WO2020110407A1 - 磁気センサおよび磁気センサの製造方法 - Google Patents

磁気センサおよび磁気センサの製造方法 Download PDF

Info

Publication number
WO2020110407A1
WO2020110407A1 PCT/JP2019/035034 JP2019035034W WO2020110407A1 WO 2020110407 A1 WO2020110407 A1 WO 2020110407A1 JP 2019035034 W JP2019035034 W JP 2019035034W WO 2020110407 A1 WO2020110407 A1 WO 2020110407A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
thin film
layer
substrate
magnetic sensor
Prior art date
Application number
PCT/JP2019/035034
Other languages
English (en)
French (fr)
Inventor
大三 遠藤
竜徳 篠
栄久 大橋
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201980071668.6A priority Critical patent/CN112930483A/zh
Priority to US17/290,813 priority patent/US11525871B2/en
Publication of WO2020110407A1 publication Critical patent/WO2020110407A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices

Definitions

  • the present invention relates to a magnetic sensor and a method for manufacturing the magnetic sensor.
  • a thin film magnet made of a hard magnetic film formed on a non-magnetic substrate, an insulating layer covering the thin film magnet, and uniaxial anisotropy formed on the insulating layer are provided.
  • a magneto-impedance effect element provided with one or a plurality of rectangular shaped soft magnetic material films as described above (see Patent Document 1).
  • a magnetic sensor having a structure in which an insulating layer is sandwiched by a sensing element that senses a magnetic field due to a magnetic impedance effect and a thin-film magnet that applies a bias magnetic field to the sensing element operates when a high-frequency current is supplied to the sensing element.
  • the insulating layer is polarized and acts as a capacitor having a capacitance. Then, the high-frequency current supplied to the sensing element is used as a capacitor, and the amount of change in impedance with respect to the amount of change in magnetic field may decrease.
  • An object of the present invention is to provide a magnetic sensor in which the amount of change in impedance with respect to the amount of change in magnetic field is large as compared with the case where an insulating layer is provided between the sensing element and the thin film magnet.
  • a magnetic sensor to which the present invention is applied includes a non-magnetic substrate, a soft magnetic material that is laminated on the substrate, has a longitudinal direction and a lateral direction, and is uniaxial in a direction intersecting the longitudinal direction.
  • a sensing element that has magnetic anisotropy and that senses a magnetic field due to a magnetic impedance effect is stacked on the substrate, and is disposed so as to face the longitudinal direction with the sensing element sandwiched between the sensing element and the longitudinal direction of the sensing element.
  • a pair of thin film magnets for applying a magnetic field to.
  • a magnetic sensor laminated on the substrate, provided between the sensing element and each of the thin film magnets, so that the magnetic flux generated by the thin film magnets passes through the sensing element in the longitudinal direction. It can be characterized by further comprising a pair of guiding yokes. Further, in such a magnetic sensor, the yoke may be in contact with a magnetic pole of the thin film magnet facing the longitudinal direction of the sensing element. Further, in such a magnetic sensor, the yoke may be continuously provided on the thin film magnet from between the sensing element and each of the thin film magnets.
  • the sensing element is composed of a plurality of soft magnetic material layers antiferromagnetically coupled with a demagnetizing field suppressing layer made of Ru or a Ru alloy interposed therebetween. be able to.
  • magnetic anisotropy is controlled in the in-plane direction on a non-magnetic substrate, and different magnetic poles face each other with a gap.
  • a susceptor forming step of forming a susceptor including a sensitizing element
  • the present invention it is possible to provide a magnetic sensor in which the amount of change in impedance with respect to the amount of change in magnetic field is large as compared with the case where an insulating layer is provided between the sensing element and the thin film magnet.
  • (A), (b) is a figure explaining an example of a magnetic sensor to which this embodiment is applied. It is a figure explaining the relationship between the magnetic field applied to the longitudinal direction of the sensing element in the sensing part of a magnetic sensor, and the impedance of a sensing part.
  • (A)-(c) is a figure explaining an example of the manufacturing method of a magnetic sensor.
  • (A)-(d) is a figure explaining an example of the manufacturing method of a magnetic sensor.
  • (A), (b) is a figure explaining an example of a magnetic sensor which is a modification.
  • (A), (b) is a figure explaining an example of the conventional magnetic sensor.
  • FIGS. 1A and 1B are diagrams illustrating an example of the magnetic sensor 1 to which the present embodiment is applied.
  • 1A is a plan view of the magnetic sensor 1
  • FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG.
  • a magnetic sensor 1 to which the present embodiment is applied is provided with a nonmagnetic substrate 10 and a diamagnetic field suppressing layer 106 provided on the substrate 10 sandwiched therebetween.
  • a sensing unit 30 that is composed of two layers of soft magnetic material (a lower soft magnetic material layer 105a and an upper soft magnetic material layer 105b) and that senses a magnetic field is provided.
  • the magnetic sensor 1 is composed of two layers of soft magnetic material (soft magnetic material layers 105 a and 105 b) provided on the substrate 10 with the demagnetizing field suppressing layer 106 interposed therebetween, and the sensing element of the sensing unit 30 described later.
  • a yoke 40 facing the longitudinal direction of 31 is provided.
  • the magnetic sensor 1 includes a thin film magnet 20 which is provided on the substrate 10 and which is made of a hard magnetic material (hard magnetic layer 103) and applies a bias magnetic field to the sensitive element 31 of the sensitive section 30.
  • the cross-sectional structure of the magnetic sensor 1 will be described later in detail.
  • the hard magnetic material is a material having a large coercive force, which retains the magnetized state even if the external magnetic field is removed when magnetized by the external magnetic field.
  • the soft magnetic material is a material having a small coercive force that is easily magnetized by an external magnetic field, but quickly returns to a state of no magnetization or a small magnetization when the external magnetic field is removed.
  • elements constituting the magnetic sensor 1 are represented by two-digit numbers, and layers processed into the elements (such as the hard magnetic layer 103) are represented by numbers in the 100s. .. Then, with respect to the number of the element, the number of the layer processed into the element may be described in ().
  • the thin film magnet 20 hard magnetic layer 103 is referred to. In the figure, it is expressed as 20 (103). The same applies to other cases.
  • the magnetic sensor 1 has, for example, a quadrangular planar shape.
  • the magnetic sensor 1 includes the sensing unit 30.
  • the sensing unit 30 includes a plurality of sensing elements 31 each having a rectangular shape in a plan view having a longitudinal direction and a lateral direction, a connecting section 32 that connects adjacent sensing elements 31 in a zigzag manner, and an electric wire for supplying current. And a terminal portion 33 to which is connected.
  • four sensing elements 31 are arranged so that their longitudinal directions are parallel to each other.
  • the sensing element 31 is a magneto-impedance effect element.
  • the sensitive element 31 has, for example, a length in the longitudinal direction of about 1 mm, a width in the lateral direction of several hundred ⁇ m, and a thickness (the total thickness of the soft magnetic layer 105 and the demagnetizing field suppressing layer 106) of 0.5 ⁇ m or more. It is 5 ⁇ m.
  • the spacing between the adjacent sensing elements 31 is 50 ⁇ m to 150 ⁇ m.
  • the connection part 32 is provided between the ends of the adjacent sensing elements 31, and connects the adjacent sensing elements 31 in a zigzag manner in series.
  • four sensing elements 31 are arranged in parallel, so that there are three connecting portions 32.
  • the number of sensing elements 31 is set according to the magnitude of the magnetic field to be sensed (measured). Therefore, for example, if the number of the sensing elements 31 is two, the number of the connecting portions 32 is one. Moreover, if the number of the sensing elements 31 is one, the connecting portion 32 is not provided.
  • the width of the connecting portion 32 may be set by the current flowing through the sensitive portion 30. For example, the width of the connecting portion 32 may be the same as that of the sensitive element 31.
  • the terminal portion 33 is provided at each of two end portions of the sensing element 31 that are not connected by the connecting portion 32.
  • the terminal portion 33 includes a lead portion that is pulled out from the sensitive element 31, and a pad portion that connects an electric wire that supplies a current.
  • the lead-out portion is provided to provide two pad portions in the lateral direction of the sensitive element 31.
  • the pad portion may be provided so as to be continuous with the sensitive element 31 without providing the lead portion.
  • the pad portion may have a size that can connect an electric wire. Since the number of the sensitive elements 31 is four, the two terminal portions 33 are provided on the left side in FIG. When the number of the sensitive elements 31 is an odd number, the two terminal portions 33 may be separately provided on the left and right.
  • the sensitive element 31, the connecting portion 32, and the terminal portion 33 of the sensitive portion 30 are composed of the two soft magnetic layer 105 (the lower soft magnetic layer 105a, the upper soft magnetic layer 105b) and the demagnetizing field suppressing layer 106. It is configured as one. Since the soft magnetic material layer 105 and the demagnetizing field suppressing layer 106 are conductive, current can be passed from one terminal portion 33 to the other terminal portion 33.
  • the above-mentioned numerical values such as the length and width of the sensing element 31 and the number of the sensing elements 31 arranged in parallel are examples, and may be changed depending on the value of the magnetic field to be sensed (measured), the soft magnetic material used, and the like.
  • the magnetic sensor 1 includes a yoke 40 that is provided so as to face an end of the sensing element 31 in the longitudinal direction.
  • a yoke 40 that is provided so as to face an end of the sensing element 31 in the longitudinal direction.
  • it is provided with two yokes 40a and 40b, which are provided so as to face both ends in the longitudinal direction of the sensing element 31, respectively.
  • the yoke 40 guides a magnetic force line to the end of the sensing element 31 in the longitudinal direction.
  • the yoke 40 is configured to include a soft magnetic material (soft magnetic material layer 105) through which magnetic lines of force are easily transmitted.
  • the sensing section 30 and the yoke 40 are composed of two layers of soft magnetic material layers 105 (a lower soft magnetic material layer 105a and an upper soft magnetic material layer 105b) and a demagnetizing field suppressing layer 106.
  • the yoke 40 may not be provided when the magnetic force lines are sufficiently transmitted in the longitudinal direction of the sensing element 31.
  • the magnetic sensor 1 includes two thin film magnets 20 facing each other in the longitudinal direction with the sensing unit 30 and the yoke 40 interposed therebetween.
  • the thin film magnet 20a provided adjacent to the yoke 40a via a gap
  • the thin film magnet 20b provided adjacent to the yoke 40b via a gap.
  • the thin film magnets 20a and 20b apply a magnetic field (a bias magnetic field described later) in the longitudinal direction of the sensitive element 31.
  • the thin film magnets 20a and 20b are made of hard magnetic material (hard magnetic material layers 103a and 103b). Further, in this example, the thin film magnets 20a and 20b each have a quadrangular (rectangular) planar shape.
  • the thin film magnets 20a and 20b have a length in the longitudinal direction of about 4 mm and a length in the lateral direction of about 2 mm, for example.
  • the thin film magnet 20 When the thin film magnets 20a and 20b are not distinguished from each other, they are referred to as the thin film magnet 20.
  • the hard magnetic layers 103a and 103b are not distinguished from each other, they are referred to as the hard magnetic layer 103.
  • the size of the magnetic sensor 1 is a few mm square in plan view.
  • the size of the magnetic sensor 1 may be another value.
  • the magnetic sensor 1 includes a non-magnetic substrate 10 on which a sensitive portion 30 including a soft magnetic layer 105 and a demagnetizing layer 106 and a yoke 40, and a thin film magnet 20 including a hard magnetic layer 103 are arranged (laminated). Is configured.
  • the sensing unit 30, the yoke 40, and the thin film magnet 20 are provided on the same substrate 10.
  • the adhesion layer 101 and the control layer 102 are laminated between the substrate 10 and the thin film magnet 20.
  • adhesion layer 101a and the control layer 102a are laminated between the substrate 10 and the thin film magnet 20a (hard magnetic layer 103a), and between the substrate 10 and the thin film magnet 20b (hard magnetic layer 103b).
  • the adhesion layer 101b and the control layer 102b are laminated.
  • the substrate 10 is a substrate made of a non-magnetic material, and examples thereof include oxide substrates such as glass and sapphire, semiconductor substrates such as silicon, and metal substrates such as aluminum, stainless steel, and nickel-phosphorus-plated metal. Be done.
  • the sensitive element 31 in the sensitive section 30 is provided with uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, for example, in a transverse direction (width direction) orthogonal to each other.
  • the direction intersecting with the longitudinal direction may have an angle of more than 45° with respect to the longitudinal direction.
  • the soft magnetic material (the lower soft magnetic material layer 105a and the upper soft magnetic material layer 105b) forming the sensitive element 31 is an amorphous alloy in which a refractory metal Nb, Ta, W or the like is added to an alloy containing Co as a main component ( Hereinafter, it is preferable to use a Co alloy that constitutes the sensing element 31.).
  • Examples of the Co alloy forming the sensing element 31 include CoNbZr, CoFeTa, CoWZr, and the like.
  • the thickness of the soft magnetic material (the lower soft magnetic material layer 105a and the upper soft magnetic material layer 105b) forming the sensitive element 31 is, for example, 0.2 ⁇ m to 2 ⁇ m.
  • the demagnetizing field suppressing layer 106 forming the sensing element 31 is made of Ru or Ru alloy.
  • the film thickness of the diamagnetic field suppressing layer 106 made of Ru or Ru alloy in the range of 0.4 nm to 1.0 nm or 1.6 nm to 2.6 nm, the lower soft magnetic material layer 105a and the upper soft magnetic layer 105a are formed.
  • the body layer 105b has an antiferromagnetically coupled (AFC) structure. Thereby, the demagnetizing field is suppressed, and the sensitivity of the sensitive element 31 is improved.
  • AFC antiferromagnetically coupled
  • the adhesion layer 101 is a layer for improving the adhesion of the control layer 102 to the substrate 10.
  • the adhesive layer 101 it is preferable to use an alloy containing Cr or Ni.
  • alloys containing Cr or Ni include CrTi, CrTa, and NiTa.
  • the adhesion layer 101 has a thickness of, for example, 5 nm to 50 nm. If there is no problem in the adhesion of the control layer 102 to the substrate 10, the adhesion layer 101 need not be provided. In this specification, the composition ratio of the alloy containing Cr or Ni is not shown. The same applies hereinafter.
  • the control layer 102 is a layer for controlling the magnetic anisotropy of the thin-film magnet 20 including the hard magnetic layer 103 so that the magnetic anisotropy is easily expressed in the in-plane direction.
  • the control layer 102 it is preferable to use Cr, Mo, or W or an alloy containing them (hereinafter, referred to as an alloy containing Cr or the like forming the control layer 102).
  • CrTi, CrMo, CrV, CrW, etc. are mentioned as an alloy containing Cr etc. which comprises the control layer 102.
  • the alloy containing Cr or the like that constitutes the control layer 102 has a bcc (body-centered cubic (body centered cubic lattice)) structure.
  • the thickness of the control layer 102 is, for example, 10 nm to 300 nm.
  • the hard magnetic layer 103 that constitutes the thin film magnet 20 uses an alloy containing Co as a main component and one or both of Cr and Pt (hereinafter referred to as a Co alloy that constitutes the thin film magnet 20). Is good.
  • the Co alloy forming the thin film magnet 20 include CoCrPt, CoCrTa, CoNiCr, and CoCrPtB.
  • Fe may be contained.
  • the thickness of the hard magnetic layer 103 is, for example, 500 nm to 1500 nm.
  • the alloy containing Cr and the like that constitutes the control layer 102 has a bcc (body-centered cubic (body-centered cubic lattice)) structure. Therefore, the hard magnetic material (hard magnetic material layer 103) forming the thin film magnet 20 is hcp (hexagonal close-packed (hexagonal maximum close-packed) which is likely to undergo crystal growth on the control layer 102 made of an alloy containing Cr or the like having a bcc structure. It is preferable that the structure be a close packing)).
  • the hard magnetic layer 103 having the hcp structure is crystal-grown on the bcc structure, the c-axis of the hcp structure is easily oriented so as to be in-plane.
  • the thin film magnet 20 configured by the hard magnetic layer 103 is likely to have magnetic anisotropy in the in-plane direction.
  • the hard magnetic layer 103 is a polycrystal composed of aggregates having different crystal orientations, and each crystal has magnetic anisotropy in the in-plane direction. This magnetic anisotropy is derived from crystal magnetic anisotropy.
  • the substrate 10 may be heated to 100° C. to 600° C. in order to promote crystal growth of the alloy containing Cr or the like forming the control layer 102 and the Co alloy forming the thin film magnet 20. This heating facilitates crystal growth of the alloy containing Cr or the like forming the control layer 102 and facilitates crystal orientation of the hard magnetic layer 103 having the hcp structure so that the hard magnetic layer 103 has an in-plane easy magnetization axis. That is, magnetic anisotropy is easily imparted to the surface of the hard magnetic layer 103.
  • the adhesion layers 101a and 101b, the control layers 102a and 102b, and the hard magnetic layer 103 are processed so that the planar shape is a quadrangle (see FIG. 1A).
  • the thin film magnets 20a and 20b have different magnetic poles facing each other in the longitudinal direction with the yoke 40 and the sensing unit 30 interposed therebetween.
  • the N pole of the thin film magnet 20a and the S pole of the thin film magnet 20b are arranged to face each other in the longitudinal direction via the yoke 40 and the sensing unit 30.
  • the line connecting the N pole of the thin film magnet 20a and the S pole of the thin film magnet 20b is oriented in the longitudinal direction of the sensing element 31 of the sensing unit 30.
  • “to face the longitudinal direction” means that the angle formed by the line connecting the N pole and the S pole and the longitudinal direction is 0° or more and less than 45°. The smaller the angle formed by the line connecting the N pole and the S pole and the longitudinal direction, the better.
  • the magnetic force line emitted from the N pole of the thin film magnet 20a passes through the sensitive element 31 via the yoke 40a and reaches the S pole of the thin film magnet 20b via the yoke 40b. That is, the thin film magnets 20 a and 20 b apply a magnetic field in the longitudinal direction of the sensitive element 31. This magnetic field is called a bias magnetic field.
  • the N and S poles of the thin-film magnets 20a and 20b are collectively referred to as both magnetic poles, and when the N and S poles are not distinguished, they are referred to as magnetic poles.
  • the right side of the thin film magnet 20a and the thin film magnet 20b is the N pole and the left side is the S pole in FIGS. 1A and 1B, the N pole and the S pole may be interchanged.
  • the yoke 40 (yokes 40 a and 40 b) is configured such that the shape viewed from the front surface side of the substrate 10 becomes narrower as it approaches the sensing unit 30. This is to collect magnetic force lines in the sensing unit 30. That is, the magnetic field in the sensing unit 30 is strengthened to improve the sensitivity.
  • the width of the portion of the yoke 40 (yokes 40a and 40b) facing the sensitive portion 30 does not have to be narrowed.
  • the distance between the yoke 40 (yokes 40a and 40b) and the sensing unit 30 may be, for example, 1 ⁇ m to 100 ⁇ m.
  • the distance between the yoke 40 (yokes 40a and 40b) and the thin film magnet 20 (thin film magnets 20a and 20b) can be set to, for example, 1 ⁇ m to 100 ⁇ m.
  • the yoke 40 (yokes 40a and 40b) and the thin film magnet 20 (thin film magnets 20a and 20b) may be in contact with each other.
  • FIG. 2 is a diagram illustrating the relationship between the magnetic field applied in the longitudinal direction of the sensing element 31 in the sensing unit 30 of the magnetic sensor 1 and the impedance of the sensing unit 30.
  • the horizontal axis represents the magnetic field H and the vertical axis represents the impedance Z.
  • the impedance Z of the sensing unit 30 is measured by passing a high frequency current between the two terminal portions 33.
  • the impedance Z of the sensing unit 30 increases as the magnetic field H applied in the longitudinal direction of the sensing element 31 increases.
  • the applied magnetic field H is smaller than the anisotropic magnetic field Hk of the sensing element 31 if a portion where the change amount ⁇ Z of the impedance Z is steep with respect to the change amount ⁇ H of the magnetic field H ( ⁇ Z/ ⁇ H is large) is used.
  • a weak change in the magnetic field H can be taken out as a change amount ⁇ Z of the impedance Z.
  • the center of the magnetic field H having a large ⁇ Z/ ⁇ H is shown as the magnetic field Hb. That is, the change amount ( ⁇ H) of the magnetic field H in the vicinity of the magnetic field Hb (the range shown by the arrow in FIG. 2) can be measured with high accuracy.
  • the magnetic field Hb is sometimes called a bias magnetic field.
  • a magnetic sensor including a sensing element that is a magneto-impedance effect element and a thin-film magnet that applies a bias magnetic field to the sensing element has a structure in which a thin-film magnet and a sensing unit are laminated on an substrate through an insulating layer.
  • FIGS. 1A and 1B are diagrams illustrating an example of the conventional magnetic sensor 3.
  • 6A is a plan view of the magnetic sensor 3
  • FIG. 6B is a sectional view taken along line VIB-VIB in FIG. 6A.
  • the same components as those of the magnetic sensor 1 shown in FIGS. 1A and 1B are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the adhesion layer 101, the control layer 102, the thin film magnet 21, and the insulating layer 104 are laminated in this order on the substrate 10, and the sensing unit 30 is formed on the insulating layer 104. And a yoke 40 is formed. That is, in the magnetic sensor 3, the sensing unit 30 (sensing element 31) and the thin film magnet 21 face each other with the insulating layer 104 interposed therebetween.
  • the insulating layer 104 sandwiched between the conductive thin film magnet 21 and the sensing unit 30 is polarized, and the magnetic sensor 3 is It may work as a capacitor. Then, in the magnetic sensor 3, the high frequency current supplied to the sensing unit 30 is used for the capacitor, so that the change amount ⁇ Z of the impedance Z with respect to the change amount ⁇ H of the magnetic field H may decrease.
  • the thin-film magnet 20 is not arranged between the sensing unit 30 and the substrate 10, but is arranged on the substrate 10 similarly to the sensing unit 30. It is arranged.
  • the thin film magnet 20 and the sensing unit 30 are laminated on the same substrate 10.
  • the magnetic sensor 1 does not require an insulating layer for insulating the thin-film magnet 20 and the sensing unit 30, so that the configuration of the magnetic sensor 1 can be simplified.
  • the phrase “laminated on the substrate 10” includes not only a form in which the target layer is directly laminated on the substrate 10 but also a form in which the target layer is laminated on the substrate 10 via another layer.
  • “laminating the thin-film magnet 20 on the substrate 10 ” means that the thin-film magnet 20 is directly laminated on the substrate 10, and as shown in FIG. 1B, the adhesion layer 101 is formed on the substrate 10. It also includes a mode in which the thin film magnets 20 are laminated via the control layer 102.
  • FIGS. 3A to 3C and FIGS. 4A to 4D are diagrams illustrating an example of a method of manufacturing the magnetic sensor 1.
  • 3A to 3C and FIGS. 4A to 4D show steps in the method of manufacturing the magnetic sensor 1. Note that FIGS. 3A to 3C and FIGS. 4A to 4D are typical steps, and may include other steps.
  • the process proceeds in the order of FIGS. 3A to 3C and FIGS. 4A to 4D.
  • FIGS. 3A to 3C and FIGS. 4A to 4D correspond to cross-sectional views taken along line IB-IB in FIG. 1A.
  • the substrate 10 is a substrate made of a non-magnetic material, for example, an oxide substrate such as glass or sapphire, a semiconductor substrate such as silicon, or a metal such as aluminum, stainless steel, or nickel-phosphorus-plated metal. It is a metal substrate.
  • the substrate 10 may be provided with, for example, a groove or a groove having a radius of curvature Ra of 0.1 nm to 100 nm by using a polishing machine.
  • the direction of the streak-shaped groove or the streak-shaped uneven line is preferably provided in a direction connecting the N pole and the S pole of the thin-film magnet 20 configured by the hard magnetic layer 103. By doing so, crystal growth in the hard magnetic layer 103 is promoted in the groove direction.
  • the easy axis of magnetization of the thin film magnet 20 formed of the hard magnetic layer 103 is more likely to be oriented in the groove direction (the direction connecting the N pole and the S pole of the thin film magnet 20). That is, the magnetization of the thin film magnet 20 is made easier.
  • the substrate 10 will be described as an example of glass having a diameter of about 95 mm and a thickness of about 0.5 mm.
  • the planar shape of the magnetic sensor 1 is a few mm square, a plurality of magnetic sensors 1 are collectively manufactured on the substrate 10 and divided (cut) into individual magnetic sensors 1 later.
  • FIGS. 3A to 3C and FIGS. 4A to 4D attention is paid to one magnetic sensor 1 shown in the center, but a part of the magnetic sensors 1 adjacent to the left and right is also shown. The boundary between the adjacent magnetic sensors 1 is indicated by a chain line.
  • a photoresist pattern (resist pattern) 111 having openings as openings is formed by a known photolithography technique.
  • the adhesion layer 101, the control layer 102, and the hard magnetic layer 103 are sequentially formed (deposited). Specifically, the adhesion layer 101 which is an alloy containing Cr or Ni, the control layer 102 which is an alloy containing Cr or the like, and the hard magnetic layer 103 which is a Co alloy forming the thin film magnet 20 are successively formed. Film (deposit). This film formation can be performed by a sputtering method or the like.
  • the adhesion layer 101, the control layer 102, and the hard magnetic material layer 103 are sequentially stacked on the substrate 10 by moving the substrate 10 so as to sequentially face the plurality of targets formed of the respective materials. As described above, in forming the control layer 102 and the hard magnetic layer 103, the substrate 10 may be heated to, for example, 100° C. to 600° C. in order to promote crystal growth.
  • the substrate 10 may or may not be heated in forming the adhesion layer 101.
  • the substrate 10 may be heated before forming the adhesion layer 101 in order to remove the moisture or the like adsorbed on the surface of the substrate 10.
  • the resist pattern 111 is removed, and the adhesion layer 101, the control layer 102, and the hard magnetic layer 103 on the resist pattern 111 are removed (lifted off).
  • a resist pattern 112 having openings at portions where the sensitive portions 30 are formed and portions where the yokes 40 (yokes 40a and 40b) are formed is formed.
  • the lower soft magnetic material layer 105 a which is a Co alloy that constitutes the sensitive element 31
  • the demagnetizing field suppressing layer 106 which is Ru or a Ru alloy
  • the Co alloy which constitutes the sensitive element 31 is sequentially formed (deposited).
  • the soft magnetic material layer 105 (lower soft magnetic material layer 105a, upper soft magnetic material layer 105b) and the demagnetizing field suppressing layer 106 can be formed by, for example, a sputtering method.
  • the resist pattern 112 is removed, and the soft magnetic layer 105 and the demagnetizing field suppressing layer 106 on the resist pattern 112 are removed (lifted off).
  • the sensitive portion 30 and the yoke 40 (the yokes 40a and 40b) formed by the soft magnetic layer 105 and the demagnetizing field suppressing layer 106 are formed. That is, the sensing section 30 and the yoke 40 are simultaneously formed by depositing the soft magnetic material layer 105 and the demagnetizing field suppressing layer 106.
  • uniaxial magnetic anisotropy is given to the soft magnetic layer 105 in the width direction of the sensitive element 31 in the sensitive section 30.
  • the uniaxial magnetic anisotropy is imparted to the soft magnetic layer 105 by, for example, heat treatment at 400° C. in a rotating magnetic field of 3 kG (0.3 T) (heat treatment in a rotating magnetic field) and subsequent 3 kG (0.3 T). Heat treatment at 400° C. in a static magnetic field (heat treatment in a static magnetic field).
  • the same uniaxial magnetic anisotropy is also given to the soft magnetic layer 105 that constitutes the yoke 40.
  • the yoke 40 only needs to play a role as a magnetic circuit, and may not be given uniaxial magnetic anisotropy.
  • the hard magnetic layer 103 constituting the thin film magnet 20 is magnetized.
  • the magnetization of the hard magnetic layer 103 can be performed by applying a magnetic field larger than the coercive force of the hard magnetic layer 103 in a static magnetic field or a pulsed magnetic field until the magnetization of the hard magnetic layer 103 is saturated. ..
  • the magnetic poles of the thin-film magnet 20 (N-pole of the thin-film magnet 20a and S-pole of the thin-film magnet 20b) are formed on the side surface of the hard magnetic layer 103 facing the sensitive section 30 with a gap. That is, the magnetized hard magnetic layer 103 becomes the thin film magnet 20.
  • the thin film magnet 20 whose magnetic anisotropy is controlled in the in-plane direction is used in the step of forming the hard magnetic layer 103 constituting the thin film magnet 20 and the step of magnetizing the hard magnetic layer 103. Since these are processes for forming, they may be collectively referred to as a thin film magnet forming process.
  • the plurality of magnetic sensors 1 formed on the substrate 10 are divided (cut) into individual magnetic sensors 1. That is, as shown in the plan view of FIG. 1A, the substrate 10, the adhesion layer 101, the control layer 102, and the hard magnetic layer 103 are cut so that the planar shape becomes a quadrangle.
  • This division (cutting) can be performed by a dicing method, a laser cutting method, or the like.
  • the manufacturing method shown in FIGS. 3A to 3C and FIGS. 4A to 4D has a simplified process as compared with such manufacturing method.
  • the step of stacking the magnetic field suppressing layer 106 to form the sensitive section 30 and the yoke 40 may be performed first.
  • the magnetic sensor 1 is manufactured.
  • the uniaxial magnetic anisotropy is imparted to the soft magnetic layer 105 and/or the thin film magnet 20 is magnetized after the step of dividing the plurality of magnetic sensors 1 of FIG. Alternatively, it may be performed for each magnetic sensor 1 or for a plurality of magnetic sensors 1.
  • control layer 102 If the control layer 102 is not provided, after the hard magnetic layer 103 is formed, it is heated to 800° C. or higher for crystal growth to give magnetic anisotropy in the plane of the hard magnetic layer 103. Will be required. However, when the control layer 102 is provided as in the magnetic sensor 1 to which the present embodiment is applied, crystal growth is promoted by the control layer 102, so crystal growth at a high temperature of 800° C. or higher is required. do not do.
  • the uniaxial magnetic anisotropy is imparted to the sensing element 31 of the sensing section 30, instead of the above-mentioned heat treatment in a rotating magnetic field and heat treatment in a static magnetic field, a soft magnetic layer which is a Co alloy and constitutes the sensing element 31.
  • a magnetron sputtering method may be used at the time of depositing 105. In the magnetron sputtering method, a magnetic field is formed using a magnet, and the electrons generated by the discharge are confined (focused) on the surface of the target. This increases the probability of collision between electrons and gas, promotes ionization of gas, and improves the film deposition rate (deposition rate).
  • a uniaxial magnetic anisotropy is imparted to the soft magnetic material layer 105 at the same time as the soft magnetic material layer 105 is deposited by a magnetic field formed by a magnet used in the magnetron sputtering method. By doing so, the step of imparting uniaxial magnetic anisotropy in the heat treatment in the rotating magnetic field and the heat treatment in the static magnetic field can be omitted.
  • Magnetic sensor 2 is diagrams illustrating an example of the magnetic sensor 2 that is a modification.
  • 5A is a plan view
  • FIG. 5B is a sectional view taken along line VB-VB in FIG. 5A.
  • the same components as those of the magnetic sensor 1 shown in FIGS. 1A and 1B are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the sensitive section 30 and the yoke 40 are two soft magnetic layers 105 (lower soft magnetic layer 105a) provided between the demagnetizing field suppressing layers 106. , The upper soft magnetic layer 105b).
  • a yoke 40 (yokes 40a and 40b) is provided on the substrate 10 between the sensing unit 30 and the thin film magnet 20 (thin film magnets 20a and 20b). ) Has been placed.
  • the sensing unit 30 and the yoke 41 are configured by the single soft magnetic layer 105.
  • the yoke 41 (yokes 41a and 41b) is provided with a thin film magnet 20 (thin film magnet) from a position facing the end portion in the longitudinal direction of the sensing element 31. 20a, 20b) are continuously formed up to the upper surface.
  • the yoke 41 (41a, 41b) is provided so as to come into contact with the side surface and the upper surface of the thin film magnet 20 (thin film magnets 20a, 20b) facing the sensing element 31.
  • the yoke 41 (yokes 41a and 41b) has the shape shown in FIGS. 5A and 5B, so that the magnetic force line emitted from the N pole of the thin-film magnet 20a passes through the yoke 41a. You are led to 31. In addition, the magnetic force line that has passed through the sensing element 31 from the N pole of the thin film magnet 20a reaches the S pole of the thin film magnet 20b via the yoke 41b.
  • the magnetic sensor 2 for example, in the method of manufacturing the magnetic sensor 1 described above, in the step of forming the resist pattern 112 shown in FIG.
  • the portions where the holes are formed and the portions where the yoke 41 (yokes 41a and 41b) are formed are changed to be openings.
  • the step of forming the lower soft magnetic layer 105a, the upper soft magnetic layer 105b and the demagnetizing field suppressing layer 106 shown in FIG. 4B one soft magnetic layer 105 is formed. Change to. As a result, a single soft magnetic layer 105 is formed on the substrate 10 and the hard magnetic layer 103 corresponding to the openings of the resist pattern 112.
  • the soft magnetic layer 105 formed above is combined (divided). Through the above steps, the magnetic sensor 2 shown in FIGS. 5A and 5B is manufactured.
  • the substrate 10 is formed.
  • the adhesion layer 101, the control layer 102, the hard magnetic layer 103, and the soft magnetic layer 105 between the adjacent magnetic sensors 1 have a quadrangular planar shape (the planar shape of the magnetic sensor 2 shown in FIG. 5A). May be removed by etching so that Then, the exposed substrate 10 may be divided (cut). Further, the magnetic sensor 2 may be manufactured using another manufacturing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

磁気センサ1は、非磁性の基板10と、基板10上に積層され、軟磁性体で構成され、長手方向と短手方向とを有し、長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する感受素子31と、基板10上に積層され、感受素子31を挟んで長手方向に対向して配置され、感受素子31の長手方向に磁界を印加する一対の薄膜磁石20a、20bとを備える。

Description

磁気センサおよび磁気センサの製造方法
 本発明は、磁気センサおよび磁気センサの製造方法に関する。
 公報記載の従来技術として、非磁性基板上に形成された硬磁性体膜からなる薄膜磁石と、前記薄膜磁石の上を覆う絶縁層と、前記絶縁層上に形成された一軸異方性を付与された一個または複数個の長方形状の軟磁性体膜からなる感磁部とを備えた磁気インピーダンス効果素子が存在する(特許文献1参照)。
特開2008-249406号公報
 ところで、磁気インピーダンス効果により磁界を感受する感受素子と、感受素子にバイアス磁界を付与するための薄膜磁石とによって、絶縁層が挟まれた構造を有する磁気センサは、感受素子に高周波電流を供給すると、絶縁層が分極し、静電容量を有するコンデンサとしてはたらく場合がある。すると、感受素子に供給した高周波電流がコンデンサとして使用されることになり、磁界の変化量に対するインピーダンスの変化量が低下する場合がある。
 本発明は、感受素子と薄膜磁石との間に絶縁層を有する場合と比較して、磁界の変化量に対するインピーダンスの変化量が大きい磁気センサを提供することを目的とする。
 本発明が適用される磁気センサは、非磁性の基板と、前記基板上に積層され、軟磁性体で構成され、長手方向と短手方向とを有し、当該長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する感受素子と、前記基板上に積層され、前記感受素子を挟んで前記長手方向に対向して配置され、当該感受素子の当該長手方向に磁界を印加する一対の薄膜磁石とを備える。
 このような磁気センサにおいて、前記基板上に積層され、前記感受素子とそれぞれの前記薄膜磁石との間に設けられ、当該薄膜磁石により発生する磁束が当該感受素子を前記長手方向に透過するように誘導する一対のヨークをさらに備えることを特徴とすることができる。
 また、このような磁気センサにおいて、前記ヨークは、前記感受素子の前記長手方向に対向する前記薄膜磁石の磁極に接触していることを特徴とすることができる。
 さらに、このような磁気センサにおいて、前記ヨークは、前記感受素子とそれぞれの前記薄膜磁石との間から当該薄膜磁石上に連続して設けられていることを特徴とすることができる。
 さらにまた、このような磁気センサにおいて、前記感受素子は、Ru又はRu合金から構成される反磁界抑制層を挟んで反強磁性結合した複数の軟磁性体層から構成されることを特徴とすることができる。
 また、他の観点から捉えると、本発明が適用される磁気センサの製造方法は、非磁性の基板上に、磁気異方性が面内方向に制御され、異なる磁極が間隙を介して対向する一対の薄膜磁石を形成する薄膜磁石形成工程と、前記基板上に、一対の前記薄膜磁石により発生する磁束が透過する方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する感受素子を含む感受部を形成する感受部形成工程とを含む。
 本発明によれば、感受素子と薄膜磁石との間に絶縁層を有する場合と比較して、磁界の変化量に対するインピーダンスの変化量が大きい磁気センサを提供することができる。
(a)、(b)は、本実施の形態が適用される磁気センサの一例を説明する図である。 磁気センサの感受部における感受素子の長手方向に印加された磁界と感受部のインピーダンスとの関係を説明する図である。 (a)~(c)は、磁気センサの製造方法の一例を説明する図である。 (a)~(d)は、磁気センサの製造方法の一例を説明する図である。 (a)、(b)は、変形例である磁気センサの一例を説明する図である。 (a)、(b)は、従来の磁気センサの一例を説明する図である。
 本明細書で説明する磁気センサは、いわゆる磁気インピーダンス効果素子を用いたものである。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[実施の形態1]
(磁気センサ1の構造)
 図1(a)、(b)は、本実施の形態が適用される磁気センサ1の一例を説明する図である。図1(a)は、磁気センサ1の平面図であり、図1(b)は、図1(a)におけるIB-IB線での断面図である。
 図1(a)、(b)に示すように、本実施の形態が適用される磁気センサ1は、非磁性の基板10と、基板10上に設けられ反磁界抑制層106を挟んで設けられる二層の軟磁性体(下層軟磁性体層105a、上層軟磁性体層105b)で構成されて磁場を感受する感受部30を備える。また、磁気センサ1は、基板10上に設けられ反磁界抑制層106を挟んで設けられる2層の軟磁性体(軟磁性体層105a、105b)で構成されて感受部30の後述する感受素子31の長手方向に対向するヨーク40を備える。以下の説明では、二層の軟磁性体(下層軟磁性体層105a、上層軟磁性体層105b)をそれぞれ区別しない場合には、単に軟磁性体層105と表記する。さらに、磁気センサ1は、基板10上に設けられ硬磁性体(硬磁性体層103)で構成され感受部30の感受素子31にバイアス磁界を印加する薄膜磁石20を備える。
 なお、磁気センサ1の断面構造等については、後に詳述する。
 ここで硬磁性体とは、外部磁界によって磁化されると、外部磁界を取り除いても磁化された状態が保持される、いわゆる保磁力の大きい材料である。一方、軟磁性体とは、外部磁界によって容易に磁化されるが、外部磁界を取り除くと速やかに磁化がないか又は磁化が小さい状態に戻る、いわゆる保磁力の小さい材料である。
 なお、本明細書においては、磁気センサ1を構成する要素(薄膜磁石20など)を二桁の数字で表し、要素に加工される層(硬磁性体層103など)を100番台の数字で表す。そして、要素の数字に対して、要素に加工される層の番号を( )内に表記する場合がある。例えば薄膜磁石20の場合、薄膜磁石20(硬磁性体層103)と表記する。図においては、20(103)と表記する。他の場合も同様である。
 図1(a)により、磁気センサ1の平面構造を説明する。磁気センサ1は、一例として四角形の平面形状を有する。
 上述したように、磁気センサ1は、感受部30を備える。感受部30は、平面形状が長手方向と短手方向とを有する短冊状である複数の感受素子31と、隣接する感受素子31をつづら折りに直列接続する接続部32と、電流供給のための電線が接続される端子部33とを備える。ここでは、4個の感受素子31が、長手方向が並列するように配置されている。また、本実施の形態の磁気センサ1では、感受素子31が、磁気インピーダンス効果素子である。
 感受素子31は、例えば長手方向の長さが約1mm、短手方向の幅が数100μm、厚さ(軟磁性体層105と反磁界抑制層106とを合わせた厚さ)が0.5μm~5μmである。隣接する感受素子31間の間隔は、50μm~150μmである。
 接続部32は、隣接する感受素子31の端部間に設けられ、隣接する感受素子31をつづら折りに直列接続する。図1(a)に示す磁気センサ1では、4個の感受素子31が並列に配置されているため、接続部32は3個ある。感受素子31の数は、感受(計測)したい磁界の大きさなどによって設定される。よって、例えば感受素子31が2個であれば、接続部32は1個である。また、感受素子31が1個であれば、接続部32を備えない。なお、接続部32の幅は、感受部30に流す電流によって設定すればよい。例えば、接続部32の幅は、感受素子31と同じであってもよい。
 端子部33は、接続部32で接続されていない感受素子31の2個の端部にそれぞれ設けられている。端子部33は、感受素子31から引き出す引き出し部と、電流を供給する電線を接続するパッド部とを備える。引き出し部は、2個のパッド部を感受素子31の短手方向に設けるために備えられている。引き出し部を設けずパッド部を感受素子31に連続するように設けてもよい。パッド部は、電線を接続しうる大きさであればよい。なお、感受素子31が4個であるため、2個の端子部33は図1(a)において左側に設けられている。感受素子31の数が奇数の場合には、2個の端子部33を左右に分けて設ければよい。
 そして、感受部30の感受素子31、接続部32及び端子部33は、二層の軟磁性体層105(下層軟磁性体層105a、上層軟磁性体層105b)と反磁界抑制層106とにより一体に構成されている。軟磁性体層105及び反磁界抑制層106は、導電性であるので、一方の端子部33から他方の端子部33に、電流を流すことができる。
 なお、感受素子31の長さ及び幅、並列させる個数など上記した数値は一例であって、感受(計測)する磁界の値や用いる軟磁性体材料などによって変更してもよい。
 さらに、磁気センサ1は、感受素子31の長手方向の端部に対向して設けられたヨーク40を備える。ここでは、感受素子31の長手方向の両端部に対向してそれぞれが設けられた2個のヨーク40a、40bを備える。なお、ヨーク40a、40bをそれぞれ区別しない場合には、ヨーク40と表記する。ヨーク40は、感受素子31の長手方向の端部に磁力線を誘導する。このため、ヨーク40は磁力線が透過しやすい軟磁性体(軟磁性体層105)を含んで構成されている。この例では、感受部30及びヨーク40は、二層の軟磁性体層105(下層軟磁性体層105a、上層軟磁性体層105b)と反磁界抑制層106とにより構成されている。なお、感受素子31の長手方向に磁力線が十分透過する場合には、ヨーク40を備えなくてもよい。
 さらにまた、磁気センサ1は、感受部30及びヨーク40を挟んで長手方向に対向する2個の薄膜磁石20を備える。ここでは、間隙を介してヨーク40aに隣接して設けられる薄膜磁石20aと、間隙を介してヨーク40bに隣接して設けられる薄膜磁石20bとを備える。薄膜磁石20a、20bは、感受素子31の長手方向に磁界(後述するバイアス磁界)を印加する。薄膜磁石20a、20bは、硬磁性体(硬磁性体層103a、103b)で構成されている。また、この例では、薄膜磁石20a、20bは、それぞれ、平面形状が四角形(長方形)になっている。薄膜磁石20a、20bは、例えば長手方向の長さが約4mm、短手方向の長さが約2mmである。
 なお、薄膜磁石20a、20bをそれぞれ区別しない場合には、薄膜磁石20と表記する。同様に、硬磁性体層103a、103bをそれぞれ区別しない場合には、硬磁性体層103と表記する。
 以上のことから、磁気センサ1の大きさは、平面形状において数mm角である。なお、磁気センサ1の大きさは、他の値であってもよい。
 次に、図1(b)により、磁気センサ1の断面構造を詳述する。磁気センサ1は、非磁性の基板10上に、軟磁性体層105及び反磁界抑制層106からなる感受部30及びヨーク40と、硬磁性体層103からなる薄膜磁石20とが配置(積層)されて構成されている。言い換えると、磁気センサ1は、感受部30及びヨーク40と、薄膜磁石20とが、同一の基板10上に設けられている。また、磁気センサ1では、基板10と薄膜磁石20との間に、密着層101および制御層102が積層されている。付言すると、基板10と薄膜磁石20a(硬磁性体層103a)との間に、密着層101aおよび制御層102aが積層され、基板10と薄膜磁石20b(硬磁性体層103b)との間に、密着層101bおよび制御層102bが積層されている。
 基板10は、非磁性体からなる基板であって、例えばガラス、サファイアといった酸化物基板やシリコンなどの半導体基板、あるいは、アルミニウム、ステンレススティール、ニッケルリンメッキを施した金属等の金属基板等が挙げられる。
 感受部30における感受素子31は、長手方向に交差する方向、例えば直交する短手方向(幅方向)に一軸磁気異方性が付与されている。なお、長手方向に交差する方向とは、長手方向に対して45°を超えた角度を有すればよい。
 感受素子31を構成する軟磁性体(下層軟磁性体層105a、上層軟磁性体層105b)としては、Coを主成分とした合金に高融点金属Nb、Ta、W等を添加したアモルファス合金(以下では、感受素子31を構成するCo合金と表記する。)を用いるのがよい。感受素子31を構成するCo合金としては、CoNbZr、CoFeTa、CoWZr等が挙げられる。感受素子31を構成する軟磁性体(下層軟磁性体層105a、上層軟磁性体層105b)の厚さは、例えば、それぞれ0.2μm~2μmである。
 感受素子31を構成する反磁界抑制層106は、Ru又はRu合金により構成される。ここで、Ru又はRu合金からなる反磁界抑制層106の膜厚を0.4nm~1.0nm又は1.6nm~2.6nmの範囲とすることで、下層軟磁性体層105aと上層軟磁性体層105bとが反強磁性結合(AFC:Antiferromagnetically Coupled)構造となる。これにより、反磁界が抑制され、感受素子31の感度が向上する。
 密着層101は、基板10に対する制御層102の密着性を向上させるための層である。密着層101としては、Cr又はNiを含む合金を用いるのがよい。Cr又はNiを含む合金としては、CrTi、CrTa、NiTaなどが挙げられる。密着層101の厚さは、例えば5nm~50nmである。なお、基板10に対する制御層102の密着性に問題がなければ、密着層101を設けることを要しない。なお、本明細書においては、Cr又はNiを含む合金の組成比を示さない。以下同様である。
 制御層102は、硬磁性体層103からなる薄膜磁石20の磁気異方性が面内方向に発現しやすいように制御する層である。制御層102としては、Cr、Mo若しくはW又はそれらを含む合金(以下では、制御層102を構成するCr等を含む合金と表記する。)を用いるのがよい。制御層102を構成するCr等を含む合金としては、CrTi、CrMo、CrV、CrW等が挙げられる。また、制御層102を構成するCr等を含む合金は、bcc(body-centered cubic(体心立方格子))構造を有する。制御層102の厚さは、例えば10nm~300nmである。
 薄膜磁石20を構成する硬磁性体層103は、Coを主成分とし、Cr又はPtのいずれか一方又は両方を含む合金(以下では、薄膜磁石20を構成するCo合金と表記する。)を用いることがよい。薄膜磁石20を構成するCo合金としては、CoCrPt、CoCrTa、CoNiCr、CoCrPtB等が挙げられる。なお、Feが含まれていてもよい。硬磁性体層103の厚さは、例えば500nm~1500nmである。
 制御層102を構成するCr等を含む合金は、bcc(body-centered cubic(体心立方格子))構造を有する。よって、薄膜磁石20を構成する硬磁性体(硬磁性体層103)は、bcc構造のCr等を含む合金で構成された制御層102上において結晶成長しやすいhcp(hexagonal close-packed(六方最密充填))構造であるとよい。bcc構造上にhcp構造の硬磁性体層103を結晶成長させると、hcp構造のc軸が面内に向くように配向しやすい。よって、硬磁性体層103によって構成される薄膜磁石20が面内方向に磁気異方性を有するようになりやすい。なお、硬磁性体層103は結晶方位の異なる集合からなる多結晶であり、各結晶が面内方向に磁気異方性を有する。この磁気異方性は結晶磁気異方性に由来するものである。
 なお、制御層102を構成するCr等を含む合金及び薄膜磁石20を構成するCo合金の結晶成長を促進するために、基板10を100℃~600℃に加熱するとよい。この加熱により、制御層102を構成するCr等を含む合金が結晶成長しやすくなり、hcp構造を持つ硬磁性体層103が面内に磁化容易軸を持つように結晶配向されやすくなる。つまり、硬磁性体層103の面内に磁気異方性が付与されやすくなる。
 密着層101a、101b、制御層102a、102bおよび硬磁性体層103(薄膜磁石20a、20b)は、平面形状が四角形(図1(a)参照)になるように加工されている。
 そして、薄膜磁石20a、20bは、異なる磁極が、ヨーク40及び感受部30を介して長手方向に対向するようになっている。この例では、薄膜磁石20aのN極と、薄膜磁石20bのS極とが、ヨーク40及び感受部30を介して長手方向に対向するようになっている。付言すると、薄膜磁石20aのN極と薄膜磁石20bのS極と結ぶ線が、感受部30の感受素子31の長手方向に向くようになっている。なお、長手方向に向くとは、N極とS極とを結ぶ線と長手方向とのなす角度が0°以上且つ45°未満であることをいう。なお、N極とS極とを結ぶ線と長手方向とのなす角度は、小さいほどよい。
 磁気センサ1において、薄膜磁石20aのN極から出た磁力線は、ヨーク40aを介して感受素子31を透過し、ヨーク40bを介して薄膜磁石20bのS極へ到達する。つまり、薄膜磁石20a、20bは、感受素子31の長手方向に磁界を印加する。この磁界をバイアス磁界と呼ぶ。
 なお、薄膜磁石20a、20bのN極とS極とをまとめて両磁極と表記し、N極とS極とを区別しない場合には、磁極と表記する。なお、ここでは、図1(a)、(b)において薄膜磁石20aおよび薄膜磁石20bの右側をN極、左側をS極として説明するが、N極とS極とを入れ替えてもよい。
 なお、図1(a)に示すように、ヨーク40(ヨーク40a、40b)は、基板10の表面側から見た形状が、感受部30に近づくにつれて狭くなっていくように構成されている。これは、感受部30に磁力線を集めるためである。つまり、感受部30における磁界を強くして、感度の向上を図っている。なお、ヨーク40(ヨーク40a、40b)の感受部30に対向する部分の幅を狭くしなくてもよい。
 ここで、ヨーク40(ヨーク40a、40b)と感受部30との間隔は、例えば1μm~100μmであればよい。
 また、ヨーク40(ヨーク40a、40b)と薄膜磁石20(薄膜磁石20a、20b)との間隔は、例えば1μm~100μmとすることができる。ヨーク40(ヨーク40a、40b)と薄膜磁石20(薄膜磁石20a、20b)とは、互いに接触していてもよい。
(磁気センサ1の作用)
 続いて、本実施の形態の磁気センサ1の作用について説明する。図2は、磁気センサ1の感受部30における感受素子31の長手方向に印加された磁界と感受部30のインピーダンスとの関係を説明する図である。図2において、横軸が磁界H、縦軸がインピーダンスZである。感受部30のインピーダンスZは、2個の端子部33間に高周波電流を流して測定される。
 図2に示すように、感受部30のインピーダンスZは、感受素子31の長手方向に印加する磁界Hが大きくなるにしたがい大きくなる。しかし、印加する磁界Hが感受素子31の異方性磁界Hkより小さい範囲において、磁界Hの変化量ΔHに対してインピーダンスZの変化量ΔZが急峻な部分(ΔZ/ΔHが大きい)を用いれば、磁界Hの微弱な変化をインピーダンスZの変化量ΔZとして取り出すことができる。図2では、ΔZ/ΔHが大きい磁界Hの中心を磁界Hbとして示している。つまり、磁界Hbの近傍(図2で矢印で示す範囲)における磁界Hの変化量(ΔH)が高精度に測定できる。磁界Hbは、バイアス磁界と呼ばれることがある。
 ところで、磁気インピーダンス効果素子である感受素子と、感受素子にバイアス磁界を印加する薄膜磁石を備える磁気センサは、基板上に、絶縁層を介して薄膜磁石と感受部とを積層した構造を有する場合がある。図6(a)、(b)は、従来の磁気センサ3の一例を説明する図である。図6(a)は、磁気センサ3の平面図であり、図6(b)は、図6(a)におけるVIB-VIB線での断面図である。ここでは、図1(a)、(b)に示した磁気センサ1と同様の構成については同様の符号を用い、詳細な説明は省略する。
 図6(a)、(b)に示す磁気センサ3は、基板10上に、密着層101、制御層102、薄膜磁石21、絶縁層104がこの順に積層され、絶縁層104上に感受部30およびヨーク40が形成されている。すなわち、磁気センサ3では、感受部30(感受素子31)と薄膜磁石21とが、絶縁層104を挟んで対向している。
 そして、このような磁気センサ3では、感受部30に高周波電流が供給された場合に、導電性を有する薄膜磁石21と感受部30とに挟まれた絶縁層104が分極し、磁気センサ3がコンデンサとしてはたらく場合がある。
 そして、磁気センサ3では、感受部30に供給された高周波電流がコンデンサに使用される結果、磁界Hの変化量ΔHに対するインピーダンスZの変化量ΔZが低下する場合がある。
 これに対し、本実施の形態の磁気センサ1は、上述したように、薄膜磁石20を、感受部30と基板10との間に配置するのではなく、感受部30と同様に基板10上に配置している。言い換えると、本実施の形態の磁気センサ1は、薄膜磁石20と感受部30(感受素子31)とを、同一の基板10上に積層している。これにより、感受部30に対して高周波電流を流した場合に、高周波電流が効率的に使用され、磁界Hの変化量ΔHに対するインピーダンスZの変化量ΔZが低下することが抑制される。
 また、磁気センサ1では、薄膜磁石20と感受部30とを絶縁するための絶縁層が不要となるため、磁気センサ1の構成を簡素化することができる。
 なお、「基板10上に積層」とは、基板10上に対象となる層を直接積層する形態のほか、基板10上に他の層を介して対象となる層を積層する形態も含む。例えば、「薄膜磁石20を基板10上に積層」とは、基板10上に薄膜磁石20を直接積層する形態のほか、図1(b)に示したように、基板10上に、密着層101や制御層102を介して薄膜磁石20を積層する形態も含む。
(磁気センサ1の製造方法)
 次に磁気センサ1の製造方法の一例を説明する。
 図3(a)~(c)、図4(a)~(d)は、磁気センサ1の製造方法の一例を説明する図である。図3(a)~(c)、図4(a)~(d)は、磁気センサ1の製造方法における工程を示す。なお、図3(a)~(c)、図4(a)~(d)は、代表的な工程であって、他の工程を含んでいてもよい。そして、工程は、図3(a)~(c)、図4(a)~(d)の順に進む。図3(a)~(c)、図4(a)~(d)は、図1(a)のIB-IB線での断面図に対応する。
 基板10は、前述したように、非磁性材料からなる基板であって、例えばガラス、サファイアといった酸化物基板やシリコン等の半導体基板、あるいは、アルミニウム、ステンレススティール、ニッケルリンメッキを施した金属等の金属基板である。基板10には、研磨機などを用いて、例えば曲率半径Raが0.1nm~100nmの筋状の溝又は筋状の凹凸が設けられていてもよい。なお、この筋状の溝又は筋状の凹凸の筋の方向は、硬磁性体層103によって構成される薄膜磁石20のN極とS極とを結ぶ方向に設けられているとよい。このようにすることで、硬磁性体層103における結晶成長が、溝の方向へ促進される。よって、硬磁性体層103により構成される薄膜磁石20の磁化容易軸がより溝方向(薄膜磁石20のN極とS極とを結ぶ方向)に向きやすい。つまり、薄膜磁石20の着磁をより容易にする。
 ここでは、基板10は、一例として直径約95mm、厚さ約0.5mmのガラスとして説明する。磁気センサ1の平面形状が数mm角である場合、基板10上には、複数の磁気センサ1が一括して製造され、後に個々の磁気センサ1に分割(切断)される。図3(a)~(c)、図4(a)~(d)では、中央に表記する一個の磁気センサ1に着目するが、左右に隣接する磁気センサ1の一部を合わせて示す。なお、隣接する磁気センサ1間の境界を一点鎖線で示す。
 図3(a)に示すように、基板10を洗浄した後、基板10の一方の面(以下、表面と表記する。)上に、薄膜磁石20(薄膜磁石20a、20b)が形成される部分を開口とするフォトレジストによるパターン(レジストパターン)111を、公知のフォトリソグラフィ技術により形成する。
 次に、図3(b)に示すように、密着層101、制御層102及び硬磁性体層103を順に成膜(堆積)する。
 具体的には、Cr又はNiを含む合金である密着層101、Cr等を含む合金である制御層102、及び薄膜磁石20を構成するCo合金である硬磁性体層103を順に連続して成膜(堆積)する。この成膜は、スパッタリング法などにより行うことができる。それぞれの材料で形成された複数のターゲットに順に対面するように、基板10を移動させることで密着層101、制御層102及び硬磁性体層103が基板10上に順に積層される。前述したように、制御層102及び硬磁性体層103の形成では、結晶成長を促進するために、基板10を例えば100℃~600℃に加熱するとよい。
 なお、密着層101の成膜では、基板10の加熱を行ってもよく、行わなくてもよい。基板10の表面に吸着している水分などを除去するために、密着層101を成膜する前に、基板10を加熱してもよい。
 次に、図3(c)に示すように、レジストパターン111を除去するとともに、レジストパターン111上の密着層101、制御層102及び硬磁性体層103を除去(リフトオフ)する。
 次に、図4(a)に示すように、感受部30が形成される部分及びヨーク40(ヨーク40a、40b)が形成される部分を開口とするレジストパターン112を形成する。
 そして、図4(b)に示すように、感受素子31を構成するCo合金である下層軟磁性体層105a、Ru又はRu合金である反磁界抑制層106、及び感受素子31を構成するCo合金である上層軟磁性体層105bを順に成膜(堆積)する。軟磁性体層105(下層軟磁性体層105a、上層軟磁性体層105b)及び反磁界抑制層106の成膜は、例えばスパッタリング法を用いて行える。
 次に、図4(c)に示すように、レジストパターン112を除去するとともに、レジストパターン112上の軟磁性体層105及び反磁界抑制層106を除去(リフトオフ)する。これにより、軟磁性体層105及び反磁界抑制層106により構成される感受部30及びヨーク40(ヨーク40a、40b)が形成される。つまり、感受部30とヨーク40とが、軟磁性体層105及び反磁界抑制層106の成膜により同時に形成される。
 この後、軟磁性体層105には、感受部30における感受素子31の幅方向に一軸磁気異方性を付与する。この軟磁性体層105への一軸磁気異方性の付与は、例えば3kG(0.3T)の回転磁場中における400℃での熱処理(回転磁場中熱処理)と、それに引き続く3kG(0.3T)の静磁場中における400℃での熱処理(静磁場中熱処理)とで行える。この時、ヨーク40を構成する軟磁性体層105にも同様の一軸磁気異方性が付与される。しかし、ヨーク40は、磁気回路としての役割を果たせばよく、一軸磁気異方性が付与されなくてもよい。
 次に、薄膜磁石20を構成する硬磁性体層103を着磁する。硬磁性体層103に対する着磁は、静磁場中又はパルス状の磁場中において、硬磁性体層103の保磁力より大きい磁界を、硬磁性体層103の磁化が飽和するまで印加することで行える。これにより、間隙を介して感受部30に対向する硬磁性体層103の側面に、薄膜磁石20の磁極(薄膜磁石20aのN極、薄膜磁石20bのS極)が形成される。すなわち、着磁された硬磁性体層103は、薄膜磁石20になる。
 なお、上述した薄膜磁石20を構成する硬磁性体層103を成膜する工程、および硬磁性体層103を着磁する工程は、磁気異方性が面内方向に制御された薄膜磁石20を形成するための工程であるから、これらを併せて、薄膜磁石形成工程と呼ぶことがある。
 この後、図4(d)に示すように、基板10上に形成された複数の磁気センサ1を個々の磁気センサ1に分割(切断)する。つまり、図1(a)の平面図に示したように、平面形状が四角形になるように、基板10、密着層101、制御層102及び硬磁性体層103を切断する。この分割(切断)は、ダイシング法やレーザカッティング法などにより行える。
 なお、図3(b)の密着層101、制御層102及び硬磁性体層103を積層する工程の後、図4(d)の複数の磁気センサ1を個々の磁気センサ1に分割する工程の前に、基板10上において隣接する磁気センサ1の間の密着層101、制御層102及び硬磁性体層103を、平面形状が四角形(図1(a)に示した磁気センサ1の平面形状)になるようにエッチング除去してもよい。そして、露出した基板10を分割(切断)してもよい。
 なお、図3(a)~(c)、図4(a)~(d)に示した製造方法は、このような製造方法に比べ、工程が簡略化される。
 また、図3(b)に示した密着層101、制御層102及び硬磁性体層103を積層する工程の前に、図4(a)~(c)に示した軟磁性体層105および反磁界抑制層106を積層して感受部30およびヨーク40を形成する工程を先に行ってもよい。
 このようにして、磁気センサ1が製造される。なお、軟磁性体層105への一軸磁気異方性の付与及び/又は薄膜磁石20の着磁は、図4(d)の複数の磁気センサ1を個々の磁気センサ1に分割する工程の後に、磁気センサ1毎又は複数の磁気センサ1に対して行ってもよい。
 なお、制御層102を備えない場合には、硬磁性体層103の成膜後、800℃以上に加熱して結晶成長させることで、硬磁性体層103の面内に磁気異方性を付与することが必要となる。しかし、本実施の形態が適用される磁気センサ1のように、制御層102を備える場合には、制御層102により結晶成長が促進されるため、800℃以上のような高温による結晶成長を要しない。
 また、感受部30の感受素子31への一軸磁気異方性の付与は、上記の回転磁場中熱処理及び静磁場中熱処理で行う代わりに、感受素子31を構成するCo合金である軟磁性体層105の堆積時にマグネトロンスパッタリング法を用いて行ってもよい。マグネトロンスパッタリング法では、磁石(マグネット)を用いて磁界を形成し、放電によって発生した電子をターゲットの表面に閉じ込める(集中させる)。これにより、電子とガスとの衝突確率を増加させてガスの電離を促進し、膜の堆積速度(成膜速度)を向上させる。このマグネトロンスパッタリング法に用いられる磁石(マグネット)が形成する磁界により、軟磁性体層105の堆積と同時に、軟磁性体層105に一軸磁気異方性が付与される。このようにすることで、回転磁場中熱処理及び静磁場中熱処理で行う一軸磁気異方性を付与する工程が省略できる。
 次に、磁気センサ1の変形例を説明する。
(磁気センサ2)
 図5(a)、(b)は、変形例である磁気センサ2の一例を説明する図である。図5(a)は、平面図、図5(b)は、図5(a)のVB-VB線での断面図である。ここでは、図1(a)、(b)に示した磁気センサ1と同様の構成については同様の符号を用い、詳細な説明は省略する。
 図1(a)、(b)に示した磁気センサ1では、感受部30およびヨーク40が、反磁界抑制層106で挟んで設けられた二つの軟磁性体層105(下層軟磁性体層105a、上層軟磁性体層105b)により構成されている。また、図1(a)、(b)に示した磁気センサ1では、基板10上において、感受部30と薄膜磁石20(薄膜磁石20a、20b)との間に、ヨーク40(ヨーク40a、40b)が配置されている。
 これに対し、磁気センサ1の変形例である磁気センサ2では、図5(a)、(b)に示すように、感受部30およびヨーク41が、一層の軟磁性体層105により構成されている。
 また、磁気センサ2では、図5(a)、(b)に示すようにヨーク41(ヨーク41a、41b)は、感受素子31の長手方向の端部に対向する位置から薄膜磁石20(薄膜磁石20a、20b)の上面まで連続して形成されている。付言すると、磁気センサ2では、ヨーク41(41a、41b)は、薄膜磁石20(薄膜磁石20a、20b)の感受素子31に対向する側面、および上面に接触するように設けられている。
 磁気センサ2では、ヨーク41(ヨーク41a、41b)が図5(a)、(b)に示した形状を有することで、薄膜磁石20aのN極から出た磁力線がヨーク41aを介して感受素子31へ導かれる。また、薄膜磁石20aのN極から出て感受素子31を透過した磁力線がヨーク41bを介して薄膜磁石20bのS極へ到達する。
 なお、磁気センサ2を製造する場合、例えば、上述した磁気センサ1の製造方法のうち、図4(a)で示したレジストパターン112を形成する工程において、レジストパターン112の形状を、感受部30が形成される部分及びヨーク41(ヨーク41a、41b)が形成される部分を開口とするように変更する。
 また、図4(b)に示した下層軟磁性体層105a、上層軟磁性体層105b及び反磁界抑制層106を成膜する工程に代えて、一層の軟磁性体層105を成膜するように変更する。これにより、レジストパターン112の開口に対応する基板10上及び硬磁性体層103上に、一層の軟磁性体層105が成膜される。
 さらに、図4(d)に示した複数の磁気センサを複数の磁気センサに分割する工程において、基板10、密着層101、制御層102及び硬磁性体層103に加えて、硬磁性体層103上に成膜された軟磁性体層105を合わせて分割(切断)する。
 以上の工程により、図5(a)、(b)に示した磁気センサ2が製造される。
 なお、密着層101、制御層102、硬磁性体層103及び軟磁性体層105を積層する工程の後、複数の磁気センサ2を個々の磁気センサ2に分割する工程の前に、基板10上において隣接する磁気センサ1の間の密着層101、制御層102、硬磁性体層103及び軟磁性体層105を、平面形状が四角形(図5(a)に示した磁気センサ2の平面形状)になるようにエッチング除去してもよい。そして、露出した基板10を分割(切断)してもよい。
 また、磁気センサ2は、他の製造工程を用いて製造されてもよい。
 以上、本発明の実施の形態について説明したが、本発明は本実施の形態に限定されるものではない。本発明の趣旨に反しない限りにおいては様々な変形や組み合わせを行っても構わない。
1、2、3…磁気センサ、10…基板、20…薄膜磁石、30…感受部、31…感受素子、32…接続部、33…端子部、40、40a、40b、41、41a、41b…ヨーク、101…密着層、102…制御層、103…硬磁性体層、105…軟磁性体層、105a…下層軟磁性体層、105b…上層軟磁性体層、106…反磁界抑制層、111、112…レジストパターン、H…磁界、Z…インピーダンス

Claims (6)

  1.  非磁性の基板と、
     前記基板上に積層され、軟磁性体で構成され、長手方向と短手方向とを有し、当該長手方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する感受素子と、
     前記基板上に積層され、前記感受素子を挟んで前記長手方向に対向して配置され、当該感受素子の当該長手方向に磁界を印加する一対の薄膜磁石と
    を備える磁気センサ。
  2.  前記基板上に積層され、前記感受素子とそれぞれの前記薄膜磁石との間に設けられ、当該薄膜磁石により発生する磁束が当該感受素子を前記長手方向に透過するように誘導する一対のヨークをさらに備えることを特徴とする請求項1に記載の磁気センサ。
  3.  前記ヨークは、前記感受素子の前記長手方向に対向する前記薄膜磁石の磁極に接触していることを特徴とする請求項2に記載の磁気センサ。
  4.  前記ヨークは、前記感受素子とそれぞれの前記薄膜磁石との間から当該薄膜磁石上に連続して設けられていることを特徴とする請求項3に記載の磁気センサ。
  5.  前記感受素子は、Ru又はRu合金から構成される反磁界抑制層を挟んで反強磁性結合した複数の軟磁性体層から構成されることを特徴とする請求項1に記載の磁気センサ。
  6.  非磁性の基板上に、磁気異方性が面内方向に制御され、異なる磁極が間隙を介して対向する一対の薄膜磁石を形成する薄膜磁石形成工程と、
     前記基板上に、一対の前記薄膜磁石により発生する磁束が透過する方向と交差する方向に一軸磁気異方性を有し、磁気インピーダンス効果により磁界を感受する感受素子を含む感受部を形成する感受部形成工程と
    を含む磁気センサの製造方法。
PCT/JP2019/035034 2018-11-29 2019-09-05 磁気センサおよび磁気センサの製造方法 WO2020110407A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980071668.6A CN112930483A (zh) 2018-11-29 2019-09-05 磁传感器及磁传感器的制造方法
US17/290,813 US11525871B2 (en) 2018-11-29 2019-09-05 Magnetic sensor and magnetic sensor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018223623A JP7259293B2 (ja) 2018-11-29 2018-11-29 磁気センサおよび磁気センサの製造方法
JP2018-223623 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110407A1 true WO2020110407A1 (ja) 2020-06-04

Family

ID=70852879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035034 WO2020110407A1 (ja) 2018-11-29 2019-09-05 磁気センサおよび磁気センサの製造方法

Country Status (4)

Country Link
US (1) US11525871B2 (ja)
JP (1) JP7259293B2 (ja)
CN (1) CN112930483A (ja)
WO (1) WO2020110407A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395978B2 (ja) * 2019-11-14 2023-12-12 株式会社レゾナック 磁気センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176210A (ja) * 2000-12-11 2002-06-21 Alps Electric Co Ltd 磁気インピーダンス効果素子およびその製造方法
WO2007129705A1 (ja) * 2006-05-09 2007-11-15 Fujikura Ltd. 磁気デバイス
JP2008249406A (ja) * 2007-03-29 2008-10-16 Fujikura Ltd 磁気インピーダンス効果素子及びその製造方法
JP2015010902A (ja) * 2013-06-27 2015-01-19 愛知製鋼株式会社 磁気検査装置および磁気検査方法
JP2017053655A (ja) * 2015-09-07 2017-03-16 公益財団法人電磁材料研究所 薄膜磁界センサおよびアレイ型薄膜磁界センサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839647B2 (ja) 2000-07-21 2006-11-01 アルプス電気株式会社 磁気インピーダンス効果素子
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
JP2002092828A (ja) 2000-09-18 2002-03-29 Hitachi Ltd 磁気抵抗効果型薄膜磁気ヘッド。
JP2003031867A (ja) * 2001-07-17 2003-01-31 Hitachi Ltd 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子
JP3958947B2 (ja) * 2001-09-14 2007-08-15 アルプス電気株式会社 磁気検出素子及びその製造方法
DE10308640B4 (de) 2003-02-27 2006-06-08 Siemens Ag Magneto-resistives Schichtelement, insbesondere TMR-Zelle
US7705586B2 (en) * 2004-09-27 2010-04-27 Nxp B.V. Magnetic sensor for input devices
JP2007026514A (ja) 2005-07-14 2007-02-01 Hoya Corp 垂直磁気記録媒体、及びその製造方法
JP2008197089A (ja) * 2007-01-17 2008-08-28 Fujikura Ltd 磁気センサ素子及びその製造方法
JP6725300B2 (ja) 2016-04-07 2020-07-15 アルプスアルパイン株式会社 磁気センサおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176210A (ja) * 2000-12-11 2002-06-21 Alps Electric Co Ltd 磁気インピーダンス効果素子およびその製造方法
WO2007129705A1 (ja) * 2006-05-09 2007-11-15 Fujikura Ltd. 磁気デバイス
JP2008249406A (ja) * 2007-03-29 2008-10-16 Fujikura Ltd 磁気インピーダンス効果素子及びその製造方法
JP2015010902A (ja) * 2013-06-27 2015-01-19 愛知製鋼株式会社 磁気検査装置および磁気検査方法
JP2017053655A (ja) * 2015-09-07 2017-03-16 公益財団法人電磁材料研究所 薄膜磁界センサおよびアレイ型薄膜磁界センサ

Also Published As

Publication number Publication date
US11525871B2 (en) 2022-12-13
CN112930483A (zh) 2021-06-08
JP2020085766A (ja) 2020-06-04
JP7259293B2 (ja) 2023-04-18
US20210373093A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6885797B2 (ja) 磁気センサ及び磁気センサの製造方法
US11977135B2 (en) Magnetic sensor and magnetic sensor manufacturing method
WO2019111631A1 (ja) 磁気センサの製造方法及び磁気センサ集合体
WO2019065244A1 (ja) 磁気センサの製造方法及び磁気センサ集合体
WO2020110407A1 (ja) 磁気センサおよび磁気センサの製造方法
WO2021131401A1 (ja) 磁気センサ
WO2020240941A1 (ja) 磁気センサ
US20230009139A1 (en) Magnetic sensor and method for manufacturing magnetic sensor
WO2020075426A1 (ja) 磁気センサおよび磁気センサシステム
US20220390531A1 (en) Magnetic sensor
WO2020075425A1 (ja) 磁気センサおよび磁気センサの製造方法
US20220128634A1 (en) Magnetic sensor
WO2021131402A1 (ja) 磁気センサ
US20220099760A1 (en) Magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889357

Country of ref document: EP

Kind code of ref document: A1