WO2020240941A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2020240941A1
WO2020240941A1 PCT/JP2020/005449 JP2020005449W WO2020240941A1 WO 2020240941 A1 WO2020240941 A1 WO 2020240941A1 JP 2020005449 W JP2020005449 W JP 2020005449W WO 2020240941 A1 WO2020240941 A1 WO 2020240941A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensitive element
magnetic sensor
sensitive
magnetic field
Prior art date
Application number
PCT/JP2020/005449
Other languages
English (en)
French (fr)
Inventor
竜徳 篠
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to DE112020002596.9T priority Critical patent/DE112020002596T5/de
Priority to JP2021522634A priority patent/JPWO2020240941A1/ja
Priority to CN202080034256.8A priority patent/CN113812011A/zh
Priority to US17/609,657 priority patent/US20220236344A1/en
Publication of WO2020240941A1 publication Critical patent/WO2020240941A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips

Definitions

  • the present invention relates to a magnetic sensor.
  • the lateral direction of the sensitive element it is preferable to reduce the width of the anisotropy magnetic field.
  • the width of the sensitive elements in the lateral direction is reduced, if the width of the sensitive elements in the lateral direction is reduced, the impedance may increase and the sensitivity may not be sufficiently improved.
  • An object of the present invention is to improve the sensitivity of a magnetic sensor using the magnetic impedance effect while suppressing an increase in impedance as compared with the case where a plurality of sensitive elements are connected in series.
  • the magnetic sensor to which the present invention is applied is composed of a non-magnetic substrate, a soft magnetic material provided on the substrate, a longitudinal direction and a lateral direction, and is uniaxial in a direction intersecting the longitudinal direction. It includes a sensing element unit having a magnetic anisotropy and having a plurality of sensing elements that sense a magnetic field due to the magnetic impedance effect connected in parallel. Further, such a magnetic sensor can be characterized by including a plurality of the sensitive element portions arranged in the lateral direction with a gap in the lateral direction and connected in series in a zigzag shape. In this case, it is possible to improve the sensitivity of the magnetic sensor while suppressing the increase in size of the magnetic sensor in the longitudinal direction.
  • a magnetic sensor in such a magnetic sensor, a plurality of the sensitive elements are arranged in the lateral direction with an interval, and the width of the sensitive element in the lateral direction is larger than the interval. It can be characterized by being small. In this case, magnetic flux is more likely to be collected in the sensitive element than in the case where the width of the sensitive element in the lateral direction is larger than the distance between the sensitive element portions, for example.
  • a magnetic sensor is further provided with a thin film magnet that is laminated between the substrate and the sensitive element portion and applies a magnetic field in the longitudinal direction of the sensitive element of the sensitive element portion. can do. In this case, the change in the magnetic field can be measured with high accuracy in the vicinity of the magnetic field applied by the thin film magnet.
  • the present invention in a magnetic sensor using the magnetic impedance effect, it is possible to improve the sensitivity while suppressing an increase in impedance as compared with the case where a plurality of sensitive elements are connected in series.
  • FIGS. (A) to (e) are diagrams for explaining an example of a method for manufacturing a magnetic sensor.
  • FIG. 1 is a plan view
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1
  • FIG. 3 is an enlarged view of part III in FIG.
  • the magnetic sensor 1 to which the present embodiment is applied includes a thin-film magnet 20 composed of a hard magnetic material (hard magnetic material layer 103) provided on a non-magnetic substrate 10 and a thin film. It is laminated with facing the magnet 20 and is composed of a soft magnetic material (soft magnetic material layer 105), and includes a sensitive portion 30 that senses a magnetic field.
  • the cross-sectional structure of the magnetic sensor 1 will be described in detail later.
  • the hard magnetic material is a material having a large coercive force, that is, when magnetized by an external magnetic field, the magnetized state is maintained even when the external magnetic field is removed.
  • the soft magnetic material is a material having a small coercive force, which is easily magnetized by an external magnetic field, but quickly returns to a state where there is no magnetization or the magnetization is small when the external magnetic field is removed.
  • the elements constituting the magnetic sensor 1 are represented by two-digit numbers, and the layer processed into the elements (hard magnetic material layer 103, etc.) is represented by numbers in the 100s. .. Then, for the number of the element, the number of the layer processed into the element is indicated in (). For example, in the case of the thin film magnet 20, it is described as the thin film magnet 20 (hard magnetic material layer 103). In the figure, it is expressed as 20 (103). The same applies to other cases.
  • the planar structure of the magnetic sensor 1 will be described with reference to FIG.
  • the magnetic sensor 1 has a quadrangular planar shape as an example.
  • the sensing portion 30 and the yoke 40 formed on the uppermost portion of the magnetic sensor 1 will be described.
  • the sensitive unit 30 includes a plurality of sensitive element units 31, a series connection unit 32 that connects adjacent sensitive element units 31 in series in a zigzag manner, and a terminal unit 33 that is connected for current supply.
  • the sensitive unit 30 of the magnetic sensor 1 shown in FIG. 1 is provided with eight sensitive element units 31.
  • Each of the sensitive element units 31 has a longitudinal direction and a lateral direction, and includes a first sensitive element 311 and a second sensitive element 312 arranged in the lateral direction with a gap. Further, each of the sensitive element units 31 includes a parallel connecting unit 313 that connects the first sensitive element 311 and the second sensitive element 312 in parallel.
  • the left-right direction in FIG. 1 corresponds to the longitudinal direction
  • the vertical direction in FIG. 1 corresponds to the lateral direction.
  • the first sensitive element 311 and the second sensitive element 312 have, for example, a length of 1 to 4 mm in the longitudinal direction, a width of 50 to 100 ⁇ m in the lateral direction, and a thickness (thickness of the soft magnetic material layer 105) of 0.
  • the distance between the first sensitive element 311 and the second sensitive element 312 in the lateral direction is 50 to 150 ⁇ m. It is preferable that the width of the first sensitive element 311 and the second sensitive element 312 in the lateral direction is smaller than the distance between the first sensitive element 311 and the second sensitive element 312 in the lateral direction.
  • the parallel connection portion 313 of the sensitive element unit 31 is arranged at both ends in the longitudinal direction of the first sensitive element 311 and the second sensitive element 312, and connects the first sensitive element 311 and the second sensitive element 312 in parallel. As shown in FIG. 3, each of the sensitive element units 31 is provided with two parallel connection units 313.
  • the sensing element unit 31 of the present embodiment includes two sensing elements (first sensing element 311 and second sensing element 312), but three or more sensing elements may be connected in parallel.
  • the series connection portion 32 is provided between the ends of the adjacent sensitive element portions 31, and connects the adjacent sensitive element portions 31 in series in a zigzag manner.
  • the sensitive element portions 31 in which the first sensitive element 311 and the second sensitive element 312 are connected in parallel are connected in series in a zigzag manner.
  • the number of series connection portions 32 varies depending on the number of sensitive element portions 31. For example, if there are two sensitive element units 31, there is one series connection unit 32. Further, if there is only one sensitive element unit 31, the series connection unit 32 is not provided.
  • the width of the series connection portion 32 may be set according to the current flowing through the sensitive portion 30.
  • the width of the series connection portion 32 is the same as the width of the first sensitive element 311 and the second sensitive element 312 of the sensitive element portion 31 along the lateral direction.
  • the terminal portions 33 are provided at the ends (two) of the sensitive element portions 31 that are not connected by the series connection portion 32, respectively.
  • the terminal portion 33 is pulled out from the end portion of the sensitive element portion 31, and an electric wire for supplying an electric current to the sensitive portion 30 is connected. Since the magnetic sensor 1 shown in FIG. 1 has eight sensitive element portions 31, the two terminal portions 33 are provided on the right side in FIG. When the number of the sensitive element portions 31 is an odd number, the two terminal portions 33 may be provided separately on the left and right.
  • the sensitive element portion 31, the series connection portion 32, and the terminal portion 33 of the sensitive portion 30 are integrally composed of one soft magnetic material layer 105. Since the soft magnetic material layer 105 is conductive, an electric current can flow from one terminal portion 33 to the other terminal portion 33.
  • the above-mentioned numerical values such as the length and width of the first sensitive element 311 and the second sensitive element 312 and the number of parallel elements are merely examples, and may be changed depending on the value of the magnetic field to be sensed, the soft magnetic material used, and the like. ..
  • the magnetic sensor 1 includes a yoke 40 provided so as to face the end portion in the longitudinal direction of the sensitive element portion 31.
  • two yokes 40a and 40b provided so as to face both ends in the longitudinal direction of the sensitive element portion 31 are provided.
  • the yokes 40a and 40b are not distinguished from each other, they are referred to as the yokes 40.
  • the yoke 40 guides magnetic field lines to the longitudinal end of the sensitive element portion 31. Therefore, the yoke 40 is made of a soft magnetic material (soft magnetic material layer 105) through which magnetic lines of force easily pass. That is, the sensitive portion 30 and the yoke 40 are formed of a single layer of soft magnetic material layer 105. If the magnetic field lines are sufficiently transmitted in the longitudinal direction of the sensitive element unit 31 (first sensitive element 311 and second sensitive element 312), the yoke 40 may not be provided.
  • the size of the magnetic sensor 1 is several mm square in the planar shape.
  • the size of the magnetic sensor 1 may be another value.
  • the magnetic sensor 1 has an adhesion layer 101, a control layer 102, a hard magnetic material layer 103 (thin film magnet 20), a dielectric layer 104, and a soft magnetic material layer 105 (sensing portion 30, yoke 40) on a non-magnetic substrate 10.
  • a control layer 102 has an adhesion layer 101, a control layer 102, a hard magnetic material layer 103 (thin film magnet 20), a dielectric layer 104, and a soft magnetic material layer 105 (sensing portion 30, yoke 40) on a non-magnetic substrate 10.
  • the substrate 10 is a substrate made of a non-magnetic material, and examples thereof include an oxide substrate such as glass and sapphire, a semiconductor substrate such as silicon, and a metal substrate such as aluminum, stainless steel, and a metal plated with nickel phosphorus. Be done.
  • the adhesion layer 101 is a layer for improving the adhesion of the control layer 102 to the substrate 10.
  • an alloy containing Cr or Ni is preferably used as the adhesion layer 101. Examples of the alloy containing Cr or Ni include CrTi, CrTa, NiTa and the like.
  • the thickness of the adhesion layer 101 is, for example, 5 nm to 50 nm. If there is no problem in the adhesion of the control layer 102 to the substrate 10, it is not necessary to provide the adhesion layer 101. In this specification, the composition ratio of the alloy containing Cr or Ni is not shown. The same applies hereinafter.
  • the control layer 102 is a layer that controls the magnetic anisotropy of the thin film magnet 20 composed of the hard magnetic material layer 103 so as to easily appear in the in-plane direction of the film.
  • the control layer 102 it is preferable to use Cr, Mo or W or an alloy containing them (hereinafter, referred to as an alloy containing Cr or the like constituting the control layer 102).
  • the alloy containing Cr and the like constituting the control layer 102 include CrTi, CrMo, CrV, CrW and the like.
  • the thickness of the control layer 102 is, for example, 10 nm to 300 nm.
  • the hard magnetic material layer 103 constituting the thin film magnet 20 uses an alloy containing Co as a main component and one or both of Cr and Pt (hereinafter, referred to as a Co alloy constituting the thin film magnet 20). That's good.
  • the Co alloy constituting the thin film magnet 20 include CoCrPt, CoCrTa, CoNiCr, CoCrPtB and the like.
  • Fe may be contained.
  • the thickness of the hard magnetic material layer 103 is, for example, 1 ⁇ m to 3 ⁇ m.
  • the alloy containing Cr and the like constituting the control layer 102 has a bcc (body-centered cubic) structure. Therefore, the hard magnetic material (hard magnetic material layer 103) constituting the thin film magnet 20 is hcp (hexagonal close-packed) in which crystals easily grow on the control layer 102 made of an alloy containing Cr or the like having a bcc structure. Dense filling)) structure is preferable.
  • the hard magnetic material layer 103 having the hcp structure is crystal-grown on the bcc structure, the c-axis of the hcp structure is likely to be oriented in the plane. Therefore, the thin film magnet 20 formed of the hard magnetic material layer 103 tends to have magnetic anisotropy in the in-plane direction.
  • the hard magnetic material layer 103 is a polycrystal composed of aggregates having different crystal orientations, and each crystal has magnetic anisotropy in the in-plane direction. This magnetic anisotropy is derived from crystal magnetic anisotropy.
  • the substrate 10 may be heated to 100 ° C. to 600 ° C. in order to promote crystal growth of the alloy containing Cr or the like constituting the control layer 102 and the Co alloy constituting the thin film magnet 20. By this heating, the alloy containing Cr and the like constituting the control layer 102 is easily crystal-grown, and the hard magnetic material layer 103 having an hcp structure is easily crystal-oriented so as to have an easy magnetization axis in the plane. That is, magnetic anisotropy is likely to be imparted in the plane of the hard magnetic material layer 103.
  • the dielectric layer 104 is made of a non-magnetic dielectric and electrically insulates between the thin film magnet 20 and the sensitive portion 30.
  • Examples of the dielectric constituting the dielectric layer 104 include oxides such as SiO 2 , Al 2 O 3 and TiO 2 , and nitrides such as Si 3 N 4 and Al N.
  • the thickness of the dielectric layer 104 is, for example, 0.1 ⁇ m to 30 ⁇ m.
  • the first sensitive element 311 and the second sensitive element 312 in the sensitive element unit 31 of the sensitive unit 30 are in a direction intersecting the longitudinal direction, for example, a lateral direction orthogonal to the longitudinal direction (that is, the first sensitive element 311 and the second sensitive element 311). Uniaxial magnetic anisotropy is imparted to the element 312 (in the width direction). The direction of intersection in the longitudinal direction may have an angle exceeding 45 ° with respect to the longitudinal direction.
  • the soft magnetic material layer 105 constituting the sensitive portion 30 is an amorphous alloy obtained by adding refractory metals Nb, Ta, W, etc. to an alloy containing Co as a main component (hereinafter, referred to as a Co alloy constituting the sensitive portion 30). It is better to use.). Examples of the Co alloy constituting the sensitive portion 30 include CoNbZr, CoFeTa, and CoWZr.
  • the adhesion layer 101, the control layer 102, the hard magnetic material layer 103, and the dielectric layer 104 are processed so that the planar shape is quadrangular (see FIG. 1).
  • the thin film magnet 20 has an N pole ((N) in FIG. 2) and an S pole ((S) in FIG. 2) on two of the exposed side surfaces facing each other.
  • the line connecting the north pole and the south pole of the thin film magnet 20 is oriented in the longitudinal direction of the first sensitive element 311 and the second sensitive element 312 in the sensitive element portion 31 of the sensitive portion 30.
  • “facing in the longitudinal direction” means that the angle formed by the line connecting the north pole and the south pole and the longitudinal direction is less than 45 °. The smaller the angle formed by the line connecting the N pole and the S pole and the longitudinal direction, the better.
  • the magnetic field lines emitted from the north pole of the thin film magnet 20 once exit the magnetic sensor 1. Then, some lines of magnetic force pass through the first sensitive element 311 and the second sensitive element 312 of the sensitive element unit 31 via the yoke 40a, and exit again to the outside via the yoke 40b. Then, the magnetic field lines transmitted through the first sensitive element 311 and the second sensitive element 312 return to the S pole of the thin film magnet 20 together with the magnetic field lines not transmitted through the first sensitive element 311 and the second sensitive element 312. That is, the thin film magnet 20 applies a magnetic field (bias magnetic field Hb, which will be described later) in the longitudinal direction of the first sensitive element 311 and the second sensitive element 312 in the sensitive element unit 31.
  • the north and south poles of the thin film magnet 20 are collectively referred to as both magnetic poles, and when the north pole and the south pole are not distinguished, they are referred to as magnetic poles.
  • the yoke 40 (yoke 40a, 40b) is configured such that the shape seen from the surface side of the substrate 10 becomes narrower as it approaches the sensitive portion 30. This is to concentrate the magnetic field (collect the magnetic field lines) on the sensitive portion 30. That is, the magnetic field in the sensitive portion 30 is strengthened to further improve the sensitivity. It is not necessary to narrow the width of the portion of the yoke 40 (yoke 40a, 40b) facing the sensitive portion 30.
  • the distance between the yoke 40 (yoke 40a, 40b) and the sensitive portion 30 may be, for example, 1 ⁇ m to 100 ⁇ m.
  • FIG. 4 is a diagram illustrating the relationship between the magnetic field applied in the longitudinal direction of the sensitive element portion 31 in the sensitive portion 30 of the magnetic sensor 1 and the impedance of the sensitive portion 30.
  • the horizontal axis is the magnetic field H and the vertical axis is the impedance Z.
  • the impedance Z of the sensitive portion 30 is measured by passing a high frequency current between the two terminal portions 33.
  • the sensitive portion 30 and the yoke 40 are composed of a soft magnetic material layer 105 made of Co 85 Nb 12 Zr 3 having a thickness of 1.5 ⁇ m.
  • the first sensitive element 311 and the second sensitive element 312 of the sensitive element unit 31 have a width of 50 ⁇ m and a length of 3 mm.
  • the distance between the first sensitive element 311 and the second sensitive element 312 in the sensitive element unit 31 and the distance between the first sensitive element 311 and the second sensitive element 312 between the adjacent sensitive element units 31 are 75 ⁇ m. ..
  • the series connection portion 32 and the parallel connection portion 313 of the sensitive element portion 31 both have a width of 50 ⁇ m.
  • FIG. 4 is a measurement in which a high frequency current of 100 MHz is passed between the terminal portions 33 of the sensitive portion 30.
  • the magnetic field H having the largest impedance change ⁇ Z ( ⁇ Z / ⁇ H) with respect to the change amount ⁇ H of the magnetic field H is shown as the magnetic field Hb.
  • the amount of change ⁇ H of the magnetic field H in the vicinity of the magnetic field Hb can be measured with high accuracy.
  • the magnetic field Hb is sometimes called a bias magnetic field.
  • ⁇ Z / ⁇ H (that is, the maximum ⁇ Z / ⁇ H), which is the slope of the graph in the magnetic field Hb, may be expressed as S max .
  • the magnetic field H at which the impedance Z has a maximum value may be referred to as an anisotropic magnetic field Hk.
  • a sensitive element having a longitudinal direction and a lateral direction and having uniaxial magnetic anisotropy in the lateral direction has a shape magnetic anisotropy due to the shape of the sensitive element in the longitudinal direction.
  • the smaller the length of the sensitive element in the lateral direction hereinafter, may be referred to as the width of the sensitive element), the greater the shape magnetic anisotropy in the longitudinal direction. In other words, the smaller the width of the sensitive element, the smaller the anisotropic magnetic field Hk and the larger S max .
  • the magnetic sensor 1 of the present embodiment has a configuration in which the sensitive element unit 31 of the sensitive unit 30 has the first sensitive element 311 and the second sensitive element 312 connected in parallel, as described above.
  • the magnetic sensor 1 of the present embodiment for example, by adjusting the widths of the first sensitive element 311 and the second sensitive element 312, the increase in the impedance Zb in the magnetic field Hb is suppressed, and the anisotropic magnetic field Hk Can be reduced and S max can be increased. Thereby, the sensitivity of the magnetic sensor 1 can be improved.
  • the operation of the magnetic sensor 1 according to the present embodiment will be described in more detail while comparing with a conventional magnetic sensor in which a plurality of sensitive elements are connected in series in a zigzag shape.
  • FIGS. 5 (a) and 5 (b) are diagrams for explaining the configuration of the sensitive portion 30 in the conventional magnetic sensor.
  • FIGS. 5A and 5B the same reference numerals are used for the same configurations as those of the magnetic sensor 1 of the present embodiment shown in FIGS. 1 to 3.
  • FIGS. 6A and 6B are applied in the longitudinal direction of the sensitive element 310 described later with respect to the conventional magnetic sensor in which the sensitive portion 30 has the structure shown in FIGS. 5A and 5B, respectively. It is a figure explaining the relationship between the magnetic field generated and the impedance of a sensitive part 30.
  • the horizontal axis is the magnetic field H and the vertical axis is the impedance Z.
  • the conventional magnetic sensor having the sensitive portion 30 shown in FIG. 5A and exhibiting the characteristics in FIG. 6A is referred to as the conventional magnetic sensor A.
  • the conventional magnetic sensor having the sensitive portion 30 shown in FIG. 5 (b) and exhibiting the characteristics in FIG. 6 (b) is referred to as the conventional magnetic sensor B.
  • the sensing portions 30 of the conventional magnetic sensors A and B have a plurality of (8 in this example) sensing elements 310 and a plurality of sensing elements 310 in a zigzag shape.
  • a plurality of (7 in this example) series connection portions 32 and terminal portions 33 are provided in series.
  • the sensitive element 310 and the series connection portion 32 of the sensitive unit 30 have a width of 100 ⁇ m, and the distance between the sensitive elements 310 is 150 ⁇ m.
  • the sensitive element 310 and the series connection portion 32 of the sensitive unit 30 have a width of 50 ⁇ m, and the distance between the sensitive elements 310 is 75 ⁇ m.
  • the conventional magnetic sensors A and B have the same configuration as the magnetic sensor 1 of the present embodiment having the characteristics shown in FIG. 4, except for the shape of the sensitive portion 30.
  • the magnetic sensor 1 of the present embodiment in which the first sensing element 311 having a width of 50 ⁇ m and the second sensing element 312 are connected in parallel is a conventional magnetic sensor 1 in which a sensing element 310 having a width of 100 ⁇ m is connected in series.
  • the anisotropic magnetic field Hk is reduced.
  • the sensing elements (first sensing element 311, second sensing element 312, sensing element 310) constituting the sensing unit 30 are in the lateral direction.
  • the magnetic sensor 1 of the present embodiment has a reduced anisotropic magnetic field Hk as compared with the conventional magnetic sensor A, even though the total widths of the magnetic sensors 1 are the same. As a result, in the magnetic sensor 1 of the present embodiment, S max is increased and S max / Zb is improved as compared with the conventional magnetic sensor A.
  • the sensitivity can be improved by having a configuration in which a plurality of sensitive elements (first sensitive element 311 and second sensitive element 312) are connected in parallel.
  • the magnetic sensor 1 of the present embodiment in which the first sensitive element 311 having a width of 50 ⁇ m and the second sensitive element 312 are connected in parallel, the sensitive element 310 having a width of 50 ⁇ m is connected in series. Impedances Zb and Z0 are reduced as compared with the conventional magnetic sensor B. In addition, in the magnetic sensor 1 of the present embodiment and the conventional magnetic sensor B, the widths of the respective sensitive elements (first sensitive element 311 and second sensitive element 312, sensitive element 310) in the lateral direction are equal. Despite this, the magnetic sensor 1 of the present embodiment has impedances Zb and Z0 reduced as compared with the conventional magnetic sensor B.
  • the anisotropic magnetic field Hk of the magnetic sensor 1 of the present embodiment is about the same as that of the conventional magnetic sensor B, and the sensitivity (S max / Zb) of the magnetic sensor 1 is also about the same as that of the conventional magnetic sensor B. is there.
  • the magnetic sensor 1 of the present embodiment by adjusting the widths of the first sensitive element 311 and the second sensitive element 312 in the lateral direction, the impedance is suppressed while suppressing the decrease in sensitivity (S max / Zb).
  • Zb and Z0 can be set in a desired range.
  • a detection circuit that detects a change in a magnetic field using a magnetic sensor 1 there are preferable ranges for impedances Zb and Z0 due to differences in circuit configuration and the like.
  • the magnetic sensor 1 by adjusting the widths of the first sensing element 311 and the second sensing element 312 in the lateral direction, the magnetic sensor 1 can be realized according to the circuit configuration of the detection circuit and the like.
  • the distance between the adjacent first sensitive element 311 and the second sensitive element 312 is larger than the width of the first sensitive element 311 and the second sensitive element 312. ing.
  • the distance between the adjacent first sensitive element 311 and the second sensitive element 312 is smaller than that of the first one of each. Magnetic flux tends to be collected in the sensitive element 311 and each of the second sensitive elements 312. As a result, the sensitivity of the magnetic sensor 1 is further improved.
  • FIGS. 7A to 7E. 7 (a) to 7 (e) are typical steps, and may include other steps.
  • the steps proceed in the order of FIGS. 7A to 7E. 7 (a) to 7 (e) correspond to the cross-sectional views taken along the line II-II of FIG. 1 shown in FIG.
  • the substrate 10 is a substrate made of a non-magnetic material, for example, an oxide substrate such as glass or sapphire, a semiconductor substrate such as silicon, or a metal subjected to aluminum, stainless steel, nickel phosphorus plating, or the like. It is a metal substrate of.
  • the substrate 10 may be provided with streaky grooves or streaky irregularities having a radius of curvature Ra of 0.1 nm to 100 nm, for example, by using a polishing machine or the like.
  • the direction of the streaky grooves or streaky uneven streaks may be provided in the direction connecting the north pole and the south pole of the thin film magnet 20 formed of the hard magnetic material layer 103.
  • the crystal growth in the hard magnetic material layer 103 is promoted in the direction of the groove. Therefore, the easy axis of magnetization of the thin film magnet 20 formed of the hard magnetic material layer 103 is more likely to be oriented in the groove direction (the direction connecting the north and south poles of the thin film magnet 20). That is, the magnetization of the thin film magnet 20 is made easier.
  • the substrate 10 will be described as a glass having a diameter of about 95 mm and a thickness of about 0.5 mm as an example.
  • a plurality of magnetic sensors 1 are collectively manufactured on the substrate 10 and later divided (cut) into individual magnetic sensors 1.
  • FIGS. 7A to 7E attention is paid to one magnetic sensor 1 shown in the center, but a part of the magnetic sensors 1 adjacent to the left and right is also shown. The boundary between the adjacent magnetic sensors 1 is indicated by a dashed line.
  • the adhesion layer 101, the control layer 102, the hard magnetic material layer 103, and the dielectric are placed on one surface (hereinafter, referred to as a surface) of the substrate 10.
  • the body layer 104 is sequentially formed (deposited) to form a laminated body.
  • the adhesion layer 101 which is an alloy containing Cr or Ni
  • the control layer 102 which is an alloy containing Cr
  • the hard magnetic material layer 103 which is a Co alloy constituting the thin film magnet 20
  • This film formation can be performed by a sputtering method or the like.
  • the adhesion layer 101, the control layer 102, and the hard magnetic material layer 103 are sequentially laminated on the substrate 10.
  • the substrate 10 may be heated to, for example, 100 ° C. to 600 ° C. in order to promote crystal growth.
  • the substrate 10 may or may not be heated. In order to remove water adsorbed on the surface of the substrate 10, the substrate 10 may be heated before the adhesion layer 101 is formed.
  • a dielectric layer 104 which is an oxide such as SiO 2 , Al 2 O 3 , TiO 2 or a nitride such as Si 3 N 4 or Al N is formed (deposited).
  • the dielectric layer 104 can be formed by a plasma CVD method, a reactive sputtering method, or the like.
  • a pattern (resist pattern) 111 by a photoresist having an opening at a portion where the sensitive portion 30 is formed and a portion where the yokes 40 (yokes 40a and 40b) are formed is known. It is formed by the photolithography technology of.
  • a soft magnetic material layer 105 which is a Co alloy constituting the sensitive portion 30, is formed (deposited).
  • the film formation of the soft magnetic material layer 105 can be performed by using, for example, a sputtering method.
  • the resist pattern 111 is removed, and the soft magnetic material layer 105 on the resist pattern 111 is removed (lifted off).
  • the sensitive portion 30 and the yoke 40 (yoke 40a, 40b) formed by the soft magnetic material layer 105 are formed. That is, the sensitive portion 30 and the yoke 40 are formed by forming the soft magnetic material layer 105 once.
  • the soft magnetic material layer 105 is imparted with uniaxial magnetic anisotropy in the width direction of the first sensitive element 311 and the second sensitive element 312 (both see FIG. 3) in the sensitive element portion 31 of the sensitive portion 30. ..
  • the uniaxial magnetic anisotropy is imparted to the soft magnetic material layer 105 by, for example, a heat treatment at 400 ° C. in a rotating magnetic field of 3 kG (0.3 T) (heat treatment in a rotating magnetic field) followed by 3 kG (0.3 T). It can be performed by heat treatment at 400 ° C. in a static magnetic field (heat treatment in a static magnetic field).
  • the same uniaxial magnetic anisotropy is imparted to the soft magnetic material layer 105 constituting the yoke 40.
  • the yoke 40 may serve as a magnetic circuit and may not be imparted with uniaxial magnetic anisotropy.
  • the hard magnetic material layer 103 constituting the thin film magnet 20 is magnetized. Magnetization of the hard magnetic material layer 103 can be performed by applying a magnetic field larger than the coercive force of the hard magnetic material layer 103 in a static magnetic field or a pulsed magnetic field until the magnetization of the hard magnetic material layer 103 is saturated. ..
  • the plurality of magnetic sensors 1 formed on the substrate 10 are divided (cut) into individual magnetic sensors 1. That is, as shown in the plan view of FIG. 1, the substrate 10, the adhesion layer 101, the control layer 102, the hard magnetic material layer 103, the dielectric layer 104, and the soft magnetic material layer 105 are formed so that the plane shape becomes a quadrangle. Disconnect. Then, the magnetic poles (N pole and S pole) of the thin film magnet 20 are exposed on the side surface of the divided (cut) hard magnetic material layer 103. The hard magnetic material layer 103 magnetized in this way becomes the thin film magnet 20.
  • This division (cutting) can be performed by a dicing method, a laser cutting method, or the like.
  • the close contact layer 101, the control layer 102, and the hard magnetic material between the adjacent magnetic sensors 1 on the substrate 10 The layer 103, the dielectric layer 104, and the soft magnetic material layer 105 may be removed by etching so that the planar shape becomes a square shape (the planar shape of the magnetic sensor 1 shown in FIG. 1). Then, the exposed substrate 10 may be divided (cut). Further, after the step of forming the laminate of FIG. 7A, the adhesion layer 101, the control layer 102, the hard magnetic material layer 103, and the dielectric layer 104 are formed into a quadrangular planar shape (the magnetic sensor 1 shown in FIG. 1). It may be processed so as to have a planar shape of). In the manufacturing methods shown in FIGS. 7A to 7E, the steps are simplified as compared with these manufacturing methods.
  • the magnetic sensor 1 is manufactured.
  • the uniaxial magnetic anisotropy is imparted to the soft magnetic material layer 105 and / or the thin film magnet 20 is magnetized after the step of dividing the magnetic sensor 1 of FIG. 7 (e) into individual magnetic sensors 1. This may be performed for each sensor 1 or for a plurality of magnetic sensors 1.
  • control layer 102 When the control layer 102 is not provided, it is necessary to impart magnetic anisotropy in the plane by forming the hard magnetic material layer 103 and then heating it to 800 ° C. or higher to grow crystals. .. However, when the control layer 102 is provided as in the magnetic sensor 1 to which the first embodiment is applied, the crystal growth is promoted by the control layer 102, so that the crystal growth at a high temperature such as 800 ° C. or higher Does not need.
  • the uniaxial magnetic anisotropy is imparted to the first sensitive element 311 and the second sensitive element 312 by the Co alloy constituting the sensitive portion 30 instead of the heat treatment in the rotating magnetic field and the heat treatment in the static magnetic field.
  • the magnetron sputtering method may be used when the soft magnetic material layer 105 is deposited.
  • a magnetic field is formed by using a magnet, and electrons generated by electric discharge are confined on the surface of the target. This increases the probability of collision between electrons and gas, promotes ionization of gas, and improves the deposition rate of the film.
  • the magnetic field formed by the magnet used in this magnetron sputtering method imparts uniaxial magnetic anisotropy to the soft magnetic material layer 105 at the same time as the soft magnetic material layer 105 is deposited. By doing so, the step of imparting uniaxial magnetic anisotropy performed in the heat treatment in the rotating magnetic field and the heat treatment in the static magnetic field can be omitted.
  • the sensitive portion 30 may be composed of a plurality of soft magnetic material layers 105 in which antiferromagnetic materials are bonded with a demagnetic field suppressing layer composed of Ru or Ru alloy interposed therebetween.
  • the magnetic impedance effect of the sensitive element unit 31 (first sensitive element 311 and second sensitive element 312) is improved, and the sensitivity of the magnetic sensor 1 is improved.
  • Magnetic sensor 10 ... Substrate, 20 ... Thin film magnet, 30 ... Sensitive part, 31 ... Sensitive element part, 32 ... Series connection part, 33 ... Terminal part, 40, 40a, 40b ... Yoke, 101 ... Adhesion layer, 102 ... control layer, 103 ... hard magnetic material layer, 104 ... dielectric layer, 105 ... soft magnetic material layer, 311 ... first sensitive element, 312 ... second sensitive element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

磁気センサ1は、非磁性の基板と、基板上に設けられ、軟磁性体で構成され、長手方向と短手方向とを有し、長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する複数の感受素子311、312が並列接続された感受素子部31とを備える。

Description

磁気センサ
 本発明は、磁気センサに関する。
 公報記載の従来技術として、一軸異方性を付与された複数個の長方形状の軟磁性体膜からなる感磁部を備えた磁気インピーダンス効果素子が存在する(特許文献1参照)。この磁気インピーダンス効果素子では、複数の感磁部が、導体膜を介して直列接続されている。
特開2008-249406号公報
 ところで、長手方向と短手方向とを有し長手方向と交差する方向に一軸磁気異方性を有する感受素子により磁界を感受する磁気センサでは、感度を向上させるために、感受素子の短手方向の幅を小さくし異方性磁界を低減することが好ましい。しかしながら、複数の感受素子が直列接続された磁気センサにおいて、感受素子の短手方向の幅を小さくすると、インピーダンスが上昇し感度を十分に向上させることができない場合がある。
 本発明は、磁気インピーダンス効果を用いた磁気センサにおいて、複数の感受素子を直列接続する場合と比べて、インピーダンスの上昇を抑制しつつ感度を向上させることを目的とする。
 本発明が適用される磁気センサは、非磁性の基板と、前記基板上に設けられ、軟磁性体で構成され、長手方向と短手方向とを有し、当該長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する複数の感受素子が並列接続された感受素子部とを備える。
 また、このような磁気センサにおいて、前記短手方向に間隙を介して配置され、つづら折り状に直列接続される複数の前記感受素子部を備えることを特徴とすることができる。この場合、長手方向に磁気センサが大型化することを抑制しながら、磁気センサの感度を向上させることが可能となる。
 さらに、このような磁気センサにおいて、前記感受素子部は、複数の前記感受素子が前記短手方向に間隔を介して配置されており、当該感受素子の当該短手方向の幅が当該間隔よりも小さいことを特徴とすることができる。この場合、例えば感受素子の短手方向の幅が感受素子部同士の間隔よりも大きい場合と比べて、感受素子に磁束が集まりやすくなる。
 さらにまた、このような磁気センサにおいて、前記基板と前記感受素子部との間に積層され、当該感受素子部の前記感受素子の前記長手方向に磁界を印加する薄膜磁石をさらに備えることを特徴とすることができる。この場合、薄膜磁石が印加する磁界の近傍において磁界の変化を高精度に測定することができる。
 本発明によれば、磁気インピーダンス効果を用いた磁気センサにおいて、複数の感受素子を直列接続する場合と比べて、インピーダンスの上昇を抑制しつつ感度を向上させることができる。
本実施の形態が適用される磁気センサの一例を説明する図である。 本実施の形態が適用される磁気センサの一例を説明する図である。 本実施の形態が適用される磁気センサの一例を説明する図である。 磁気センサの感受部における感受素子部の長手方向に印加された磁界と感受部のインピーダンスとの関係を説明する図である。 従来の磁気センサにおける感受部の構成を説明する図である。 従来の磁気センサについて、感受素子の長手方向に印加された磁界と感受部のインピーダンスとの関係を説明する図である。 (a)~(e)は、磁気センサの製造方法の一例を説明する図である。
 以下、添付図面を参照して、本発明の実施の形態について説明する。
 図1~図3は、本実施の形態が適用される磁気センサ1の一例を説明する図である。図1は、平面図、図2は、図1におけるII-II線での断面図、図3は、図1におけるIII部の拡大図である。
 図2に示すように、本実施の形態が適用される磁気センサ1は、非磁性の基板10上に設けられた硬磁性体(硬磁性体層103)で構成された薄膜磁石20と、薄膜磁石20に対向して積層され、軟磁性体(軟磁性体層105)で構成され磁場を感受する感受部30とを備える。なお、磁気センサ1の断面構造については、後に詳述する。
 ここで硬磁性体とは、外部磁界によって磁化されると、外部磁界を取り除いても磁化された状態が保持される、いわゆる保磁力の大きい材料である。一方、軟磁性体とは、外部磁界によって容易に磁化されるが、外部磁界を取り除くと速やかに磁化がないか又は磁化が小さい状態に戻る、いわゆる保磁力の小さい材料である。
 なお、本明細書においては、磁気センサ1を構成する要素(薄膜磁石20など)を二桁の数字で表し、要素に加工される層(硬磁性体層103など)を100番台の数字で表す。そして、要素の数字に対して、要素に加工される層の番号を( )内に表記する。例えば薄膜磁石20の場合、薄膜磁石20(硬磁性体層103)と表記する。図においては、20(103)と表記する。他の場合も同様である。
 図1により、磁気センサ1の平面構造を説明する。磁気センサ1は、一例として四角形の平面形状を有する。ここでは、磁気センサ1の最上部に形成された感受部30およびヨーク40を説明する。感受部30は、複数の感受素子部31と、隣接する感受素子部31をつづら折りに直列接続する直列接続部32と、電流供給のために接続される端子部33とを備える。図1に示す磁気センサ1の感受部30では、8個の感受素子部31が設けられている。
 それぞれの感受素子部31は、それぞれが長手方向と短手方向とを有し、短手方向に間隙を介して並ぶ第1感受素子311および第2感受素子312を備えている。また、それぞれの感受素子部31は、第1感受素子311と第2感受素子312とを並列接続する並列接続部313とを備えている。ここでは、図1における左右方向が長手方向に対応し、図1における上下方向が短手方向に対応する。
 第1感受素子311および第2感受素子312は、例えば、長手方向の長さが1~4mm、短手方向の幅が50~100μm、厚さ(軟磁性体層105の厚さ)が0.5μm~5μmである。また、第1感受素子311と第2感受素子312との短手方向の間隔は、50~150μmである。なお、第1感受素子311および第2感受素子312の短手方向の幅は、第1感受素子311と第2感受素子312との短手方向の間隔と比較して小さいことが好ましい。
 感受素子部31の並列接続部313は、第1感受素子311および第2感受素子312の長手方向の両端に配置され、第1感受素子311と第2感受素子312とを並列に接続する。図3に示すように、それぞれの感受素子部31には、並列接続部313が2つずつ設けられている。
 なお、本実施の形態の感受素子部31は2つの感受素子(第1感受素子311、第2感受素子312)を備えるが、3以上の感受素子が並列接続されていてもよい。
 直列接続部32は、隣接する感受素子部31の端部間に設けられ、隣接する感受素子部31をつづら折りに直列接続する。付言すると、第1感受素子311と第2感受素子312とが並列接続された感受素子部31同士を、つづら折りに直列接続する。
 図1に示す磁気センサ1では、8個の感受素子部31が短手方向に並んで配置されているため、直列接続部32は7個ある。直列接続部32の数は、感受素子部31の数によって異なる。例えば、感受素子部31が2個であれば、直列接続部32は1個である。また、感受素子部31が1個であれば、直列接続部32を備えない。なお、直列接続部32の幅は、感受部30に流す電流によって設定すればよい。この例では、直列接続部32の幅は、感受素子部31の第1感受素子311および第2感受素子312の短手方向に沿った幅と同じ幅となっている。
 端子部33は、直列接続部32で接続されていない感受素子部31の端部(2個)にそれぞれ設けられている。端子部33は、感受素子部31の端部から引き出され、感受部30に電流を供給する電線が接続される。なお、図1に示す磁気センサ1では、感受素子部31が8個であるため、2個の端子部33は、図1において右側に設けられている。感受素子部31の数が奇数の場合には、2個の端子部33を左右に分けて設ければよい。
 そして、感受部30の感受素子部31、直列接続部32および端子部33は、1層の軟磁性体層105で一体に構成されている。軟磁性体層105は、導電性であるので、一方の端子部33から他方の端子部33に、電流を流すことができる。
 なお、第1感受素子311および第2感受素子312の長さおよび幅、並列させる個数など上記した数値は一例であって、感受する磁界の値や用いる軟磁性体材料などによって変更してもよい。
 さらに、磁気センサ1は、感受素子部31の長手方向の端部に対向して設けられたヨーク40を備える。ここでは、感受素子部31の長手方向の両端部に対向してそれぞれ設けられた2個のヨーク40a、40bを備える。なお、ヨーク40a、40bをそれぞれ区別しない場合は、ヨーク40と表記する。ヨーク40は、感受素子部31の長手方向の端部に磁力線を誘導する。このため、ヨーク40は、磁力線が透過しやすい軟磁性体(軟磁性体層105)で構成されている。つまり、感受部30及びヨーク40は、一層の軟磁性体層105により形成されている。なお、感受素子部31(第1感受素子311、第2感受素子312)の長手方向に磁力線が十分透過する場合には、ヨーク40を備えなくてもよい。
 以上のことから、磁気センサ1の大きさは、平面形状において数mm角である。なお、磁気センサ1の大きさは、他の値であってもよい。
 次に、図2により、磁気センサ1の断面構造を説明する。磁気センサ1は、非磁性の基板10上に、密着層101、制御層102、硬磁性体層103(薄膜磁石20)、誘電体層104、軟磁性体層105(感受部30、ヨーク40)が順に積層されて構成されている。
 基板10は、非磁性体からなる基板であって、例えばガラス、サファイアといった酸化物基板やシリコン等の半導体基板、あるいは、アルミニウム、ステンレススティール、ニッケルリンメッキを施した金属等の金属基板等が挙げられる。
 密着層101は、基板10に対する制御層102の密着性を向上させるための層である。密着層101としては、Cr又はNiを含む合金を用いるのがよい。Cr又はNiを含む合金としては、CrTi、CrTa、NiTa等が挙げられる。密着層101の厚さは、例えば5nm~50nmである。なお、基板10に対する制御層102の密着性に問題がなければ、密着層101を設けることを要しない。なお、本明細書においては、Cr又はNiを含む合金の組成比を示さない。以下同様である。
 制御層102は、硬磁性体層103で構成される薄膜磁石20の磁気異方性が膜の面内方向に発現しやすいように制御する層である。制御層102としては、Cr、Mo若しくはW又はそれらを含む合金(以下では、制御層102を構成するCr等を含む合金と表記する。)を用いるのがよい。制御層102を構成するCr等を含む合金としては、CrTi、CrMo、CrV、CrW等が挙げられる。制御層102の厚さは、例えば10nm~300nmである。
 薄膜磁石20を構成する硬磁性体層103は、Coを主成分とし、Cr又はPtのいずれか一方又は両方を含む合金(以下では、薄膜磁石20を構成するCo合金と表記する。)を用いることがよい。薄膜磁石20を構成するCo合金としては、CoCrPt、CoCrTa、CoNiCr、CoCrPtB等が挙げられる。なお、Feが含まれていてもよい。硬磁性体層103の厚さは、例えば1μm~3μmである。
 制御層102を構成するCr等を含む合金は、bcc(body-centered cubic(体心立方格子))構造を有する。よって、薄膜磁石20を構成する硬磁性体(硬磁性体層103)は、bcc構造のCr等を含む合金で構成された制御層102上において結晶成長しやすいhcp(hexagonal close-packed(六方最密充填))構造であるとよい。bcc構造上にhcp構造の硬磁性体層103を結晶成長させると、hcp構造のc軸が面内に向くように配向しやすい。よって、硬磁性体層103によって構成される薄膜磁石20が面内方向に磁気異方性を有するようになりやすい。なお、硬磁性体層103は結晶方位の異なる集合からなる多結晶であり、各結晶が面内方向に磁気異方性を有する。この磁気異方性は結晶磁気異方性に由来するものである。
 なお、制御層102を構成するCr等を含む合金及び薄膜磁石20を構成するCo合金の結晶成長を促進するために、基板10を100℃~600℃に加熱するとよい。この加熱により、制御層102を構成するCr等を含む合金が結晶成長しやすくなり、hcp構造を持つ硬磁性体層103が面内に磁化容易軸を持つように結晶配向されやすくなる。つまり、硬磁性体層103の面内に磁気異方性が付与されやすくなる。
 誘電体層104は、非磁性の誘電体で構成され、薄膜磁石20と感受部30との間を電気的に絶縁する。誘電体層104を構成する誘電体としては、SiO2、Al23、TiO2等の酸化物、又は、Si34、AlN等の窒化物等が挙げられる。また、誘電体層104の厚さは、例えば0.1μm~30μmである。
 感受部30の感受素子部31における第1感受素子311および第2感受素子312は、長手方向に交差する方向、例えば長手方向に直交する短手方向(すなわち、第1感受素子311および第2感受素子312の幅方向)に、一軸磁気異方性が付与されている。なお、長手方向に交差する方向とは、長手方向に対して45°を超えた角度を有すればよい。
 感受部30を構成する軟磁性体層105としては、Coを主成分とした合金に高融点金属Nb、Ta、W等を添加したアモルファス合金(以下では、感受部30を構成するCo合金と表記する。)を用いるのがよい。感受部30を構成するCo合金としては、CoNbZr、CoFeTa、CoWZr等が挙げられる。
 密着層101、制御層102、硬磁性体層103、および誘電体層104は、平面形状が四角形(図1参照)になるように加工されている。そして、露出した側面のうち、対向する2つの側面において、薄膜磁石20がN極(図2における(N))およびS極(図2における(S))となっている。なお、薄膜磁石20のN極とS極とを結ぶ線が、感受部30の感受素子部31における第1感受素子311および第2感受素子312の長手方向に向くようになっている。ここで、長手方向を向くとは、N極とS極とを結ぶ線と長手方向とがなす角度が45°未満であることをいう。なお、N極とS極とを結ぶ線と長手方向とがなす角度は、小さいほどよい。
 磁気センサ1において、薄膜磁石20のN極から出た磁力線は、一旦磁気センサ1の外部に出る。そして、一部の磁力線が、ヨーク40aを介して感受素子部31の第1感受素子311および第2感受素子312を透過し、ヨーク40bを介して再び外部に出る。そして、第1感受素子311および第2感受素子312を透過した磁力線が、第1感受素子311および第2感受素子312を透過しない磁力線とともに薄膜磁石20のS極に戻る。つまり、薄膜磁石20は、感受素子部31における第1感受素子311および第2感受素子312の長手方向に磁界(後述するバイアス磁界Hb)を印加する。
 なお、薄膜磁石20のN極とS極とをまとめて両磁極と表記し、N極とS極とを区別しない場合は磁極と表記する。
 なお、図1に示すように、ヨーク40(ヨーク40a、40b)は、基板10の表面側から見た形状が、感受部30に近づくにつれて狭くなっていくように構成されている。これは、感受部30に磁界を集中させる(磁力線を集める)ためである。つまり、感受部30における磁界を強くして感度のさらなる向上を図っている。なお、ヨーク40(ヨーク40a、40b)の感受部30に対向する部分の幅を狭くしなくてもよい。
 ここで、ヨーク40(ヨーク40a、40b)と感受部30との間隔は、例えば1μm~100μmであればよい。
(磁気センサ1の作用)
 続いて、本実施の形態の磁気センサ1の作用について説明する。図4は、磁気センサ1の感受部30における感受素子部31の長手方向に印加された磁界と感受部30のインピーダンスとの関係を説明する図である。図4において、横軸が磁界H、縦軸がインピーダンスZである。感受部30のインピーダンスZは、2個の端子部33間に高周波電流を流して測定される。
 なお、図4に示す特性を有する磁気センサ1は、感受部30およびヨーク40が、厚さ1.5μmのCo85Nb12Zr3からなる軟磁性体層105により構成されている。また、感受素子部31の第1感受素子311および第2感受素子312は、幅50μm、長さ3mmである。また、感受素子部31における第1感受素子311と第2感受素子312との間隔、および隣接する感受素子部31間の第1感受素子311と第2感受素子312との間隔は、75μmである。さらに、直列接続部32、および感受素子部31の並列接続部313は、ともに幅50μmである。
 また、図4は、感受部30の端子部33間に100MHzの高周波電流を流して測定されたものである。
 図4に示すように、感受部30のインピーダンスZは、磁界Hが0の場合(H=0)を境界としてプラス方向またはマイナス方向に磁界Hの絶対値が大きくなるに伴い、増加、減少と変化している。また、磁界Hの変化に対するインピーダンスZの変化量(すなわち、グラフの傾き)は、磁界Hの大きさによって異なっている。
 したがって、印加する磁界Hの変化量ΔHに対してインピーダンスZの変化量ΔZが急峻な部分(すなわち、ΔZ/ΔHが大きい部分)を用いれば、磁界Hの微弱な変化をインピーダンスZの変化量ΔZとして取り出すことができる。図4では、磁界Hの変化量ΔHに対するインピーダンスの変化量ΔZ(ΔZ/ΔH)が最も大きくなる磁界Hを、磁界Hbとして示している。磁気センサ1では、磁界Hbの近傍における磁界Hの変化量ΔHが高精度に測定できる。磁界Hbは、バイアス磁界と呼ばれることがある。
 なお、以下の説明では、磁界Hbにおけるグラフの傾きであるΔZ/ΔH(すなわち、最大のΔZ/ΔH)を、Smaxと表記する場合がある。また、磁界HbにおけるインピーダンスZを、インピーダンスZbと表記し、磁界Hを印加していない場合(H=0)におけるインピーダンスを、インピーダンスZ0と表記する場合がある。さらに、インピーダンスZが極大値をとる磁界Hを、異方性磁界Hkと表記する場合がある。
 磁界HとインピーダンスZとの関係に基づいて磁界Hの変化量ΔHを測定する磁気センサ1の感度は、Smax/Zbの値が大きいほど良好であるといえる。したがって、磁気センサ1の感度を向上させるためには、Smaxを大きくすること、または、インピーダンスZbを小さくすることが好ましい。
 ここで、磁気センサ1では、図4に示した磁界HとインピーダンスZとの関係によれば、インピーダンスZの極大値を変化させずに異方性磁界Hkを小さくすると、インピーダンスZの変化量ΔZが急峻となり、Smaxが大きくなる傾向がある。
 一般に、長手方向と短手方向とを有し短手方向に一軸磁気異方性が付与された感受素子では、長手方向に、感受素子の形状に起因する形状磁気異方性を有する。そして、感受素子の短手方向の長さ(以下、感受素子の幅と表記する場合がある。)が小さいほど、長手方向の形状磁気異方性が大きくなる。言い換えると、感受素子の幅を小さくするほど、異方性磁界Hkが小さくなり、Smaxが大きくなる。
 しかしながら、複数の感受素子がつづら折り状に直列接続された従来の磁気センサにおいて、それぞれの感受素子の幅を単純に小さくすると、異方性磁界Hkが小さくなりSmaxが大きくなる一方で、それぞれの感受素子の抵抗値が上昇し、磁界HbにおけるインピーダンスZbが大きくなる。この場合、Smax/Zbを十分に大きくすることが難しくなり、磁気センサにおいて所望の感度が得られない場合がある。
 これに対し、本実施の形態の磁気センサ1は、上述したように、感受部30の感受素子部31が、第1感受素子311と第2感受素子312とが並列接続された構成を有する。これにより、本実施の形態の磁気センサ1では、例えば第1感受素子311および第2感受素子312の幅を調整することで、磁界HbにおけるインピーダンスZbの上昇を抑制しながら、異方性磁界Hkを小さくSmaxを大きくすることが可能となる。これにより、磁気センサ1の感度を向上させることができる。
 続いて、複数の感受素子がつづら折り状に直列接続された従来の磁気センサと対比しながら、本実施の形態の磁気センサ1の作用についてより詳細に説明する。
 図5(a)、(b)は、従来の磁気センサにおける感受部30の構成を説明する図である。図5(a)、(b)では、図1~図3に示した本実施の形態の磁気センサ1と同様の構成については、同様の符号を用いている。また、図6(a)、(b)は、それぞれ、感受部30が図5(a)、(b)に示した構造を有する従来の磁気センサについて、後述する感受素子310の長手方向に印加された磁界と感受部30のインピーダンスとの関係を説明する図である。図6(a)、(b)において、横軸が磁界H、縦軸がインピーダンスZである。また、以下の説明において、図5(a)に示す感受部30を有し、図6(a)にて特性を示す従来の磁気センサを、従来の磁気センサAと表記する。同様に、図5(b)に示す感受部30を有し、図6(b)にて特性を示す従来の磁気センサを、従来の磁気センサBと表記する。
 図5(a)、(b)に示すように、従来の磁気センサA、Bの感受部30は、複数(この例では、8個)の感受素子310と、複数の感受素子310をつづら折り状に直列接続する複数(この例では、7個)の直列接続部32と、端子部33とを備える。
 ここで、磁気センサAは、感受部30の感受素子310および直列接続部32が、幅100μmであり、感受素子310同士の間隔が150μmである。また、磁気センサBは、感受部30の感受素子310および直列接続部32が、幅50μmであり、感受素子310同士の間隔が75μmである。なお、従来の磁気センサA、Bは、感受部30の形状以外は、図4に示す特性を有する本実施の形態の磁気センサ1と同様の構成を有している。
 表1に、本実施の形態の磁気センサ1、および従来の磁気センサA、Bについて、図4および図6(a)、(b)に示した各グラフの異方性磁界Hk、インピーダンスZ0、インピーダンスZb、Smax(=ΔZ/ΔH)、Smax/Zbの値を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、幅50μmの第1感受素子311と第2感受素子312とが並列接続された本実施の形態の磁気センサ1は、幅100μmの感受素子310が直列接続された従来の磁気センサAと比較して、異方性磁界Hkが低減している。付言すると、本実施の形態の磁気センサ1と従来の磁気センサAとでは、感受部30を構成する感受素子(第1感受素子311、第2感受素子312、感受素子310)の、短手方向の幅の総和が等しいにも関わらず、本実施の形態の磁気センサ1は、従来の磁気センサAと比較して異方性磁界Hkが低減している。この結果、本実施の形態の磁気センサ1では、従来の磁気センサAと比べて、Smaxが上昇し、Smax/Zbが向上する。
 すなわち、本実施の形態の磁気センサ1では、複数の感受素子(第1感受素子311および第2感受素子312)が並列接続された構成を有することで、感度を向上させることができる。
 また、表1に示すように、幅50μmの第1感受素子311と第2感受素子312とが並列接続された本実施の形態の磁気センサ1は、幅50μmの感受素子310が直列接続された従来の磁気センサBと比較して、インピーダンスZb、Z0が低減している。付言すると、本実施の形態の磁気センサ1と従来の磁気センサBとでは、それぞれの感受素子(第1感受素子311、第2感受素子312、感受素子310)の短手方向の幅が等しいにも関わらず、本実施の形態の磁気センサ1は、従来の磁気センサBと比較してインピーダンスZb、Z0が低減している。
 一方、本実施の形態の磁気センサ1の異方性磁界Hkは、従来の磁気センサBと同程度であり、磁気センサ1の感度(Smax/Zb)も従来の磁気センサBと同程度である。
 すなわち、本実施の形態の磁気センサ1では、第1感受素子311および第2感受素子312の短手方向の幅を調整することで、感度(Smax/Zb)の低下を抑制しながら、インピーダンスZb、Z0を所望の範囲にすることができる。
 一般に、磁気センサ1を用いて磁界の変化を検出する検出回路では、回路構成等の違いによって、インピーダンスZbおよびZ0に好ましい範囲が存在する。本実施の形態では、第1感受素子311および第2感受素子312の短手方向の幅を調整することで、検出回路の回路構成等に合わせた磁気センサ1を実現することができる。
 ここで、本実施の形態の磁気センサ1では、第1感受素子311および第2感受素子312の幅と比較して、隣接する第1感受素子311と第2感受素子312との間隔が大きくなっている。これにより、例えば、第1感受素子311および第2感受素子312の幅と比較して、隣接する第1感受素子311と第2感受素子312との間隔が小さい場合と比べて、それぞれの第1感受素子311およびそれぞれの第2感受素子312に磁束が集まりやすくなる。これにより、磁気センサ1の感度がより向上する。
(磁気センサ1の製造方法)
 次に、磁気センサ1の製造方法の一例を説明する。
 図7(a)~(e)は、磁気センサ1の製造方法の一例を説明する図である。図7(a)~(e)は、磁気センサ1の製造方法における工程を示す。そして、工程は、図7(a)~(e)の順に進む。図7(a)~(e)は、代表的な工程であって、他の工程を含んでもよい。そして、工程は、図7(a)~(e)の順に進む。図7(a)~(e)は、図2に示した図1のII-II線での断面図に対応する。
 基板10は、上述したように、非磁性材料からなる基板であって、例えばガラス、サファイアといった酸化物基板やシリコン等の半導体基板、あるいは、アルミニウム、ステンレススティール、ニッケルリンメッキなどを施した金属等の金属基板である。基板10には、研磨機などを用いて、例えば曲率半径Raが0.1nm~100nmの筋状の溝又は筋状の凹凸が設けられていてもよい。なお、この筋状の溝又は筋状の凹凸の筋の方向は、硬磁性体層103によって構成される薄膜磁石20のN極とS極とを結ぶ方向に設けられているとよい。このようにすることで、硬磁性体層103における結晶成長が、溝の方向へ促進される。よって、硬磁性体層103により構成される薄膜磁石20の磁化容易軸がより溝方向(薄膜磁石20のN極とS極とを結ぶ方向)に向きやすい。つまり、薄膜磁石20の着磁をより容易にする。
 ここでは、基板10は、一例として直径約95mm、厚さ約0.5mmのガラスとして説明する。磁気センサ1の平面形状が数mm角である場合、基板10上には、複数の磁気センサ1が一括して製造され、後に個々の磁気センサ1に分割(切断)される。図7(a)~(e)では、中央に表記する一個の磁気センサ1に着目するが、左右に隣接する磁気センサ1の一部を合わせて示す。なお、隣接する磁気センサ1間の境界を一点鎖線で示す。
 図7(a)に示すように、基板10を洗浄した後、基板10の一方の面(以下、表面と表記する。)上に、密着層101、制御層102、硬磁性体層103及び誘電体層104を順に成膜(堆積)して、積層体を形成する。
 まず、Cr又はNiを含む合金である密着層101、Cr等を含む合金である制御層102、及び、薄膜磁石20を構成するCo合金である硬磁性体層103を順に連続して成膜(堆積)する。この成膜は、スパッタリング法などにより行える。それぞれの材料で形成された複数のターゲットに順に対面するように、基板10を移動させることで密着層101、制御層102及び硬磁性体層103が基板10上に順に積層される。前述したように、制御層102及び硬磁性体層103の形成では、結晶成長を促進するために、基板10を例えば100℃~600℃に加熱するとよい。
 なお、密着層101の成膜では、基板10の加熱を行ってもよく、行わなくてもよい。基板10の表面に吸着している水分などを除去するために、密着層101を成膜する前に、基板10を加熱してもよい。
 次に、SiO2、Al23、TiO2等の酸化物、又は、Si34、AlN等の窒化物等である誘電体層104を成膜(堆積)する。誘電体層104の成膜は、プラズマCVD法、反応性スパッタリング法などにより行える。
 そして、図7(b)に示すように、感受部30が形成される部分及びヨーク40(ヨーク40a、40b)が形成される部分を開口とするフォトレジストによるパターン(レジストパターン)111を、公知のフォトリソグラフィ技術により形成する。
 そして、図7(c)に示すように、感受部30を構成するCo合金である軟磁性体層105を成膜(堆積)する。軟磁性体層105の成膜は、例えばスパッタリング法を用いて行える。
 図7(d)に示すように、レジストパターン111を除去するとともに、レジストパターン111上の軟磁性体層105を除去(リフトオフ)する。これにより、軟磁性体層105による感受部30及びヨーク40(ヨーク40a、40b)が形成される。つまり、感受部30とヨーク40とが、1回の軟磁性体層105の成膜で形成される。
 この後、軟磁性体層105には、感受部30の感受素子部31における第1感受素子311および第2感受素子312(いずれも図3参照)の幅方向に一軸磁気異方性を付与する。この軟磁性体層105への一軸磁気異方性の付与は、例えば3kG(0.3T)の回転磁場中における400℃での熱処理(回転磁場中熱処理)と、それに引き続く3kG(0.3T)の静磁場中における400℃での熱処理(静磁場中熱処理)とで行える。この時、ヨーク40を構成する軟磁性体層105にも同様の一軸磁気異方性が付与される。しかし、ヨーク40は、磁気回路としての役割を果たせばよく、一軸磁気異方性が付与されなくてもよい。
 次に、薄膜磁石20を構成する硬磁性体層103を着磁する。硬磁性体層103に対する着磁は、静磁場中又はパルス状の磁場中において、硬磁性体層103の保磁力より大きい磁界を、硬磁性体層103の磁化が飽和するまで印加することで行える。
 この後、図7(e)に示すように、基板10上に形成された複数の磁気センサ1を個々の磁気センサ1に分割(切断)する。つまり、図1の平面図に示したように、平面形状が四角形になるように、基板10、密着層101、制御層102、硬磁性体層103、誘電体層104及び軟磁性体層105を切断する。すると、分割(切断)された硬磁性体層103の側面に薄膜磁石20の磁極(N極及びS極)が露出する。こうして、着磁された硬磁性体層103は、薄膜磁石20になる。この分割(切断)は、ダイシング法やレーザカッティング法などにより行える。
 なお、図7(e)の複数の磁気センサ1を個々の磁気センサ1に分割する工程の前に、基板10上において隣接する磁気センサ1の間の密着層101、制御層102、硬磁性体層103、誘電体層104及び軟磁性体層105を、平面形状が四角形(図1に示した磁気センサ1の平面形状)になるようにエッチング除去してもよい。そして、露出した基板10を分割(切断)してもよい。
 また、図7(a)の積層体を形成する工程の後に、密着層101、制御層102、硬磁性体層103、誘電体層104を、平面形状が四角形(図1に示した磁気センサ1の平面形状)になるように加工してもよい。
 なお、図7(a)~(e)に示した製造方法は、これらの製造方法に比べ、工程が簡略化される。
 このようにして、磁気センサ1が製造される。なお、軟磁性体層105への一軸磁気異方性の付与及び/又は薄膜磁石20の着磁は、図7(e)の磁気センサ1を個々の磁気センサ1に分割する工程の後に、磁気センサ1毎又は複数の磁気センサ1に対して行ってもよい。
 なお、制御層102を備えない場合には、硬磁性体層103を成膜後、800℃以上に加熱して結晶成長させることで、面内に磁気異方性を付与することが必要となる。しかし、第1の実施の形態が適用される磁気センサ1のように、制御層102を備える場合には、制御層102により結晶成長が促進されるため、800℃以上のような高温による結晶成長を要しない。
 また、第1感受素子311および第2感受素子312への一軸磁気異方性の付与は、上記の回転磁場中熱処理及び静磁場中熱処理で行う代わりに、感受部30を構成するCo合金である軟磁性体層105の堆積時にマグネトロンスパッタリング法を用いて行ってもよい。マグネトロンスパッタリング法では、磁石(マグネット)を用いて磁界を形成し、放電によって発生した電子をターゲットの表面に閉じ込める。これにより、電子とガスとの衝突確率を増加させてガスの電離を促進し、膜の堆積速度を向上させる。このマグネトロンスパッタリング法に用いられる磁石(マグネット)が形成する磁界により、軟磁性体層105の堆積と同時に、軟磁性体層105に一軸磁気異方性が付与される。このようにすることで、回転磁場中熱処理及び静磁場中熱処理で行う一軸磁気異方性を付与する工程が省略できる。
 以上、本発明の実施の形態を説明したが、本発明の趣旨に反しない限りにおいて様々な変形を行っても構わない。
 例えば、感受部30は、Ru又はRu合金から構成される反磁界抑制層を挟んで反強磁性体結合した複数の軟磁性体層105から構成されてもよい。これにより、感受素子部31(第1感受素子311、第2感受素子312)による磁気インピーダンス効果が向上し、磁気センサ1の感度が向上する。
1…磁気センサ、10…基板、20…薄膜磁石、30…感受部、31…感受素子部、32…直列接続部、33…端子部、40、40a、40b…ヨーク、101…密着層、102…制御層、103…硬磁性体層、104…誘電体層、105…軟磁性体層、311…第1感受素子、312…第2感受素子

Claims (4)

  1.  非磁性の基板と、
     前記基板上に設けられ、軟磁性体で構成され、長手方向と短手方向とを有し、当該長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する複数の感受素子が並列接続された感受素子部と
    を備える磁気センサ。
  2.  前記短手方向に間隙を介して配置され、つづら折り状に直列接続される複数の前記感受素子部を備えることを特徴とする請求項1に記載の磁気センサ。
  3.  前記感受素子部は、複数の前記感受素子が前記短手方向に間隔を介して配置されており、当該感受素子の当該短手方向の幅が当該間隔よりも小さいことを特徴とする請求項1または2に記載の磁気センサ。
  4.  前記基板と前記感受素子部との間に積層され、当該感受素子部の前記感受素子の前記長手方向に磁界を印加する薄膜磁石をさらに備えることを特徴とする請求項1乃至3のいずれか1項に記載の磁気センサ。
PCT/JP2020/005449 2019-05-27 2020-02-13 磁気センサ WO2020240941A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020002596.9T DE112020002596T5 (de) 2019-05-27 2020-02-13 Magnetsensor
JP2021522634A JPWO2020240941A1 (ja) 2019-05-27 2020-02-13
CN202080034256.8A CN113812011A (zh) 2019-05-27 2020-02-13 磁传感器
US17/609,657 US20220236344A1 (en) 2019-05-27 2020-02-13 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019098807 2019-05-27
JP2019-098807 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020240941A1 true WO2020240941A1 (ja) 2020-12-03

Family

ID=73553160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005449 WO2020240941A1 (ja) 2019-05-27 2020-02-13 磁気センサ

Country Status (5)

Country Link
US (1) US20220236344A1 (ja)
JP (1) JPWO2020240941A1 (ja)
CN (1) CN113812011A (ja)
DE (1) DE112020002596T5 (ja)
WO (1) WO2020240941A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220308126A1 (en) * 2021-03-24 2022-09-29 Showa Denko K.K. Magnetic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004726A (ja) * 1999-06-22 2001-01-12 Tdk Corp 磁界センサ
WO2003009403A1 (fr) * 2001-07-19 2003-01-30 Matsushita Electric Industrial Co., Ltd. Capteur magnetique et son procede de fabrication
JP2008249406A (ja) * 2007-03-29 2008-10-16 Fujikura Ltd 磁気インピーダンス効果素子及びその製造方法
WO2017170236A1 (ja) * 2016-03-28 2017-10-05 Tdk株式会社 バイオセンサ及びバイオチップ
JP2019002715A (ja) * 2017-06-12 2019-01-10 昭和電工株式会社 磁気センサ及び磁気センサの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113590A (ja) * 1995-10-18 1997-05-02 Canon Electron Inc 磁気センサー
US7394086B2 (en) * 2003-07-18 2008-07-01 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JP2008197089A (ja) * 2007-01-17 2008-08-28 Fujikura Ltd 磁気センサ素子及びその製造方法
US8283920B2 (en) * 2008-07-10 2012-10-09 Honeywell International Inc. Thin film magnetic field sensor
JPWO2017170230A1 (ja) * 2016-03-28 2019-02-07 Tdk株式会社 バイオセンサ及びバイオチップ
JP2018091643A (ja) * 2016-11-30 2018-06-14 矢崎総業株式会社 磁界検出センサ
JP6544374B2 (ja) * 2017-03-24 2019-07-17 Tdk株式会社 磁気センサ
JP6661570B2 (ja) * 2017-05-11 2020-03-11 矢崎総業株式会社 磁界検出センサ
US10794968B2 (en) * 2017-08-24 2020-10-06 Everspin Technologies, Inc. Magnetic field sensor and method of manufacture
JP6913617B2 (ja) * 2017-12-01 2021-08-04 昭和電工株式会社 磁気センサ、計測装置及び磁気センサの製造方法
JP2022148863A (ja) * 2021-03-24 2022-10-06 昭和電工株式会社 磁気センサ
US11719768B2 (en) * 2021-03-24 2023-08-08 Showa Denko K.K. Magnetic sensor and magnetic sensor device
JP2022150153A (ja) * 2021-03-26 2022-10-07 昭和電工株式会社 磁気センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004726A (ja) * 1999-06-22 2001-01-12 Tdk Corp 磁界センサ
WO2003009403A1 (fr) * 2001-07-19 2003-01-30 Matsushita Electric Industrial Co., Ltd. Capteur magnetique et son procede de fabrication
JP2008249406A (ja) * 2007-03-29 2008-10-16 Fujikura Ltd 磁気インピーダンス効果素子及びその製造方法
WO2017170236A1 (ja) * 2016-03-28 2017-10-05 Tdk株式会社 バイオセンサ及びバイオチップ
JP2019002715A (ja) * 2017-06-12 2019-01-10 昭和電工株式会社 磁気センサ及び磁気センサの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220308126A1 (en) * 2021-03-24 2022-09-29 Showa Denko K.K. Magnetic sensor

Also Published As

Publication number Publication date
JPWO2020240941A1 (ja) 2020-12-03
DE112020002596T5 (de) 2022-03-10
US20220236344A1 (en) 2022-07-28
CN113812011A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US11187762B2 (en) Magnetic sensor and method of manufacturing magnetic sensor
US11977135B2 (en) Magnetic sensor and magnetic sensor manufacturing method
WO2020240941A1 (ja) 磁気センサ
WO2021131401A1 (ja) 磁気センサ
WO2021131400A1 (ja) 磁気センサおよび磁気センサの製造方法
WO2021095310A1 (ja) 磁気センサ
WO2020110407A1 (ja) 磁気センサおよび磁気センサの製造方法
WO2020075426A1 (ja) 磁気センサおよび磁気センサシステム
JP2022069895A (ja) 磁気センサ
WO2021131402A1 (ja) 磁気センサ
WO2021019853A1 (ja) 磁界測定装置および磁気センサ
WO2020075425A1 (ja) 磁気センサおよび磁気センサの製造方法
JP2022054432A (ja) 磁気センサ
JP2020134301A (ja) 磁気センサおよび磁気センサシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522634

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20814760

Country of ref document: EP

Kind code of ref document: A1