WO2020241076A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2020241076A1
WO2020241076A1 PCT/JP2020/015853 JP2020015853W WO2020241076A1 WO 2020241076 A1 WO2020241076 A1 WO 2020241076A1 JP 2020015853 W JP2020015853 W JP 2020015853W WO 2020241076 A1 WO2020241076 A1 WO 2020241076A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
compressor
conditioning system
controller
air conditioning
Prior art date
Application number
PCT/JP2020/015853
Other languages
English (en)
French (fr)
Inventor
和博 中山
岡本 敦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080038527.7A priority Critical patent/CN113874661B/zh
Priority to US17/614,280 priority patent/US20220146173A1/en
Priority to EP20813372.8A priority patent/EP3978817B1/en
Publication of WO2020241076A1 publication Critical patent/WO2020241076A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/37Resuming operation, e.g. after power outages; Emergency starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/30Condensation of water from cooled air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Definitions

  • An air conditioning system that can operate air conditioning even if the power of some indoor units is cut off.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-406978 discloses an air conditioner capable of performing air conditioning operation even when the power supply of some indoor units is cut off.
  • a power supply unit may be installed to supply power to an indoor unit whose power is cut off.
  • a power supply unit can supply. Problems such as damage to the compressor in the outdoor unit or overflow of drain water in the indoor unit may occur.
  • the air conditioning system includes a refrigerant cycle, a power supply unit, a controller, and a judgment unit.
  • the refrigerant cycle includes an outdoor unit and a plurality of indoor units.
  • the outdoor unit includes a compressor.
  • the power supply unit supplies auxiliary power to at least a part of the plurality of indoor units when the power is cut off.
  • the controller at least controls the compressor.
  • the determination unit makes one determination of stopping the compressor and continuing the operation of the compressor when the power supply to at least a part of the plurality of indoor units is cut off.
  • the judgment unit sends a command corresponding to the judgment to the controller.
  • the judgment unit predicts the degree of wetness or the degree of wetness of the refrigerant sucked by the compressor, and the amount of drain water in at least a part of the plurality of indoor units. Or, make a judgment based on at least one of the prediction of the amount of drain water.
  • the judgment unit predicts the amount of drain water or the amount of drain water in at least a part of the plurality of indoor units, and the power supply capacity of the power supply unit. Make a decision.
  • the controller causes at least the compressor to perform an oil return operation or a defrost operation in the refrigerant cycle.
  • the determination unit determines whether to continue the oil return operation or the defrost operation when the power supply unit supplies auxiliary power to at least a part of the power supply unit.
  • the controller determines that the oil return operation is not continued when the controller is executing the oil return operation in the refrigerant cycle in the air conditioning system according to the fourth viewpoint, the controller determines that the oil return operation is not continued. Stop the compressor.
  • the controller stops the compressor based on the degree of wetness of the refrigerant sucked by the compressor.
  • the air conditioning system is the air conditioning system according to the fourth aspect, and each of the plurality of indoor units includes an expansion valve.
  • the controller divides the plurality of indoor units into at least two groups. When the controller determines that the oil return operation is to be continued while the refrigerant cycle is executing the oil return operation, the controller executes the first group closing control and the second group closing control in order. .. In the first group closing control, the expansion valve of the indoor unit belonging to the first group is closed, and the expansion valve of the indoor unit belonging to the second group is opened. In the second group closing control, the expansion valve of the indoor unit belonging to the first group is opened, and the expansion valve of the indoor unit belonging to the second group is closed.
  • the air conditioning system according to the eighth aspect is the air conditioning system according to any one of the fourth aspect to the seventh aspect, and the outdoor unit further includes a four-way switching valve.
  • the controller When the controller is causing the refrigerant cycle to perform the defrost operation, if the determination unit determines that the defrost operation is not continued, the controller stops the compressor.
  • the air conditioning system according to the ninth aspect is the air conditioning system according to the seventh aspect, and the outdoor unit further includes a four-way switching valve.
  • the controller determines that the defrost operation is to be continued while the refrigerant cycle is performing the defrost operation, the controller switches the four-way switching valve.
  • At least one of a plurality of expansion valves is opened when the controller switches the four-way switching valve, and the compressor is operating.
  • FIG. 1 is a schematic configuration diagram of the air conditioning system 100 of the present embodiment.
  • the air conditioning system 100 is a system that realizes air conditioning such as cooling and heating in a target space included in a building such as a house, a building, a factory, or a public facility.
  • the air conditioning system 100 includes a refrigerant circuit RC in which a refrigerant circulates.
  • the air conditioning system 100 cools or heats the target space by circulating the refrigerant in the refrigerant circuit RC and performing a vapor compression refrigeration cycle.
  • a refrigerant such as R410A, R32 or ammonia is sealed in the refrigerant circuit RC.
  • the air conditioning system 100 mainly includes one outdoor unit 10 as a heat source unit, a plurality of indoor units 30 (30a, 30b, 30c) as utilization units (three in FIG. 1), and one power supply unit. It includes 40, a plurality of remote controllers 50 (three in FIG. 1), and a controller 60.
  • the refrigerant circuit RC of the air conditioning system 100 is configured such that the outdoor unit 10 and each indoor unit 30 are connected by a gas communication pipe GP and a liquid communication pipe LP.
  • the air conditioning system 100 is a multi-type (multi-tenant) air-conditioning system in which a plurality of indoor units 30 are connected to the same refrigerant system.
  • Outdoor unit 10 is an outdoor unit installed outdoors (outside the target space).
  • the outdoor unit 10 mainly includes a plurality of refrigerant pipes (first pipe P1 to fifth pipe P5), a compressor 11, a four-way switching valve 12, an outdoor heat exchanger 13, an outdoor fan 15, and an outdoor unit. It has a control unit 17 and a determination unit 90.
  • the first pipe P1 is a refrigerant pipe that connects the gas connecting pipe GP and the four-way switching valve 12.
  • the second pipe P2 is a suction pipe that connects the four-way switching valve 12 and the suction port (not shown) of the compressor 11.
  • the third pipe P3 is a discharge pipe that connects the discharge port (not shown) of the compressor 11 and the four-way switching valve 12.
  • the fourth pipe P4 is a refrigerant pipe that connects the four-way switching valve 12 and the gas side of the outdoor heat exchanger 13.
  • the fifth pipe P5 is a refrigerant pipe that connects the liquid side of the outdoor heat exchanger 13 and the liquid communication pipe LP.
  • the compressor 11 is a mechanism that sucks in a low-pressure gas refrigerant, compresses it, and discharges it.
  • the compressor 11 has a closed structure in which the compressor motor 11a is built.
  • a rotary type or scroll type compression element housed in the compressor casing (not shown) is driven by the compressor motor 11a as a drive source.
  • the compressor motor 11a is controlled by an inverter during operation, and the rotation speed is adjusted according to the situation.
  • the compressor 11 sucks the refrigerant from the suction port, compresses it, and discharges it from the discharge port.
  • the four-way switching valve 12 is a valve for switching the flow direction of the refrigerant in the refrigerant circuit RC.
  • the four-way switching valve 12 is individually connected to the first pipe P1, the second pipe P2, the third pipe P3, and the fourth pipe P4.
  • the four-way switching valve 12 switches the flow path so that the first pipe P1 and the second pipe P2 are connected and the third pipe P3 and the fourth pipe P4 are connected during the cooling operation (FIG. Refer to the solid line of the four-way switching valve 12 in 1).
  • the four-way switching valve 12 switches the flow path so that the first pipe P1 and the third pipe P3 are connected and the second pipe P2 and the fourth pipe P4 are connected during the heating operation (FIG. See the broken line of the four-way switching valve 12 in 1).
  • the outdoor heat exchanger 13 is a heat exchanger that functions as a refrigerant condenser or radiator during cooling operation and as a refrigerant evaporator or endothermic during heating operation.
  • the outdoor heat exchanger 13 includes a heat transfer tube through which the refrigerant flows (not shown) and a heat transfer fin (not shown) that increases the heat transfer area.
  • the outdoor heat exchanger 13 is arranged so that the refrigerant in the heat transfer tube and the air flow generated by the outdoor fan 15 can exchange heat during operation.
  • the outdoor fan 15 is, for example, a propeller fan.
  • the outdoor fan 15 is connected to the output shaft of the outdoor fan motor 15a and is driven in conjunction with the outdoor fan motor 15a. When the outdoor fan 15 is driven, it generates an air flow that flows into the outdoor unit 10 from the outside, passes through the outdoor heat exchanger 13, and then flows out to the outside of the outdoor unit 10.
  • the outdoor unit control unit 17 is a microcomputer composed of a CPU, a memory, and the like.
  • the outdoor unit control unit 17 controls the operation of each actuator of the outdoor unit 10.
  • the outdoor unit control unit 17 is connected to the indoor unit control unit 34 (described later) of each indoor unit 30 via communication lines cb1 and cb2 and a power supply unit 40, and transmits and receives signals to and from each other.
  • the determination unit 90 is a microcomputer composed of a CPU, a memory, and the like.
  • the determination unit 90 can communicate with the outdoor unit control unit 17.
  • the determination unit 90 determines whether to continue the oil return operation or the defrost operation when the power supply unit 40 operates. The operation of the determination unit 90 will be described later.
  • the indoor unit 30 (30a, 30b, 30c) is an indoor unit installed in the target space.
  • the indoor unit 30 and the outdoor unit 10 form a refrigerant circuit RC.
  • the indoor unit 30 mainly includes an indoor heat exchanger 31, expansion valves 32 (32a, 32b, 32c), an indoor fan 33, and an indoor unit control unit 34.
  • the indoor heat exchanger 31 is a heat exchanger that functions as a refrigerant evaporator or endothermic during cooling operation and as a refrigerant condenser or radiator during heating operation.
  • the indoor heat exchanger 31 is, for example, a cross fin tube heat exchanger.
  • the liquid side of the indoor heat exchanger 31 is connected to a refrigerant pipe extending to the expansion valves 32 (32a, 32b, 32c).
  • the gas side of the indoor heat exchanger 31 is connected to a refrigerant pipe extending to the gas connecting pipe GP.
  • the indoor heat exchanger 31 is arranged so that the refrigerant in the heat transfer tube (not shown) and the air flow generated by the indoor fan 33 can exchange heat during operation.
  • the expansion valve 32 (32a, 32b, 32c) is an electric valve whose opening degree can be adjusted.
  • the opening degree of the expansion valve 32 is appropriately adjusted according to the situation during operation, and the refrigerant is depressurized according to the opening degree.
  • Each chamber unit 30 has one expansion valve 32.
  • the indoor unit 30a has an expansion valve 32a
  • the indoor unit 30b has an expansion valve 32b
  • the indoor unit 30c has an expansion valve 32c.
  • the opening degrees of the expansion valves 32a, 32b, 32c are appropriately adjusted according to the operating conditions of the corresponding indoor units 30a, 30b, 30c, respectively.
  • the expansion valve 32 is connected to a refrigerant pipe extending to the liquid side of the indoor heat exchanger 31 and a refrigerant pipe extending to the liquid communication pipe LP.
  • the liquid communication pipe LP connects the fifth pipe P5 of the outdoor unit 10 and each expansion valve 32.
  • One end of the liquid communication pipe LP is connected to the fifth pipe P5, and the other end of the liquid communication pipe LP is branched according to the number of expansion valves 32 and is individually connected to each expansion valve 32.
  • the indoor fan 33 is, for example, a blower such as a turbo fan, a sirocco fan, a cross flow fan, or a propeller fan.
  • the indoor fan 33 is connected to the output shaft of the indoor fan motor 33a.
  • the indoor fan 33 is driven in conjunction with the indoor fan motor 33a. When the indoor fan 33 is driven, it generates an air flow that is sucked into the indoor unit 30, passes through the indoor heat exchanger 31, and then blown out to the target space.
  • the indoor unit control unit 34 is a microcomputer composed of a CPU, a memory, and the like.
  • the indoor unit control unit 34 controls the operation of each actuator of the indoor unit 30.
  • Each indoor unit control unit 34 is connected to the outdoor unit control unit 17 via communication lines cb1 and cb2 and a power supply unit 40, and transmits and receives signals to and from each other.
  • the indoor unit control unit 34 wirelessly communicates with the remote controller 50.
  • the indoor unit control unit 34 of the indoor unit 30 is connected to the expansion valve 32 of the indoor unit 30 via a communication line (not shown), and the opening degree of the expansion valve 32 can be adjusted.
  • the power supply unit 40 is connected to the outdoor unit control unit 17 and each indoor unit control unit 34 via communication lines cb1 and cb2.
  • the communication line cb1 connects the power supply unit 40 and the outdoor unit control unit 17, and the communication line cb2 branches according to the number of the indoor unit control units 34, and the power supply unit 40 and each indoor unit. It is connected to the unit control unit 34.
  • the communication line cb1 is connected to the communication line cb2 via the power supply unit 40.
  • Each indoor unit 30 is connected to an external commercial power source (not shown) installed in the building.
  • the indoor unit 30 is operated by electric power supplied from a commercial power source during normal operation.
  • the power supply unit 40 receives a commercial power supply (in other words, when the power supply from the commercial power supply to at least one indoor unit 30 is stopped when the commercial power supply to at least a part of the plurality of indoor units 30 is cut off.
  • power supply is an auxiliary power source for supplying power to the indoor unit 30 in which the power is cut off.
  • the communication line cb2 transmits the electric power supplied from the power supply unit 40 to each indoor unit 30 in addition to the signals transmitted and received between the outdoor unit control unit 17 and each indoor unit control unit 34.
  • the remote controller 50 has a remote controller control unit (not shown) including a microcomputer composed of a CPU, a memory, and the like, and a remote controller input unit (not shown) including input keys for inputting various commands to the air conditioning system 100. It is a device.
  • the air conditioning system 100 has the same number of remote controllers 50 as the indoor unit 30.
  • the remote controller 50 is one-to-one associated with any of the indoor units 30.
  • the remote controller 50 performs wireless communication with the indoor unit control unit 34 of the corresponding indoor unit 30 by using infrared rays, radio waves, and the like.
  • the remote controller 50 transmits a predetermined signal to the indoor unit control unit 34 in response to the input command.
  • Controller 60 In the air conditioning system 100, the outdoor unit control unit 17 of the outdoor unit 10 and the indoor unit control unit 34 of each indoor unit 30 (30a, 30b, 30c) are connected via communication lines cb1, cb2 and a power supply unit 40. As a result, the controller 60 is configured. The controller 60 controls the operation of the air conditioning system 100.
  • the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the air flow generated by the outdoor fan 15 and condenses (or dissipates heat).
  • the refrigerant flowing out of the outdoor heat exchanger 13 passes through the fifth pipe P5 and the liquid communication pipe LP and flows into each indoor unit 30.
  • the refrigerant that has flowed into the indoor unit 30 flows into the expansion valve 32.
  • the refrigerant that has flowed into the expansion valve 32 is depressurized according to the opening degree of the expansion valve 32.
  • the refrigerant flowing out of the expansion valve 32 flows into the indoor heat exchanger 31 and exchanges heat with the air flow generated by the indoor fan 33 to evaporate (or absorb heat).
  • the refrigerant flowing out of the indoor heat exchanger 31 passes through the gas connecting pipe GP and flows into the outdoor unit 10.
  • the refrigerant that has flowed into the outdoor unit 10 passes through the first pipe P1, the four-way switching valve 12, and the second pipe P2, and is sucked into the compressor 11 again to be compressed.
  • the four-way switching valve 12 is switched to the heating cycle state (the state shown by the broken line of the four-way switching valve 12 in FIG. 1).
  • the refrigerant is sucked into the compressor 11 via the second pipe P2 and compressed.
  • the refrigerant discharged from the compressor 11 passes through the third pipe P3, the four-way switching valve 12, the first pipe P1 and the gas connecting pipe GP, and flows into each indoor unit 30.
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31 and exchanges heat with the air flow generated by the indoor fan 33 to condense (or dissipate heat).
  • the refrigerant flowing out of the indoor heat exchanger 31 flows into the expansion valve 32 and is depressurized according to the opening degree of the expansion valve 32.
  • the refrigerant flowing out of the expansion valve 32 passes through the liquid communication pipe LP and flows into the outdoor unit 10.
  • the refrigerant that has flowed into the outdoor unit 10 passes through the fifth pipe P5 and flows into the outdoor heat exchanger 13.
  • the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the air flow generated by the outdoor fan 15 and evaporates (or absorbs heat).
  • the refrigerant flowing out of the outdoor heat exchanger 13 passes through the fourth pipe P4, the four-way switching valve 12, and the second pipe P2, and is sucked into the compressor 11 again to be compressed.
  • (2-4) Defrost operation melts the frost generated in the outdoor heat exchanger 13 due to the heating operation.
  • the four-way switching valve 12 is switched to the cooling cycle state.
  • the indoor fan 33 is stopped.
  • FIG. 2 shows a control flow of operation of the entire air conditioning system 100. As shown in FIG. 2, the entire air conditioning system 100 operates in a normal control mode or a multi-tenant control mode (hereinafter, referred to as “M / T control mode”).
  • M / T control mode a multi-tenant control mode
  • the normal operation control which is also used in the conventional system consisting of one outdoor unit and one indoor unit, is performed.
  • the power supplies of all the indoor units 30 of the air conditioning system 100 are not cut off, and power is supplied from an external power source.
  • the air conditioning system 100 starts the air conditioning operation by operating the remote controller 50 or the like, shifts from a stopped state to a steady state (a state in which operation control is performed in the normal state), or stops the air conditioning operation. Then, it shifts from the steady state to the stopped state. When shifting from the steady state to the stopped state, an oil return operation and a defrost operation are performed as necessary.
  • the air conditioning system 100 operating in the normal control mode shifts to the M / T control mode when at least a part of the power supply of the indoor unit 30 is cut off (see the solid line arrow in FIG. 2).
  • the M / T control mode the power of at least one indoor unit 30 is cut off and the operation is stopped.
  • the indoor unit 30 whose power is cut off hereinafter referred to as “power cutoff indoor unit 30” receives auxiliary power from the power supply unit 40.
  • FIG. 3 is a flowchart of the M / T control mode when the power cutoff chamber unit 30 occurs during the oil return operation.
  • the determination unit 90 determines whether or not to continue the oil return operation based on the number of power cutoff chamber units 30, the remaining time required for the oil return operation, the power that can be supplied by the power supply unit, and the like (S101).
  • the controller 60 continues the oil return operation (S102).
  • the controller 60 acquires the degree of wetness of the refrigerant sucked by the compressor 11 (S103).
  • the controller 60 determines whether or not to stop the compressor 11 based on the degree of wetness of the acquired refrigerant (S104). If it is determined that the controller 60 does not stop the compressor 11 (S104: NO), the controller 60 returns to step S103. On the other hand, when the controller 60 determines to stop the compressor 11 (S104: YES), the controller stops the compressor 11.
  • FIG. 4 is a flowchart when the power cutoff chamber unit 30 occurs during the defrost operation.
  • the determination unit 90 determines whether or not to continue the defrost based on the number of the power cutoff chamber units 30, the remaining time required for the defrost operation, the power that can be supplied by the power supply unit, and the like (S201).
  • the controller 60 continues the defrost operation (S202). On the other hand, when the determination unit 90 determines that the defrost operation is not continued (S201: NO), the controller 60 stops the compressor 11.
  • the defrost operation similar to the normal control mode is performed. For example, during the heating operation, the expansion valve 32 is first closed, and then the four-way switching valve 12 is switched to the cooling cycle state. The expansion valve 32 is then opened. By doing so, it is possible to suppress a situation in which the user hears the noise caused by the switching of the four-way switching valve.
  • the determination unit 90 determines whether to continue the oil return operation or the defrost operation. Therefore, even if the power cutoff indoor unit 30 occurs during the oil return operation or the defrost operation, if it is considered that the air conditioning system 100 is not damaged, the oil return operation or the defrost operation should be continued. Can be done.
  • the controller 60 stops the compressor 11 based on the degree of wetness of the refrigerant sucked by the compressor 11. Therefore, it is possible to suppress the compressor 11 from sucking a large amount of liquid refrigerant and reduce the damage to the compressor 11.
  • the indoor unit 30 when the oil return operation is continued when the power cutoff indoor unit 30 is generated, the oil return operation is performed for all the indoor units 30 (30a to 30c) at the same time.
  • the indoor unit 30 may be divided into a plurality of groups, and the oil return operation may be sequentially executed for each group.
  • the indoor unit 30 is divided into a first group G1 (30a, 30b) and a second group (30c).
  • the controller 60 executes the first group closure control (S102-1).
  • the expansion valve 32 (32a, 32b) of the indoor unit 30 (30a, 30b) belonging to the first group G1 is closed, and the expansion valve of the indoor unit 30 (30c) belonging to the second group G2 is closed.
  • 32 (32c) can be opened. In this state, the oil return operation is executed.
  • the controller 60 executes the second group closure control (S102-2).
  • the second group closing control the expansion valve 32 (32a, 32b) of the indoor unit 30 (30a, 30b) belonging to the first group G1 is opened, and the expansion valve of the indoor unit 30 (30c) belonging to the second group G2 is opened. 32 (32c) is closed. In this state, the oil return operation is executed.
  • the controller 60 keeps the expansion valve of the indoor unit 30 open and the four-way switching valve. 12 is switched to the cooling cycle state (S202-1).
  • the operation of closing the expansion valve is omitted for noise processing, so that the power supplied by the power supply unit 40 to the expansion valve 32 can be reduced.
  • FIG. 8 is a schematic configuration diagram of the air conditioning system 100 in this modified example.
  • the outdoor unit 10 further includes an oil separator 14, an expansion valve 16, a receiver 18, and an accumulator 19.
  • the oil separator 14 is attached to the third pipe P3.
  • the oil separator 14 removes the lubricating oil mixed in the refrigerant from the high-pressure gas refrigerant discharged from the compressor 11.
  • the expansion valve 16 is attached to the fifth pipe P5.
  • the expansion valve 16 is an electric valve whose opening degree can be adjusted.
  • the opening degree of the expansion valve 16 is appropriately adjusted according to the situation during the operation of the air conditioning system 100, and the refrigerant is depressurized according to the opening degree.
  • the receiver 18 is attached to the fifth pipe P5.
  • the receiver 18 is attached between the expansion valve 16 and the liquid communication pipe LP.
  • the receiver 18 temporarily stores the refrigerant in order to absorb the change in the amount of the refrigerant in the outdoor heat exchanger 13 and the indoor heat exchanger 31 according to the operating condition of the air conditioning system 100.
  • the receiver 18 may have a mechanism for removing water and foreign matter contained in the refrigerant circulating in the refrigerant circuit RC.
  • the accumulator 19 is attached to the second pipe P2.
  • the accumulator 19 separates the gas-liquid mixed refrigerant flowing through the refrigerant circuit RC into a gas refrigerant and a liquid refrigerant, and sends only the gas refrigerant to the suction port of the compressor 11.
  • the outdoor unit 10 does not have to have the receiver 18 or the accumulator 19.
  • FIG. 9 shows the operation of the air conditioning system 100 according to the modified example D.
  • the M / T control mode starts when the power cutoff indoor unit 30 occurs during any operation (S300).
  • the controller 60 acquires the degree of wetness of the refrigerant sucked by the compressor 11 (S301).
  • the determination unit 90 determines whether or not the degree of wetness of the acquired refrigerant or the future prediction of the degree of wetness based on the degree of wetness is abnormal (S302). If it is abnormal (S302: YES), the determination unit 90 sends a command to the controller 60 to stop the compressor 11 (S305). This is to prevent damage to the compressor 11.
  • the controller 60 acquires information on the opening degree of the expansion valve of the power cutoff chamber unit 30 (S303).
  • the determination unit 90 derives the drain water amount in the power cutoff chamber unit 30 or the future prediction of the drain water amount from the acquired opening degree information.
  • the determination unit 90 determines whether or not there is a possibility that the drain water will overflow in the power cutoff chamber unit 30 based on the derived value (S304).
  • the determination unit 90 sends a command to the controller 60 to stop the compressor 11 (S305). This is to prevent the drain water from overflowing in the power cutoff chamber unit 30.
  • the process proceeds to step S100 or step S200 in the embodiment or modification described so far.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調システム(100)は、冷媒サイクル(RC)と、給電ユニット(40)と、コントローラ(60)と、判断部(90)と、を備える。冷媒サイクル(RC)は、室外ユニット(10)、及び複数の室内ユニット(30)を含む。室外ユニット(10)は、圧縮機(11)を含む。給電ユニット(40)は、複数の室内ユニット(30)の少なくとも一部への電源が遮断される場合に、少なくとも一部へ補助電源の供給を行う。コントローラ(60)は、少なくとも圧縮機(11)を制御する。判断部(90)は、複数の室内ユニット(10)の少なくとも一部への電源が遮断される場合に、圧縮機(11)を停止させる、及び、圧縮機(11)に運転を継続させる、の一方の判断を行う。判断部(90)は、判断に対応する指令をコントローラ(60)に送る。

Description

空調システム
 一部の室内機の電源が遮断されても空調運転をすることができる空調システム。
 特許文献1(特開2013-40698号公報)には、一部の室内機の電源が遮断されても空調運転をすることができる空気調和機が開示されている。
 空調システムにおいて、電源が遮断された室内機に対して電源を供給するために、給電ユニットが設置されることがある。しかし、そのような給電ユニットが供給できる電力には制限がある。室外ユニットにおける圧縮機の破損、又は、室内ユニットにおけるドレン水のあふれなどの問題が発生するおそれがある。
 第1観点に係る空調システムは、冷媒サイクルと、給電ユニットと、コントローラと、判断部と、を備える。冷媒サイクルは、室外ユニット、及び複数の室内ユニットを含む。室外ユニットは、圧縮機を含む。給電ユニットは、複数の室内ユニットの少なくとも一部への電源が遮断される場合に、少なくとも一部へ補助電源の供給を行う。コントローラは、少なくとも圧縮機を制御する。判断部は、複数の室内ユニットの少なくとも一部への電源が遮断される場合に、圧縮機を停止させる、及び、圧縮機に運転を継続させる、の一方の判断を行う。判断部は、判断に対応する指令をコントローラに送る。
 第2観点に係る空調システムは、第1観点に係る空調システムにおいて、判断部が、圧縮機が吸入する冷媒の湿り度合又は湿り度合いの予測、及び、複数の室内ユニットの少なくとも一部におけるドレン水量又はドレン水量の予測、の少なくとも一方に基づいて判断を行う。
 第3観点に係る空調システムは、第2観点に係る空調システムにおいて、判断部が、複数の室内ユニットの少なくとも一部におけるドレン水量又はドレン水量の予測、及び、給電ユニットの給電容量、に基づいて判断を行う。
 第4観点に係る空調システムは、第1観点から第3観点のいずれか1つに係る空調システムにおいて、コントローラが、少なくとも圧縮機に、冷媒サイクルにおける油戻し運転又はデフロスト運転を実行させる。判断部は、給電ユニットが少なくとも一部に補助電源を供給する場合において、油戻し運転又はデフロスト運転を継続するか否かを判断する、
請求項1から3のいずれか1項に記載の空調システム。
 第5観点に係る空調システムは、第4観点に係る空調システムにおいて、コントローラが冷媒サイクルに油戻し運転を実行させている際に、判断部が油戻し運転を継続しないと判断する場合、コントローラは圧縮機を停止させる。
 第6観点に係る空調システムは、第5観点に係る空調システムにおいて、コントローラは、圧縮機が吸入する冷媒の湿り度合に基づいて、圧縮機を停止させる。
 第7観点に係る空調システムは、第4観点に係る空調システムにおいて、複数の室内ユニットの各々は膨張弁を含む。コントローラは、複数の室内ユニットを少なくとも2つのグループに分ける。コントローラが冷媒サイクルに油戻し運転を実行させている際に、判断部が油戻し運転を継続すると判断する場合、コントローラは、第1グループ閉鎖制御と、第2グループ閉鎖制御と、を順に実行する。第1グループ閉鎖制御では、第1グループに属する室内ユニットの膨張弁を閉じ、かつ、第2グループに属する室内ユニットの膨張弁を開ける。第2グループ閉鎖制御では、第1グループに属する室内ユニットの膨張弁を開け、かつ、第2グループに属する室内ユニットの膨張弁を閉じる。
 第8観点に係る空調システムは、第4観点から第7観点のいずれか1つに記載の空調システムにおいて、室外ユニットは、四路切換弁をさらに含む。コントローラが冷媒サイクルにデフロスト運転を実行させている際に、判断部がデフロスト運転を継続しないと判断する場合、コントローラは圧縮機を停止させる。
 第9観点に係る空調システムは、第7観点に係る空調システムにおいて、室外ユニットは、四路切換弁をさらに含む。コントローラが冷媒サイクルにデフロスト運転を実行させている際に、判断部がデフロスト運転を継続すると判断する場合、コントローラは四路切換弁を切り替える。
 第10観点に係る空調システムは、第9観点に係る空調システムにおいて、コントローラが四路切換弁を切り替える際、複数の膨張弁の少なくとも1つが開かれており、圧縮機は運転している。
一実施形態に係る空調システム100の概略構成図である。 空調システム100全体の運転の制御フローを表す図である。 油戻し運転中のM/T制御のフローチャートである。 デフロスト運転中のM/T制御のフローチャートである。 変形例Aに係る空調システム100の概略構成図である。 変形例Aにおける油戻し運転中のM/T制御のフローチャートである。 変形例Bにおけるデフロスト運転中のM/T制御のフローチャートである。 変形例Cに係る空調システム100の概略構成図である。 変形例Dにおける空調システム100の運転中のM/T制御のフローチャートである。
 (1)空調システム100の構成
 図1は、本実施形態の空調システム100の概略構成図である。空調システム100は、家屋、ビル、工場又は公共施設等の建物内に含まれる対象空間において冷房及び暖房等の空気調和を実現するシステムである。
 空調システム100は、冷媒が循環する冷媒回路RCを含む。空調システム100は、冷媒回路RCにおいて冷媒を循環させて蒸気圧縮方式の冷凍サイクルを行うことにより、対象空間の冷房又は暖房を行う。冷媒回路RCには、R410A、R32又はアンモニア等の冷媒が封入されている。
 空調システム100は、主として、熱源ユニットとしての1台の室外ユニット10と、利用ユニットとしての複数台(図1では3台)の室内ユニット30(30a,30b,30c)と、1台の給電ユニット40と、複数台(図1では3台)のリモコン50と、コントローラ60とを備えている。空調システム100の冷媒回路RCは、室外ユニット10と各室内ユニット30とがガス連絡配管GP及び液連絡配管LPによって接続されることで構成されている。言い換えると、空調システム100は、同一冷媒系統に複数の室内ユニット30が接続された、マルチタイプ(マルチテナント)の空調システムである。
 (1-1)室外ユニット10
 室外ユニット10は、室外(対象空間外)に設置される室外機である。室外ユニット10は、主として、複数の冷媒配管(第1配管P1~第5配管P5)と、圧縮機11と、四路切換弁12と、室外熱交換器13と、室外ファン15と、室外ユニット制御部17と、判断部90と、を有している。
 第1配管P1は、ガス連絡配管GPと四路切換弁12とを接続する冷媒配管である。第2配管P2は、四路切換弁12と圧縮機11の吸入ポート(図示省略)とを接続する吸入配管である。第3配管P3は、圧縮機11の吐出ポート(図示省略)と四路切換弁12とを接続する吐出配管である。第4配管P4は、四路切換弁12と室外熱交換器13のガス側とを接続する冷媒配管である。第5配管P5は、室外熱交換器13の液側と液連絡配管LPとを接続する冷媒配管である。
 圧縮機11は、低圧のガス冷媒を吸入し、圧縮して吐出する機構である。圧縮機11は、圧縮機モータ11aが内蔵された密閉式の構造を有している。圧縮機11では、圧縮機ケーシング(図示省略)内に収容されたロータリ式又はスクロール式等の圧縮要素(図示省略)が、圧縮機モータ11aを駆動源として駆動される。圧縮機モータ11aは、運転中、インバータ制御され、状況に応じて回転数が調整される。圧縮機11は、駆動時に、吸入ポートから冷媒を吸入し、圧縮し、吐出ポートから吐出する。
 四路切換弁12は、冷媒回路RCにおいて冷媒の流れる方向を切り換えるための弁である。四路切換弁12は、第1配管P1、第2配管P2、第3配管P3及び第4配管P4と個別に接続されている。四路切換弁12は、冷房運転時には、第1配管P1と第2配管P2とが接続されるとともに、第3配管P3と第4配管P4とが接続されるように、流路を切り換える(図1の四路切換弁12の実線を参照)。四路切換弁12は、暖房運転時には、第1配管P1と第3配管P3とが接続されるとともに、第2配管P2と第4配管P4とが接続されるように、流路を切り換える(図1の四路切換弁12の破線を参照)。
 室外熱交換器13は、冷房運転時には冷媒の凝縮器又は放熱器として機能し、暖房運転時には冷媒の蒸発器又は吸熱器として機能する熱交換器である。室外熱交換器13は、冷媒が流れる伝熱管(図示省略)と、伝熱面積を増大する伝熱フィン(図示省略)とを含む。室外熱交換器13は、運転時において、伝熱管内の冷媒と、室外ファン15によって生成される空気流とが熱交換可能なように配置されている。
 室外ファン15は、例えばプロペラファンである。室外ファン15は、室外ファンモータ15aの出力軸に接続されており、室外ファンモータ15aに連動して駆動する。室外ファン15は、駆動すると、外部から室外ユニット10内に流入し室外熱交換器13を通過してから室外ユニット10外へ流出する空気流を生成する。
 室外ユニット制御部17は、CPU及びメモリ等から構成されるマイクロコンピュータである。室外ユニット制御部17は、室外ユニット10の各アクチュエータの動作を制御する。室外ユニット制御部17は、各室内ユニット30の室内ユニット制御部34(後述)と、通信線cb1,cb2及び給電ユニット40を介して接続されており、相互に信号の送受信を行う。
 判断部90は、CPU及びメモリ等から構成されるマイクロコンピュータである。判断部90は、室外ユニット制御部17と通信可能である。判断部90は、給電ユニット40が作動する場合において、油戻し運転又はデフロスト運転を継続するか否かを判断する。判断部90の動作については後述する。
 (1-2)室内ユニット30
 室内ユニット30(30a,30b,30c)は、対象空間に設置される室内機である。室内ユニット30は、室外ユニット10とともに冷媒回路RCを構成している。室内ユニット30は、主として、室内熱交換器31と、膨張弁32(32a,32b,32c)と、室内ファン33と、室内ユニット制御部34とを有している。
 室内熱交換器31は、冷房運転時には冷媒の蒸発器又は吸熱器として機能し、暖房運転時には冷媒の凝縮器又は放熱器として機能する熱交換器である。室内熱交換器31は、例えばクロスフィンチューブ熱交換器である。室内熱交換器31の液側は、膨張弁32(32a,32b,32c)まで延びる冷媒配管に接続されている。室内熱交換器31のガス側は、ガス連絡配管GPまで延びる冷媒配管に接続されている。室内熱交換器31は、運転時において、伝熱管(図示省略)内の冷媒と、室内ファン33によって生成される空気流とが熱交換可能なように配置されている。
 膨張弁32(32a,32b,32c)は、開度調整が可能な電動弁である。膨張弁32は、運転時において、状況に応じて開度が適宜調整され、開度に応じて冷媒を減圧する。各室内ユニット30は、1つの膨張弁32を有している。具体的には、室内ユニット30aは、膨張弁32aを有し、室内ユニット30bは、膨張弁32bを有し、室内ユニット30cは、膨張弁32cを有している。膨張弁32a,32b,32cは、それぞれ、対応する室内ユニット30a,30b,30cの運転状況に応じて開度が適宜調整される。
 膨張弁32は、室内熱交換器31の液側まで延びる冷媒配管、及び、液連絡配管LPまで延びる冷媒配管に接続されている。液連絡配管LPは、室外ユニット10の第5配管P5と、各膨張弁32とを接続する。液連絡配管LPの一端は、第5配管P5と接続され、液連絡配管LPの他端は、膨張弁32の数に応じて分岐して各膨張弁32と個別に接続されている。
 室内ファン33は、例えばターボファン、シロッコファン、クロスフローファン又はプロペラファン等の送風機である。室内ファン33は、室内ファンモータ33aの出力軸に接続されている。室内ファン33は、室内ファンモータ33aに連動して駆動する。室内ファン33は、駆動すると、室内ユニット30内に吸い込まれて室内熱交換器31を通過した後に対象空間へと吹き出される空気流を生成する。
 室内ユニット制御部34は、CPU及びメモリ等から構成されるマイクロコンピュータである。室内ユニット制御部34は、室内ユニット30の各アクチュエータの動作を制御する。各室内ユニット制御部34は、室外ユニット制御部17と、通信線cb1,cb2及び給電ユニット40を介して接続されており、相互に信号の送受信を行う。室内ユニット制御部34は、リモコン50と無線通信を行う。
 室内ユニット30の室内ユニット制御部34は、当該室内ユニット30の膨張弁32と通信線(図示省略)を介して接続されており、当該膨張弁32の開度を調整することができる。
 (1-3)給電ユニット40
 給電ユニット40は、室外ユニット制御部17及び各室内ユニット制御部34と、通信線cb1,cb2を介して接続されている。具体的には、通信線cb1は、給電ユニット40と室外ユニット制御部17とを接続しており、通信線cb2は、室内ユニット制御部34の数に応じて分岐し、給電ユニット40と各室内ユニット制御部34とを接続している。通信線cb1は、給電ユニット40を介して通信線cb2に接続されている。
 各室内ユニット30は、建物に設置されている外部の商用電源(図示省略)に接続されている。室内ユニット30は、正常運転時には商用電源から供給された電力によって稼動している。給電ユニット40は、複数の室内ユニット30の少なくとも一部への商用電源が遮断された場合、言い換えると、少なくとも1つの室内ユニット30への商用電源からの電力供給が停止した場合に、商用電源(以下、単に「電源」と呼ぶ。)が遮断された室内ユニット30に電力を供給するための補助電源である。通信線cb2は、室外ユニット制御部17と各室内ユニット制御部34との間で送受信される信号の他に、給電ユニット40から各室内ユニット30に供給される電力を伝送する。
 (1-4)リモコン50
 リモコン50は、CPU及びメモリ等から構成されるマイクロコンピュータを含むリモコン制御部(図示省略)と、空調システム100へ各種コマンドを入力するための入力キーを含むリモコン入力部(図示省略)とを有するデバイスである。
 空調システム100は、室内ユニット30と同数のリモコン50を有している。リモコン50は、いずれかの室内ユニット30と一対一で対応づけられている。リモコン50は、対応する室内ユニット30の室内ユニット制御部34と、赤外線及び電波等を用いて無線通信を行う。リモコン50は、ユーザ及び管理者等によってリモコン入力部へコマンドが入力されると、入力されたコマンドに応じて、所定の信号を室内ユニット制御部34に送信する。
 (1-5)コントローラ60
 空調システム100では、室外ユニット10の室外ユニット制御部17と、各室内ユニット30(30a,30b,30c)の室内ユニット制御部34とが通信線cb1,cb2及び給電ユニット40を介して接続されることで、コントローラ60が構成されている。コントローラ60は、空調システム100の動作を制御する。
 (2)空調システム100の運転
 いずれかのリモコン50に運転開始コマンドが入力され、コントローラ60によって冷房運転又は暖房運転に係る制御が実行されると、四路切換弁12が所定の状態に切り換えられ、圧縮機11及び室外ファン15が起動する。その後、運転開始コマンドが入力されたリモコン50に対応する室内ユニット30が運転状態(室内ファン33が稼動している状態)となる。
 (2-1)冷房運転
 冷房運転時には、四路切換弁12が冷房サイクル状態(図1の四路切換弁12の実線で示された状態)に切り換えられる。この状態で各アクチュエータが起動すると、冷媒が、第2配管P2を介して圧縮機11に吸入され、圧縮される。圧縮機11から吐出された冷媒は、第3配管P3、四路切換弁12、及び第4配管P4を通過して室外熱交換器13に流入する。
 室外熱交換器13に流入した冷媒は、室外ファン15が生成する空気流と熱交換して凝縮(又は放熱)する。室外熱交換器13から流出した冷媒は、第5配管P5及び液連絡配管LPを通過して、各室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、膨張弁32に流入する。膨張弁32に流入した冷媒は、膨張弁32の開度に応じて減圧される。膨張弁32から流出した冷媒は、室内熱交換器31に流入し、室内ファン33によって生成される空気流と熱交換して蒸発(又は吸熱)する。室内熱交換器31から流出した冷媒は、ガス連絡配管GPを通過して室外ユニット10に流入する。
 室外ユニット10に流入した冷媒は、第1配管P1、四路切換弁12、及び第2配管P2を通過して、再び圧縮機11に吸入されて圧縮される。
 (2-2)暖房運転
 暖房運転時には、四路切換弁12が暖房サイクル状態(図1の四路切換弁12の破線で示された状態)に切り換えられる。この状態で各アクチュエータが起動すると、冷媒が、第2配管P2を介して圧縮機11に吸入され、圧縮される。圧縮機11から吐出された冷媒は、第3配管P3、四路切換弁12、第1配管P1及びガス連絡配管GPを通過して各室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内ファン33が生成する空気流と熱交換して凝縮(又は放熱)する。室内熱交換器31から流出した冷媒は、膨張弁32に流入し、膨張弁32の開度に応じて減圧される。膨張弁32から流出した冷媒は、液連絡配管LPを通過して室外ユニット10に流入する。
 室外ユニット10に流入した冷媒は、第5配管P5を通過して室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外ファン15によって生成される空気流と熱交換して蒸発(または吸熱)する。室外熱交換器13から流出した冷媒は、第4配管P4、四路切換弁12、及び第2配管P2を通過して、再び圧縮機11に吸入されて圧縮される。
 (2-3)油戻し運転
 油戻し運転は、冷媒回路RC内に分散した潤滑油を、圧縮機11の中へ戻すために、冷媒を循環させるものである。油戻し運転においては、冷媒を循環させるため、膨張弁32が開かれる。油戻し運転時には、室内ファン33を停止させてもよい。
 (2-4)デフロスト運転
 デフロスト運転は、暖房運転に起因して室外熱交換器13に生じた霜を、融解させるものである。デフロスト運転時には、四路切換弁12を冷房サイクル状態に切り換える。デフロスト運転時には、室内ファン33を停止させる。
 (3)通常制御モードとM/T制御モード
 図2は、空調システム100全体の運転の制御フローを表す。図2に示されるように、空調システム100全体は、通常制御モード、又は、マルチテナント制御モード(以下、「M/T制御モード」と呼ぶ。)で運転する。
 通常制御モードでは、1台の室外ユニットと1台の室内ユニットとからなる従来のシステムでも採用されている、通常時における運転制御が行われる。通常制御モードでは、空調システム100の全ての室内ユニット30の電源は遮断されておらず、外部の電源から電力の供給を受けている。通常制御モードでは、空調システム100は、リモコン50の操作等によって、空調運転を開始して停止状態から定常状態(通常時における運転制御が行われている状態)に移行したり、空調運転を停止して定常状態から停止状態に移行したりする。定常状態から停止状態に移行する際には、必要に応じて、油戻し運転及びデフロスト運転が行われる。
 通常制御モードで運転している空調システム100は、室内ユニット30の少なくとも一部の電源が遮断された場合、M/T制御モードに移行する(図2の実線の矢印を参照)。M/T制御モードでは、少なくとも1台の室内ユニット30は、電源が遮断されて運転停止状態となっている。M/T制御モードでは、電源が遮断された室内ユニット30(以下、「電源遮断室内ユニット30」と呼ぶ)は、給電ユニット40から補助電力の供給を受ける。
 (4)M/T制御モードの詳細
 各運転において電源遮断室内ユニット30が発生した場合のコントローラ60及び判断部90の動作について説明する。
 (4-1)油戻し運転
 図3は、油戻し運転中に電源遮断室内ユニット30が発生した場合のM/T制御モードのフローチャートである。判断部90は、油戻し運転を継続するか否かを、電源遮断室内ユニット30の数、油戻し運転の残り所要時間、給電ユニットの給電可能電力、などに基づいて判断する(S101)。
 判断部90が、油戻し運転を継続すると判断した場合(S101:YES)、コントローラ60は油戻し運転を継続する(S102)。一方、判断部90が、油戻し運転を継続しないと判断した場合(S101:NO)、コントローラ60は圧縮機11が吸入する冷媒の湿り度合を取得する(S103)。
 次いで、コントローラ60は、取得した冷媒の湿り度合に基づいて、圧縮機11を停止させるか否かを決定する(S104)。コントローラ60が圧縮機11を停止させないと判断した場合(S104:NO)、コントローラ60は、ステップS103へ戻る。一方、コントローラ60が圧縮機11を停止させると判断した場合(S104:YES)、コントローラは圧縮機11を停止させる。
 (4-2)デフロスト運転
 図4は、デフロスト運転中に電源遮断室内ユニット30が発生した場合のフローチャートである。判断部90は、デフロストを継続するか否かを、電源遮断室内ユニット30の数、デフロスト運転の残り所要時間、給電ユニットの給電可能電力などに基づいて判断する(S201)。
 判断部90が、デフロスト運転を継続すると判断した場合(S201:YES)、コントローラ60はデフロスト運転を継続する(S202)。一方、判断部90が、デフロスト運転を継続しないと判断した場合(S201:NO)、コントローラ60は圧縮機11を停止させる。
 なお、デフロスト運転を継続する場合(S202)、通常制御モードと同様のデフロスト運転が行われる。例えば、暖房運転中においてまず膨張弁32が閉じられ、次いで四路切換弁12が冷房サイクル状態に切り換えられる。次いで、膨張弁32が開けられる。こうすることで、四路切換弁の切換による騒音がユーザに聞こえる事態を抑制できる。
 (5)特徴
 (5-1)
 判断部90が、油戻し運転又はデフロスト運転を継続するか否かを判断する。したがって、油戻し運転又はデフロスト運転の実行中に、電源遮断室内ユニット30が発生した場合であっても、空調システム100が損傷しないと考えられる場合は、油戻し運転又はデフロスト運転を実行し続けることができる。
 (5-2)
 判断部90が油戻し運転又はデフロスト運転を継続しないと判断する場合、コントローラ60は圧縮機11を停止させる。したがって、電源遮断室内ユニット30の発生時に空調システム100全体の運転を停止することにより、空調システム100の損傷を抑制することができる。
 (5-3)
 コントローラ60は、圧縮機11が吸入する冷媒の湿り度合に基づいて圧縮機11を停止させる。したがって、圧縮機11が多量の液冷媒を吸入することを抑制し、圧縮機11の損傷を低減できる。
 (6)変形例
 以下に上述の実施形態の変形例について説明する。複数の実施形態を組み合わせてもよい。
 (6-1)変形例A
 上記実施形態では、電源遮断室内ユニット30の発生時に油戻し運転を継続する場合、すべての室内ユニット30(30a~30c)について同時に油戻し運転を行う。これに代えて、室内ユニット30を複数のグループに分け、それぞれのグループに対して順次油戻し運転を実行してもよい。図5では、室内ユニット30は第1グループG1(30a、30b)及び第2グループ(30c)に分けられる。
 図6に示すように、判断部90が油戻し運転を継続すると判断する場合(S101:YES)、コントローラ60は第1グループ閉鎖制御(S102-1)を実行する。第1グループ閉鎖制御では、第1グループG1に属する室内ユニット30(30a、30b)の膨張弁32(32a、32b)が閉じられるとともに、第2グループG2に属する室内ユニット30(30c)の膨張弁32(32c)が開けられる。この状態で、油戻し運転が実行される。
 次いで、コントローラ60は第2グループ閉鎖制御(S102-2)を実行する。第2グループ閉鎖制御では、第1グループG1に属する室内ユニット30(30a、30b)の膨張弁32(32a、32b)が開けられるとともに、第2グループG2に属する室内ユニット30(30c)の膨張弁32(32c)が閉められる。この状態で、油戻し運転が実行される。
 (6-2)変形例B
 上記実施形態では、電源遮断室内ユニット30の発生時にデフロスト運転を継続する場合、通常制御モードと同様のデフロスト運転を実行する。これに代えて、M/T制御モードにおいては通常制御モードとは異なるデフロスト運転を実行してもよい。
 例えば、図7に示すように、暖房運転中に判断部90がデフロスト運転を継続すると判断する場合(S201:YES)、コントローラ60は、室内ユニット30の膨張弁を開いたまま、四路切換弁12を冷房サイクル状態に切り換える(S202-1)。
 この構成によれば、騒音処理のために膨張弁を閉じる動作が省かれるので、給電ユニット40が膨張弁32に供給する電力が少なくてすむ。
 (6-3)変形例C
 室外ユニット10は、図1に示されていない他の構成要素をさらに有してもよい。図8は、本変形例における空調システム100の概略構成図である。図8において、室外ユニット10は、オイルセパレータ14、膨張弁16、レシーバ18及びアキュームレータ19をさらに有する。
 オイルセパレータ14は、第3配管P3に取り付けられる。オイルセパレータ14は、圧縮機11から吐出された高圧のガス冷媒から、冷媒の中に混入している潤滑油を除去する。
 膨張弁16は、第5配管P5に取り付けられる。膨張弁16は、開度調整が可能な電動弁である。膨張弁16は、空調システム100の運転時において、状況に応じて開度が適宜調整され、開度に応じて冷媒を減圧する。
 レシーバ18は、第5配管P5に取り付けられる。レシーバ18は、膨張弁16と液連絡配管LPとの間に取り付けられる。レシーバ18は、空調システム100の運転状況に応じて、室外熱交換器13及び室内熱交換器31内の冷媒量の変化を吸収するために、冷媒を一時的に貯留する。レシーバ18は、冷媒回路RCを循環する冷媒に含まれる水分及び異物を除去するための機構を有してもよい。
 アキュームレータ19は、第2配管P2に取り付けられる。アキュームレータ19は、冷媒回路RCを流れる気液混合冷媒を、ガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機11の吸入ポートに送る。
 なお、図8において、室外ユニット10は、レシーバ18又はアキュームレータ19を有していなくてもよい。
 実施形態及び変形例A~Bにおいて説明した内容は、図8に示される空調システム100においても適用可能である。
 (6-4)変形例D
 図9は変形例Dに係る空調システム100の動作である。
 いかなる運転中であれ、電源遮断室内ユニット30が発生した場合に、M/T制御モードは開始する(S300)。次いで、コントローラ60は圧縮機11が吸入する冷媒の湿り度合を取得する(S301)。次いで、判断部90は、取得した冷媒の湿り度合、又は、それに基づく湿り度合いの将来的な予測が異常であるか否かを判断する(S302)。異常である場合(S302:YES)、判断部90はコントローラ60に対し、圧縮機11を停止させる旨の指令を送る(S305)。これは、圧縮機11の破損を防ぐためである。湿り度合い等が正常である場合(S302:NO)、コントローラ60は、電源遮断室内ユニット30の膨張弁の開度の情報を取得する(S303)。判断部90は、取得した開度の情報から、電源遮断室内ユニット30おけるドレン水量、又はドレン水量の将来的な予測を導出する。次いで、判断部90は、導出された値に基づいて、電源遮断室内ユニット30においてドレン水があふれるおそれの有無を判断する(S304)。ドレン水あふれのおそれがある場合(S304:YES)、判断部90はコントローラ60に対し、圧縮機11を停止させる旨の指令を送る(S305)。これは、電源遮断室内ユニット30においてドレン水をあふれさせないためである。ドレン水あふれのおそれがない場合(S304:NO)、これまでに説明した実施形態又は変形例におけるステップS100又はステップS200へ移行する。
 実施形態及び変形例A~Cにおいて説明した内容は、図9のフローチャートを用いて説明した空調システム100においても適用可能である。
 <むすび>
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10   室外ユニット
 11   圧縮機
 12   四路切換弁
 30   室内ユニット
 32   膨張弁
 40   給電ユニット
 60   コントローラ
 90   判断部
100   空調システム
 RC   冷媒回路(冷媒サイクル)
特開2013-40698号公報

Claims (10)

  1.  圧縮機(11)を含む室外ユニット(10)、及び複数の室内ユニット(30)を含む冷媒サイクル(RC)と、
     複数の前記室内ユニットの少なくとも一部への電源が遮断される場合に、前記少なくとも一部へ補助電源の供給を行う給電ユニット(40)と、
     少なくとも前記圧縮機を制御するコントローラ(60)と、
     複数の前記室内ユニットの前記少なくとも一部への電源が遮断される場合に、
      前記圧縮機を停止させる、及び、
      前記圧縮機に運転を継続させる、
    の一方の判断を行い、前記判断に対応する指令を前記コントローラに送る判断部(90)と、
    を備える、
    空調システム。
  2.  前記判断部は、
      前記圧縮機が吸入する冷媒の湿り度合又は前記湿り度合いの予測、及び
      前記複数の室内ユニットの前記少なくとも一部におけるドレン水量又は前記ドレン水量の予測、
    の少なくとも一方に基づいて前記判断を行う、
    請求項1に記載の空調システム。
  3.  前記判断部は、
      前記複数の室内ユニットの前記少なくとも一部における前記ドレン水量又は前記ドレン水量の前記予測、及び、
      前記給電ユニットの給電容量、
    に基づいて前記判断を行う、
    請求項2に記載の空調システム。
  4.  前記コントローラは、少なくとも前記圧縮機に、前記冷媒サイクルにおける油戻し運転又はデフロスト運転を実行させ、
     前記判断部は、前記給電ユニットが前記少なくとも一部に前記補助電源を供給する場合において、前記油戻し運転又は前記デフロスト運転を継続するか否かを判断する、
    請求項1から3のいずれか1項に記載の空調システム。
  5.  前記コントローラが前記冷媒サイクルに前記油戻し運転を実行させている際に、前記判断部が前記油戻し運転を継続しないと判断する場合、前記コントローラは前記圧縮機を停止させる、
    請求項4に記載の空調システム。
  6.  前記コントローラは、前記圧縮機が吸入する冷媒の湿り度合に基づいて、前記圧縮機を停止させる、
    請求項5に記載の空調システム。
  7.  複数の前記室内ユニットの各々は膨張弁(32)を含み、
     前記コントローラは、複数の前記室内ユニットを少なくとも2つのグループ(G1、G2)に分け、
     前記コントローラが前記冷媒サイクルに前記油戻し運転を実行させている際に、前記判断部が前記油戻し運転を継続すると判断する場合、前記コントローラは、
      第1グループ(G1)に属する前記室内ユニットの前記膨張弁を閉じ、かつ、第2グループ(G2)に属する前記室内ユニットの前記膨張弁を開ける、第1グループ閉鎖制御と、
      前記第1グループに属する前記室内ユニットの前記膨張弁を開け、かつ、前記第2グループに属する前記室内ユニットの前記膨張弁を閉じる、第2グループ閉鎖制御と、
    を順に実行する、
    請求項4に記載の空調システム。
  8.  前記室外ユニットは、四路切換弁(12)をさらに含み、
     前記コントローラが前記冷媒サイクルに前記デフロスト運転を実行させている際に、前記判断部が前記デフロスト運転を継続しないと判断する場合、前記コントローラは前記圧縮機を停止させる、
    請求項4から7のいずれか1項に記載の空調システム。
  9.  前記室外ユニットは、四路切換弁(12)をさらに含み、
     前記コントローラが前記冷媒サイクルに前記デフロスト運転を実行させている際に、前記判断部が前記デフロスト運転を継続すると判断する場合、前記コントローラは前記四路切換弁を切り替える、
    請求項7に記載の空調システム。
  10.  前記コントローラが前記四路切換弁を切り替える際、複数の前記膨張弁の少なくとも1つが開かれており、前記圧縮機は運転している、
    請求項9に記載の空調システム。
PCT/JP2020/015853 2019-05-28 2020-04-08 空調システム WO2020241076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080038527.7A CN113874661B (zh) 2019-05-28 2020-04-08 空调系统
US17/614,280 US20220146173A1 (en) 2019-05-28 2020-04-08 Air conditioning system
EP20813372.8A EP3978817B1 (en) 2019-05-28 2020-04-08 Air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099587 2019-05-28
JP2019099587 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241076A1 true WO2020241076A1 (ja) 2020-12-03

Family

ID=73552333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015853 WO2020241076A1 (ja) 2019-05-28 2020-04-08 空調システム

Country Status (5)

Country Link
US (1) US20220146173A1 (ja)
EP (1) EP3978817B1 (ja)
JP (1) JP6844731B2 (ja)
CN (1) CN113874661B (ja)
WO (1) WO2020241076A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311755B2 (ja) * 2019-05-28 2023-07-20 ダイキン工業株式会社 空調システム
JP7375490B2 (ja) * 2019-11-21 2023-11-08 株式会社富士通ゼネラル 空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238947A (ja) * 1986-04-11 1987-10-19 株式会社日立製作所 空気調和機の運転制御装置
JP2005077056A (ja) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp 空気調和機
JP2008057868A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 空気調和機
JP2013040698A (ja) 2011-08-11 2013-02-28 Fujitsu General Ltd マルチ型空気調和機
JP2017096531A (ja) * 2015-11-20 2017-06-01 三菱重工業株式会社 空気調和システム、及びその制御方法並びにプログラム
CN109631380A (zh) * 2018-11-16 2019-04-16 青岛海尔空调电子有限公司 空调室外机组及空调器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3920440B2 (ja) * 1998-01-29 2007-05-30 三洋電機株式会社 空気調和装置の圧縮機制御システム
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
US7168627B2 (en) * 2004-10-06 2007-01-30 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
US8078326B2 (en) * 2008-09-19 2011-12-13 Johnson Controls Technology Company HVAC system controller configuration
US8290628B2 (en) * 2010-07-23 2012-10-16 Lg Electronics Inc. Air conditioner and method for controlling the same
US20120101673A1 (en) * 2010-10-26 2012-04-26 Jeffrey Andrew Caddick Hybrid Vehicle Control System For Cold Plate Refrigeration And Method Of The Same
JP6166572B2 (ja) * 2013-03-29 2017-07-19 パナソニック株式会社 空気調和システム
CN106123117A (zh) * 2016-06-29 2016-11-16 青岛海尔空调电子有限公司 一种多联机的空调机组及控制方法
WO2018154718A1 (ja) * 2017-02-24 2018-08-30 三菱電機株式会社 空気調和システム
CN109357440B (zh) * 2018-10-26 2019-11-05 宁波奥克斯电气股份有限公司 一种多联机制热回油控制方法及多联机空调器
JP7311755B2 (ja) * 2019-05-28 2023-07-20 ダイキン工業株式会社 空調システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238947A (ja) * 1986-04-11 1987-10-19 株式会社日立製作所 空気調和機の運転制御装置
JP2005077056A (ja) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp 空気調和機
JP2008057868A (ja) * 2006-08-31 2008-03-13 Daikin Ind Ltd 空気調和機
JP2013040698A (ja) 2011-08-11 2013-02-28 Fujitsu General Ltd マルチ型空気調和機
JP2017096531A (ja) * 2015-11-20 2017-06-01 三菱重工業株式会社 空気調和システム、及びその制御方法並びにプログラム
CN109631380A (zh) * 2018-11-16 2019-04-16 青岛海尔空调电子有限公司 空调室外机组及空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978817A4

Also Published As

Publication number Publication date
CN113874661B (zh) 2023-03-31
EP3978817B1 (en) 2024-01-10
JP6844731B2 (ja) 2021-03-17
CN113874661A (zh) 2021-12-31
EP3978817A1 (en) 2022-04-06
US20220146173A1 (en) 2022-05-12
JP2020197370A (ja) 2020-12-10
EP3978817A4 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
EP1953477B1 (en) Refrigerator compressor operating method and refrigerator
JP5481937B2 (ja) 空気調和装置
WO2021039087A1 (ja) 熱源ユニット及び冷凍装置
US20220003463A1 (en) Refrigeration apparatus-use unit, heat source unit, and refrigeration apparatus
JP6844731B2 (ja) 空調システム
JP7311755B2 (ja) 空調システム
KR100575682B1 (ko) 실외기간 균압관을 구비한 공기조화기
WO2015046228A1 (ja) 空気調和装置
JP2021046952A (ja) 空気調和機
JP2017116154A (ja) 空気調和装置
JP7311756B2 (ja) 空調システム
JP6881503B2 (ja) 空調システム
JP6747226B2 (ja) 冷凍装置
JP6745895B2 (ja) 空調システム
JP7467827B2 (ja) 空気調和機
WO2015046230A1 (ja) 空気調和装置
WO2023139701A1 (ja) 空気調和装置
JP2009192197A (ja) ヒートポンプサイクル装置
JP4073341B2 (ja) 多室形空気調和装置およびその制御方法
JP2020197323A (ja) 空調システム
JPH10332186A (ja) 空気調和機
WO2013077136A1 (ja) 空気調和装置
JP4948465B2 (ja) 空気調和装置
JP2023066634A (ja) 冷凍サイクル装置
WO2016113868A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020813372

Country of ref document: EP

Effective date: 20220103