing from the surface side of the low-speed reaction portion of this base material substrate.
  • the following analysis was performed on the GaN substrate containing the high-speed portion (see reference numeral 11 in FIG. 1) together with the commercialized low-speed reaction portion GaN substrate.
  • the high-speed reaction part is a handle substrate during processing, as a "protective layer” to reduce mechanical damage, as a “barrier layer” to prevent contamination of impurities from adhesives, etc., and as a “sacrificial layer” to reduce crystal defects. It plays the role of.
  • the FWHM (Full Width at Half Maximum) of the X-ray locking curve of the (100) plane of the GaN substrate processed from the above-mentioned low-speed reaction section has an average of 31 arcsec and variation at any three points in the plane. However, the crystallinity was good at 3 arcsec.
  • the GaN substrate including the high-speed portion had a 448 arcsec and a variation of 84 arcsec.
  • the metal contamination of the GaN substrate of the low-speed reaction section 12 was below the detection limit, but the lower side (seed crystal, seed crystal,) of the GaN substrate including the high-speed reaction section 11 was found.
  • the susceptor side On the susceptor side), a very small amount of metals such as Mg, Al, Si, and Fe, which are thought to be from the seed crystal and the alumina-based adhesive used, were observed.
  • the commercialized GaN substrate crystal is a uniform and good GaN crystal substrate with almost no warpage and almost no variation.
  • the effects of this example are (1) the use of a cleavable and / or layered substance in which one or both of the seed crystal and the susceptor structure on which it is placed can be peeled off, and (2) crystal growth.
  • the synergistic effect of the two is large due to the fact that the GaN base (handle) substrate portion 11 is created at a relatively high speed at first and then the GaN crystal body portion 12 is thickened at a low speed. Is shown.
  • Example 1 the seed crystal was changed from the SCAM crystal to a 2-inch GaN substrate manufactured with Na flux having no cleaving property, and the susceptor was changed to corundum ceramics having no cleaving property. Crystal growth was carried out under exactly the same conditions except for the above. As a result, after the THVPE reaction, an attempt was made to cool and take out the internal product, but the GaN and the susceptor were fused, and the produced GaN and the precious seed substrate were broken into pieces and none of them could be recovered.
  • Example 2 Except that the seed substrate of SCAM of Example 1 was changed to a 2-inch GaN substrate manufactured with Na flux having no cleavability that can be peeled off, and the reaction gas was changed from GaCl 3 gas to GaCl to change from THVPE to HVPE method. The crystal growth reaction was carried out under the same conditions. The reaction was set to have the same linear velocity as in Example 1 in terms of Ga minutes. After cooling, the obtained GaN crystal was integrated with the seed crystal, and the GaN crystal could be easily peeled off from the layered PBN susceptor. The concerned thermal stress during cooling was absorbed by delamination, no cracks were generated, and almost no warpage occurred.
  • the FWHM (Full Width at Half Maximum) of the X-ray locking curve of the (100) plane of the GaN substrate commercialized in the same manner as in Example 1 had an average of 25 arcsec and a variation of 3 arcsec at any three points in the plane.
  • the analytical value of metal impurities was below the measurement limit.
  • Example 3 Except for the fact that the crystal growth was carried out for 50 hours at a low rate of about 100 ⁇ m / h from the beginning in Example 1 and that the susceptor was made of pyrolytic graphite (PG) which had cleavability but was difficult to peel off. Crystal growth was carried out under exactly the same conditions. The obtained GaN crystal could be easily peeled off from the seed crystal SCAM and the PG susceptor, and the SCAM could be recovered and reused. Since the delaminated GaN crystal had a weak delamination property of the layered PG susceptor, the thermal stress of the GaN crystal could not be sufficiently absorbed and a warp of several millimeters occurred. However, no cracking occurred. It was processed to ⁇ 6 inch by cylindrical grinding while correcting it to some extent.
  • PG pyrolytic graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明のIII族化合物基板の製造方法は、サセプター(2)に載置され、固定された種結晶(3)に、気相成長法により、III族化合物の結晶(1)を成長させるIII族化合物基板の製造方法であり、サセプター(2)及び種結晶(3)の少なくとも一方の部材に剥離可能な劈開性を有する物質を用いることを特徴とする。III族化合物基板は、本発明のIII族化合物基板の製造方法により製造されることを特徴とする。本発明により、気相成長法の特長である、高成膜速度の特長を生かしつつ、より高品質な大型GaN結晶基板が低コストで得られるIII族化合物基板の製造方法及びその製造方法で製造された基板を提供できる。

Description

III族化合物基板の製造方法及びIII族化合物基板
 本発明は高品質のAlN、Ga2O3、GaN等のIII族化合物基板の製法及びその基板に関するものであり、特にはGaN結晶基板に関わるものである。
 結晶性AlN、Ga、GaN等のIII族化合物の基板は広いバンドギャップを有し、極短波長の発光性や高耐圧で優れた高周波特性を持つ。このため、III族化合物の基板は、レーザー、ショットキーダイオード、パワーデバイス、高周波デバイス等のデバイスへの応用に期待されている。しかしながら、現状はこれ等のIII族化合物の高品質で大口径の結晶成長は難しく、III族化合物基板の用途が限定的である。
 例えばGaN基板について見ると、一般的に液体アンモニア若しくはNaフラックス等の液中でGaN結晶を成長させたバルクGaN基板は比較的高品質だが、大口径化が難しい。これに対し、気相で結晶成長する有機金属気相成長法(MOCVD法)やハイドライド気相成長法(HVPE法、THVPE法等)では、サファイア基板、GaAs基板、AlN基板等の基板上にGaNをヘテロエピタキシャル成長させる事に依り、大口径のGaN薄膜が得られる。しかし、ヘテロエピタキシャル成長法では、高品質な基板を得ようと膜厚を厚くすると、格子欠陥、反り、割れが生じやすい。
 例えば、非特許文献1には、Naフラックス法で作製した小口径GaN基板の複数枚を熱分解グラファイト(PG)製サセプター上にハニカム形状に貼り合せ、それを種基板とし、その上にHVPE法でGaNを成長させることによって大口径のGaN基板を得た事が記載されている。
 非特許文献2には、SCAM(ScAlMgO)(0001)基板を種結晶として、その上にMOVPE法(有機金属気相エピタキシ法)でGaNのエピタキシャル成長を行う製法が記載されている。
 特許文献1では、サファイア基板上にGaN結晶をエピタキシャル成長させ、その結晶を複数枚、ハニカム形状に切り出してPG等のサセプター上に耐熱性セラミックスと無機ポリマーを主成分とする接着剤で貼り付けて種結晶とし、HVPE法でGaNの大型化と厚膜化を行う方法が記載されている。
特許第6203460号公報
Phys. Status Solidi B 254, No.8,1600671 (2017) Phys. Status Solidi A 214, No.9,1600754 (2017)
 上述の先行技術には、更に共通した2つの問題が有った。即ち、GaN結晶を成長後、冷却し、種結晶から生成したGaN結晶を剥離・回収しようと思っても、両者が強く結合しているため、目的のGaN結晶を収率良く得る事及び高価な種結晶の回収をする事が困難であった。サファイヤ、GaN等の種結晶から成長したGaN結晶を無理矢理に剥離し、回収すると、その際に生成したGaN結晶その物を棄損したり、その後の工程や加工時の取扱でも生成したGaN結晶には、損傷が発生し易かった。加えて種結晶は生成GaNのみならずサセプターにも強く付着しており、生成したGaN結晶に強い熱応力が掛り、その熱応力が、生成したGaN結晶が反ったり、割れたりする要因となっていた。
 本発明は上記事情に鑑みなされたもので、高品質のAlNやGaN結晶等のIII族化合物基板を大口径かつ厚く成長させる製法と、其れにより得られるIII族化合物基板、特にはGaN基板を提供する事を目的とする。
 本発明は上記目的を達成する為、下記のIII族化合物基板の製造方法及びその基板を提供する。
(1)サセプターに載置され、固定された種結晶に、気相成長法により、III族化合物の結晶を成長させるIII族化合物基板の製造方法であって、前記サセプター及び前記種結晶の少なくとも一方の部材に剥離可能な劈開性を有する物質を用いることを特徴とするIII族化合物基板の製造方法。
(2)前記サセプターは、少なくとも前記種結晶を載置している面が前記剥離可能な劈開性を有する物質で構成され、前記剥離可能な劈開性を有する物質が熱分解窒化ホウ素(PBN)であることを特徴とする上記(1)に記載のIII族化合物基板の製造方法。
(3)前記剥離可能な劈開性を有する物質が熱分解窒化ホウ素(PBN)及び炭素の複合体であることを特徴とする上記(1)または(2)に記載のIII族化合物基板の製造方法。
(4)前記種結晶が前記剥離可能な劈開性を有する物質で構成され、
 前記剥離可能な劈開性を有する物質がSCAM(ScAlMgO)結晶であることを特徴とする上記(1)~(3)のいずれか1つに記載のIII族化合物基板の製造方法。
(5)第1の結晶速度で前記種結晶にIII族化合物の結晶を成長させる第1の結晶成長工程、及び前記第1の結晶成長工程の後に、前記第1の結晶速度よりも結晶速度が低い第2の結晶速度で、前記種結晶にIII族化合物の結晶を成長させる第2の結晶成長工程を含むことを特徴とする上記(1)~(4)のいずれか1つに記載のIII族化合物基板の製造方法。
(6)前記第1の結晶成長工程及び前記第2の結晶工程の間に、第3の結晶速度で前記種結晶にIII族化合物の結晶を成長させる第3の結晶工程を含み、前記第3の結晶工程では、前記第3の結晶速度は、前記第1の結晶速度から前記第2の結晶速度へ、段階的に及び/又は連続的に変わることを特徴とする上記(5)に記載のIII族化合物基板の製造方法。
(7)前記III族化合物が窒化ガリウム(GaN)であることを特徴とする上記(1)~(6)のいずれか1つに記載のIII族化合物基板の製造方法。
(8)上記(1)~(7)のいずれか1つに記載のIII族化合物基板の製造方法により製造されることを特徴とするIII族化合物基板。
 本発明によれば気相成長法の特長である、高成膜速度の特長を生かしつつ、より高品質な大型III族化合物基板が低コストで得られる。即ち、大口径でバラツキの無い、極めて厚物のIII族化合物基板が作製出来る為、基板の結晶特性にも優れ且つ、低コストの大口径III族化合物基板が容易に得られる。
図1は、本発明の一実施形態に係るIII族化合物基板の製造方法を説明するための模式図である。 図2は、本発明の一実施形態に係るIII族化合物基板の製造方法の実施例を説明するための模式図である。
 本発明のIII族化合物基板の製造方法は、サセプターに載置され、固定された種結晶に、気相成長法により、III族化合物の結晶を成長させるIII族化合物基板の製造方法であり、サセプター及び種結晶の少なくとも一方の部材に剥離可能な劈開性を有する物質を用いることを特徴とする。例えば、サセプターの一部又は全部を剥離可能な劈開性を有する物質で構成されるようにしてもよい。また、種結晶の一部又は全部を剥離可能な劈開性を有する物質で構成されるようにしてもよい。以下に本発明に係るIII族化合物基板、特にはGaN基板の製造方法及びその基板の実施する為の形態について説明する。
 本発明の製造方法はAlN、Ga、GaN等のIII族化合物に有効であるが、取り分けGaN結晶成長に最適であり、中でもIII族化合物結晶成長速度が早く、大口径、厚物の生産に向く気相成長法、特にハイドライド気相成長法(HVPE法、THVPE法等)に関したものである。
 此れ迄のハイドライド気相成長法(HVPE法、THVPE法等)の従来技術では、GaN結晶を成長後、冷却し、サファイヤやGaN等の種結晶から生成GaN結晶を剥離・回収しようと思っても、両者が強く結合しているため、目的のGaN結晶を棄損せず収率良く得る事や高価な種結晶の回収をする事は極めて困難であった。無理矢理にサファイヤやGaN等の種結晶から生成GaN結晶を剥離し、回収しようとすると、無理な力が掛り、貴重なGaN結晶を割ったり、傷つけたりする事が多かった。加えて種結晶は生成GaN結晶のみならずサセプター構造体にも強く付着し、反応、冷却後にはGaN結晶に強い熱応力が掛り、種々の特性劣化や反り、割れの大きな原因となっていた。特に大口径や厚い結晶成長の時には、これ等の現象は更に顕著になりGaN基板の高特性化や低コスト化の大きなネックとなっていた。
 其処で本発明者は鋭意検討した結果、種結晶及び其れを載置するサセプターの一方、若しくは両方に剥離可能な劈開性を有する物質を用いる事に依り上記の問題を解決するに至った。即ち、種結晶に剥離可能な劈開性を有する物質を用いると、生成GaN結晶を剥離する際には種結晶の劈開面から種結晶を容易に剥離出来、生成GaN結晶及び種結晶を容易に回収することができる。又、サセプターに剥離可能な劈開性を有する物質を用いることにより、生成GaN結晶を剥離する際にはサセプターの劈開面からサセプターを容易に剥離出来、生成GaN結晶及び種結晶を容易に回収することができる。
 これにより、気相成長法の特長である、高成膜速度の特長を生かしつつ、より高品質な大型GaN結晶基板が低コストで得られる。即ち、大口径でバラツキの無い、極めて厚物のGaN結晶基板が作成出来る為、基板の結晶特性にも優れ且つ、低コストの大口径GaN基板が容易に得られる。
 サセプターは、少なくとも種結晶を載置している面が、上述の剥離可能な劈開性を有する物質で構成されていればよい。したがって、サセプター全体が、上述の剥離可能な劈開性を有する物質で構成されている必要はない。
 サセプターに用いる劈開性を有する物質は、好ましくは、層状物質である。層状物質をサセプターに用いることにより、生成GaN結晶を剥離する際には層状物質の層構造の網平面間でサセプターを容易に剥離出来、生成GaN結晶及び種結晶を更に容易に回収することができる。又、サセプターに層状物質を有する物質を用いる事に依り、生成GaN結晶とサセプターが付着して発生する熱応力は、適宜、層間で吸収されたり、層間剥離により緩和されたりする事ができる。
 サセプター及び種結晶の少なくとも一方の部材に剥離可能な劈開性を有する物質を用いることにより、此れ迄、困難であった大口径、厚物のGaN結晶に於いても、反りや割れ等が発生せずにGaN結晶が高収率で得られ、又、高価な種結晶の回収も容易となり、種結晶の使い回しも可能となる。
 なお、「剥離可能な劈開性を有する物質」とは、III族化合物基板及び種結晶を割ったり傷付けたりしない程度の機械的衝撃で劈開する物質、または、III族化合物基板及び種結晶の間の熱膨張率の差異による生ずる熱応力で劈開する物質である。
 更に、結晶成長速度を、最初は相対的に高速でGaNのベース(ハンドル)基板部分11を作成し、その後は低速でGaN結晶本体部分12の厚膜化を行う事が好ましい(図1参照)。これに依り、GaNのベース(ハンドル)基板部分11は(i)種結晶3やサセプター2からの不純物拡散のバリヤー層として、又、(ii)結晶成長は厚く積む程、その上層部ほど結晶欠陥が減少するという結晶成長の性質より、目的のGaN結晶本体部分12の結晶欠陥を少なくする「犠牲層」として、更には(iii)結晶成長後の剥離時やその後の加工工程等の機械的なダメージを防ぐ「保護層」として、或いは(iv)操作・搬送時のハンドル基板として寄与する。こうすると、目的とするGaN結晶本体部分はより低速で結晶成長を行う事で格子欠陥等の特性劣化や他の特性のバラツキを抑制出来、好ましい。
 価格、反応ガス(GaCl、GaCl、NH)に対する耐食性、不純物の混入等の観点から、サセプターに用いる剥離可能な劈開性を有する物質は、高純度で反応ガスにも侵されず、層状化合物である熱分解窒化硼素(PBN)が好ましく、PBN層間結合力を故意に弱めて製造された層間剥離が容易なPBN又はそれと炭素との複合体の構成物はコスト面(大型、高強度)から更に好ましい。なお、窒化硼素の中で六方晶の窒化硼素が層状化合物である。
 炭素基材表面にPBN被膜を形成してPBN/炭素複合体を作製するには、例えば、特公平4-79992号公報に記載の方法を用いることが出来る。このとき、化学蒸着炉内でPBN膜を成膜している途中で、炉内圧をパルス的に増減させることにより、原子が面状に結合した層状構造における面同士の結合力を弱化させたPBN層を成膜することが出来る。成膜途中に、このような結合力が弱い層を適宜挿入することにより、層間剥離が容易なPBN膜を形成することが出来る。
 GaN結晶の格子定数及び熱膨張率に近く、原料ガスへの耐性、相対的に価格も安く、生成GaN結晶から剥離・回収の容易性の観点から、種結晶に用いる剥離可能な劈開性を有する物質として、SCAM(ScAlMgO)結晶を用いる事が好ましく、劈開性SCAM(ScAlMgO)の単独基板、又はそれ等の複数基板を、結晶方位を合せて貼り合せた基板を用いる事が特に好ましい。反応ガス(GaCl、GaCl、NH)に対する耐食性、不純物の混入等の観点から、基板表面をSiO、AlN等で被覆して用いても良い。
 本発明では種結晶を載置するサセプターが剥離可能な劈開性を有する物質である場合は、種結晶には、剥離可能な劈開性を有する物質を用いなくてもよい。この場合、種基板にはMOCVD法、Naフラックス法、及び液アン法から選ばれた製法のGaN基板等も用いる事が出来る。
 本発明では種結晶が剥離可能な劈開性を有する物質である場合、サセプターには、剥離可能な劈開性を有する物質を用いなくてもよい。この場合、サセプターには、GaN基板その物や熱分解グラファイト(PG)、コランダム等のセラミックス等も用いることができる。なお、PGは、層状物質であり、劈開性を有するが、層構造の網平面同士の結合が強いため、容易に剥離しない。
 本発明で結晶成長速度を、前述の理由に依り、最初は相対的に高速でGaNのベース(ハンドル)基板部分11を作成し、その後は低速でGaN結晶本体部分12の厚膜化を行うことがこのましい。更に経済的、効率的な側面及び生成GaN結晶中の応力発生を抑制、特性向上が出来る事等から、高速から低速に変えるに当り、複数段階的及び/又は連続的に、低速化する事が特に好ましい(図1の結晶成長速度遷移部分13参照)。
 以下、本発明の実施例を説明するが、本発明はこれに限定されるものではない。
 以下に実施例及び比較例を上げて、本発明を更に具体的に説明するが、本発明は此れら実施例に限定されるものではない。
[実施例1]
 水冷ジャケットと排気口を有する内径1500mm×高さ1800mmのステンレス製反応装置(内面は予め極薄くジルコニアを溶射し、コーテングした)にアルミナのマット状の断熱材を入れ、その内側に円筒状にロッド状のSiCヒーターを持つ加熱装置(内径1000mm×高さ1300mm)とガス供給管(図2の符号6参照)(上記の反応装置と同材質で中心管61;内径φ30mm、2番目の管62;内径φ40mm、最外管63;内径φ50mm)を備えた。一方、φ170mmの層間剥離性が容易なPBN(PBN製造時に炉内圧をパルス的に変動させ製造した物)製の3枚のサセプター(図2の符号2参照)を120°間隔に配置収納するφ520mmのPBNコート・グラファイトのサセプター公転冶具(図2の符号5参照)を準備した。このサセプター面に2インチのSCAM結晶から種基板(図2の符号3参照)としてタイル状に加工し、裏面にアルミナ系接着材(図1の符号4参照)を付け6インチの円盤状に接着した後、加熱ヒーターで1380℃に加熱しつつ、同時にサセプター公転冶具5は10rpmで回転してサセプター2を公転させ、その公転歯車の力を用いて3枚の各サセプター2は30rpmで自転させ温度、回転が安定を確認した後、反応装置内部に3重管の中心管61からGaClガスを、最外管63からNHガスを、中心管と最外管との間の管62からNガスを供給しTHVPE反応を開始した。
 最初、高速の結晶成長として約300μm/hの速度で1時間反応後(図1の符号11参照)、原料ガスを逐次2時間掛けて絞り成長速度を最終的に約100μm/hになる様に調整した(図1の符号13参照)後、低速反応を45時間行なった(図1の符号12参照)。
 冷却後、得られたGaN結晶は種結晶SCAMの劈開性により容易にSCAM結晶から剥離し、種結晶SCAMは回収し再使用に向けた。剥離したGaN結晶は層状のPBN製サセプターの層間剥離で熱応力を吸収した為、殆ど反りが発生しなかったので其の儘、簡単に円筒研削で加工出来、高速反応部・速度遷移部・低速反応部からなるφ6インチ×厚さ5mmの母材基板を作製した。
 この母材基板の低速反応部の表面側から適宜スライス、研磨し、厚み625μmの平滑なGaN基板を得た。反応解析の為に、製品化した低速反応部分のGaN基板と併せて高速部分(図1の符号11参照)を含むGaN基板について以下の分析を行った。尚、高速反応部分は加工時のハンドル基板、機械的ダメージを軽減する「保護層」として、接着剤等からの不純物の汚染防止用「バリヤー層」として又、結晶欠陥を少なくする「犠牲層」としての役割を担うものである。
 上記の低速反応部(図1の符号12参照)から加工したGaN基板の(100)面のX線ロッキングカーブのFWHM(Full Width at Half Maximum)は面内の任意の3点が平均31arcsec、バラツキが3arcsecで結晶性が良好な物であった。一方、高速部分部(図1の符号11参照)を含むGaN基板は448arcsec、バラツキが84arcsecであった。又、因みに上記の各基板の表面の化学分析をした結果、低速反応部12のGaN基板は金属汚染は検出限界以下であったが、高速反応部11を含むGaN基板の下部側(種結晶、サセプタ―側)には種結晶及び使用したアルミナ系接着材からと思われるMg、Al、Si、Fe等の金属の極僅かな混入が認められた。
 更に積層欠陥を単色Cathode Luminescence像で観察した結果、製品化したGaN基板の表面層には殆ど見られなかった。一方、高速部分11を含むGaN基板では積層欠陥が見られ、特に高速部分11には多く観察された。此の事は高速部分11が一種の不純物のトラップ層、或いは欠陥の犠牲層の役割を担っている事が分かる。以上の結果から製品化したGaN基板晶は反りの無く、バラツキの殆ど無い均一で良好なGaN結晶基板である事が示された。本実施例の効果は(1)種結晶と其れを載置するサセプター構造体の一方、若しくは両方が剥離可能な劈開性及び/又は層状性の物質を用いた事、加えて(2)結晶成長速度を、最初は相対的に高速でGaNのベース(ハンドル)基板部分11を作成し、その後は低速でGaN結晶本体部分12の厚膜化を行成った事に依る両者の相乗効果が大きい事を示すものである。
[比較例]
 実施例1で種結晶をSCAM結晶から、剥離可能な劈開性を有さないNaフラックスで製造した2インチのGaN基板に、サセプターを剥離可能な劈開性を有さないコランダムのセラミックス製に変えた以外は全く同じ条件で結晶成長を行った。その結果、THVPE反応後、冷却して内部の生成物を取り出そうとしたがGaNとサセプターとが融着して、生成GaNと貴重な種基板は粉々に割れていずれも回収不可能であった。
[実施例2]
 実施例1のSCAMの種基板を剥離可能な劈開性を有さないNaフラックスで製造した2インチのGaN基板に変え、反応ガスをGaClガスからGaClに変えてTHVPEからHVPE法にした以外は同一条件で結晶成長反応を行った。尚、反応はGa分換算で実施例1と同一線速となる様にした。冷却後、得られたGaN結晶は種結晶と一体になった形でGaN結晶は層状のPBN製サセプターから容易に引き剥がす事が出来た。心配した冷却時の熱応力は層間剥離で吸収し、クラック発生も無く、又、殆ど反りも発生しなかった。実施例1と同様に製品化したGaN基板の(100)面のX線ロッキングカーブのFWHM(Full Width at Half Maximum)は面内の任意の3点が平均25arcsec、バラツキが3arcsecであった。金属不純物の分析値は測定限界以下であった。又、積層欠陥を単色Cathode Luminescence像で観察した結果、GaNの表面層には殆ど見られなかった。上記の測定と観察から、得られたGaN結晶は極めてバラツキの無い均一で良好な結晶基板である事を示している。
[実施例3]
 実施例1で最初のから低速度の約100μm/hで結晶成長を50時間行なった事とサセプターに劈開性を有するが剥離することが難しい熱分解グラファイト(PG)製を使用した事、以外は全く同一条件で結晶成長を行った。得られたGaN結晶は容易に種結晶のSCAM及びPG製サセプターから剥離出来、SCAMは回収し再使用が可能であった。剥離したGaN結晶は層状のPG製サセプターの層間剥離性が弱かった為、GaN結晶の熱応力を充分に吸収出来ず数ミリの反りが発生した。しかし割れは起こらなかった。多少、矯正しながら円筒研削でφ6インチに加工した。
1 GaN基板
2 サセプター
3 種結晶
4 接着剤
5 サセプター公転治具
6 ガス供給管
11 ベース(ハンドル)基板部分
12 GaN結晶本体部分
13 結晶成長速度遷移部分

 

Claims (8)

  1.  サセプターに載置され、固定された種結晶に、気相成長法により、III族化合物の結晶を成長させるIII族化合物基板の製造方法であって、
     前記サセプター及び前記種結晶の少なくとも一方の部材に剥離可能な劈開性を有する物質を用いることを特徴とするIII族化合物基板の製造方法。
  2.  前記サセプターは、少なくとも前記種結晶を載置している面が前記剥離可能な劈開性を有する物質で構成され、
     前記剥離可能な劈開性を有する物質が熱分解窒化ホウ素(PBN)であることを特徴とする請求項1に記載のIII族化合物基板の製造方法。
  3.  前記剥離可能な劈開性を有する物質が熱分解窒化ホウ素(PBN)及び炭素の複合体であることを特徴とする請求項1または2に記載のIII族化合物基板の製造方法。
  4.  前記種結晶が前記剥離可能な劈開性を有する物質で構成され、
     前記剥離可能な劈開性を有する物質がSCAM(ScAlMgO)結晶であることを特徴とする請求項1~3のいずれか1項に記載のIII族化合物基板の製造方法。
  5.  第1の結晶速度で前記種結晶にIII族化合物の結晶を成長させる第1の結晶成長工程、及び
     前記第1の結晶成長工程の後に、前記第1の結晶速度よりも結晶速度が低い第2の結晶速度で、前記種結晶にIII族化合物の結晶を成長させる第2の結晶成長工程を含むことを特徴とする請求項1~4のいずれか1項に記載のIII族化合物基板の製造方法。
  6.  前記第1の結晶成長工程及び前記第2の結晶工程の間に、第3の結晶速度で前記種結晶にIII族化合物の結晶を成長させる第3の結晶工程を含み、
     前記第3の結晶工程では、前記第3の結晶速度は、前記第1の結晶速度から前記第2の結晶速度へ、段階的に及び/又は連続的に変わることを特徴とする請求項5に記載のIII族化合物基板の製造方法。
  7.  前記III族化合物が窒化ガリウム(GaN)であることを特徴とする請求項1~6のいずれか1項に記載のIII族化合物基板の製造方法。
  8.  請求項1~7のいずれか1項に記載のIII族化合物基板の製造方法により製造されることを特徴とするIII族化合物基板。

     
PCT/JP2020/018471 2019-05-27 2020-05-01 Iii族化合物基板の製造方法及びiii族化合物基板 WO2020241184A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20814676.1A EP3978659A4 (en) 2019-05-27 2020-05-01 METHOD OF PREPARING A GROUP III COMPOSITE SUBSTRATE AND GROUP III COMPOSITE SUBSTRATE
KR1020217034388A KR20220012226A (ko) 2019-05-27 2020-05-01 Iii 족 화합물 기판의 제조 방법 및 iii 족 화합물 기판
US17/613,653 US20220235489A1 (en) 2019-05-27 2020-05-01 Method for manufacturing group iii compound substrate, and group iii compound substrate
CN202080039330.5A CN113840949A (zh) 2019-05-27 2020-05-01 Iii族化合物基板的制造方法和iii族化合物基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-098738 2019-05-27
JP2019098738A JP7228467B2 (ja) 2019-05-27 2019-05-27 Iii族化合物基板の製造方法及びiii族化合物基板

Publications (1)

Publication Number Publication Date
WO2020241184A1 true WO2020241184A1 (ja) 2020-12-03

Family

ID=73546256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018471 WO2020241184A1 (ja) 2019-05-27 2020-05-01 Iii族化合物基板の製造方法及びiii族化合物基板

Country Status (7)

Country Link
US (1) US20220235489A1 (ja)
EP (1) EP3978659A4 (ja)
JP (1) JP7228467B2 (ja)
KR (1) KR20220012226A (ja)
CN (1) CN113840949A (ja)
TW (1) TW202113127A (ja)
WO (1) WO2020241184A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623460B2 (ja) 1982-04-26 1987-01-24 Fujitsu Ltd
JPH0479992B2 (ja) 1986-03-06 1992-12-17 Shinetsu Chem Ind Co
JP2009519202A (ja) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Iii族窒化物製品及び同製品の作製方法
JP2015178448A (ja) * 2014-02-28 2015-10-08 国立大学法人東北大学 単結晶基板の製造方法およびレーザ素子の製造方法
WO2017154701A1 (ja) * 2016-03-08 2017-09-14 株式会社サイオクス 窒化物結晶基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623460B2 (ja) 1986-04-02 1994-03-30 株式会社構建設計研究所 コンクリ−ト床板の施工法
JP3994130B2 (ja) * 2001-02-01 2007-10-17 シャープ株式会社 Iii−v族化合物半導体製造装置及びiii−v族化合物半導体の製造方法
JP3803788B2 (ja) * 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
KR100707166B1 (ko) * 2005-10-12 2007-04-13 삼성코닝 주식회사 GaN 기판의 제조방법
JP2008308401A (ja) * 2007-05-17 2008-12-25 Mitsubishi Chemicals Corp Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板および半導体発光デバイス
CN101962804B (zh) * 2010-10-30 2012-05-02 北京大学 基于外延材料应力控制的GaN厚膜自分离方法
JP5829152B2 (ja) * 2012-03-08 2015-12-09 株式会社サイオクス 窒化ガリウムテンプレート基板の製造方法及び窒化ガリウムテンプレート基板
US9840790B2 (en) * 2012-08-23 2017-12-12 Hexatech, Inc. Highly transparent aluminum nitride single crystalline layers and devices made therefrom
KR101812516B1 (ko) * 2016-05-09 2017-12-27 주식회사 루미스탈 질화물 반도체 기판 제조 장치 및 방법
KR102426231B1 (ko) * 2016-08-08 2022-07-29 미쯔비시 케미컬 주식회사 도전성 C면 GaN 기판
CN107275454B (zh) * 2017-07-21 2019-07-05 厦门乾照光电股份有限公司 一种发光二极管的外延生长方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623460B2 (ja) 1982-04-26 1987-01-24 Fujitsu Ltd
JPH0479992B2 (ja) 1986-03-06 1992-12-17 Shinetsu Chem Ind Co
JP2009519202A (ja) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Iii族窒化物製品及び同製品の作製方法
JP2015178448A (ja) * 2014-02-28 2015-10-08 国立大学法人東北大学 単結晶基板の製造方法およびレーザ素子の製造方法
WO2017154701A1 (ja) * 2016-03-08 2017-09-14 株式会社サイオクス 窒化物結晶基板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PHYS. STATUS SOLIDI A, vol. 214, no. 9, 2017, pages 1600754
PHYS. STATUS SOLIDI B, vol. 254, no. 8, 2017, pages 1600671
See also references of EP3978659A4

Also Published As

Publication number Publication date
US20220235489A1 (en) 2022-07-28
KR20220012226A (ko) 2022-02-03
CN113840949A (zh) 2021-12-24
TW202113127A (zh) 2021-04-01
EP3978659A1 (en) 2022-04-06
JP7228467B2 (ja) 2023-02-24
EP3978659A4 (en) 2023-05-31
JP2020193118A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5885650B2 (ja) 最初のiii族−窒化物種晶からの熱アンモニア成長による改善された結晶性のiii族−窒化物結晶を生成するための方法
US20020182889A1 (en) Free standing substrates by laser-induced decoherency and regrowth
US10584031B2 (en) Nitride crystal substrate
WO2021140793A1 (ja) Iii族窒化物基板の製造方法及びiii族窒化物基板
US10364510B2 (en) Substrate for crystal growth having a plurality of group III nitride seed crystals arranged in a disc shape
WO2010007867A1 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP2010010613A (ja) 積層体、自立基板製造用基板、自立基板およびこれらの製造方法
WO2018040354A1 (zh) 一种快速制备大尺寸SiC单晶晶棒的方法
JP4907476B2 (ja) 窒化物半導体単結晶
JP4707755B2 (ja) 窒化アルミニウム単結晶層を有する積層体の製造方法、該製法で製造される積層体、該積層体を用いた窒化アルミニウム単結晶基板の製造方法、および、窒化アルミニウム単結晶基板
JP5517123B2 (ja) 窒化アルミニウム単結晶とその製造方法および製造装置
JP2017100936A (ja) 結晶成長用基板、窒化物結晶基板および窒化物結晶基板の製造方法
WO2020241184A1 (ja) Iii族化合物基板の製造方法及びiii族化合物基板
JP2008285401A (ja) Iii族窒化物単結晶基板の製造方法、および該基板を積層した積層基板
JP2008162855A (ja) 窒化物半導体基板の製造方法及び窒化物半導体基板
JP2020535092A (ja) 超臨界アンモニアの中での窒化ガリウムバルク結晶の成長のための種結晶および製造方法
WO2021014834A1 (ja) Iii族化合物基板の製造方法及びその製造方法により製造した基板
JP2010083683A (ja) 単結晶体の製造方法および単結晶体の製造装置
US11932936B2 (en) Method for producing a group III compound crystal by hydride vapor phase epitaxy on a seed substrate formed on a group III nitride base substrate
WO2024004961A1 (ja) Sam基板の再利用方法
WO2023214590A1 (ja) 高品質・低コストGaN自立基板の製造方法
WO2020195497A1 (ja) 半導体膜
JP2010265131A (ja) 窒化物単結晶の製造方法
JP2010287673A (ja) GaN単結晶体およびその製造方法、ならびに半導体デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020814676

Country of ref document: EP

Effective date: 20220103