WO2015046228A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015046228A1
WO2015046228A1 PCT/JP2014/075247 JP2014075247W WO2015046228A1 WO 2015046228 A1 WO2015046228 A1 WO 2015046228A1 JP 2014075247 W JP2014075247 W JP 2014075247W WO 2015046228 A1 WO2015046228 A1 WO 2015046228A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
discharge
heat exchanger
temperature
Prior art date
Application number
PCT/JP2014/075247
Other languages
English (en)
French (fr)
Inventor
隼人 布
知之 配川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2015046228A1 publication Critical patent/WO2015046228A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention is an air conditioner, in particular, a discharge used in a positive cycle defrosting operation for defrosting an outdoor heat exchanger while circulating a refrigerant in the order of a compressor, an indoor heat exchanger, a main valve, and an outdoor heat exchanger. -Relates to an air conditioner having a suction bypass circuit.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-262560.
  • This air conditioner is capable of heating operation in which refrigerant is circulated in the order of the compressor, the indoor heat exchanger, the main valve, and the outdoor heat exchanger, and also from the discharge side of the compressor to the suction side of the compressor during the heating operation.
  • a discharge-suction bypass circuit that allows the refrigerant to be bypassed.
  • the discharge-suction bypass circuit is operated during the positive cycle defrosting operation in which the outdoor heat exchanger is defrosted while circulating the refrigerant in the order of the compressor, the indoor heat exchanger, the main valve, and the outdoor heat exchanger.
  • the refrigerant is bypassed from the discharge side of the compressor to the suction side of the compressor through the discharge-suction bypass circuit.
  • the main valve is in the fully open state during the normal cycle defrosting operation. For this reason, the temperature of the refrigerant on the discharge side of the compressor gradually decreases, and excessive liquid back to the compressor occurs, and as a result, in order to ensure the reliability of the compressor, the operating frequency of the compressor It is necessary to take measures such as lowering the pressure or stopping the operation of the compressor. However, if such a treatment is performed, the normal cycle defrosting operation cannot be continued.
  • An object of the present invention is to provide a discharge-suction bypass circuit used in a positive cycle defrosting operation for defrosting an outdoor heat exchanger while circulating a refrigerant in the order of a compressor, an indoor heat exchanger, a main valve, and an outdoor heat exchanger.
  • a discharge-suction bypass circuit used in a positive cycle defrosting operation for defrosting an outdoor heat exchanger while circulating a refrigerant in the order of a compressor, an indoor heat exchanger, a main valve, and an outdoor heat exchanger.
  • the air conditioner according to the first aspect has a main refrigerant circuit and a discharge-suction bypass circuit.
  • the main refrigerant circuit has a compressor, an indoor heat exchanger, a main valve, and an outdoor heat exchanger, and the heating operation for circulating the refrigerant in the order of the compressor, the indoor heat exchanger, the main valve, and the outdoor heat exchanger. Can be done.
  • the discharge-suction bypass circuit has an overheat valve, and is connected to the main refrigerant circuit so that the refrigerant can be bypassed from the discharge side of the compressor to the suction side of the compressor during heating operation.
  • the overheat valve is opened and the discharge-suction is performed.
  • Discharge during defrosting bypasses the refrigerant from the compressor discharge side to the compressor suction side through a bypass circuit and adjusts the opening of the main valve and / or the superheater valve based on the refrigerant temperature on the compressor discharge side Perform temperature control.
  • the opening degree of the main valve and / or the superheat valve is adjusted (discharge temperature control during defrosting) based on the refrigerant temperature on the discharge side of the compressor. ing.
  • coolant at the discharge side of a compressor can be managed appropriately at the time of forward cycle defrost operation.
  • bag to a compressor is suppressed here, As a result, the reliability of a compressor is ensured and it becomes possible to continue a normal cycle defrost operation.
  • the normal cycle defrosting operation can be performed even under operating conditions such as the low outside air temperature condition where the temperature of the refrigerant on the discharge side of the compressor tends to be low.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the temperature of the refrigerant on the discharge side of the compressor is detected by a discharge temperature sensor provided on the discharge side of the compressor. Get from temperature.
  • An air conditioner according to a third aspect is the air conditioner according to the first aspect, wherein the defrosting discharge temperature control is based on the degree of superheat of the refrigerant on the discharge side of the compressor from the temperature of the refrigerant on the discharge side of the compressor. And the opening degree of the main valve and / or the superheat valve is adjusted so that the superheat degree of the refrigerant on the discharge side of the compressor becomes equal to or higher than the target discharge superheat degree.
  • the degree of liquid back to the compressor tends to appear as the degree of superheat of the refrigerant on the discharge side of the compressor. Specifically, as the degree of superheat of the refrigerant on the discharge side of the compressor decreases, the liquid back to the compressor tends to increase.
  • the defrosting discharge temperature control the superheat degree of the refrigerant on the discharge side of the compressor obtained from the temperature of the refrigerant on the discharge side of the compressor is equal to or higher than the target discharge superheat degree.
  • the control which adjusts the opening degree of the main valve and / or the superheat valve is adopted.
  • An air conditioner according to a fourth aspect is the air conditioner according to the third aspect, wherein the temperature of the refrigerant on the discharge side of the compressor is detected by a discharge temperature sensor provided on the discharge side of the compressor.
  • the superheat degree of the refrigerant on the discharge side of the compressor is obtained from the temperature of the refrigerant on the discharge side of the compressor, obtained from the temperature of the refrigerant detected by the indoor heat exchanger temperature sensor provided in the indoor heat exchanger. Is obtained from the refrigerant temperature on the discharge side of the compressor detected by the discharge temperature sensor and the saturation temperature of the refrigerant on the discharge side of the compressor detected by the indoor heat exchanger temperature sensor.
  • the saturation temperature of the refrigerant on the discharge side of the compressor is obtained by the indoor heat exchanger temperature sensor, the pressure on the discharge side of the compressor is detected and this pressure value is set to the saturation temperature.
  • the saturation temperature of the refrigerant on the discharge side of the compressor is obtained by the indoor heat exchanger temperature sensor, the pressure on the discharge side of the compressor is detected and this pressure value is set to the saturation temperature.
  • the target discharge superheat degree is set to a value capable of maintaining the refrigerant on the suction side of the compressor in a wet state. Then, the opening degree of the main valve and / or the superheat valve is adjusted so that the superheat degree of the refrigerant on the discharge side of the compressor becomes the target discharge superheat degree.
  • the target discharge superheat degree is set to a value capable of maintaining the refrigerant on the suction side of the compressor in a wet state, and the superheat degree of the refrigerant on the discharge side of the compressor is set to the target discharge degree.
  • Control that adjusts the opening degree of the main valve and / or the superheat valve so that the degree of superheat is achieved is adopted. That is, here, the target discharge superheat degree is set to a value that can suppress both the excessive liquid back to the compressor and the excessive overheating of the refrigerant sucked into the compressor. Control is performed to adjust the opening degree of the main valve and / or the superheat valve so that the degree of discharge superheat is achieved. As a result, during the forward cycle defrosting operation, excessive liquid back to the compressor is suppressed, and the compressor sucked or damaged due to the refrigerant sucked into the compressor being overheated. Etc. can also be suppressed.
  • FIG. 2 It is a schematic block diagram of the air conditioning apparatus concerning the modification 2 of this invention (The flow of the refrigerant
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is a device that can cool and heat a room such as a building by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 is mainly configured by connecting an outdoor unit 2 and an indoor unit 4.
  • the outdoor unit 2 and the indoor unit 4 are connected via a liquid refrigerant communication tube 5 and a gas refrigerant communication tube 6.
  • the vapor compression refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the refrigerant communication pipes 5 and 6.
  • the indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly has an indoor heat exchanger 41.
  • the indoor heat exchanger 41 is a heat exchanger that functions as a refrigerant evaporator during cooling operation to cool room air, and functions as a refrigerant radiator during heating operation to heat indoor air.
  • the liquid side of the indoor heat exchanger 41 is connected to the liquid refrigerant communication tube 5, and the gas side of the indoor heat exchanger 41 is connected to the gas refrigerant communication tube 6.
  • the indoor unit 4 has an indoor fan 42 for sucking indoor air into the indoor unit 4 and exchanging heat with the refrigerant in the indoor heat exchanger 41 and supplying the indoor air as supply air. That is, the indoor unit 4 has an indoor fan 42 as a fan that supplies indoor air as a heating source or cooling source of the refrigerant flowing through the indoor heat exchanger 41 to the indoor heat exchanger 41.
  • the indoor fan 42 a centrifugal fan, a multiblade fan or the like driven by an indoor fan motor 42a capable of rotating speed control is used.
  • the indoor unit 4 is provided with various sensors. Specifically, the indoor heat exchanger 41 is provided with an indoor heat exchange temperature sensor 55 that detects the temperature Txi of the refrigerant in the indoor heat exchanger 41. The indoor unit 4 is provided with an indoor temperature sensor 56 that detects the temperature Tra of the indoor air sucked into the indoor unit 4.
  • the indoor unit 4 has an indoor side control unit 43 that controls the operation of each unit constituting the indoor unit 4.
  • the indoor side control part 43 has the microcomputer, memory, etc. which were provided in order to control the indoor unit 4, and is with the remote control (not shown) for operating the indoor unit 4 separately. Control signals and the like can be exchanged between them, and control signals and the like can be exchanged with the outdoor unit 2 via the transmission line 7.
  • the outdoor unit 2 is installed outside and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 2 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, a main valve 24, and a discharge-suction bypass circuit 26.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • the compressor 21 has a sealed structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 21a capable of frequency control by an inverter.
  • the compressor 21 has a suction pipe 31 connected to the suction side via an attached accumulator 21b, and a discharge pipe 32 connected to the discharge side.
  • the suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the four-way switching valve 22.
  • the discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the four-way switching valve 22.
  • the four-way switching valve 22 is a switching valve for switching the direction of refrigerant flow in the refrigerant circuit 10.
  • the four-way switching valve 22 causes the outdoor heat exchanger 23 to function as a radiator for the refrigerant compressed in the compressor 21 and the indoor heat exchanger 41 for the refrigerant that has radiated heat in the outdoor heat exchanger 23.
  • the suction side (here, the suction pipe 31) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (solid line of the four-way switching valve 22 in FIG. 1). See).
  • the four-way switching valve 22 causes the outdoor heat exchanger 23 to function as an evaporator of the refrigerant that has radiated heat in the indoor heat exchanger 41 during the heating operation, and the indoor heat exchanger 41 is compressed in the compressor 21. Switching to a heating cycle state that functions as a refrigerant radiator.
  • the four-way switching valve 22 is connected to the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34). (Refer to the broken line of the four-way switching valve 22 in FIG. 1).
  • the suction side of the compressor 21 here, the suction pipe 31
  • the gas side of the outdoor heat exchanger 23 here, the first gas refrigerant pipe 33
  • the first gas refrigerant pipe 33 is a refrigerant pipe connecting the four-way switching valve 22 and the gas side of the outdoor heat exchanger 23.
  • the second gas refrigerant pipe 33 is a refrigerant pipe that connects the four-way switching valve 22 and the gas refrigerant communication pipe 6 side.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant radiator that uses outdoor air as a cooling source during cooling operation, and that functions as a refrigerant evaporator that uses outdoor air as a heating source during heating operation.
  • the outdoor heat exchanger 23 has a liquid side connected to the liquid refrigerant pipe 35 and a gas side connected to the first gas refrigerant pipe 33.
  • the liquid refrigerant pipe 35 is a refrigerant pipe that connects the liquid side of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 5 side.
  • the main valve 24 is a valve that depressurizes the high-pressure refrigerant of the refrigeration cycle radiated in the outdoor heat exchanger 23 to the low pressure of the refrigeration cycle during the cooling operation. Further, the main valve 24 is a valve that reduces the high-pressure refrigerant of the refrigeration cycle radiated in the indoor heat exchanger 41 to the low pressure of the refrigeration cycle during the heating operation.
  • the main valve 24 is provided in the liquid refrigerant pipe 35.
  • an electric expansion valve capable of opening degree control is used as the main valve 24.
  • the discharge-suction bypass circuit 26 is a refrigerant pipe that allows the refrigerant to be bypassed from the discharge side of the compressor 21 to the suction side of the compressor 21 during heating operation.
  • the discharge-suction bypass circuit 26 is provided so as to branch from the discharge pipe 32 and join the suction pipe 31.
  • the discharge-suction bypass circuit 26 has an overheat valve 27.
  • an electric expansion valve capable of opening degree control is used as the overheating valve 27.
  • the outdoor unit 2 has an outdoor fan 25 for sucking outdoor air into the outdoor unit 2 and exchanging heat with the refrigerant in the outdoor heat exchanger 23 and then discharging the air to the outside. That is, the outdoor unit 2 has an outdoor fan 25 as a fan that supplies outdoor air as a cooling source or a heating source of the refrigerant flowing through the outdoor heat exchanger 23 to the outdoor heat exchanger 23.
  • the outdoor fan 25 a propeller fan or the like driven by an outdoor fan motor 25a capable of rotating speed control is used.
  • the outdoor unit 2 is provided with various sensors. Specifically, the outdoor heat exchanger 23 is provided with an outdoor heat exchanger temperature sensor 53 that detects the temperature Txo of the refrigerant in the outdoor heat exchanger 23.
  • the outdoor unit 2 is provided with an outdoor air temperature sensor 54 that detects a temperature Toa of outdoor air sucked into the outdoor unit 2.
  • the discharge pipe 32 or the compressor 21 is provided with a discharge temperature sensor 52 that detects the temperature Td of the high-pressure refrigerant in the refrigeration cycle discharged from the compressor 21.
  • the outdoor unit 2 includes an outdoor control unit 28 that controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor control unit 28 includes a microcomputer and a memory provided for controlling the outdoor unit 2, and exchanges control signals and the like with the indoor unit 4 via the transmission line 7. Can be done.
  • Refrigerant communication pipes 5 and 6 are refrigerant pipes constructed on site when the air conditioner 1 is installed at an installation location such as a building, and installation conditions such as the installation location and a combination of an outdoor unit and an indoor unit. Those having various lengths and tube diameters are used.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2, the indoor unit 4, and the refrigerant communication pipes 5 and 6.
  • the refrigerant circuit 10 mainly includes a main refrigerant circuit 11 having a compressor 21, an indoor heat exchanger 41, a main valve 24, and an outdoor heat exchanger 23 (part of the refrigerant circuit 10 excluding the discharge-suction bypass circuit 26). ) Is connected to a discharge-suction bypass circuit 26 having an overheat valve 27.
  • the main refrigerant circuit 11 of the refrigerant circuit 10 switches the four-way switching valve 22 to the heating cycle state as will be described later, so that the compressor 21, the indoor heat exchanger 41, the main valve 24, and the outdoor heat exchanger 23 are switched. It is possible to perform a heating operation in which the refrigerant is circulated in this order.
  • the air conditioner 1 can control each device of the outdoor unit 2 and the indoor unit 4 by the control unit 8 including the indoor side control unit 43 and the outdoor side control unit 28. That is, the control part 8 which performs operation control of the whole air conditioning apparatus 1 including heating operation etc. is comprised by the transmission line 7 which connects between the indoor side control part 43 and the outdoor side control part 28.
  • control unit 8 is connected so that it can receive detection signals from the various sensors 52 to 56, and various devices and valves 21a, 22, 24 based on these detection signals. 25a, 27, 42a, etc. are connected so as to be controlled.
  • the air conditioner 1 can perform a cooling operation (see FIG. 3) and a heating operation (see FIG. 4). In addition, during the heating operation, it is also possible to perform a normal cycle defrosting operation (see FIGS. 5 and 6) for melting frost attached to the outdoor heat exchanger 23.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21 and is compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the four-way switching valve 22.
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 23 performs heat exchange with the outdoor air supplied as a cooling source by the outdoor fan 36 in the outdoor heat exchanger 23 to dissipate heat to become a high-pressure liquid refrigerant. .
  • the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the main valve 24.
  • the high-pressure liquid refrigerant sent to the main valve 24 is decompressed by the main valve 24 to the low pressure of the refrigeration cycle, and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the main valve 24 is sent to the indoor heat exchanger 41 through the liquid refrigerant communication pipe 5.
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 41 evaporates in the indoor heat exchanger 41 by exchanging heat with indoor air supplied as a heating source by the indoor fan 42. As a result, the room air is cooled and then supplied to the room to cool the room.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger 41 is again sucked into the compressor 21 through the gas refrigerant communication pipe 6 and the four-way switching valve 22.
  • the cooling operation is performed in which the refrigerant is circulated in the order of the compressor 21, the outdoor heat exchanger 23, the main valve 24, and the indoor heat exchanger 41.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21 and is compressed until it reaches a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 through the four-way switching valve 22 and the gas refrigerant communication pipe 6.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 41 radiates heat by exchanging heat with indoor air supplied as a cooling source by the indoor fan 42 in the indoor heat exchanger 41 to become a high-pressure liquid refrigerant. . Thereby, indoor air is heated, and indoor heating is performed by being supplied indoors after that.
  • the high-pressure liquid refrigerant radiated by the indoor heat exchanger 41 is sent to the main valve 24 through the liquid refrigerant communication pipe 5.
  • the high-pressure liquid refrigerant sent to the main valve 24 is decompressed by the main valve 24 to the low pressure of the refrigeration cycle, and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the main valve 24 is sent to the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 23 evaporates by exchanging heat with outdoor air supplied as a heating source by the outdoor fan 25 in the outdoor heat exchanger 23. Become a gas refrigerant.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is again sucked into the compressor 21 through the four-way switching valve 22.
  • the heating operation is performed in which the refrigerant is circulated in the order of the compressor 21, the indoor heat exchanger 41, the main valve 24, and the outdoor heat exchanger 23.
  • the normal cycle defrosting operation is the same as in the heating operation, that is, in the heating cycle state in which the four-way switching valve 22 is indicated by the broken line in FIG. 21 is an operation for defrosting the outdoor heat exchanger 23 while circulating the refrigerant in the order of the indoor heat exchanger 41, the main valve 24, and the outdoor heat exchanger 23.
  • the suction valve 21 sucks the compressor 21 from the discharge side of the compressor 21 through the discharge-suction bypass circuit 26 by opening the overheat valve 27 of the discharge-suction bypass circuit 26. The operation of bypassing the refrigerant to the side is performed.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21 and compressed after being compressed to a high pressure in the refrigeration cycle, and then discharged.
  • a part of the high-pressure gas refrigerant discharged from the compressor 21 is bypassed to the suction side of the compressor 21 through the discharge-suction bypass circuit 26, and the remaining gas refrigerant is the four-way switching valve 22 and the gas refrigerant communication pipe 6. And sent to the indoor heat exchanger 41.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 41 radiates heat by exchanging heat with indoor air supplied as a cooling source by the indoor fan 42 in the indoor heat exchanger 41.
  • the room air is heated and then supplied indoors, so that the room is continuously heated even during defrosting.
  • the high-pressure refrigerant radiated by the indoor heat exchanger 41 is sent to the outdoor heat exchanger 23 through the liquid refrigerant communication tube 5 and the main valve 24.
  • the refrigerant sent to the outdoor heat exchanger 23 exchanges heat with frost attached to the outdoor heat exchanger 23 to dissipate heat, and enters a gas-liquid two-phase state with a large amount of liquid refrigerant. Thereby, the frost adhering to the outdoor heat exchanger 23 is melted, and the outdoor heat exchanger 23 is defrosted.
  • the gas-liquid two-phase refrigerant of the liquid refrigerant radiated by the outdoor heat exchanger 23 is sent to the suction pipe 31 through the four-way switching valve 22 and is bypassed to the suction side of the compressor 21 through the discharge-suction bypass circuit 26.
  • the gas refrigerant is combined with the gas refrigerant to be in a gas-liquid two-phase state or a gas state with a small amount of liquid refrigerant, and is sucked into the compressor 21 again.
  • the refrigerant in the refrigerant circuit 10, the refrigerant is circulated in the order of the compressor 21, the indoor heat exchanger 41, the main valve 24, and the outdoor heat exchanger 23, and the overheat valve 27 is opened and compressed through the discharge-suction bypass circuit 26.
  • a positive cycle defrosting operation is performed to bypass the refrigerant from the discharge side of the machine 21 to the suction side of the compressor 21.
  • the defrosting discharge temperature control is performed in which the opening degree of the superheat valve 27 is adjusted based on the refrigerant temperature Td on the discharge side of the compressor 21.
  • control of various devices including the forward cycle defrosting operation and the heating operation before and after the forward cycle defrosting operation will be described with reference to a time chart during the forward cycle defrosting operation and the heating operation before and after that.
  • the overheat valve 27 is fully closed as described above, and the main valve 24, the compressor 21, the outdoor fan 25, and the indoor fan. 42 is controlled so that the temperature Tra of the indoor air detected by the indoor temperature sensor 56 becomes the target indoor temperature, for example.
  • the heating main valve discharge temperature control for adjusting the opening of the main valve 24 based on the refrigerant temperature Td on the discharge side of the compressor 21 is performed. Specifically, control is performed to adjust the opening of the main valve 24 so that the refrigerant temperature Td on the discharge side of the compressor 21 becomes the target discharge temperature Tds.
  • control is performed to reduce the opening of the main valve 24.
  • the main valve 24 is controlled. Control to increase the opening degree of is performed.
  • the normal cycle defrosting operation is started.
  • the operation of bypassing the refrigerant from the discharge side of the compressor 21 to the suction side of the compressor 21 through the discharge-suction bypass circuit 26 is performed by opening the overheat valve 27 as described above. Is called.
  • the above-described defrosting discharge temperature control is performed as the control of the overheating valve 27 during the positive cycle defrosting operation.
  • the defrosting discharge temperature control obtains the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 from the temperature Td of the refrigerant on the discharge side of the compressor 21, and the refrigerant on the discharge side of the compressor 21.
  • the opening degree of the superheat valve 27 is adjusted so that the superheat degree TdSH of the engine becomes equal to or higher than the target discharge superheat degree TdSHs. That is, when the superheat degree TdSH is lower than the target discharge superheat degree TdSHs, control to increase the opening degree of the superheat valve 27 is performed.
  • the refrigerant temperature Td on the discharge side of the compressor 21 is obtained from the refrigerant temperature detected by the discharge temperature sensor 52 provided on the discharge side of the compressor 21. Further, the saturation temperature of the refrigerant on the discharge side of the compressor 21 is obtained from the refrigerant temperature Txi detected by the indoor heat exchanger temperature sensor 55 provided in the indoor heat exchanger 41.
  • the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 is determined by the temperature Td of the refrigerant on the discharge side of the compressor 21 detected by the discharge temperature sensor 52 and the temperature of the compressor 21 detected by the indoor heat exchanger temperature sensor 55. It is obtained from the saturation temperature (temperature Txi) of the refrigerant on the discharge side.
  • the degree of superheat TdSH is obtained by subtracting the refrigerant temperature Txi from the refrigerant temperature Td.
  • the target discharge superheat degree TdSHs is 5 deg. It is set to the above value.
  • control of the main valve 24 during the normal cycle defrosting operation control for setting the target opening for the normal cycle defrosting operation is performed instead of the heating main valve discharge temperature control.
  • the compressor 21 is operated at a defrost frequency that is a frequency for the positive cycle defrost operation.
  • the defrost frequency is set to a high frequency near the highest frequency.
  • the outdoor fan 25 is stopped.
  • the indoor fan 42 is operated at a defrosting rotational speed that is a rotational speed for a normal cycle defrosting operation.
  • the defrosting rotation speed is set to the minimum rotation speed or a low rotation speed near the minimum rotation speed.
  • the normal cycle defrosting operation is terminated and the heating operation is resumed. Specifically, the overheat valve 26 is fully closed, the control of the main valve 24 is returned to the heating main valve discharge temperature control, and the control of the compressor 21, the outdoor fan 25 and the indoor fan 42 is changed to the control content during the heating operation. return.
  • the defrosting discharge temperature control for adjusting the opening degree of the superheater valve 27 is performed so that the superheat degree TdSH of the refrigerant on the side becomes equal to or higher than the target discharge superheat degree TdSHs.
  • the opening degree of the overheating valve 27 is adjusted (defrosting discharge temperature control) based on the refrigerant temperature Td on the discharge side of the compressor 21. .
  • coolant by the side of the discharge of the compressor 21 can be managed appropriately at the time of forward cycle defrost operation.
  • bag to the compressor 21 is suppressed here, As a result, the reliability of the compressor 21 is ensured and it becomes possible to continue a normal cycle defrost operation.
  • the normal cycle defrosting operation can be performed even under the operation condition in which the refrigerant temperature Td on the discharge side of the compressor 21 tends to be low, such as the low outside air temperature condition.
  • the degree of liquid back to the compressor 21 tends to appear as the magnitude of the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21. Specifically, as the degree of superheat TdSH of the refrigerant on the discharge side of the compressor 21 decreases, the liquid back to the compressor 21 tends to increase.
  • the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 obtained from the temperature Td of the refrigerant on the discharge side of the compressor 21 is the target discharge superheat degree TdSHs.
  • the control which adjusts the opening degree of the superheater valve 27 is adopted so that it may become above.
  • the saturation temperature of the refrigerant on the discharge side of the compressor 21 is obtained by the indoor heat exchanger temperature sensor 55, the pressure on the discharge side of the compressor 21 is detected and this pressure is detected. It is not necessary to obtain the saturation temperature of the refrigerant on the discharge side of the compressor 21 by converting the value into the saturation temperature. That is, in order to obtain the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21, it is not necessary to provide a pressure sensor on the discharge side of the compressor 21.
  • control is performed to adjust the opening degree of the superheat valve 27 so that the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 is equal to or higher than the target discharge superheat degree TdSHs. That is, when the superheat degree TdSH is lower than the target discharge superheat degree TdSHs, control to increase the opening degree of the superheat valve 27 is performed.
  • the main valve 24 is also controlled to adjust the opening so that the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 is equal to or higher than the target discharge superheat degree TdSHs. .
  • the opening degree of the main valve 24 and the superheat valve 27 is adjusted (discharge temperature control during defrosting) so that the superheat degree TdSH becomes equal to or higher than the target discharge superheat degree TdSHs. Even in this case, the same effect as that of the above embodiment can be obtained. Moreover, in this modification, since the defrosting discharge temperature control is performed for the two valves, the control range can be expanded.
  • the opening degree of the superheater valve 27 is adjusted as the defrosting discharge temperature control during the normal cycle defrosting operation. However, as shown in FIG. It is also possible to adjust only the opening degree. That is, the defrosting discharge temperature control for adjusting the opening degree of the main valve 24 based on the refrigerant temperature Td on the discharge side of the compressor 21 is performed.
  • control is performed to adjust the opening degree so that the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 is equal to or higher than the target discharge superheat degree TdSHs. That is, when the superheat degree TdSH is lower than the target discharge superheat degree TdSHs, control is performed to reduce the opening of the main valve 24.
  • the overheat valve 27 is controlled to set the target opening for the normal cycle defrosting operation without performing the defrosting discharge temperature control.
  • control of the other apparatuses (the compressor 21, the outdoor fan 25, and the indoor fan 42) at the time of a normal cycle defrost operation is the same as that of said embodiment and the modification 1.
  • the degree of opening of the main valve 24 is adjusted (discharge temperature control during defrosting) so that the degree of superheat TdSH is equal to or higher than the target discharge superheat degree TdSHs. Even in this case, the same effects as those of the above-described embodiment and Modification 1 can be obtained.
  • the overheating valve 27 is set to the target opening degree, as shown in FIG.
  • the overheat valve 27 is not a valve capable of opening control such as an electric expansion valve, but a valve capable of opening / closing control such as an electromagnetic valve can also be used.
  • the target discharge superheat degree TdSHs is set to a value that allows the refrigerant on the suction side of the compressor 21 to be maintained in a wet state, and the compression is performed.
  • the opening degree of the main valve 24 and / or the superheat valve 27 is adjusted so that the superheat degree TdSH of the refrigerant on the discharge side of the machine 21 becomes the target discharge superheat degree TdSHs.
  • the target discharge overheating is performed.
  • the degree TdSHs is set to a value capable of suppressing excessive liquid back to the compressor 21 and maintaining the refrigerant on the suction side of the compressor 21 in a wet state, and the degree of superheat of the refrigerant on the discharge side of the compressor 21
  • the opening degree of the superheater valve 27 is adjusted so that TdSH becomes the target discharge superheat degree TdSHs.
  • the superheat degree TdSH when the superheat degree TdSH is lower than the target discharge superheat degree TdSHs, control is performed to increase the opening degree of the superheat valve 27, and when the superheat degree TdSH is higher than the target discharge superheat degree TdSHs, the superheat valve 27 is controlled. Control to reduce the opening of.
  • the target discharge superheat degree TdSHs is 5 deg. ⁇ 15 deg. Set to a value of degree.
  • control of the other apparatuses at the time of a normal cycle defrost operation is the same as that of said embodiment and the modification 1,2.
  • excessive liquid back to the compressor 21 and the refrigerant sucked into the compressor 21 are used as the defrosting discharge temperature control during the normal cycle defrosting operation.
  • the target discharge superheat degree TdSHs is set to a value that can suppress both excessive superheats, and control is performed to adjust the opening degree of the superheat valve 27 so that the target discharge superheat degree TdSHs is reached. Yes.
  • the excessive liquid back to the compressor 21 is suppressed, and the refrigerant that is sucked into the compressor 21 is excessively overheated. Baking, breakage, etc. can also be suppressed.
  • the defrosting discharge temperature control is performed by the superheat valve 27 as in the above embodiment, and the main valve 24 is set to the target opening for the normal cycle defrosting operation, the target discharge overheat is performed.
  • the control for adjusting the opening degree of the superheater valve 27 is adopted so as to become the degree TdSHs is illustrated, the present invention is not limited to this, and discharge at the time of defrosting by the main valve 24 similar to the second modification example
  • the temperature control is performed and the superheat valve 27 is set to the target opening degree for the positive cycle defrost operation, or the defrost discharge temperature control by both the main valve 24 and the superheat valve 27 as in the first modification.
  • the target opening degree for the normal cycle defrosting operation of the main valve 24 is set to an opening degree near full open, the high pressure of the refrigeration cycle is not easily raised, and the compressor 21 The input power decreases, and as a result, the amount of heat that can be used for defrosting decreases, and as a result, the normal cycle defrosting operation may not be continued.
  • the opening degree of the main valve 24 is adjusted so that the high pressure Ph of the refrigeration cycle in the main refrigerant circuit 11 becomes the target high pressure Phs along with the defrosting discharge temperature control by the overheat valve 27.
  • the main valve high pressure control is performed during defrosting.
  • the defrosting discharge temperature for controlling the opening degree of the superheater valve 27 so that the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 becomes the target discharge superheat degree TdSHs is the target discharge superheat degree TdSHs.
  • the main valve high pressure control at the time of defrosting is performed in which the opening degree of the main valve 24 is adjusted so that the high pressure Ph of the refrigeration cycle in the main refrigerant circuit 11 becomes the target high pressure Phs.
  • the refrigerant temperature Txi detected by the indoor heat exchanger temperature sensor 55 corresponds to the saturation temperature of the refrigerant at the high pressure Ph of the refrigeration cycle
  • the refrigerant temperature Txi is used as the high pressure Ph of the refrigeration cycle.
  • Control is performed to adjust the opening of the main valve 24 so that Ph becomes the target high pressure Phs. That is, when the high pressure Ph is lower than the target high pressure Phs, control is performed to reduce the opening of the main valve 24, and when the high pressure Ph is higher than the target high pressure Phs, the opening of the main valve 24 is increased.
  • the target high pressure Ph is set to a value near the upper limit value Phx of the high pressure Ph during the heating operation.
  • the upper limit value Phx of the high pressure Ph is a value that is defined in consideration of the design pressure of the equipment constituting the refrigerant circuit 10, and a pressure value slightly lower than this value is set as the target high pressure Ph.
  • control of the other apparatuses at the time of a normal cycle defrost operation is the same as that of said embodiment and the modification 3.
  • the defrosting discharge temperature control by the overheat valve 27 is performed, and the main valve is set so that the high pressure Ph of the refrigeration cycle becomes the target high pressure Phs.
  • the opening degree of 24 is adjusted (main valve high pressure control during defrosting). For this reason, the high pressure Ph of the refrigeration cycle can be maintained near the desired target high pressure Phs while ensuring the reliability of the compressor 21 during the positive cycle defrosting operation.
  • the input power of the compressor 21 is increased, and as a result, the amount of heat that can be used for defrosting can be secured, and the normal cycle defrosting operation can be continued.
  • the defrosting discharge temperature control for controlling the opening degree of the superheat valve 27 so that the superheat degree TdSH of the refrigerant on the discharge side of the compressor 21 becomes the target discharge superheat degree TdSHs is the same as in the third modification.
  • the case where the main valve high pressure control at the time of defrosting by the main valve 24 is illustrated is illustrated, but the present invention is not limited to this, and the refrigerant on the discharge side of the compressor 21 similar to the above embodiment is overheated.
  • the defrosting main valve high pressure control by the main valve 24 is employed. be able to.
  • the present invention has a discharge-suction bypass circuit used during a positive cycle defrosting operation for defrosting the outdoor heat exchanger while circulating the refrigerant in the order of the compressor, the indoor heat exchanger, the main valve, and the outdoor heat exchanger. Widely applicable to air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和装置(1)では、正サイクル除霜運転時に、過熱弁(27)を開けて吐出-吸入バイパス回路(26)を通じて圧縮機(21)の吐出側から圧縮機(21)の吸入側に冷媒をバイパスさせるとともに、圧縮機(21)の吐出側の冷媒の温度に基づいて主弁(24)及び/又は過熱弁(27)の開度を調節する除霜時吐出温度制御を行う。

Description

空気調和装置
 本発明は、空気調和装置、特に、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させつつ室外熱交換器を除霜する正サイクル除霜運転時に使用される吐出-吸入バイパス回路を有する空気調和装置に関する。
 従来より、特許文献1(特開昭61-262560号公報)に示すように、圧縮機と室内熱交換器と絞り装置(主弁)と室外熱交換器とを有する空気調和装置がある。この空気調和装置は、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させる暖房運転が可能であり、また、暖房運転時に圧縮機の吐出側から圧縮機の吸入側に冷媒をバイパスすることが可能にする吐出-吸入バイパス回路を有している。そして、この空気調和装置では、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させつつ室外熱交換器を除霜する正サイクル除霜運転時に、吐出-吸入バイパス回路の弁(過熱弁)を開けて吐出-吸入バイパス回路を通じて圧縮機の吐出側から圧縮機の吸入側に冷媒をバイパスさせるようにしている。
 上記従来の空気調和装置では、正サイクル除霜運転時に、主弁を全開近くまで開いた状態にしている。このため、圧縮機の吐出側の冷媒の温度が徐々に低下して、圧縮機への過度の液バックが発生し、その結果、圧縮機の信頼性を確保するために、圧縮機の運転周波数を低下させたり、圧縮機の運転を停止する等の処置が必要になる。しかし、このような処置を行うと、正サイクル除霜運転を継続できなくなってしまう。
 本発明の課題は、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させつつ室外熱交換器を除霜する正サイクル除霜運転時に使用される吐出-吸入バイパス回路を有する空気調和装置において、圧縮機への過度の液バックを抑制して、圧縮機の信頼性を確保し、正サイクル除霜運転を継続できるようにすることにある。
 第1の観点にかかる空気調和装置は、主冷媒回路と、吐出-吸入バイパス回路とを有している。主冷媒回路は、圧縮機と室内熱交換器と主弁と室外熱交換器とを有しており、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させる暖房運転を行うことが可能である。吐出-吸入バイパス回路は、過熱弁を有しており、暖房運転時に圧縮機の吐出側から圧縮機の吸入側に冷媒をバイパスすることが可能になるように主冷媒回路に接続されている。そして、ここでは、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させつつ室外熱交換器を除霜する正サイクル除霜運転時に、過熱弁を開けて吐出-吸入バイパス回路を通じて圧縮機の吐出側から圧縮機の吸入側に冷媒をバイパスさせるとともに、圧縮機の吐出側の冷媒の温度に基づいて主弁及び/又は過熱弁の開度を調節する除霜時吐出温度制御を行う。
 ここでは、上記のように、正サイクル除霜運転時に、圧縮機の吐出側の冷媒の温度に基づいて主弁及び/又は過熱弁の開度を調節(除霜時吐出温度制御)するようにしている。このため、正サイクル除霜運転時に、圧縮機の吐出側の冷媒の温度を適切に管理することができる。これにより、ここでは、圧縮機への過度の液バックを抑制して、その結果、圧縮機の信頼性を確保して、そして、正サイクル除霜運転を継続することができるようになる。また、低外気温条件のような圧縮機の吐出側の冷媒の温度が低くなりやすい運転条件においても、正サイクル除霜運転を行うことができる。
 第2の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、圧縮機の吐出側の冷媒の温度を圧縮機の吐出側に設けられた吐出温度センサによって検出される冷媒の温度から得る。
 第3の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、除霜時吐出温度制御が、圧縮機の吐出側の冷媒の温度から圧縮機の吐出側の冷媒の過熱度を得て、圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度以上になるように主弁及び/又は過熱弁の開度を調節する制御である。
 圧縮機への液バックの程度は、圧縮機の吐出側の冷媒の過熱度の大小として現れやすい傾向にある。具体的には、圧縮機の吐出側の冷媒の過熱度が小さくなるにつれて、圧縮機への液バックが増加しやすくなる。
 そこで、ここでは、上記のように、除霜時吐出温度制御として、圧縮機の吐出側の冷媒の温度から得られる圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度以上になるように主弁及び/又は過熱弁の開度を調節する制御を採用している。これにより、ここでは、目標吐出過熱度を圧縮機への液バックを考慮した値に設定することで、圧縮機への過度の液バックを確実に抑制することができる。
 第4の観点にかかる空気調和装置は、第3の観点にかかる空気調和装置において、圧縮機の吐出側の冷媒の温度を圧縮機の吐出側に設けられた吐出温度センサによって検出される冷媒の温度から得て、圧縮機の吐出側の冷媒の飽和温度を室内熱交換器に設けられた室内熱交温度センサによって検出される冷媒の温度から得て、圧縮機の吐出側の冷媒の過熱度を、吐出温度センサによって検出される圧縮機の吐出側の冷媒の温度と室内熱交温度センサによって検出される圧縮機の吐出側の冷媒の飽和温度とから得る。
 ここでは、上記のように、室内熱交温度センサによって圧縮機の吐出側の冷媒の飽和温度を得るようにしているため、圧縮機の吐出側の圧力を検出してこの圧力値を飽和温度に換算することで圧縮機の吐出側の冷媒の飽和温度を得る必要がなくなる。すなわち、圧縮機の吐出側の冷媒の過熱度を得るにあたり、圧縮機の吐出側に圧力センサを設けずに済ませることができる。
 第5の観点にかかる空気調和装置は、第3又は第4の観点にかかる空気調和装置において、目標吐出過熱度を圧縮機の吸入側における冷媒を湿り状態に維持することが可能な値に設定し、圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度になるように主弁及び/又は過熱弁の開度を調節する。
 圧縮機の信頼性を確保するためには、圧縮機への過度の液バックを抑制するとともに、圧縮機に吸入される冷媒が過度の過熱状態になることで発生する圧縮機の焼き付けや破損等も抑制することが好ましい。
 そこで、ここでは、上記のように、目標吐出過熱度を圧縮機の吸入側における冷媒を湿り状態に維持することが可能な値に設定し、圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度になるように主弁及び/又は過熱弁の開度を調節する制御を採用するようにしている。すなわち、ここでは、圧縮機への過度の液バック、及び、圧縮機に吸入される冷媒の過度の過熱の両方を抑制することができる程度の値に目標吐出過熱度を設定して、この目標吐出過熱度になるように主弁及び/又は過熱弁の開度を調節する制御を行うようにしている。これにより、ここでは、正サイクル除霜運転時に、圧縮機への過度の液バックを抑制するとともに、圧縮機に吸入される冷媒が過度の過熱状態になることで発生する圧縮機の焼き付けや破損等も抑制することができる。
本発明の一実施形態にかかる空気調和装置の概略構成図である。 空気調和装置の制御ブロック図である。 冷房運転時の動作(冷媒の流れ)を示す図である。 暖房運転時の動作(冷媒の流れ)を示す図である。 正サイクル除霜運転時の動作(冷媒の流れ)を示す図である。 正サイクル除霜運転及びその前後の暖房運転時における過熱弁、主弁、圧縮機、室外ファン及び室内ファンの動作を示すタイムチャートである。 本発明の変形例1における正サイクル除霜運転及びその前後の暖房運転時における過熱弁、主弁、圧縮機、室外ファン及び室内ファンの動作を示すタイムチャートである。 本発明の変形例2における正サイクル除霜運転及びその前後の暖房運転時における過熱弁、主弁、圧縮機、室外ファン及び室内ファンの動作を示すタイムチャートである。 本発明の変形例2にかかる空気調和装置の概略構成図(正サイクル除霜運転時の冷媒の流れも図示)である。 本発明の変形例3における正サイクル除霜運転及びその前後の暖房運転時における過熱弁、主弁、圧縮機、室外ファン及び室内ファンの動作を示すタイムチャートである。 本発明の変形例4における正サイクル除霜運転及びその前後の暖房運転時における過熱弁、主弁、圧縮機、室外ファン及び室内ファンの動作を示すタイムチャートである。
 以下、本発明にかかる空気調和装置の実施形態及びその変形例について、図面に基づいて説明する。尚、本発明にかかる空気調和装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (1)空気調和装置の構成
 図1は、本発明の一実施形態にかかる空気調和装置1の概略構成図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房及び暖房を行うことが可能な装置である。空気調和装置1は、主として、室外ユニット2と、室内ユニット4とが接続されることによって構成されている。ここで、室外ユニット2と室内ユニット4とは、液冷媒連絡管5及びガス冷媒連絡管6を介して接続されている。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4とが冷媒連絡管5、6を介して接続されることによって構成されている。
 <室内ユニット>
 室内ユニット4は、室内に設置されており、冷媒回路10の一部を構成している。室内ユニット4は、主として、室内熱交換器41を有している。
 室内熱交換器41は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器41の液側は液冷媒連絡管5に接続されており、室内熱交換器41のガス側はガス冷媒連絡管6に接続されている。
 室内ユニット4は、室内ユニット4内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、供給空気として室内に供給するための室内ファン42を有している。すなわち、室内ユニット4は、室内熱交換器41を流れる冷媒の加熱源又は冷却源としての室内空気を室内熱交換器41に供給するファンとして、室内ファン42を有している。ここでは、室内ファン42として、回転数制御が可能な室内ファン用モータ42aによって駆動される遠心ファンや多翼ファン等が使用されている。
 室内ユニット4には、各種のセンサが設けられている。具体的には、室内熱交換器41には、室内熱交換器41における冷媒の温度Txiを検出する室内熱交温度センサ55が設けられている。室内ユニット4には、室内ユニット4内に吸入される室内空気の温度Traを検出する室内温度センサ56が設けられている。
 室内ユニット4は、室内ユニット4を構成する各部の動作を制御する室内側制御部43を有している。そして、室内側制御部43は、室内ユニット4の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内ユニット4を個別に操作するためのリモコン(図示せず)との間で制御信号等のやりとりを行ったり、室外ユニット2との間で伝送線7を介して制御信号等のやりとりを行うことができるようになっている。
 <室外ユニット>
 室外ユニット2は、室外に設置されており、冷媒回路10の一部を構成している。室外ユニット2は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、主弁24と、吐出-吸入バイパス回路26とを有している。
 圧縮機21は、冷凍サイクルの低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21は、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)をインバータにより周波数制御が可能な圧縮機用モータ21aによって回転駆動する密閉式構造となっている。圧縮機21は、吸入側に付属のアキュムレータ21bを介して吸入管31が接続されており、吐出側に吐出管32が接続されている。吸入管31は、圧縮機21の吸入側と四路切換弁22とを接続する冷媒管である。吐出管32は、圧縮機21の吐出側と四路切換弁22とを接続する冷媒管である。
 四路切換弁22は、冷媒回路10における冷媒の流れの方向を切り換えるための切換弁である。四路切換弁22は、冷房運転時には、室外熱交換器23を圧縮機21において圧縮された冷媒の放熱器として機能させ、かつ、室内熱交換器41を室外熱交換器23において放熱した冷媒の蒸発器として機能させる冷房サイクル状態への切り換えを行う。すなわち、四路切換弁22は、冷房運転時には、圧縮機21の吐出側(ここでは、吐出管32)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の四路切換弁22の実線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の四路切換弁22の実線を参照)。また、四路切換弁22は、暖房運転時には、室外熱交換器23を室内熱交換器41において放熱した冷媒の蒸発器として機能させ、かつ、室内熱交換器41を圧縮機21において圧縮された冷媒の放熱器として機能させる暖房サイクル状態への切り換えを行う。すなわち、四路切換弁22は、暖房運転時には、圧縮機21の吐出側(ここでは、吐出管32)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の四路切換弁22の破線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の四路切換弁22の破線を参照)。ここで、第1ガス冷媒管33は、四路切換弁22と室外熱交換器23のガス側とを接続する冷媒管である。第2ガス冷媒管33は、四路切換弁22とガス冷媒連絡管6側とを接続する冷媒管である。
 室外熱交換器23は、冷房運転時には室外空気を冷却源とする冷媒の放熱器として機能し、暖房運転時には室外空気を加熱源とする冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、液側が液冷媒管35に接続されており、ガス側が第1ガス冷媒管33に接続されている。液冷媒管35は、室外熱交換器23の液側と液冷媒連絡管5側とを接続する冷媒管である。
 主弁24は、冷房運転時には、室外熱交換器23において放熱した冷凍サイクルの高圧の冷媒を冷凍サイクルの低圧まで減圧する弁である。また、主弁24は、暖房運転時には、室内熱交換器41において放熱した冷凍サイクルの高圧の冷媒を冷凍サイクルの低圧まで減圧する弁である。主弁24は、液冷媒管35に設けられている。ここでは、主弁24として、開度制御が可能な電動膨張弁が使用されている。
 吐出-吸入バイパス回路26は、暖房運転時に圧縮機21の吐出側から圧縮機21の吸入側に冷媒をバイパスすることを可能にする冷媒管である。ここでは、吐出-吸入バイパス回路26は、吐出管32から分岐され、吸入管31に合流するように設けられている。吐出-吸入バイパス回路26は、過熱弁27を有している。ここでは、過熱弁27として、開度制御が可能な電動膨張弁が使用されている。
 室外ユニット2は、室外ユニット2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための室外ファン25を有している。すなわち、室外ユニット2は、室外熱交換器23を流れる冷媒の冷却源又は加熱源としての室外空気を室外熱交換器23に供給するファンとして、室外ファン25を有している。ここでは、室外ファン25として、回転数制御が可能な室外ファン用モータ25aによって駆動されるプロペラファン等が使用されている。
 室外ユニット2には、各種のセンサが設けられている。具体的には、室外熱交換器23には、室外熱交換器23における冷媒の温度Txoを検出する室外熱交温度センサ53が設けられている。室外ユニット2には、室外ユニット2内に吸入される室外空気の温度Toaを検出する外気温度センサ54が設けられている。吐出管32又は圧縮機21には、圧縮機21から吐出される冷凍サイクルの高圧の冷媒の温度Tdを検出する吐出温度センサ52が設けられている。
 室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部28を有している。そして、室外側制御部28は、室外ユニット2の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内ユニット4との間で伝送線7を介して制御信号等のやりとりを行うことができるようになっている。
 <冷媒連絡管>
 冷媒連絡管5、6は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニットと室内ユニットとの組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
 以上のように、室外ユニット2と、室内ユニット4と、冷媒連絡管5、6とが接続されることによって、空気調和装置1の冷媒回路10が構成されている。ここで、冷媒回路10は、主として圧縮機21と室内熱交換器41と主弁24と室外熱交換器23とを有する主冷媒回路11(冷媒回路10のうち吐出-吸入バイパス回路26を除く部分)に、過熱弁27を有する吐出-吸入バイパス回路26が接続されることによって構成されている。そして、冷媒回路10の主冷媒回路11は、後述のように、四路切換弁22を暖房サイクル状態に切り換えることで、圧縮機21、室内熱交換器41、主弁24、室外熱交換器23の順に冷媒を循環させる暖房運転を行うことが可能になっている。
 <制御部>
 空気調和装置1は、室内側制御部43と室外側制御部28とから構成される制御部8によって、室外ユニット2及び室内ユニット4の各機器の制御を行うことができるようになっている。すなわち、室内側制御部43と室外側制御部28との間を接続する伝送線7とによって、暖房運転等を含む空気調和装置1全体の運転制御を行う制御部8が構成されている。
 制御部8は、図2に示すように、各種センサ52~56等の検出信号を受けることができるように接続されるとともに、これらの検出信号等に基づいて各種機器及び弁21a、22、24、25a、27、42a等を制御することができるように接続されている。
 (2)空気調和装置の動作
 次に、空気調和装置1の動作について、図3~図6を用いて説明する。空気調和装置1は、冷房運転(図3参照)及び暖房運転(図4参照)を行うことが可能である。また、暖房運転時においては、室外熱交換器23に付着した霜を融解させるための正サイクル除霜運転(図5及び図6参照)を行うことも可能である。
 <冷房運転>
 冷房運転時には、四路切換弁22が冷房サイクル状態(図3の実線で示される状態)に切り換えられる。また、吐出-吸入バイパス回路26の過熱弁27は閉止されている。
 冷媒回路10において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通じて、室外熱交換器23に送られる。
 室外熱交換器23に送られた高圧のガス冷媒は、室外熱交換器23において、室外ファン36によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。
 室外熱交換器23において放熱した高圧の液冷媒は、主弁24に送られる。
 主弁24に送られた高圧の液冷媒は、主弁24によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。主弁24で減圧された低圧の気液二相状態の冷媒は、液冷媒連絡管5を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた低圧の気液二相状態の冷媒は、室内熱交換器41において、室内ファン42によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却され、その後に、室内に供給されることで室内の冷房が行われる。
 室内熱交換器41において蒸発した低圧のガス冷媒は、ガス冷媒連絡管6及び四路切換弁22を通じて、再び、圧縮機21に吸入される。
 このように、冷媒回路10(ここでは、主冷媒回路11)において、圧縮機21、室外熱交換器23、主弁24、室内熱交換器41の順に冷媒を循環させる冷房運転が行われる。
 <暖房運転>
 暖房運転時には、四路切換弁22が暖房サイクル状態(図4の破線で示される状態)に切り換えられる。
 冷媒回路10において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22及びガス冷媒連絡管6を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた高圧のガス冷媒は、室内熱交換器41において、室内ファン42によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内空気は加熱され、その後に、室内に供給されることで室内の暖房が行われる。
 室内熱交換器41で放熱した高圧の液冷媒は、液冷媒連絡管5を通じて、主弁24に送られる。
 主弁24に送られた高圧の液冷媒は、主弁24によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。主弁24で減圧された低圧の気液二相状態の冷媒は、室外熱交換器23に送られる。
 室外熱交換器23に送られた低圧の気液二相状態の冷媒は、室外熱交換器23において、室外ファン25によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。
 室外熱交換器23で蒸発した低圧の冷媒は、四路切換弁22を通じて、再び、圧縮機21に吸入される。
 このように、冷媒回路10(ここでは、主冷媒回路11)において、圧縮機21、室内熱交換器41、主弁24、室外熱交換器23の順に冷媒を循環させる暖房運転が行われる。
 <正サイクル除霜運転>
 -基本動作-
 上記の暖房運転時において、室外熱交換器23における冷媒の温度Txoが所定温度よりも低くなること等によって室外熱交換器23における着霜が検知された場合には、室外熱交換器23に付着した霜を融解させる正サイクル除霜運転を行い、室外熱交換器23に付着した霜が融解した後に、暖房運転に復帰するようになっている。ここで、室外熱交換器23に付着した霜が融解したかどうかの検知は、室外熱交換器23における冷媒の温度Txoが所定温度よりも高くなること等によって行われる。
 ここで、正サイクル除霜運転とは、暖房運転時と同様に、すなわち、四路切換弁22が図5の破線で示される暖房サイクル状態で、冷媒回路10の主冷媒回路11において、圧縮機21、室内熱交換器41、主弁24、室外熱交換器23の順に冷媒を循環させつつ室外熱交換器23を除霜する運転である。
 但し、正サイクル除霜運転では、暖房運転時とは異なり、吐出-吸入バイパス回路26の過熱弁27を開けることで、吐出-吸入バイパス回路26を通じて圧縮機21の吐出側から圧縮機21の吸入側に冷媒をバイパスさせる動作が行われる。
 具体的には、冷媒回路10において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧のガス冷媒の一部は、吐出-吸入バイパス回路26を通じて圧縮機21の吸入側にバイパスされ、残りのガス冷媒は、四路切換弁22及びガス冷媒連絡管6を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた高圧のガス冷媒は、室内熱交換器41において、室内ファン42によって冷却源として供給される室内空気と熱交換を行って放熱する。これにより、室内空気は加熱され、その後に、室内に供給されることで、除霜中においても、室内の暖房が継続して行われる。
 室内熱交換器41で放熱した高圧の冷媒は、液冷媒連絡管5及び主弁24を通じて、室外熱交換器23に送られる。
 室外熱交換器23に送られた冷媒は、室外熱交換器23において、室外熱交換器23に付着した霜と熱交換を行って放熱して、液冷媒の多い気液二相状態になる。これにより、室外熱交換器23に付着した霜が融解して、室外熱交換器23の除霜が行われる。
 室外熱交換器23で放熱した液冷媒の気液二相状態の冷媒は、四路切換弁22を通じて、吸入管31に送られ、吐出-吸入バイパス回路26を通じて圧縮機21の吸入側にバイパスされたガス冷媒と合流することで、液冷媒の少ない気液二相状態又はガス状態になって、再び、圧縮機21に吸入される。
 このように、冷媒回路10において、圧縮機21、室内熱交換器41、主弁24、室外熱交換器23の順に冷媒を循環させるとともに、過熱弁27を開けて吐出-吸入バイパス回路26を通じて圧縮機21の吐出側から圧縮機21の吸入側に冷媒をバイパスさせる正サイクル除霜運転が行われる。
 -制御-
 正サイクル除霜運転時において、従来と同様に、主弁24を全開近くまで開いた状態にすると、圧縮機21の吐出側の冷媒の温度が徐々に低下して、圧縮機21への過度の液バックが発生し、その結果、圧縮機21の信頼性を確保するために、圧縮機21の運転周波数を低下させたり、圧縮機21の運転を停止する等の処置が必要になる。しかし、このような処置を行うと、正サイクル除霜運転を継続できなくなってしまう。
 そこで、ここでは、圧縮機21の吐出側の冷媒の温度Tdに基づいて過熱弁27の開度を調節する除霜時吐出温度制御を行うようにしている。以下、正サイクル除霜運転及びその前後の暖房運転を含めた各種機器の制御について、図6に示される正サイクル除霜運転及びその前後の暖房運転時のタイムチャートを使用して説明する。
 まず、正サイクル除霜運転を開始する前の暖房運転時においては、上記のように、過熱弁27が全閉になっており、そして、主弁24、圧縮機21、室外ファン25及び室内ファン42が、例えば、室内温度センサ56によって検出される室内空気の温度Traが目標室内温度になるように制御されている。ここでは、暖房運転時における主弁24の制御として、圧縮機21の吐出側の冷媒の温度Tdに基づいて主弁24の開度を調節する暖房時主弁吐出温度制御が行われている。具体的には、圧縮機21の吐出側の冷媒の温度Tdが目標吐出温度Tdsになるように主弁24の開度を調節する制御が行われている。すなわち、冷媒の温度Tdが目標吐出温度Tdsよりも低い場合には、主弁24の開度を小さくする制御を行い、冷媒の温度Tdが目標吐出温度Tdsよりも高い場合には、主弁24の開度を大きくする制御を行うようになっている。
 次に、室外熱交換器23における着霜が検知されると、正サイクル除霜運転を開始する。正サイクル除霜運転時においては、上記のように、過熱弁27を開けることで、吐出-吸入バイパス回路26を通じて圧縮機21の吐出側から圧縮機21の吸入側に冷媒をバイパスさせる動作が行われる。そして、正サイクル除霜運転時における過熱弁27の制御として、上記の除霜時吐出温度制御が行われる。具体的には、除霜時吐出温度制御は、圧縮機21の吐出側の冷媒の温度Tdから圧縮機21の吐出側の冷媒の過熱度TdSHを得て、この圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように過熱弁27の開度を調節する制御である。すなわち、過熱度TdSHが目標吐出過熱度TdSHsよりも低い場合には、過熱弁27の開度を大きくする制御を行う。ここで、圧縮機21の吐出側の冷媒の温度Tdは、圧縮機21の吐出側に設けられた吐出温度センサ52によって検出される冷媒の温度から得られる。また、圧縮機21の吐出側の冷媒の飽和温度は、室内熱交換器41に設けられた室内熱交温度センサ55によって検出される冷媒の温度Txiから得られる。そして、圧縮機21の吐出側の冷媒の過熱度TdSHは、吐出温度センサ52によって検出される圧縮機21の吐出側の冷媒の温度Tdと室内熱交温度センサ55によって検出される圧縮機21の吐出側の冷媒の飽和温度(温度Txi)とから得られる。すなわち、冷媒の温度Tdから冷媒の温度Txiを差し引くことによって過熱度TdSHが得られる。ここでは、目標吐出過熱度TdSHsが、圧縮機21の信頼性を考慮して、5deg.以上の値に設定される。また、正サイクル除霜運転時における主弁24の制御として、暖房時主弁吐出温度制御に代えて、正サイクル除霜運転用の目標開度に設定する制御が行われる。また、圧縮機21は、正サイクル除霜運転用の周波数である除霜周波数で運転が行われる。ここで、除霜周波数は、最高周波数付近の高周波数に設定される。また、室外ファン25は、停止される。さらに、室内ファン42は、正サイクル除霜運転用の回転数である除霜回転数で運転が行われる。ここで、除霜回転数は、最低回転数又は最低回転数付近の低回転数に設定される。
 そして、室外熱交換器23に付着した霜が融解したことが検知されると、正サイクル除霜運転を終了して、暖房運転に復帰する。具体的には、過熱弁26を全閉にし、主弁24の制御を暖房時主弁吐出温度制御に戻し、圧縮機21、室外ファン25及び室内ファン42の制御を暖房運転時の制御内容に戻す。
 このように、冷媒回路10(ここでは、主冷媒回路11)において、正サイクル除霜運転時に、圧縮機21の吐出側の冷媒の温度Tdに基づいて(具体的には、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように)過熱弁27の開度を調節する除霜時吐出温度制御が行われる。
 -特徴-
 ここでは、上記のように、正サイクル除霜運転時に、圧縮機21の吐出側の冷媒の温度Tdに基づいて過熱弁27の開度を調節(除霜時吐出温度制御)するようにしている。このため、正サイクル除霜運転時に、圧縮機21の吐出側の冷媒の温度Tdを適切に管理することができる。これにより、ここでは、圧縮機21への過度の液バックを抑制して、その結果、圧縮機21の信頼性を確保して、そして、正サイクル除霜運転を継続することができるようになる。また、低外気温条件のような圧縮機21の吐出側の冷媒の温度Tdが低くなりやすい運転条件においても、正サイクル除霜運転を行うことができる。
 ここで、圧縮機21への液バックの程度は、圧縮機21の吐出側の冷媒の過熱度TdSHの大小として現れやすい傾向にある。具体的には、圧縮機21の吐出側の冷媒の過熱度TdSHが小さくなるにつれて、圧縮機21への液バックが増加しやすくなる。
 そこで、ここでは、上記のように、除霜時吐出温度制御として、圧縮機21の吐出側の冷媒の温度Tdから得られる圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように過熱弁27の開度を調節する制御を採用している。これにより、ここでは、目標吐出過熱度TdSHsを圧縮機21への液バックを考慮した値に設定することで、圧縮機21への過度の液バックを確実に抑制することができる。
 また、ここでは、上記のように、室内熱交温度センサ55によって圧縮機21の吐出側の冷媒の飽和温度を得るようにしているため、圧縮機21の吐出側の圧力を検出してこの圧力値を飽和温度に換算することで圧縮機21の吐出側の冷媒の飽和温度を得る必要がなくなる。すなわち、圧縮機21の吐出側の冷媒の過熱度TdSHを得るにあたり、圧縮機21の吐出側に圧力センサを設けずに済ませることができる。
 (3)変形例1
 上記の実施形態では、正サイクル除霜運転時の除霜時吐出温度制御として、過熱弁27の開度だけを調節するようにしているが、図7に示すように、過熱弁27とともに主弁24の開度を調節するようにしてもよい。すなわち、圧縮機21の吐出側の冷媒の温度Tdに基づいて主弁24及び過熱弁27の開度を調節する除霜時吐出温度制御を行う。
 具体的には、上記の実施形態と同様に、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように過熱弁27の開度を調節する制御を行う。すなわち、過熱度TdSHが目標吐出過熱度TdSHsよりも低い場合には、過熱弁27の開度を大きくする制御を行う。しかも、ここでは、上記の実施形態とは異なり、主弁24についても、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように開度を調節する制御を行う。すなわち、過熱度TdSHが目標吐出過熱度TdSHsよりも低い場合には、主弁24の開度を小さくする制御を行う。尚、正サイクル除霜運転時の他の機器(圧縮機21、室外ファン25及び室内ファン42)の制御は、上記の実施形態と同様である。
 このように、本変形例では、上記のように、正サイクル除霜運転時に、圧縮機21の吐出側の冷媒の温度Tdに基づいて(具体的には、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように)主弁24及び過熱弁27の開度を調節(除霜時吐出温度制御)するようにしている。この場合においても、上記の実施形態と同様の作用効果を得ることができる。また、本変形例では、2つの弁について除霜時吐出温度制御を行うようにしているため、制御範囲を拡大することができる。
 (4)変形例2
 上記の実施形態及び変形例1では、正サイクル除霜運転時の除霜時吐出温度制御として、過熱弁27の開度を調節するようにしているが、図8に示すように、主弁24の開度だけを調節するようにしてもよい。すなわち、圧縮機21の吐出側の冷媒の温度Tdに基づいて主弁24の開度を調節する除霜時吐出温度制御を行う。
 具体的には、変形例1と同様に、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように開度を調節する制御を行う。すなわち、過熱度TdSHが目標吐出過熱度TdSHsよりも低い場合には、主弁24の開度を小さくする制御を行う。但し、過熱弁27については、除霜時吐出温度制御を行わずに、正サイクル除霜運転用の目標開度に設定する制御が行われる。尚、正サイクル除霜運転時の他の機器(圧縮機21、室外ファン25及び室内ファン42)の制御は、上記の実施形態や変形例1と同様である。
 このように、本変形例では、上記のように、正サイクル除霜運転時に、圧縮機21の吐出側の冷媒の温度Tdに基づいて(具体的には、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように)主弁24の開度を調節(除霜時吐出温度制御)するようにしている。この場合においても、上記の実施形態及び変形例1と同様の作用効果を得ることができる。また、本変形例では、主弁24の開度だけを調節する除霜時吐出温度制御を採用して、過熱弁27を目標開度に設定していることから、図9に示すように、過熱弁27を電動膨張弁等の開度制御が可能な弁ではなく、電磁弁等の開閉制御が可能な弁を使用することもできる。
 (5)変形例3
 上記の実施形態及び変形例1、2では、正サイクル除霜運転時の除霜時吐出温度制御として、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように主弁24及び/又は過熱弁27の開度を調節する制御を採用することで、圧縮機21への過度の液バックを抑制して、圧縮機21の信頼性を確保するようにしている。
 ところで、圧縮機21の信頼性を確保するという観点では、圧縮機21への過度の液バックを抑制するだけでなく、圧縮機21に吸入される冷媒が過度の過熱状態になることで発生する圧縮機21の焼き付けや破損等も抑制することが好ましい。
 そこで、ここでは、正サイクル除霜運転時の除霜時吐出温度制御として、目標吐出過熱度TdSHsを圧縮機21の吸入側における冷媒を湿り状態に維持することが可能な値に設定し、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHsになるように主弁24及び/又は過熱弁27の開度を調節するようにしている。
 具体的には、例えば、図10に示すように、過熱弁27による除霜時吐出温度制御を行い、主弁24を正サイクル除霜運転用の目標開度に設定する場合において、目標吐出過熱度TdSHsを圧縮機21への過度の液バックを抑制するとともに圧縮機21の吸入側における冷媒を湿り状態に維持することが可能な値に設定し、圧縮機21の吐出側の冷媒の過熱度TdSHがこの目標吐出過熱度TdSHsになるように過熱弁27の開度を調節する。すなわち、過熱度TdSHが目標吐出過熱度TdSHsよりも低い場合には、過熱弁27の開度を大きくする制御を行い、過熱度TdSHが目標吐出過熱度TdSHsよりも高い場合には、過熱弁27の開度を小さくする制御を行う。ここでは、目標吐出過熱度TdSHsが、圧縮機21の信頼性を考慮して、5deg.~15deg.程度の値に設定される。尚、正サイクル除霜運転時の他の機器(圧縮機21、室外ファン25及び室内ファン42)の制御は、上記の実施形態や変形例1、2と同様である。
 このように、本変形例では、上記のように、正サイクル除霜運転時の除霜時吐出温度制御として、圧縮機21への過度の液バック、及び、圧縮機21に吸入される冷媒の過度の過熱の両方を抑制することができる程度の値に目標吐出過熱度TdSHsを設定して、この目標吐出過熱度TdSHsになるように過熱弁27の開度を調節する制御を行うようにしている。これにより、ここでは、正サイクル除霜運転時に、圧縮機21への過度の液バックを抑制するとともに、圧縮機21に吸入される冷媒が過度の過熱状態になることで発生する圧縮機21の焼き付けや破損等も抑制することができる。
 尚、ここでは、上記の実施形態と同様の過熱弁27による除霜時吐出温度制御を行い、かつ、主弁24を正サイクル除霜運転用の目標開度に設定する場合において、目標吐出過熱度TdSHsになるように過熱弁27の開度を調節する制御を採用する場合について例示しているが、これに限定されるものではなく、変形例2と同様の主弁24による除霜時吐出温度制御を行い、かつ、過熱弁27を正サイクル除霜運転用の目標開度に設定する場合や、変形例1と同様の主弁24及び過熱弁27の両方による除霜時吐出温度制御を行う場合であっても、上記の圧縮機21の吐出側の冷媒の過熱度TdSHを目標吐出過熱度TdSHsにする制御を採用することができる。
 (6)変形例4
 上記の実施形態及び変形例3では、正サイクル除霜運転時の除霜時吐出温度制御として、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように、又は、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHsになるように、過熱弁27の開度を調節する制御を採用することで、圧縮機21への過度の液バックを抑制して、圧縮機21の信頼性を確保するようにしている。
 この場合において、従来と同様に、主弁24の正サイクル除霜運転用の目標開度を全開近くの開度に設定すると、冷凍サイクルの高圧が十分に上昇しにくくなり、圧縮機21への投入動力が減少してしまい、その結果、除霜に使用できる熱量が減少してしまい、その結果、正サイクル除霜運転を継続できなくなるおそれがある。
 そこで、ここでは、正サイクル除霜運転時に、過熱弁27による除霜時吐出温度制御とともに、主冷媒回路11における冷凍サイクルの高圧Phが目標高圧Phsになるように主弁24の開度を調節する除霜時主弁高圧制御を行うようにしている。
 具体的には、例えば、図11に示すように、圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHsになるように過熱弁27の開度を制御する除霜時吐出温度制御を行う場合において、主冷媒回路11における冷凍サイクルの高圧Phが目標高圧Phsになるように主弁24の開度を調節する除霜時主弁高圧制御を行う。ここでは、室内熱交温度センサ55によって検出される冷媒の温度Txiが冷凍サイクルの高圧Phにおける冷媒の飽和温度に相当することから、冷媒の温度Txiを冷凍サイクルの高圧Phとして使用し、この高圧Phが目標高圧Phsになるように主弁24の開度を調節する制御が行われる。すなわち、高圧Phが目標高圧Phsよりも低い場合には、主弁24の開度を小さくする制御を行い、高圧Phが目標高圧Phsよりも高い場合には、主弁24の開度を大きくする制御を行う。ここでは、目標高圧Phが、暖房運転時における高圧Phの上限値Phx付近の値に設定されている。この高圧Phの上限値Phxは、冷媒回路10を構成する機器の設計圧力等を考慮して規定されている値であり、この値よりも少し低い圧力値を目標高圧Phとしている。尚、正サイクル除霜運転時の他の機器(圧縮機21、室外ファン25及び室内ファン42)の制御は、上記の実施形態や変形例3と同様である。
 このように、本変形例では、上記のように、正サイクル除霜運転時に、過熱弁27による除霜時吐出温度制御を行うとともに、冷凍サイクルの高圧Phが目標高圧Phsになるように主弁24の開度を調節(除霜時主弁高圧制御)するようにしている。このため、正サイクル除霜運転時に、圧縮機21の信頼性を確保しつつ、冷凍サイクルの高圧Phを所望の目標高圧Phs付近に維持することができる。これにより、ここでは、圧縮機21の投入動力が増加し、その結果、除霜に使用できる熱量を確保することができ、そして、正サイクル除霜運転を継続することができる。
 尚、ここでは、変形例3と同様の圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHsになるように過熱弁27の開度を制御する除霜時吐出温度制御を行う場合において、主弁24による除霜時主弁高圧制御を行う場合について例示しているが、これに限定されるものではなく、上記の実施形態と同様の圧縮機21の吐出側の冷媒の過熱度TdSHが目標吐出過熱度TdSHs以上になるように過熱弁27の開度を制御する除霜時吐出温度制御を行う場合であっても、主弁24による除霜時主弁高圧制御を採用することができる。
 本発明は、圧縮機、室内熱交換器、主弁、室外熱交換器の順に冷媒を循環させつつ室外熱交換器を除霜する正サイクル除霜運転時に使用される吐出-吸入バイパス回路を有する空気調和装置に対して、広く適用可能である。
 1  空気調和装置
 11 主冷媒回路
 21 圧縮機
 23 室外熱交換器
 24 主弁
 26 吐出-吸入バイパス回路
 27 過熱弁
 41 室内熱交換器
 52 吐出温度センサ
 55 室内熱交温度センサ
特開昭61-262560号公報

Claims (5)

  1.  圧縮機(21)と室内熱交換器(41)と主弁(24)と室外熱交換器(23)とを有しており、前記圧縮機、前記室内熱交換器、前記主弁、前記室外熱交換器の順に冷媒を循環させる暖房運転を行うことが可能な主冷媒回路(11)と、
     過熱弁(27)を有しており、前記暖房運転時に、前記圧縮機の吐出側から前記圧縮機の吸入側に冷媒をバイパスすることが可能になるように前記主冷媒回路に接続されている吐出-吸入バイパス回路(26)と、
    を備えており、
     前記圧縮機、前記室内熱交換器、前記主弁、前記室外熱交換器の順に冷媒を循環させつつ前記室外熱交換器を除霜する正サイクル除霜運転時に、前記過熱弁を開けて前記吐出-吸入バイパス回路を通じて前記圧縮機の吐出側から前記圧縮機の吸入側に冷媒をバイパスさせるとともに、前記圧縮機の吐出側の冷媒の温度に基づいて前記主弁及び/又は前記過熱弁の開度を調節する除霜時吐出温度制御を行う、
    空気調和装置(1)。
  2.  前記圧縮機(21)の吐出側の冷媒の温度を前記圧縮機の吐出側に設けられた吐出温度センサ(52)によって検出される冷媒の温度から得る、
    請求項1に記載の空気調和装置(1)。
  3.  前記除霜時吐出温度制御は、前記圧縮機(21)の吐出側の冷媒の温度から前記圧縮機の吐出側の冷媒の過熱度を得て、前記圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度以上になるように前記主弁(24)及び/又は前記過熱弁(27)の開度を調節する制御である、
    請求項1に記載の空気調和装置(1)。
  4.  前記圧縮機(21)の吐出側の冷媒の温度を前記圧縮機の吐出側に設けられた吐出温度センサ(52)によって検出される冷媒の温度から得て、
     前記圧縮機の吐出側の冷媒の飽和温度を前記室内熱交換器(41)に設けられた室内熱交温度センサ(55)によって検出される冷媒の温度から得て、
     前記圧縮機の吐出側の冷媒の過熱度を、前記吐出温度センサによって検出される前記圧縮機の吐出側の冷媒の温度と前記室内熱交温度センサによって検出される前記圧縮機の吐出側の冷媒の飽和温度とから得る、
    請求項3に記載の空気調和装置(1)。
  5.  前記目標吐出過熱度を前記圧縮機(21)の吸入側における冷媒を湿り状態に維持することが可能な値に設定し、
     前記圧縮機の吐出側の冷媒の過熱度が目標吐出過熱度になるように前記主弁(24)及び/又は前記過熱弁(27)の開度を調節する、
    請求項3又は4に記載の空気調和装置(1)。
PCT/JP2014/075247 2013-09-30 2014-09-24 空気調和装置 WO2015046228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203369A JP5786914B2 (ja) 2013-09-30 2013-09-30 空気調和装置
JP2013-203369 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046228A1 true WO2015046228A1 (ja) 2015-04-02

Family

ID=52743364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075247 WO2015046228A1 (ja) 2013-09-30 2014-09-24 空気調和装置

Country Status (2)

Country Link
JP (1) JP5786914B2 (ja)
WO (1) WO2015046228A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990517B (zh) * 2019-04-15 2019-11-05 宁波工程学院 空调器智能快速除霜及保护控制方法
CN110470015A (zh) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
WO2023248868A1 (ja) * 2022-06-24 2023-12-28 株式会社デンソー ヒートポンプサイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262560A (ja) * 1985-05-15 1986-11-20 松下電器産業株式会社 ヒ−トポンプ式空調機
JPS62138660A (ja) * 1985-12-13 1987-06-22 株式会社日立製作所 空気調和機
WO2007013382A1 (ja) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation 冷凍空調装置
JP2013104606A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 冷凍サイクル装置及び温水生成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262560A (ja) * 1985-05-15 1986-11-20 松下電器産業株式会社 ヒ−トポンプ式空調機
JPS62138660A (ja) * 1985-12-13 1987-06-22 株式会社日立製作所 空気調和機
WO2007013382A1 (ja) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation 冷凍空調装置
JP2013104606A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 冷凍サイクル装置及び温水生成装置

Also Published As

Publication number Publication date
JP2015068568A (ja) 2015-04-13
JP5786914B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5929862B2 (ja) 空気調和装置
JP5783215B2 (ja) 空気調和装置
AU2012392673B2 (en) Air conditioning apparatus
AU2012392672B2 (en) Air conditioning apparatus
WO2015122056A1 (ja) 空気調和装置
WO2019017299A1 (ja) 空調システム
JP5673738B2 (ja) 空気調和装置
WO2015115434A1 (ja) 空気調和システム
JP6123289B2 (ja) 空気調和システム
WO2015045685A1 (ja) 空気調和装置
WO2015046228A1 (ja) 空気調和装置
JP2016133257A (ja) 空気調和装置
JP5517891B2 (ja) 空気調和装置
US10443901B2 (en) Indoor unit of air conditioner
JP2015068570A (ja) 空気調和装置
WO2015046230A1 (ja) 空気調和装置
JP2020193760A (ja) 空調システム
JP2015068608A (ja) 空気調和装置
JP2018096575A (ja) 冷凍装置
WO2013172196A1 (ja) 空気調和装置
JP3705251B2 (ja) 冷凍サイクル装置
JP2016156569A (ja) 冷凍装置
JP2021076347A (ja) 冷凍サイクル装置
JP2014126289A (ja) 空気調和システム
JP6115124B2 (ja) 空気調和システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848260

Country of ref document: EP

Kind code of ref document: A1