WO2020238192A1 - 线圈绕组、线圈模组、发射装置、接收装置、系统和终端 - Google Patents

线圈绕组、线圈模组、发射装置、接收装置、系统和终端 Download PDF

Info

Publication number
WO2020238192A1
WO2020238192A1 PCT/CN2019/128685 CN2019128685W WO2020238192A1 WO 2020238192 A1 WO2020238192 A1 WO 2020238192A1 CN 2019128685 W CN2019128685 W CN 2019128685W WO 2020238192 A1 WO2020238192 A1 WO 2020238192A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wire
sub
coil winding
section
Prior art date
Application number
PCT/CN2019/128685
Other languages
English (en)
French (fr)
Inventor
朱勇发
陈晓威
曾智强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19930245.6A priority Critical patent/EP3809431A4/en
Publication of WO2020238192A1 publication Critical patent/WO2020238192A1/zh
Priority to US17/158,629 priority patent/US11887773B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • This application relates to the field of wireless charging technology, and in particular to a coil winding, a coil module, a transmitting device, a receiving device, a system and a terminal.
  • wireless chargers Devices that implement wireless charging technology are called wireless chargers.
  • the wireless charger is provided with a transmitting coil
  • the electronic device is provided with a receiving coil.
  • the alternating current carried by the transmitting coil in the wireless charger generates a magnetic field.
  • the magnetic coupling causes the receiving coil in the electronic device to generate a voltage, thereby Realize the charging of electronic devices.
  • the wireless charging coil Since wireless charging is based on the magnetic coupling between the transmitting coil and the receiving coil for energy transmission, there is a strong magnetic field between the transmitting coil and the receiving coil. In this case, if the width of the coil winding of the wireless charging coil (that is, the transmitting coil or the receiving coil) is wide, when the magnetic field passes through the coil winding, a large eddy current loss will be generated in the coil winding.
  • the wireless charging coil usually includes a coil winding and a slot.
  • the slot divides the coil winding into two small windings with a smaller width, because the width of each small winding is smaller than that before the division. The width of the coil winding can reduce the eddy current loss of the coil winding.
  • the present application provides a coil winding, a coil module, a transmitting device, a receiving device, a system and a terminal, which can solve the problem of low wireless charging efficiency in related technologies.
  • the technical solution is as follows:
  • a coil winding in a first aspect, includes an insulating layer, a first partial coil on one side of the insulating layer, and a second partial coil on the other side of the insulating layer.
  • the first partial coil includes a first section of wire
  • the second partial coil includes a second section of wire
  • the first section of wire has N slots
  • the first section of wire is cut by the N slots.
  • Divided into N+1 strands of the first sub-conductor the second section of the conductor also has N slots
  • the second segment of the conductor is also divided into N+1 strands of the second sub-conductor by the N slots.
  • Each slot extends along the extension direction of a corresponding section of wire
  • N is an integer greater than or equal to 1.
  • the N+1 first sub-conducting wires and the N+1 second sub-conducting wires are electrically connected one-to-one to form an N+1 pair of sub-conductors, and at least one cross structure is formed in the N+1 pair of sub-conducting wires
  • Each pair of sub-wires includes a first sub-wire and a corresponding second sub-wire.
  • the coil winding includes a multi-turn coil, and the coil winding is a conductive pattern wound by a conductor.
  • the conductive pattern can be a circular ring, an elliptical ring, etc., any of the multi-turn coils of the coil winding
  • One-turn coil is made of a conductor evenly wound at 360 degrees.
  • the coil winding is not a planar coil winding.
  • At least one cross structure is formed in the N+1 pair of sub-conductors.
  • at least two cross structures can also be formed in the N+1 pair of sub-conductors.
  • a pair of sub-conductors in the N+1 pair of sub-conductors and at least one other pair of sub-conductors form a cross structure, or each pair of sub-conductors in the N+1 pair of sub-conductors and at least another pair of sub-conductors
  • a cross structure is formed between each other, or each pair of sub-wires in the N+1 pair of sub-wires forms a cross structure with each other pair of sub-wires.
  • first section of wire and the second section of wire are disconnected (or discontinuous), and the first section of wire and the second section of wire are respectively located on both sides of the insulating layer.
  • N+1 first sub-wire in the first section of the wire and the N+1 second sub-wire in the second section of the wire they are connected one-to-one, and for the N+ formed after they are connected
  • each pair of sub-wires includes a first sub-wire and a second sub-wire that are not the same sub-wire, but are different sub-wires.
  • the projections of the at least two pairs of sub-conductors on the plane where the insulating layer is located cross.
  • the first section of wire and the second section of wire with the same number of slots in the coil winding form a series cross structure, that is, at least one cross structure is formed in the N+1 pair of sub-wires.
  • a series cross structure that is, at least one cross structure is formed in the N+1 pair of sub-wires.
  • the magnetic field passes through the slot between the N+1 pair of sub-conductors, at least two pairs of sub-conductors in the N+1 pair of sub-conductors are generated by a first sub-conductor in each pair of sub-conductors.
  • the direction of the induced current and the induced current generated by the corresponding second sub-wire are opposite, so they can at least partially cancel each other, thereby effectively reducing the circulating current loss in the coil winding and improving the wireless charging efficiency of the coil winding.
  • the projection of the first section of wire on the plane where the insulating layer is located and the projection of the second section of wire on the plane where the insulating layer is located form a continuous line pattern, and the length of the line pattern is greater than that of the line pattern.
  • the length of the longer wire of the first section of wire and the second section of wire is smaller than the sum of the length of the first section of wire and the second section of wire.
  • the projection of the first section of wire on the plane of the insulating layer is the first projection line
  • the projection of the second section of wire on the plane of the insulating layer is the second projection line
  • the projection lines are adjacent, and there is a joint between them.
  • the first projection line and the second projection line form a long continuous line pattern, which is no different from the projection of a long wire located in the plane coil winding on the plane of the insulating layer, where the plane coil winding is located
  • the plane is substantially parallel to the plane where the insulating layer is located, and the length of the long wire is approximately equal to the sum of the length of the first wire and the length of the second wire.
  • the first section of wire is divided into at least 3 strands of first sub-conductors, and the second section of wire is also divided into at least 3 strands of second sub-conductors wire.
  • the induced current generated by the magnetic field passing through the N slots in the first section of wire and the induced current generated by the magnetic field passing through the N slots in the second section of wire are opposite and equal in magnitude .
  • the first section of wire is adjacent to the second section of wire, and the first section of wire is a continuous g-turn coil in the multi-turn coil of the coil winding, and the second section of wire is the first section of the multi-turn coil of the coil winding. Outside the continuous g-turn coil, g is a positive number.
  • the coil winding includes a multi-turn coil, the width of at least one coil in the multi-turn coil is greater than the width of at least another coil, and the coil with the larger width has A slits, and the A slits
  • the slot divides the larger width coil into A+1 strands of sub-conductors, the smaller width coil has B slots, and the B slots divide the larger width coil into B+1 strands of sub-conductors, each One of the slots extends along the extension direction of the corresponding coil, A and B are both integers greater than or equal to 1, and A is greater than B. That is, coils with the same width have the same number of slots, and coils with a larger width have more slots.
  • the coil with the larger width is located outside the coil with the smaller width.
  • the width of the multi-turn coil gradually decreases.
  • one of the two-turn coils has a slot connected to one of the slots of the other coil, or this All the slots of the one-turn coil in the two-turn coil are not connected with all the slots of the other-turn coil.
  • one of the adjacent two-turn coils located in the coil winding and having a different number of slots is located on one side of the insulating layer, and the other turn of the coil is located on the other side of the insulating layer. That is, the two turns of the coil are located on different planes.
  • a coil module including an insulating layer, a first coil winding and a second coil winding, the first coil winding and the second coil winding are both the aforementioned coil windings, and the first coil winding is A coil winding and the second coil winding are respectively located on both sides of the insulating layer.
  • the first partial coil of the first coil winding and the second partial coil of the second coil winding are both located on one side of the insulating layer, and the second partial coil of the first coil winding is The first partial coils of the second coil winding are all located on the other side of the insulating layer.
  • the first partial coil of the first coil winding and the second partial coil of the second coil winding are located in the same plane coil and do not contact each other.
  • the first partial coil of the first coil winding and the second partial coil of the second coil winding can form a first planar coil winding.
  • the first partial coil of the first coil winding and the second partial coil of the second coil winding are located in the same plane, they are independent of each other. Therefore, the first plane coil winding is discontinuous, or can be said to be disconnected.
  • the second partial coil of the first coil winding and the first partial coil of the second coil winding are located on the same plane coil and do not contact each other.
  • the second partial coil of the first coil winding and the first partial coil of the second coil winding can form a second planar coil winding.
  • the second partial coil of the first coil winding and the first partial coil of the second coil winding are located in the same plane, they are independent of each other. Therefore, the second planar coil winding is discontinuous, or can be said to be disconnected.
  • the innermost coil of the first coil winding is located on one side of the insulating layer
  • the innermost coil of the second coil winding is located on the other side of the insulating layer
  • the end of the innermost coil of the second coil winding is connected to The ends of the innermost coil of the first coil winding are electrically connected.
  • a wireless charging and transmitting device comprising: a DC/AC conversion circuit, a control unit, and the aforementioned coil module.
  • the input end of the DC/AC conversion circuit is connected to a DC power supply; the DC/AC conversion circuit converts the DC signal input by the DC power supply into an AC signal under the control of the control unit, and transmits the AC signal To the coil module so that the coil module transmits the AC signal.
  • the wireless charging transmitter includes a coil module, and the circulating current loss of the coil module is less, so the wireless charging efficiency of the wireless charging transmitter can be improved.
  • the device further includes a matching circuit; the matching circuit is connected between the DC/AC conversion circuit and the coil module for resonating with the coil module.
  • the matching circuit can enable the AC signal output by the DC/AC conversion circuit to be efficiently transmitted to the coil module.
  • a wireless charging receiving device comprising: an AC/DC conversion circuit, a control unit, a load, and the aforementioned coil module.
  • the coil module is connected to the input end of the AC/DC conversion circuit; the coil module receives an AC signal and transmits the AC signal to the AC/DC conversion circuit; the AC/DC conversion circuit Under the control of the control unit, the AC signal is converted into a DC signal, and the DC signal is output to a load to supply power to the load.
  • the wireless charging receiving device includes a coil module, and the circulating current loss of the coil module is less, so the wireless charging efficiency of the wireless charging receiving device can be improved.
  • the device further includes a matching circuit; the matching circuit is connected between the coil module and the AC/DC conversion circuit for resonating with the coil module.
  • the matching circuit enables the AC signal output by the coil module to be efficiently transmitted to the AC/DC conversion circuit.
  • a wireless charging system in a fifth aspect, includes the above-mentioned wireless charging transmitting device and the above-mentioned wireless charging receiving device.
  • the wireless charging transmitting device is used to perform wireless charging for the wireless charging receiving device. .
  • the wireless charging system includes a wireless charging transmitter and a wireless charging receiver. Both the wireless charging transmitter and the wireless charging receiver include a coil module. The coil module has less circulating current loss, thus improving the The wireless charging efficiency of the wireless charging system.
  • a terminal including an AC/DC conversion circuit, a charging control unit, a working load circuit, and the aforementioned coil module;
  • the coil module is connected to the input end of the AC/DC conversion circuit
  • the coil module receives an AC signal and transmits the AC signal to the AC/DC conversion circuit; the AC/DC conversion circuit converts the AC signal into a DC signal under the control of the charging control unit , And output the DC signal to the working load circuit.
  • the terminal includes a coil module, and the circulating current loss of the coil module is less, so the wireless charging efficiency of the terminal can be improved.
  • the coil winding includes an insulating layer, a first partial coil on one side of the insulating layer, and a second partial coil on the other side of the insulating layer.
  • the first part of the coil includes a first section of wire
  • the second part of the coil includes a second section of wire.
  • the first section of wire has N slots
  • the first section of wire is divided into N+1 strands by the N slots.
  • Wire, the second section of the wire also has N slots
  • the second section of wire is also divided into N+1 second sub-conductors by the N slots it has, wherein each slot extends along the corresponding section of the wire
  • the direction extends, and N is an integer greater than or equal to 1.
  • the N+1 first sub-conducting wire and the N+1 second sub-conducting wire are electrically connected one-to-one to form an N+1 pair of sub-conductors. At least one cross structure is formed in the N+1 pair of sub-conducting wires.
  • the wire includes a first sub-wire and a corresponding second sub-wire. In this case, when the magnetic field passes through the slot between the N+1 pair of sub-conductors, at least two pairs of sub-conductors in the N+1 pair of sub-conductors are generated by a first sub-conductor in each pair of sub-conductors.
  • the direction of the induced current and the induced current generated by the corresponding second sub-wire are opposite, so they can at least partially cancel each other, thereby effectively reducing the circulating current loss in the coil winding and improving the wireless charging efficiency of the coil winding.
  • Figure 1 is a schematic structural diagram of a wireless charging coil provided by related technologies
  • Fig. 2 is a schematic diagram of induced current in a small winding provided by related art
  • FIG. 3 is a schematic diagram of the structure of the first type of coil winding provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a cross structure provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of a second type of coil winding provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a third type of coil winding provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a fourth type of coil winding provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fifth type of coil winding provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first coil module provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a second type of coil module provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a third coil module provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a fourth type of coil module provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a fourth type of coil module provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another cross structure provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a fifth coil module provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a sixth coil module provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a first wireless charging and transmitting device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a second wireless charging and transmitting device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a third wireless charging and transmitting device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a fourth wireless charging and transmitting device provided by an embodiment of the present application.
  • 21 is a schematic structural diagram of a first wireless charging receiving device provided by an embodiment of the present application.
  • 22 is a schematic structural diagram of a second wireless charging receiving device provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a third wireless charging receiving device provided by an embodiment of the present application.
  • 24 is a schematic structural diagram of a fourth wireless charging receiving device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a first terminal provided by an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a second terminal provided by an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a third terminal provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a fourth terminal provided by an embodiment of the present application.
  • 01 The first section of wire
  • 02 The second section of wire
  • 03 The third section of wire
  • 04 The fourth section of wire
  • 05 The fifth section of wire
  • 06 The sixth section of wire
  • 07 The seventh section of wire
  • 08 Eighth section of wire
  • 09 Ninth section of wire
  • 010 Tenth section of wire;
  • 171 DC power supply
  • 172 DC/AC conversion circuit
  • 173 control unit
  • 174 coil module
  • 175 matching circuit
  • 251 wireless charging transmitter
  • 252 wireless charging receiver
  • 261 Work load circuit
  • 262 AC/DC conversion circuit
  • 263 Charging control unit
  • 264 Coil module
  • 265 Matching circuit.
  • Fig. 3 is a schematic structural diagram of a coil winding provided by an embodiment of the present application. 3, the coil winding includes an insulating layer, a first partial coil on one side of the insulating layer, and a second partial coil on the other side of the insulating layer.
  • the first part of the coil includes a first section of wire 01, the first section of wire 01 has N slots, and the first section of wire 01 is divided into N+1 first sub-wires 11 by the N slots.
  • the second part of the coil includes a second section of wire 02, the second section of wire 02 also has N slots, and the second section of wire 02 is also divided into N+1 strands of second sub-wire 22 by the N slots.
  • N is an integer greater than or equal to 1. It is worth noting that every cutout of the first section of wire 01 extends along the extending direction of the first section of wire 01. Each slot of the second section of wire 02 extends along the extending direction of the second section of wire 02.
  • each pair of sub-wires includes a first sub-wire 11 and a corresponding second sub-wire 22.
  • the insulating layer is the insulating material layer between the first partial coil and the second partial coil, which is used to isolate the first partial coil and the second partial coil, and keep the other parts between the two except the part connected to each other. insulation.
  • the first partial coil and the second partial coil are in different planes. Therefore, in the embodiment of the present application, the coil winding is not a planar coil winding.
  • the coil winding includes a multi-turn coil
  • the coil winding is a conductive pattern wound by a conductor
  • the conductive pattern can be a circular ring, an elliptical ring, etc., any one turn of the multi-turn coil of the coil winding
  • the conductor is uniformly wound at 360 degrees.
  • every two adjacent turns of the multi-turn coil of the coil winding can be electrically connected, that is, the multi-turn coil of the coil winding is continuously wound, in particular, every two adjacent turns of the coil is continuously wound of. It is worth noting that the number of turns in the so-called "the coil winding includes a multi-turn coil" is usually much larger than two turns.
  • the coil winding can be arranged on a printed circuit board (Printed Circuit Board, PCB) or a flexible printed circuit board (Flexible Printed Circuit, FPC) or other circuit board.
  • the multi-turn coil of the coil winding may be formed by an etching method, an electroplating addition method, a die cutting process, or a laser process.
  • the first partial coil or the second partial coil may be continuous or not.
  • the coil winding has a total of 10 turns from the outermost turn to the innermost turn.
  • the outer 3 turns of the 10-turn coil belong to the first part of the coil, and the other 7 turns belong to the second part of the coil. At this time, whether it is the first part of the coil or the second part of the coil, it can be considered that they are all continuously.
  • the outer 3-turn coil and the inner 2-turn coil among the 10-turn coils belong to the first partial coil, and the other 5-turn coils belong to the second partial coil. At this time, the first partial coil is not continuous. The two parts of the coil are continuous.
  • both the first section of wire 01 and the second section of wire 02 are used to indicate a section of wire located in the coil winding, and the so-called section of wire may be located in a certain turn of the coil winding.
  • the length of the first section of wire 01 is the same as or substantially the same as the length of the longest slot of the first section of wire 01.
  • all the slots of the first section of wire 01 have the same length, or at least two of all the slots of the first section of wire 01 have different lengths.
  • the length of the second section of wire 02 is the same as or substantially the same as the length of the longest slot of the second section of wire 02.
  • all the slots of the second section of wire 02 have the same length, or at least two of all the slots of the second section of wire 02 have different lengths.
  • each slot refers to the section of wire cut by each slot, and each slot extends along the extension direction of the corresponding section of wire means that each slot extends along the extension direction of the section of wire cut by it, namely The extending direction of each slot is consistent with the extending direction of the corresponding section of wire.
  • each of the N slots of the first section of wire extends along the extension direction of the first section of wire, that is, the extension direction of each of the N slots of the first section of wire is the same.
  • each of the N slots of the second section of wire extends along the extension direction of the second section of wire, that is, of the N slots of the second section of wire
  • the extending direction of each slot is consistent with the extending direction of the second section of wire.
  • the slot in the coil winding can be formed by cutting, chemical etching, or the like.
  • the first section of wire 01 can be cut, chemically etched, etc., to obtain N cutting slots, which separate the first section of wire 01 into N+1 first sub-wires 11, at this time N+
  • a slot is formed between every two adjacent first sub-wires 11 in one strand of first sub-wire 11.
  • the second section of wire 02 can be cut, chemically etched, etc., to obtain N cuts, which separate the second section of wire 02 into N+1 second sub-wires 22, at this time N In the +1 second sub-wire 22, there is a slot between every two adjacent second sub-wires 22.
  • extension direction of each strand of the first sub-wire 11 is the same (or the same) as the extension direction of the first section of the wire 01
  • extension direction of each strand of the second sub-wire 22 is the same as that of the second section of the wire 02.
  • the extension direction is the same (or the same).
  • a second sub-wire 22 corresponding to each first sub-wire 11 refers to a second sub-wire 22 electrically connected to this first sub-wire 11.
  • Each strand of the first sub-wire 11 and the corresponding strand of the second sub-wire 22 is a pair of sub-wires, then the N+1 strands of the first sub-wire 11 and the N+1 strands of the second sub-wire 22 can form N+1 pairs Sub wire.
  • At least one cross structure is formed in the N+1 pairs of sub-conductors.
  • At least two crossing structures may also be formed in the N+1 pair of sub-conducting wires.
  • a pair of sub-conductors in the N+1 pair of sub-conductors and at least another pair of sub-conductors form a cross structure.
  • each of the N+1 pairs of sub-conductors forms a cross structure with at least one other pair of sub-conductors.
  • each pair of sub wires in the N+1 pair of sub wires forms a cross structure with each other pair of sub wires.
  • FIG 2 it shows the structure state of the coil winding when there is no cross structure.
  • the multi-strand sub-wires in the left half of the small winding and the multi-strand sub-wires in the right half are connected one-to-one. That is, each sub-conductor in the left half and the corresponding sub-conductor in the right half are actually continuous (or uninterrupted), in other words, they actually belong to the same sub-conductor, but they belong to the same sub-conductor. different parts. In this case, the multiple sub-wires in the coil winding do not cross each other.
  • FIG. 3 it shows the structure state of the coil winding described in the embodiment of the present application.
  • the first section of wire 01 and the second section of wire 02 are disconnected (or discontinuous), and the first section of wire 01 and the second section of wire 02 are respectively located on both sides of the insulating layer.
  • the N+1 first sub-wire 11 in the first section of wire 01 and the N+1 second sub-wire 22 in the second section of wire 02 although they are also connected one-to-one
  • each pair of sub-wires contains a first sub-wire 11 and a second sub-wire 22 that are not the same
  • the wires are different sub-wires.
  • the projections of the at least two pairs of sub-conductors on the plane where the insulating layer is located cross.
  • one end of the N+1 first sub-wire 11 is separated from each other, and this end of the N+1 first sub-wire 11 and one end of the N+1 second sub-wire 22 are electrically connected. connection.
  • the other end of the N+1 first sub-wire 11 can be electrically connected through other parts of the coil winding except the first section of wire 01 and the second section of wire 02, or it can be connected to the coil winding through the coil winding
  • the wires connected between the lead-in ends or lead-in ends of the coil module are electrically connected, or the coil module can be electrically connected through the connection terminals of the external circuit.
  • one end of the N+1 second sub-wire 22 is separated from each other, and this end of the N+1 second sub-wire 22 and one end of the N+1 first sub-wire 11 are electrically connected one to one.
  • the other end of the N+1 second sub-wire 22 can be electrically connected through the other part of the coil winding except the first section of wire 01 and the second section of wire 02, or through the coil winding and the coil winding
  • the wires connected between the lead-in ends or lead-in ends of the coil module are electrically connected, or the coil module can be electrically connected through the connection terminals of the external circuit.
  • any one of the first sub-conductors 11 of the N+1 strands of first sub-conductors 11 there is a unique second sub-conductor 22 and its Corresponding.
  • the N+1 first sub-wire 11 and the N+1 second sub-wire 22 are electrically connected one to one.
  • each pair of sub-wires in the N+1 pair of sub-wires can be electrically connected through at least one first via.
  • the at least one first via hole can penetrate a first sub-wire 11 and a second sub-wire 22 in the pair of sub-wires, and this first sub-wire 11
  • the second sub-wire 22 is electrically connected through the at least one first via.
  • each pair of sub-conductors in the N+1 pair of sub-conductors can be electrically connected by a pulse heating reflow soldering (hot bar) process or a laser welding process.
  • hot bar pulse heating reflow soldering
  • the coil winding may further include N+1 first connecting portions.
  • the N+1 first connecting parts are not electrically connected to each other.
  • Each pair of sub-wires in the N+1 pair of sub-wires can be electrically connected through a single first connecting portion.
  • the N+1 first sub-conducting wire 11 and the N+1 second sub-conducting wire 22 are one-to-one, the N+1 first sub-conducting wire 11 (or N+1 second The sub-wire 22) and the N+1 first connection portions are also one-to-one.
  • each strand of the first sub-wire 11 uniquely corresponds to a strand of the second sub-wire 22, and uniquely corresponds to a first connecting portion.
  • the electrical connection is achieved through at least one first via, the electrical connection is achieved through a pulse heating reflow soldering process or a laser welding process, or the electrical connection is achieved through the first connection part, it is only an electrical connection.
  • the specific means of connection For each pair of sub-conductors, it can choose any of these three electrical connection means, so the electrical connection means of the N+1 pair of sub-conductors can only include these three electrical connection means One of these can also include two of these three electrical connection means, and naturally can also include these three electrical connection means at the same time.
  • the current flowing into the coil winding from the external circuit or the current generated by the coil winding itself can first flow into the N+1 first sub-conducting wires 11, and then flow from the N+1 first sub-conducting wires 11 to N
  • the +1 second sub-conductor 22 finally flows out of the coil winding.
  • the current flowing into the coil winding from an external circuit or the current generated by the coil winding itself can first flow into the N+1 second sub-conductor 22, and then flow from the N+1 second sub-conductor 22 to the N+1
  • the first sub-wire 11 finally flows out of the coil winding.
  • first section of wire 01 and the second section of wire 02 with the same number of slots in the coil winding form a series cross structure, that is, at least one cross structure is formed in the N+1 pair of sub-wires.
  • one strand of the first sub-conductor 11 in each pair of sub-conductors in at least two pairs of sub-conductors in the N+1 pair of sub-conductors generates
  • the direction of the induced current is opposite to the direction of the induced current generated by the corresponding second sub-wire 22, so they can at least partially cancel each other, thereby effectively reducing the circulating current loss in the coil winding and improving the wireless charging efficiency of the coil winding.
  • the projection of the first section of wire 01 in the plane of the insulating layer and the projection of the second section of wire 02 on the plane of the insulating layer form a continuous line pattern, and the length of the line pattern is greater than that of the first section of wire 01 and the second section
  • the length of the longer wire in the wires 02 is smaller than the sum of the lengths of the first section of wires 01 and the second section of wires 02.
  • the projection of the first section of wire 01 in the plane of the insulating layer is the first projection line
  • the projection of the second section of wire 02 on the plane of the insulating layer is the second projection line
  • the first projection line and The second projection lines are adjacent, and there is a joint between them.
  • the area corresponding to the junction in the first segment of wire 01 is the first connection area
  • the area corresponding to the junction in the second segment of wire 02 is the second connection area.
  • first projection line and the second projection line form a long continuous line pattern.
  • the line pattern and the projection of a section of long wire in the plane coil winding in the plane of the insulating layer wherein the plane of the plane coil winding is substantially parallel to the plane of the insulating layer, and the section of long wire
  • the length of is roughly equal to the sum of the length of the first section of wire and the length of the second section of wire.
  • N is an integer greater than or equal to 2
  • the first section of wire 01 is divided into at least 3 strands of first sub-conductors 11, and the second section of wire 02 is also divided into at least 3 strands of second Sub-wire 22.
  • the induced current generated by the magnetic field passing through the N slots in the first section of wire 01 and the induced current generated by the magnetic field passing through the N slots in the second section of wire 02 are opposite in direction and equal in magnitude.
  • the equal size here should mean that the size is substantially equal or approximately equal. For example, if the difference between the magnitudes of the two induced currents is less than or equal to 10%, they can be considered to be large. equal. In other words, the equal size should be interpreted according to the conventional understanding of those skilled in the art, rather than absolute equal.
  • the intensity of the magnetic field passing through the N slots in the first section of wire 01 is not exactly the same as the intensity of the magnetic field passing through the N slots in the second section of wire 02, which is caused by uneven magnetic field distribution.
  • the area of N slots in the first section of wire 01 and the area of N slots in the second section of wire 02 can be designed to adjust their respective magnetic field generation The induced current.
  • the first section of wire 01 and the second section of wire 02 are adjacent, and the first section of wire 01 is the continuous g-turn coil in the multi-turn coil of the coil winding, and the second section of wire 02 is the multi-turn coil of the coil winding.
  • g is a positive number.
  • the outermost turn coil and the second outer turn coil of the coil winding both have 2 slots, that is, the number of slots for the two outer turns of the coil winding is the same, then the coil winding
  • the intersection of the outermost turn coil and the second outer turn coil constructs a series cross structure, that is, a series cross structure is constructed at the intersection of the two turns of the coil.
  • the first piece of wire 01 is the outermost turn of the coil winding.
  • the two-section wire 02 is the secondary outer turn coil of the coil winding.
  • the width of at least one coil of the multi-turn coil included in the coil winding is greater than the width of at least another coil, and the coil with the larger width has A slots, and the A slot has a smaller width
  • the large coil is divided into A+1 strands of sub-conductors, the smaller width coil has B slots, and the B slots divide the smaller width coil into B+1 strands of sub-conductors, where each slot is along the corresponding coil A and B are both integers greater than or equal to 1, and A is greater than B. That is, coils with the same width have the same number of slots, and coils with a larger width have more slots.
  • the outer two turns of the coil winding have the same width, and the two turns of the coil each have two slits, and the two slits divide the two turns of the coil into three sub-wires.
  • the width of the outermost coil of the coil winding is greater than the width of the innermost coil, the innermost coil of the coil winding has a slot, and this slot divides the innermost coil of the coil winding into two sub-wires .
  • the coil with the larger width is located outside the coil with the smaller width.
  • the width of the multi-turn coil of the coil winding gradually decreases.
  • one of the two-turn coils has a slot connected to one of the slots of the other coil, or this All the slots of the one-turn coil in the two-turn coil are not connected with all the slots of the other-turn coil.
  • the secondary outer turn coil has two slots, the secondary inner turn coil has one slot, then the secondary inner turn coil One of the slots is connected to one of the two slots of the secondary outer turn coil.
  • the secondary outer turn coil has two slots, and the secondary inner turn coil has one slot.
  • One slot of the inner turn coil and any one of the two slots of the second outer turn coil are not connected.
  • one of the adjacent two-turn coils with different numbers of slots in the coil winding is located on one side of the insulating layer, and the other turn is located on the other side of the insulating layer. That is, the two turns of the coil are located on different planes.
  • the two turns of the coil can be electrically connected through at least one second via, the at least one second via penetrates the two turns of the coil, and the two turns of the coil pass through the at least one The second via realizes electrical connection.
  • the two-turn coil can also be electrically connected through a hot bar process or a laser welding process.
  • the coil winding may further include a second connecting portion, the second connecting portion is located between the two turns of coils, and the two turns of coils are electrically connected through the second connecting portion.
  • the secondary outer turn coil and the secondary inner turn coil in the coil winding are adjacent, and the secondary outer turn coil has two slots, and the secondary inner turn coil has one slot,
  • the secondary outer turn coil is located on one side of the insulating layer, and the secondary inner turn coil is located on the other side of the insulating layer.
  • the first part of the coil includes a third section of wire 03
  • the second section of coil includes a fourth section of wire 04
  • the third section of wire 03 has M slots
  • the third section of wire 03 has M
  • the grooves are divided into M+1 strands of third sub-conducting wires 33
  • the fourth section of wire 04 also has M grooves
  • the fourth section of wire 04 is also divided into M+1 strands of fourth sub-wires by the M grooves. 44.
  • each slot extends along the extension direction of a corresponding section of wire
  • M is an integer greater than or equal to 1
  • M and N are different.
  • the M+1 third sub-wire 33 and the M+1 fourth sub-wire 44 are electrically connected in a one-to-one manner to form an M+1 pair of sub-wires.
  • the M+1 pair of sub-wires forms at least one cross structure, and each The pair of sub-wires includes a third sub-wire 33 and a corresponding fourth sub-wire 44.
  • the coil winding can include not only the first section of wire 01 and the second section of wire 02 with the same number of slots, but also the third section of wire 03 and the fourth section of wire 04 with the same number of slots, and
  • the number of slots for the first section of wire 01 is different from the number of slots for the third section of wire 03.
  • the third section of wire 03 and the fourth section of wire 04 with the same number of slots in the coil winding form a series cross structure, that is, at least one cross structure is formed in the M+1 pair of sub-wires.
  • the coil winding includes an insulating layer, a first partial coil on one side of the insulating layer, and a second partial coil on the other side of the insulating layer.
  • the first part of the coil includes a first section of wire 01
  • the second section of coil includes a second section of wire 02.
  • the first section of wire 01 has N slots, and the first section of wire 01 is divided into N+1 by the N slots.
  • the first sub-wire 11 and the second-section conductor 02 also have N slots, and the second-section conductor 02 is also divided into N+1 second sub-conductors 22 by the N slots. All extend along the extension direction of the corresponding section of wire, and N is an integer greater than or equal to 1.
  • the N+1 first sub-conducting wires 11 and the N+1 second sub-conducting wires 22 are electrically connected one-to-one to form an N+1 pair of sub-conductors.
  • the N+1 pair of sub-conductors form at least one cross structure, and each The pair of sub-wires includes a first sub-wire 11 and a corresponding second sub-wire 22.
  • one strand of the first sub-conductor 11 in each pair of sub-conductors in at least two pairs of sub-conductors in the N+1 pair of sub-conductors generates
  • the direction of the induced current is opposite to the direction of the induced current generated by the corresponding second sub-wire 22, so they can at least partially cancel each other, thereby effectively reducing the circulating current loss in the coil winding and improving the wireless charging efficiency of the coil winding.
  • the embodiment of the present application also provides a coil module, which will be described below.
  • the coil module includes the coil module shown in any one of FIGS. 1 to 8 above.
  • the coil module may further include lead-in ends and lead-out ends connected to an external circuit.
  • the external circuit can provide electrical energy to the coil winding through the lead-in end and the lead-out end, or the coil winding can output electrical energy to the external circuit through the lead-in end and the lead-out end.
  • the coil module may include a first wire and a second wire, one end of the first wire is the first end of the coil module, and the other end of the first wire is connected to the innermost coil of the coil winding. End connection; the first end of the second wire is the second end of the coil module, the other end of the second wire is connected to the end of the outermost turn of the coil winding; the first end of the coil module is connected to One of the second ends of the coil module is a lead-out end, and the other is a lead-out end.
  • the coil module may further include a magnetic conductive sheet, and the coil winding is located on the magnetic conductive sheet and is insulated from the magnetic conductive sheet.
  • the magnetic conductive sheet may be located under the coil winding.
  • the magnetic conductive sheet has a magnetic conductive function, which can increase the inductance of the coil winding, and at the same time prevent the magnetic field from leaking under the magnetic conductive sheet, and has a good shielding effect on the space below the magnetic conductive sheet.
  • the magnetic conductive sheet may be composed of one or more magnetic materials such as ferrite, amorphous, nanocrystalline, and metal powder, which is not limited in the embodiment of the present application.
  • the coil module may include an insulating layer, a first coil winding 1 and a second coil winding 2, both of which are The coil windings are as shown in Figs. 1 to 8, and the first coil winding 1 and the second coil winding 2 are respectively located on both sides of the insulating layer.
  • the first partial coil 01 of the first coil winding 1 and the second partial coil 02 of the second coil winding 2 are both located on one side of the insulating layer, and the second partial coil 02 and the second coil of the first coil winding 1 The first part of the coil 01 of the winding 2 is located on the other side of the insulating layer.
  • the first partial coil 01 of the first coil winding 1 and the second partial coil 02 of the second coil winding 2 may be located in the same plane coil and not contact each other.
  • the first partial coil 01 of the first coil winding 1 and the second partial coil 02 of the second coil winding 2 can form a first planar coil winding.
  • the first partial coil 01 of the first coil winding 1 and the second partial coil 02 of the second coil winding 2 are in the same plane, they are independent of each other. Therefore, the first plane coil winding is not continuous, or it can be said to be disconnected.
  • the second partial coil 02 of the first coil winding 1 and the first partial coil 01 of the second coil winding 2 may be located in the same plane coil without contacting each other.
  • the second partial coil 02 of the first coil winding 1 and the first partial coil 01 of the second coil winding 2 can form a second planar coil winding.
  • the second partial coil 02 of the first coil winding 1 and the first partial coil 01 of the second coil winding 2 are in the same plane, they are independent of each other. Therefore, the second planar coil winding is not continuous, or it can be said to be disconnected.
  • connection structure between the first coil winding 1 and the second coil winding 2 are described below.
  • the connection structure between the first coil module 1 and the second coil module 2 may include the following possible structures.
  • the first possible structure referring to Figures 9-11, the innermost turn of the first coil winding 1 is located on one side of the insulating layer, and the innermost turn of the second coil winding 2 is located on the other side of the insulating layer.
  • the end of the innermost coil of the second coil winding 2 and the end of the innermost coil of the first coil winding 1 are electrically connected.
  • the insulating layer is an insulating material layer between the innermost coil of the first coil winding 1 and the innermost coil of the second coil winding 2, and is used to isolate the innermost coil of the first coil winding 1 from The innermost turn of the second coil winding 2 keeps insulation between the two except the part connected to each other. At this time, the innermost coil of the first coil winding 1 and the innermost coil of the second coil winding 2 are in different planes.
  • the current flowing into the coil module from an external circuit or the current generated by the coil module itself can first flow into the first coil winding 1, and then flow into the second coil winding 2 through the innermost coil of the first coil winding 1. In the innermost coil, it finally flows out from the second coil winding 2.
  • the current flowing into the coil module from an external circuit or the current generated by the coil module itself can first flow into the second coil winding 2, and then flow into the first coil winding 1 through the innermost coil of the second coil winding 2. In the innermost coil, it finally flows out from the first coil winding 1.
  • the first coil winding 1 has only one end of the innermost coil
  • the second coil winding 2 has only one end of the innermost coil
  • the second coil winding 2 has only one end.
  • the end of the turn coil is directly electrically connected with the end of the innermost turn of the first coil winding 1.
  • the end of the innermost coil of the second coil winding 2 is directly electrically connected to the end of the innermost coil of the first coil winding 1 in a manner that is electrically connected to the first sub-wire 11 and the second sub-wire. 22.
  • the electrical connection is implemented in a similar manner, which is not repeated in the embodiment of the present application.
  • the innermost coil of the first coil winding 1 includes a fifth section of wire 05, the fifth section of wire 05 has C slots, and the fifth section of wire 05 is covered by it.
  • the C slots are divided into C+1 fifth sub-wire 55.
  • the ends of the C+1 fifth sub-wire 55 are the ends of the innermost coil of the first coil winding 1, and C is greater than or equal to An integer of 1.
  • the innermost coil of the second coil winding 2 includes a sixth section of wire 06, the sixth section of wire 06 has C slots, and the sixth section of wire 06 is divided into C+1 strands by the C slots it has.
  • the ends of the sub-wire 66 and the C+1 sixth sub-wire 66 are both ends of the innermost coil of the second coil winding 2.
  • the C+1 fifth sub-wire 55 and the C+1 sixth sub-wire 66 are electrically connected one-to-one to form a C+1 pair of sub-wires.
  • the C+1 pair of sub-wires form at least one cross structure.
  • the pair of sub-wires includes a fifth sub-wire 55 and a corresponding sixth sub-wire 66.
  • the fifth section of wire 05 in the first coil winding 1 and the sixth section of wire 06 in the second coil winding 2 form a series cross structure, that is, the C+1 pair of sub-wires form at least one cross structure.
  • the C+1 pair of sub-wires form at least one cross structure.
  • one fifth sub-wire 55 in each pair of sub-conductors in at least two pairs of sub-conductors in the C+1 pair of sub-conductors is generated
  • the direction of the induced current is opposite to the direction of the induced current generated by the corresponding sixth sub-wire 66, so they can at least partially cancel each other, thereby effectively reducing the circulating current loss in the coil module and improving the wireless charging of the coil module effectiveness.
  • C is different from N, that is, a section of wire in the innermost coil of the first coil winding 1 and a section of wire in the innermost coil of the second coil winding 2 can form a series cross structure, the first The two sections of wires in the outer coil of the coil winding 1 can be configured in a series crossing structure, and the two sections of wires in the outer coil of the second coil winding 2 can be configured in a series crossing structure. In this way, the circulating current loss in the coil module can be further reduced.
  • the coil module may also include C+1 third connecting parts L3. There is no electrical connection between the C+1 third connecting parts L3, and C is greater than or An integer equal to 1.
  • the innermost coil of the first coil winding 1 is located on one side of the insulating layer, and the innermost coil of the second coil winding 2 is located on the other side of the insulating layer.
  • the innermost coil of the first coil winding 1 includes a seventh section of wire 07 and an eighth section of wire 08. Both the seventh section of wire 07 and the eighth section of wire 08 have C slots, and the seventh section of wire 07 is covered by it.
  • the C slots are divided into C+1 seventh sub-conducting wires 77, and the eighth section of wire 08 is divided into C+1 eighth sub-conductors 88 by the C slots.
  • the innermost coil of the second coil winding 2 includes a ninth section of wire 09 and a tenth section of wire 010. Both the ninth section of wire 09 and the tenth section of wire 010 have C slots, and the ninth section of wire 09 is covered by its
  • the C slots are divided into C+1 ninth sub-wires 99, and the tenth wire 010 is divided into C+1 tenth sub-wires 100 by the C slots.
  • the C+1 seventh sub-wire 77 and the C+1 ninth sub-wire 99 are one-to-one in parallel
  • the C+1 eighth sub-wire 88 and the C+1 tenth sub-wire 100 are one-to-one. in parallel.
  • the j-th third connecting portion L3 is located between the j-th seventh sub-wire 77 and the j-th eighth sub-wire 88, and the j-th seventh sub-wire 77 and the j-th eighth sub-wire 88 pass through the j-th
  • the third connecting portion L3 is electrically connected; or, the j-th third connecting portion L3 is located between the j-th ninth sub-wire 99 and the j-th tenth sub-wire 100, and the j-th ninth sub-wire 99 and the j-th
  • the j-strand tenth sub-wire 100 is electrically connected through the j-th third connecting portion L3, where j is an integer greater than or equal to 1 and less than or equal to C+1.
  • Each group of sub-conductors includes a seventh sub-conductor 77, and the seventh sub-conductor 77 in parallel.
  • the innermost coil of the first coil winding 1 and the innermost coil of the second coil winding 2 have a parallel cross structure.
  • C is different from N, that is, the innermost coil of the first coil winding 1 and the innermost coil of the second coil winding 2 can be constructed in a parallel cross structure, and the outermost coil of the first coil winding 1
  • the two sections of wires in the coil can be constructed in a series cross structure, and the two sections of wires in the outer coil in the second coil winding 2 can be constructed in a series cross structure. In this way, the circulating current loss in the coil module can be further reduced.
  • the current flowing into the coil module from an external circuit or the current generated by the coil module itself can first flow into the first coil winding 1, and then flow into the innermost coil of the first coil winding 1 and the second coil at the same time.
  • the innermost coil of the coil winding 2 finally flows out from the second coil winding 2.
  • the current flowing into the coil module from an external circuit or the current generated by the coil module itself can first flow into the second coil winding 2, and then flow into the innermost coil of the second coil winding 2 and the first coil winding 1 at the same time.
  • the innermost turn of the coil finally flows out from the first coil winding 1.
  • the j-th seventh sub-wire 77 when the j-th seventh sub-wire 77 is connected in parallel with the j-th ninth sub-wire 99, the j-th seventh sub-wire 77 and the j-th ninth sub-wire 99 can be connected in parallel through at least two vias.
  • the j-th eighth sub-wire 88 and the j-th tenth sub-wire 100 are connected in parallel, the j-th eighth sub-wire 88 and the j-th tenth sub-wire 100 may also be connected in parallel through at least two vias.
  • the innermost turn coil in the first coil winding 1 and the innermost turn coil in the second coil winding 2 form a parallel cross structure, that is, the C+1 group of sub-conductors form at least A cross structure.
  • the direction of the induced current generated by a ninth sub-wire 99 is opposite to the direction of the induced current I E generated by the corresponding eighth sub-wire 88 and a tenth sub-wire 100, so they can at least partially cancel each other, which can effectively
  • the circulating current loss in the first coil winding 1 and the second coil winding 2 is reduced, and the wireless charging efficiency of the coil module is improved.
  • the outermost turn of the first coil winding 1 and the outermost turn of the second coil winding 2 are also A parallel cross structure.
  • the parallel cross structure formed between the outermost coil of the first coil winding 1 and the outermost coil of the second coil winding 2 is similar to the second possible structure described above. No longer. In this way, the circulating current loss in the first coil winding 1 and the second coil winding 2 can be further effectively reduced, and the wireless charging efficiency of the coil module can be improved.
  • the coil module may also include an lead-in end and a lead-out end connected to an external circuit.
  • the external circuit can provide electric energy to the first coil winding 1 and the second coil winding 2 through the lead-in end and the lead-out end, or the first coil winding 1 and the second coil winding 2 can pass the lead-in end and The lead-out terminal outputs electric energy to the external circuit.
  • the coil module may include a first wire D1 and a second wire D2, one end of the first wire D1 is the first end of the coil module, and the other of the first wire D1 One end is connected to the end of the outermost turn of the first coil winding 1; the first end of the second wire D2 is the second end of the coil module, and the other end of the second wire D2 is connected to the end of the second coil winding 2.
  • the end of the outer-turn coil or the end of the secondary outer-turn coil is connected; one of the first end of the coil module and the second end of the coil module is a lead-out end, and the other is a lead-out end.
  • the coil module further includes a magnetic conductive sheet 3; the first coil winding 1 and the second coil winding 2 are both located on the magnetic conductive sheet 3 and insulated from the magnetic conductive sheet 3.
  • the magnetic conductive sheet 3 may be located below the first coil winding 1 and the second coil winding 2.
  • the magnetic sheet 3 has a magnetic effect, which can increase the inductance of the first coil winding 1 and the second coil winding 2, and at the same time prevent the magnetic field from leaking under the magnetic sheet 3, and play a good role in the space below the magnetic sheet 3. Shielding effect.
  • the magnetic conductive sheet 3 may be composed of one or more magnetic materials such as ferrite, amorphous, nanocrystalline, and metal powder, which is not limited in the embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a wireless charging and transmitting device provided by an embodiment of the present application.
  • the wireless charging transmitter includes: a DC/AC conversion circuit 172, a control unit 173, and the aforementioned coil module 174;
  • the input end of the DC/AC conversion circuit 172 is connected to the DC power supply 171; the DC/AC conversion circuit 172 converts the DC signal input by the DC power supply 171 into an AC signal under the control of the control unit 173, and transmits the AC signal to the coil module 174, so that the coil module 174 transmits the AC signal.
  • the output terminal of the DC/AC conversion circuit 172 is connected to the coil module 174, and the control terminal of the control unit 173 is connected to the controlled terminal of the DC/AC conversion circuit 172.
  • the wireless charging transmitter device can perform wireless charging for the wireless charging receiver device, for example, the wireless charging transmitter device can be a wireless charger or the like.
  • control unit 173 may control the switch of the DC/AC conversion circuit 172 to turn on when the wireless charging transmitter device needs to perform wireless charging for the wireless charging receiver device, so that the DC/AC conversion circuit 172 starts to work, and the DC power supply 171
  • the input DC signal is converted into an AC signal.
  • the first voltage detection terminal of the control unit 173 is connected to the DC power supply 171
  • the second voltage detection terminal of the control unit 173 is connected to the coil module 174
  • the first current detection terminal of the control unit 173 is connected to the DC power supply. 171 is connected
  • the second current detection terminal of the control unit 173 is connected to the coil module 174.
  • control unit 173 can detect the voltage and current of the DC power supply 171 and the voltage and current of the coil module 174, and then control the DC/AC conversion circuit 172 according to the detected voltage and current.
  • the wireless charging transmitter device further includes: a matching circuit 175; the matching circuit 175 is connected between the DC/AC conversion circuit 172 and the coil module 174, and is used to resonate with the coil module 174 to make the DC
  • the AC signal output by the AC/AC conversion circuit 172 can be efficiently transmitted to the coil module 174.
  • control terminal of the control unit 173 is connected to the controlled terminal of the matching circuit 175.
  • control unit 173 can control the switch of the matching circuit 175 to turn on when the wireless charging transmitter device needs to perform wireless charging for the wireless charging receiver device, so that the matching circuit 175 starts to work and resonates with the coil module 174.
  • the wireless charging transmitter includes a coil module 174, and the circulating current loss of the coil module 174 is small, so that the wireless charging efficiency of the wireless charging transmitter can be improved.
  • FIG. 21 is a schematic structural diagram of a wireless charging receiving device provided by an embodiment of the present application.
  • the wireless charging receiving device includes: an AC/DC conversion circuit 211, a control unit 212, a load 213, and the aforementioned coil module 214;
  • the coil module 214 is connected to the input end of the AC/DC conversion circuit 211; the coil module 214 receives the AC signal and transmits the AC signal to the AC/DC conversion circuit 211; the AC/DC conversion circuit 211 is controlled by the control unit 212 Next, the AC signal is converted into a DC signal, and the DC signal is output to the load 213 to supply power to the load 213.
  • the output terminal of the AC/DC conversion circuit 211 is connected to the load 213, and the control terminal of the control unit 212 is connected to the controlled terminal of the AC/DC conversion circuit 211.
  • the wireless charging receiving device may use a wireless charging transmitting device to wirelessly charge itself.
  • the wireless charging receiving device may be an electronic device such as a mobile phone or a tablet computer.
  • control unit 212 can control the switch of the AC/DC conversion circuit 211 to turn on when the wireless charging receiving device needs to use the wireless charging transmitter to wirelessly charge itself, so that the AC/DC conversion circuit 211 starts to work, and the coil
  • the AC signal input by the module 214 is converted into a DC signal, and the DC signal is output to the load 213.
  • the first voltage detection terminal of the control unit 212 is connected to the coil module 214
  • the second voltage detection terminal of the control unit 212 is connected to the load 213
  • the first current detection terminal of the control unit 212 is connected to the coil module 214.
  • 214 is connected, and the second current detection terminal of the control unit 212 is connected to the load 213.
  • control unit 212 can detect the voltage and current of the coil module 214 and the voltage and current of the load 213, and then control the AC/DC conversion circuit 211 according to the detected voltage and current.
  • the wireless charging receiving device further includes: a matching circuit 215; the matching circuit 215 is connected between the coil module 214 and the AC/DC conversion circuit 211, and is used to resonate with the coil module 214 to make the coil
  • the AC signal output by the module 214 can be efficiently transmitted to the AC/DC conversion circuit 211.
  • control terminal of the control unit 212 is connected to the controlled terminal of the matching circuit 215.
  • control unit 212 can control the switch of the matching circuit 215 to turn on when the wireless charging receiving device needs to use the wireless charging transmitter to wirelessly charge itself, so that the matching circuit 215 starts to work and resonates with the coil module 214.
  • the wireless charging receiving device includes a coil module 214, and the circulating current loss of the coil module 214 is less, so the wireless charging efficiency of the wireless charging receiving device can be improved.
  • FIG. 25 is a schematic structural diagram of a wireless charging system provided by an embodiment of the present application.
  • the wireless charging system includes the above-mentioned wireless charging transmitting device 251 and the above-mentioned wireless charging receiving device 252.
  • the wireless charging transmitting device is used for wireless charging of the wireless charging receiving device.
  • the AC signal transmitted by the coil module in the wireless charging transmitter device generates a magnetic field, and magnetic coupling can make the coil module in the wireless charging receiver device generate voltage, and then the wireless charging transmitter device can be completed as a wireless charging receiver device. Wireless charging in the load.
  • the wireless charging system includes a wireless charging transmitter and a wireless charging receiver. Both the wireless charging transmitter and the wireless charging receiver include a coil module. The coil module has less circulating current loss, thus improving the The wireless charging efficiency of the wireless charging system.
  • FIG. 26 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal includes a work load circuit 261, an AC/DC conversion circuit 262, a charging control unit 263, and the aforementioned coil module 264;
  • the coil module 264 is connected to the input end of the AC/DC conversion circuit 262; the coil module 264 receives the AC signal and transmits the AC signal to the AC/DC conversion circuit 262; the AC/DC conversion circuit 262 is connected to the charging control unit 263 Under control, the AC signal is converted into a DC signal, and the DC signal is output to the workload circuit 261.
  • the output terminal of the AC/DC conversion circuit 262 is connected to the work load circuit 261, and the control terminal of the charging control unit 263 is connected to the controlled terminal of the AC/DC conversion circuit 262.
  • the terminal may be an electronic device such as a mobile phone or a tablet computer.
  • the charging control unit 263 can control the switch of the AC/DC conversion circuit 262 to turn on when the terminal needs to use a wireless charger to wirelessly charge itself, so that the AC/DC conversion circuit 262 starts to work, and the coil module 264 The input AC signal is converted into a DC signal, and the DC signal is output to the workload circuit 261.
  • the first voltage detection end of the charging control unit 263 is connected to the coil module 264
  • the second voltage detection end of the charging control unit 263 is connected to the workload circuit 261
  • the first current detection of the charging control unit 263 is The terminal is connected to the coil module 264
  • the second current detection terminal of the charging control unit 263 is connected to the workload circuit 261.
  • the charging control unit 263 can detect the voltage and current of the coil module 264 and the voltage and current of the workload circuit 261, and then control the AC/DC conversion circuit 262 according to the detected voltage and current.
  • the terminal further includes: a matching circuit 265; the matching circuit 265 is connected between the coil module 264 and the AC/DC conversion circuit 262 for resonating with the coil module 264, so that the coil module 264 The output AC signal can be efficiently transmitted to the AC/DC conversion circuit 262.
  • control terminal of the charging control unit 263 is connected to the controlled terminal of the matching circuit 265.
  • the charging control unit 263 can control the switch of the matching circuit 265 to turn on when the terminal needs to use a wireless charger to wirelessly charge itself, so that the matching circuit 265 starts to work and resonates with the coil module 264.
  • the terminal includes a coil module 264, and the circulating current loss of the coil module 264 is less, so the wireless charging efficiency of the terminal can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种线圈绕组,属于无线充电技术领域。该线圈绕组包括:绝缘层、位于绝缘层一侧的第一部分线圈和位于绝缘层另一侧的第二部分线圈。第一部分线圈包括第一段导线,第二部分线圈包括第二段导线,第一段导线和第二段导线均具有N个切槽,第一段导线被其具有的N个切槽分成N+1股第一子导线,第二段导线被其具有的N个切槽分成N+1股第二子导线;N+1股第一子导线与N+1股第二子导线一对一的电气连接,形成N+1对子导线,N+1对子导线中形成至少一个交叉结构。本申请可以降低线圈绕组中的环流损耗,提高无线充电效率。另外,本申请还公开了相应的线圈模组、无线充电发射装置、无线充电接收装置、无线充电系统以及终端。

Description

线圈绕组、线圈模组、发射装置、接收装置、系统和终端
本申请要求于2019年05月24日提交的申请号为201910441832.X、发明名称为“线圈绕组、线圈模组、发射装置、接收装置、系统和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电技术领域,特别涉及一种线圈绕组、线圈模组、发射装置、接收装置、系统和终端。
背景技术
目前,采用无线充电技术对电子设备进行充电越来越普及。实现无线充电技术的设备称为无线充电器。在具体实现时,无线充电器中设置有发射线圈,电子设备中设置有接收线圈,无线充电器中的发射线圈所携带的交流电产生磁场,通过磁耦合使得电子设备中的接收线圈产生电压,从而实现对电子设备的充电。
由于无线充电是基于发射线圈与接收线圈之间的磁耦合进行能量传输,所以发射线圈与接收线圈之间存在很强的磁场。这种情况下,如果无线充电线圈(即发射线圈或接收线圈)的线圈绕组的宽度较宽,则当磁场穿过线圈绕组时,会在线圈绕组中产生较大的涡流损耗。为了解决此问题,如图1所示,通常无线充电线圈会包括线圈绕组和切槽,切槽将线圈绕组分割成两个宽度较小的小绕组,由于各个小绕组的宽度均小于分割前的线圈绕组的宽度,所以可以降低线圈绕组的涡流损耗。
然而,切槽将线圈绕组分割成两个宽度较小的小绕组后,如图2所示,当线圈绕组中流过电流I时,两个小绕组中分别流过方向相同的电流I 1和电流I 2,此时如果磁场穿过切槽,则会因电磁感应而在切槽两侧的两个小绕组中分别产生方向不同的感应电流I E,从而会导致线圈绕组中产生环流损耗,进而会降低无线充电效率。
发明内容
本申请提供了一种线圈绕组、线圈模组、发射装置、接收装置、系统和终端,可以解决相关技术中无线充电效率较低的问题。所述技术方案如下:
第一方面,提供了一种线圈绕组,所述线圈绕组包括:绝缘层、位于所述绝缘层一侧的第一部分线圈和位于所述绝缘层另一侧的第二部分线圈。所述第一部分线圈包括第一段导线,所述第二部分线圈包括第二段导线,所述第一段导线具有N个切槽,且所述第一段导线被其具有的N个切槽分成N+1股第一子导线,所述第二段导线也具有N个切槽,且所述第二段导线也被其具有的N个切槽分成N+1股第二子导线,其中,每一切槽均沿对应的一段导线的延伸方向延伸,N为大于或等于1的整数。所述N+1股第一子导线与所述N+1股第二子导线一对一的电气连接,形成N+1对子导线,所述N+1对子导线中形成至少一个交叉结构,每一 对子导线包括一股第一子导线和对应的一股第二子导线。
需要说明的是,该线圈绕组包括多匝线圈,该线圈绕组是由导体绕制而成的导电图形,该导电图形可以为圆环形、椭圆环形等,该线圈绕组的多匝线圈中的任意一匝线圈是导体以360度均匀绕制而成。该线圈绕组不是平面线圈绕组。
另外,N+1对子导线中形成至少一个交叉结构,当然,该N+1对子导线中也可以形成至少两个交叉结构。比如,该N+1对子导线中一对子导线与其他至少一对子导线之间形成交叉结构,或者,该N+1对子导线中每一对子导线与其他至少一对子导线之间形成交叉结构,或者,该N+1对子导线中每一对子导线均与其他每一对子导线之间形成交叉结构。
再者,第一段导线和第二段导线是断开的(或是不连续的),且第一段导线和第二段导线分别位于绝缘层的两侧。对于第一段导线内的N+1股第一子导线和第二段导线内的N+1股第二子导线来说,他们是一对一连接的,且对于他们连接后形成的N+1对子导线中的至少两对子导线来说,每对子导线包含的一股第一子导线和一股第二子导线不是同属一股子导线,而是分别是不同的子导线。并且,该至少两对子导线在绝缘层所在的平面上投影存在交叉。
在本申请实施例中,该线圈绕组中切槽数量相同的第一段导线与第二段导线之间形成串联交叉结构,即该N+1对子导线中形成至少一个交叉结构。在此情况下,磁场穿过该N+1对子导线之间的切槽时,该N+1对子导线中至少两对子导线中每对子导线中的一股第一子导线产生的感应电流与对应的一股第二子导线产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈绕组中的环流损耗,提高该线圈绕组的无线充电效率。
其中,所述第一段导线在所述绝缘层所在平面内的投影与所述第二段导线在所述绝缘层所在平面内的投影形成连续的线条图案,所述线条图案的长度大于所述第一段导线和所述第二段导线中较长的导线的长度,且小于所述第一段导线和所述第二段导线的长度之和。
需要说明的是,假设第一段导线在绝缘层所在平面内的投影为第一投影线条,第二段导线在绝缘层所在平面内的投影为第二投影线条,则第一投影线条与第二投影线条是相邻的,且它们之间具有接合部。第一投影线条与第二投影线条构成一条长的连续的线条图案,该线条图案与位于平面线圈绕组内的一段长导线在绝缘层所在平面内的投影没有差别,其中,该平面线圈绕组所在的平面与该绝缘层所在的平面是实质平行的,并且这段长导线的长度大致等于第一段导线的长度与第二段导线长度之和。
可选地,所述N为大于或等于2的整数,则所述第一段导线被分为至少3股第一子导线,且所述第二段导线也被分为至少3股第二子导线。
可选地,穿过所述第一段导线内的N个切槽的磁场产生的感应电流与穿过所述第二段导线内的N个切槽的磁场产生的感应电流方向相反且大小相等。
具体地,为了使穿过第一段导线内的N个切槽的磁场产生的感应电流与穿过第二段导线内的N个切槽的磁场产生的感应电流方向相反且大小相等,可以设计第一段导线和第二段导线相邻,且第一段导线为该线圈绕组的多匝线圈中的连续g匝线圈,第二段导线为该线圈绕组的多匝线圈中除第一段导线之外的连续g匝线圈,g为正数。
可选地,该线圈绕组包括多匝线圈,所述多匝线圈内至少一匝线圈的宽度大于至少另一匝线圈的宽度,且宽度较大的线圈具有A个切槽,所述A个切槽将所述宽度较大的线圈分成A+1股子导线,宽度较小的线圈具有B个切槽,所述B个切槽将所述宽度较大的线圈分成 B+1股子导线,其中每一所述切槽均沿对应的线圈的延伸方向延伸,A和B均为大于或等于1的整数,且A大于B。也即是,宽度相同的线圈的切槽数量相同,宽度越大的线圈的切槽数量越多。
可选地,所述宽度较大的线圈位于所述宽度较小的线圈的外侧。可选地,按照从最外匝线圈到最内匝线圈的顺序,所述多匝线圈的宽度逐渐减小。
可选地,对于该线圈绕组中切槽数量不同的相邻的两匝线圈,这两匝线圈中的一匝线圈具有的一个切槽与另一匝线圈具有的其中一个切槽连通,或者这两匝线圈中的一匝线圈具有的所有切槽与另一匝线圈具有的所有切槽均不连通。
可选地,位于该线圈绕组内且切槽数量不同的相邻的两匝线圈中的其中一匝线圈位于绝缘层的一侧,另一匝线圈位于绝缘层的另一侧。也即是,这两匝线圈位于不同的平面。
第二方面,提供了一种线圈模组,包括绝缘层、第一线圈绕组和第二线圈绕组,所述第一线圈绕组和所述第二线圈绕组均为上述的线圈绕组,且所述第一线圈绕组和所述第二线圈绕组分别位于所述绝缘层的两侧。
可选地,所述第一线圈绕组的第一部分线圈与所述第二线圈绕组的第二部分线圈均位于所述绝缘层的一侧,且所述第一线圈绕组的第二部分线圈与所述第二线圈绕组的第一部分线圈均位于所述绝缘层的另一侧。
可选地,所述第一线圈绕组的第一部分线圈与所述第二线圈绕组的第二部分线圈位于同一平面线圈内,且相互不接触。换句话说,第一线圈绕组的第一部分线圈可以与第二线圈绕组的第二部分线圈组成第一平面线圈绕组。第一线圈绕组的第一部分线圈与第二线圈绕组的第二部分线圈虽然位于同一平面内,但是是相互独立的,因此,第一平面线圈绕组是不连续的,或者可以说是断开的。
可选地,所述第一线圈绕组的第二部分线圈与所述第二线圈绕组的第一部分线圈位于同一平面线圈,且互不接触。换句话说,第一线圈绕组的第二部分线圈可以与第二线圈绕组的第一部分线圈组成第二平面线圈绕组。第一线圈绕组的第二部分线圈与第二线圈绕组的第一部分线圈虽然位于同一平面内,但是是相互独立的,因此,第二平面线圈绕组是不连续的,或者可以说是断开的。
可选地,第一线圈绕组的最内匝线圈位于绝缘层的一侧,第二线圈绕组的最内匝线圈位于绝缘层的另一侧,第二线圈绕组的最内匝线圈的端部与第一线圈绕组的最内匝线圈的端部实现电气连接。
第三方面,提供了一种无线充电发射装置,所述装置包括:直流/交流转换电路、控制单元和上述的线圈模组。
所述直流/交流转换电路的输入端连接直流电源;所述直流/交流转换电路在所述控制单元的控制下将所述直流电源输入的直流信号转换为交流信号,并将所述交流信号传输到所述线圈模组,以使所述线圈模组对所述交流信号进行发射。
在本申请实施例中,无线充电发射装置包括线圈模组,线圈模组的环流损耗较少,因而可以提高该无线充电发射装置的无线充电效率。
进一步地,所述装置还包括匹配电路;所述匹配电路连接在所述直流/交流转换电路与所述线圈模组之间,用于与所述线圈模组发生谐振。
在本申请实施例中,匹配电路可以使得直流/交流转换电路输出的交流信号高效率地传输 到线圈模组中。
第四方面,提供了一种无线充电接收装置,所述装置包括:交流/直流转换电路、控制单元、负载和上述的线圈模组。
所述线圈模组与所述交流/直流转换电路的输入端连接;所述线圈模组接收交流信号,并将所述交流信号传输到所述交流/直流转换电路;所述交流/直流转换电路在所述控制单元的控制下将所述交流信号转换为直流信号,并将所述直流信号输出给负载,以为所述负载供电。
在本申请实施例中,无线充电接收装置包括线圈模组,线圈模组的环流损耗较少,因而可以提高该无线充电接收装置的无线充电效率。
进一步地,所述装置还包括匹配电路;所述匹配电路连接在所述线圈模组与所述交流/直流转换电路之间,用于与所述线圈模组发生谐振。
在本申请实施例中,匹配电路使得线圈模组输出的交流信号可以高效率地传输到交流/直流转换电路中。
第五方面,提供了一种无线充电系统,所述系统包括上述的无线充电发射装置,以及包括上述的无线充电接收装置,所述无线充电发射装置用于为所述无线充电接收装置进行无线充电。
在本申请实施例中,无线充电系统包括无线充电发射装置和无线充电接收装置,无线充电发射装置和无线充电接收装置均包括线圈模组,该线圈模组的环流损耗较少,因而可以提高该无线充电系统的无线充电效率。
第六方面,提供了一种终端,所述终端包括交流/直流转换电路、充电控制单元、工作负载电路和上述的线圈模组;
所述线圈模组与所述交流/直流转换电路的输入端连接;
所述线圈模组接收交流信号,并将所述交流信号传输到所述交流/直流转换电路;所述交流/直流转换电路在所述充电控制单元的控制下将所述交流信号转换为直流信号,并将所述直流信号输出给所述工作负载电路。
在本申请实施例中,终端包括线圈模组,线圈模组的环流损耗较少,因而可以提高该终端的无线充电效率。
本申请提供的技术方案至少可以带来以下有益效果:
线圈绕组包括绝缘层、位于绝缘层一侧的第一部分线圈和位于绝缘层另一侧的第二部分线圈。第一部分线圈包括第一段导线,第二部分线圈包括第二段导线,第一段导线具有N个切槽,且第一段导线被其具有的N个切槽分成N+1股第一子导线,第二段导线也具有N个切槽,且第二段导线也被其具有的N个切槽分成N+1股第二子导线,其中,每一切槽均沿对应的一段导线的延伸方向延伸,N为大于或等于1的整数。N+1股第一子导线与N+1股第二子导线一对一的电气连接,形成N+1对子导线,该N+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第一子导线和对应的一股第二子导线。在此情况下,磁场穿过该N+1对子导线之间的切槽时,该N+1对子导线中至少两对子导线中每对子导线中的一股第一子导线产生的感应电流与对应的一股第二子导线产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈绕组中的环流损耗,提高该线圈绕组的无线充电效率。
附图说明
图1是相关技术提供的一种无线充电线圈的结构示意图;
图2是相关技术提供的一种小绕组中的感应电流的示意图;
图3是本申请实施例提供的第一种线圈绕组的结构示意图;
图4是本申请实施例提供的一种交叉结构的示意图;
图5是本申请实施例提供的第二种线圈绕组的结构示意图;
图6是本申请实施例提供的第三种线圈绕组的结构示意图;
图7是本申请实施例提供的第四种线圈绕组的结构示意图;
图8是本申请实施例提供的第五种线圈绕组的结构示意图;
图9是本申请实施例提供的第一种线圈模组的结构示意图;
图10是本申请实施例提供的第二种线圈模组的结构示意图;
图11是本申请实施例提供的第三种线圈模组的结构示意图;
图12是本申请实施例提供的第四种线圈模组的结构示意图;
图13是本申请实施例提供的第四种线圈模组的结构示意图;
图14是本申请实施例提供的另一种交叉结构的示意图;
图15是本申请实施例提供的第五种线圈模组的结构示意图;
图16是本申请实施例提供的第六种线圈模组的结构示意图;
图17是本申请实施例提供的第一种无线充电发射装置的结构示意图;
图18是本申请实施例提供的第二种无线充电发射装置的结构示意图;
图19是本申请实施例提供的第三种无线充电发射装置的结构示意图;
图20是本申请实施例提供的第四种无线充电发射装置的结构示意图;
图21是本申请实施例提供的第一种无线充电接收装置的结构示意图;
图22是本申请实施例提供的第二种无线充电接收装置的结构示意图;
图23是本申请实施例提供的第三种无线充电接收装置的结构示意图;
图24是本申请实施例提供的第四种无线充电接收装置的结构示意图;
图25是本申请实施例提供的一种无线充电系统的结构示意图;
图26是本申请实施例提供的第一种终端的结构示意图;
图27是本申请实施例提供的第二种终端的结构示意图;
图28是本申请实施例提供的第三种终端的结构示意图;
图29是本申请实施例提供的第四种终端的结构示意图。
附图标记:
1:第一线圈绕组,2:第二线圈绕组;3:导磁片;D1:第一导线,D2:第二导线,L3:第三连接部;
01:第一段导线,02:第二段导线,03:第三段导线,04:第四段导线,05:第五段导线,06:第六段导线,07:第七段导线,08:第八段导线,09:第九段导线,010:第十段导线;
11:第一子导线,22:第二子导线,33:第三子导线,44:第四子导线,55:第五子导线,66:第六子导线,77:第七子导线,88:第八子导线,99:第九子导线,100:第十子导线;
171:直流电源,172:直流/交流转换电路,173:控制单元,174:线圈模组,175:匹配电路;
211:直流/交流转换电路,212:控制单元,213:负载,214:线圈模组,215:匹配电路;
251:无线充电发射装置,252:无线充电接收装置;
261:工作负载电路,262:交流/直流转换电路,263:充电控制单元,264:线圈模组,265:匹配电路。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
图3是本申请实施例提供的一种线圈绕组的结构示意图。参见图3,该线圈绕组包括:绝缘层、位于绝缘层一侧的第一部分线圈和位于绝缘层另一侧的第二部分线圈。
第一部分线圈包括第一段导线01,第一段导线01具有N个切槽,且第一段导线01被其具有的N个切槽分成N+1股第一子导线11。第二部分线圈包括第二段导线02,第二段导线02也具有N个切槽,且第二段导线02也被其具有的N个切槽分成N+1股第二子导线22。其中,N为大于或等于1的整数。值得注意的是,第一段导线01具有的每一切槽均沿第一段导线01的延伸方向延伸。第二段导线02具有的每一切槽均沿第二段导线02的延伸方向延伸。在本申请中,N+1股第一子导线11与N+1股第二子导线22一对一的电气连接,形成N+1对子导线,该N+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第一子导线11和对应的一股第二子导线22。
需要说明的是,绝缘层为第一部分线圈与第二部分线圈之间的绝缘材料层,用于隔离第一部分线圈与第二部分线圈,使两者之间除彼此连接部分之外的其他部分保持绝缘。此时,第一部分线圈与第二部分线圈处于不同的平面。因而,在本申请实施例中,该线圈绕组不是平面线圈绕组。
另外,该线圈绕组包括多匝线圈,该线圈绕组是由导体绕制而成的导电图形,该导电图形可以为圆环形、椭圆环形等,该线圈绕组的多匝线圈中的任意一匝线圈是导体以360度均匀绕制而成。可选地,该线圈绕组的多匝线圈中每相邻两匝线圈可以实现电气连接,即该线圈绕组的多匝线圈是连续绕制的,尤其地,每相邻两匝线圈是连续绕制的。值得注意的是,所谓“该线圈绕组包括多匝线圈”中的多匝通常是远大于两匝的。
再者,该线圈绕组可以设置在印制电路板(Printed Circuit Board,PCB)或柔性电路板(Flexible Printed Circuit,FPC)等电路板上。或者,该线圈绕组的多匝线圈可以是由蚀刻法、电镀加成法、模切工艺、或激光工艺等形成。
需要说明的是,第一部分线圈或第二部分线圈可以是连续的,也可以不是连续的。例如,该线圈绕组从最外匝到最内匝共有10匝线圈。在一种情况下,这10匝线圈中靠外的3匝线圈属于第一部分线圈,其他7匝线圈属于第二部分线圈,这时无论是第一部分线圈还是第二部分线圈,可以认为它们均是连续的。在另一种情况下,这10匝线圈中靠外的3匝线圈以及靠内的2匝线圈属于第一部分线圈,其他5匝线圈属于第二部分线圈,这时第一部分线圈不是连续的,第二部分线圈是连续的。
另外,第一段导线01和第二段导线02均用于指示位于该线圈绕组中的一段导线,所谓的一段导线可以位于该线圈绕组的某一匝线圈内。第一段导线01的长度与第一段导线01具有的最长切槽的长度相同,或实质相同。可选的,第一段导线01所具有的全部切槽的长度相同,或,第一段导线01所具有的全部切槽中至少两个切槽的长度不同。第二段导线02的长度与第二段导线02具有的最长切槽的长度相同,或实质相同。可选的,第二段导线02所具有的全部切槽的长度相同,或,第二段导线02所具有的全部切槽中至少两个切槽的长度不同。
再者,切槽也可以被称为是间隙或间隔。每一切槽对应的一段导线是指每一切槽所切割的一段导线,每一切槽均沿对应的一段导线的延伸方向延伸是指每一切槽均沿其所切割的一段导线的延伸方向延伸,即每一切槽的延伸方向均与其对应的一段导线的延伸方向一致。比如,第一段导线具有的N个切槽中的每个切槽均沿第一段导线的延伸方向延伸,即第一段导线具有的N个切槽中的每个切槽的延伸方向均与第一段导线的延伸方向一致,第二段导线具有的N个切槽中的每个切槽均沿第二段导线的延伸方向延伸,即第二段导线具有的N个切槽中的每个切槽的延伸方向均与第二段导线的延伸方向一致。
需要说明的是,该线圈绕组中的切槽可以通过切割、或化学腐蚀等方式形成。比如,可以对第一段导线01进行切割、化学腐蚀等,来得到N个切槽,该N个切槽将第一段导线01分隔成N+1股第一子导线11,此时N+1股第一子导线11中每相邻两股第一子导线11之间具有切槽。再比如,可以对第二段导线02进行切割、化学腐蚀等,来得到N个切槽,该N个切槽将第二段导线02分隔成N+1股第二子导线22,此时N+1股第二子导线22中每相邻两股第二子导线22之间具有切槽。应当知道的是,每一股第一子导线11的延伸方向均与第一段导线01的延伸方向一致(或相同),每一股第二子导线22的延伸方向均与第二段导线02的延伸方向一致(或相同)。
另外,与每一股第一子导线11对应的一股第二子导线22是指与这一股第一子导线11具有电气连接的一股第二子导线22。每一股第一子导线11与对应的一股第二子导线22为一对子导线,则N+1股第一子导线11与N+1股第二子导线22可以形成N+1对子导线。
在本申请中,N+1对子导线中形成至少一个交叉结构。
进一步地,N+1对子导线中也可以形成至少两个交叉结构。
可选的,N+1对子导线中的一对子导线与其他至少一对子导线之间形成交叉结构。
可选的,N+1对子导线中的每一对子导线与其他至少一对子导线之间形成交叉结构。
可选的,N+1对子导线中每一对子导线均与其他每一对子导线之间形成交叉结构。
下面对本申请实施例中所说的交叉结构进行解释说明。
如图2所示,它示出了当不存在交叉结构时线圈绕组的结构状态,这时小绕组的左半部分的多股子导线和右半部分的多股子导线是一对一连接的,也即,左半部分的每一股子导线与对应的右半部分的一股子导线实际上是连续(或不间断)的,换句话说,它们实际上属于同一股子导线,只不过是同一股子导线的不同部分。这种情况下,该线圈绕组中的多股子导线彼此之间不交叉。
如图3所示,它示出了本申请实施例所述的线圈绕组的结构状态。第一段导线01和第二段导线02是断开的(或是不连续的),且第一段导线01和第二段导线02分别位于绝缘层的两侧。如图4所示,对于第一段导线01内的N+1股第一子导线11和第二段导线02内的N+1股第二子导线22来说,他们虽然也是一对一连接的,但是对于他们连接后形成的N+1对子 导线中的至少两对子导线来说,每对子导线包含的一股第一子导线11和一股第二子导线22不是同属一股子导线,而是分别是不同的子导线。并且,该至少两对子导线在绝缘层所在的平面上投影存在交叉。
需要说明的是,N+1股第一子导线11的一端彼此分离,且N+1股第一子导线11的这一端与N+1股第二子导线22的一端一对一的实现电气连接。N+1股第一子导线11的另一端,可以通过该线圈绕组中除第一段导线01和第二段导线02之外的其他部分实现电气连接,或者可以通过该线圈绕组与该线圈绕组所在的线圈模组的引出端或引入端之间所连接的导线实现电气连接,或者可以通过该线圈模组与外部电路的连接端子实现电气连接等。
另外,N+1股第二子导线22的一端彼此分离,且N+1股第二子导线22的这一端与N+1股第一子导线11的一端一对一的实现电气连接。N+1股第二子导线22的另一端,可以通过该线圈绕组中除第一段导线01和第二段导线02之外的其他部分实现电气连接,或者可以通过该线圈绕组与该线圈绕组所在的线圈模组的引出端或引入端之间所连接的导线实现电气连接,或者可以通过该线圈模组与外部电路的连接端子实现电气连接等。
在本申请实施例中,对于N+1股第一子导线11中的任意一股第一子导线11,N+1股第二子导线22中均存在唯一的一股第二子导线22与其相对应。换句话说,N+1股第一子导线11与N+1股第二子导线22是一对一实现电气连接的。
一种可能的实现方式,该N+1对子导线中的每一对子导线均可以通过至少一个第一过孔实现电气连接。对于任意一对子导线来说,该至少一个第一过孔可以贯穿这一对子导线中的一股第一子导线11和一股第二子导线22,且这一股第一子导线11与这一股第二子导线22通过该至少一个第一过孔实现电气连接。
另一种可能的实现方式中,该N+1对子导线中的每一对子导线均可以通过脉冲加热回流焊接(hot bar)工艺或激光焊接工艺等工艺实现电气连接。
又一种可能的实现方式中,该线圈绕组还可以包括N+1个第一连接部。N+1个第一连接部相互之间无电气连接。该N+1对子导线中的每一对子导线可以通过唯一的一个第一连接部实现电气连接。在这种实现方式下,不仅N+1股第一子导线11与N+1股第二子导线22是一对一的,N+1股第一子导线11(或N+1股第二子导线22)与N+1个第一连接部也是一对一的。简单地说,每一股第一子导线11唯一地对应一股第二子导线22,且唯一地对应一个第一连接部。
值得注意的是,无论是通过至少一个第一过孔实现电气连接,还是通过脉冲加热回流焊接工艺或激光焊接工艺等工艺实现电气连接,或者是通过第一连接部实现电气连接,均只是实现电气连接的具体手段,对于每一对子导线来说,它可以选择这三种电气连接手段中任意一种,所以该N+1对子导线的电气连接手段可以仅包括这三种电气连接手段中的一种,也可以包括这三种电气连接手段中的其中两种,自然还可以同时包括这三种电气连接手段。
需要说明的是,从外部电路流入该线圈绕组的电流或该线圈绕组自身产生的电流,可以先流入N+1股第一子导线11,然后从N+1股第一子导线11流至N+1股第二子导线22,最后从该线圈绕组中流出。或者,从外部电路流入该线圈绕组的电流或该线圈绕组自身产生的电流,可以先流入N+1股第二子导线22,然后从N+1股第二子导线22流至N+1股第一子导线11,最后从该线圈绕组中流出。
值得说明的是,该线圈绕组中切槽数量相同的第一段导线01与第二段导线02之间形成 串联交叉结构,即该N+1对子导线中形成至少一个交叉结构。在此情况下,磁场穿过该N+1对子导线之间的切槽时,该N+1对子导线中至少两对子导线中每对子导线中的一股第一子导线11产生的感应电流与对应的一股第二子导线22产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈绕组中的环流损耗,提高该线圈绕组的无线充电效率。
其中,第一段导线01在绝缘层所在平面内的投影与第二段导线02在绝缘层所在平面内的投影形成连续的线条图案,该线条图案的长度大于第一段导线01和第二段导线02中较长的导线的长度,且小于第一段导线01和第二段导线02的长度之和。
需要说明的是,假设第一段导线01在绝缘层所在平面内的投影为第一投影线条,第二段导线02在绝缘层所在平面内的投影为第二投影线条,则第一投影线条与第二投影线条是相邻的,且它们之间具有接合部。第一段导线01中对应于接合部的区域为第一连接区,第二段导线02中对应于接合部的区域为第二连接区,则第一连接区与第二连接区之间具有电气连接,进而第一段导线01与第二段导线02之间实现电气连接。
另外,第一投影线条与第二投影线条构成一条长的连续的线条图案。该线条图案与位于平面线圈绕组内的一段长导线在绝缘层所在平面内的投影没有差别,其中,该平面线圈绕组所在的平面与该绝缘层所在的平面是实质平行的,并且这段长导线的长度大致等于第一段导线的长度与第二段导线长度之和。
可选地,参见图5,N为大于或等于2的整数,则第一段导线01被分为至少3股第一子导线11,且第二段导线02也被分为至少3股第二子导线22。
可选地,穿过第一段导线01内的N个切槽的磁场产生的感应电流与穿过第二段导线02内的N个切槽的磁场产生的感应电流方向相反且大小相等。
可以理解的是,基于设计误差以及工艺的实现能力,此处的大小相等应当指大小实质相等或大致相等,譬如两个感应电流的大小的差值小于或等于10%,即可认为它们是大小相等的。换句话说,对于大小相等,应当按照本领域技术人员的常规理解予以解释,而非绝对的相等。
另外,穿过第一段导线01内的N个切槽的磁场的强度和穿过第二段导线02内的N个切槽的磁场的强度大小不完全相等,这是由于磁场分布不均匀造成的,为了使得感应电流能够尽可能地抵消,可以通过设计第一段导线01内的N个切槽的面积以及第二段导线02内的N个切槽的面积,来调节它们各自的磁场产生的感应电流。
具体地,为了使穿过第一段导线01内的N个切槽的磁场产生的感应电流与穿过第二段导线02内的N个切槽的磁场产生的感应电流方向相反且大小相等,可以设计第一段导线01和第二段导线02相邻,且第一段导线01为该线圈绕组的多匝线圈中的连续g匝线圈,第二段导线02为该线圈绕组的多匝线圈中除第一段导线01之外的连续g匝线圈,g为正数。
例如,如图3所示,该线圈绕组的最外匝线圈和次外匝线圈均具有2个切槽,即该线圈绕组靠外的两匝线圈的切槽数量相同,则可以在该线圈绕组的最外匝线圈与次外匝线圈的交接处构造串联交叉结构,即在这两匝线圈的交接处构造串联交叉结构,此时第一段导线01为该线圈绕组的最外匝线圈,第二段导线02为该线圈绕组的次外匝线圈。
可选地,该线圈绕组包括的多匝线圈中的至少一匝线圈的宽度大于至少另一匝线圈的宽度,且宽度较大的线圈具有A个切槽,该A个切槽将该宽度较大的线圈分成A+1股子导线, 宽度较小的线圈具有B个切槽,该B个切槽将该宽度较小的线圈分成B+1股子导线,其中,每一切槽均沿对应的线圈的延伸方向延伸,A和B均为大于或等于1的整数,且A大于B。也即是,宽度相同的线圈的切槽数量相同,宽度越大的线圈的切槽数量越多。
例如,如图3所示,该线圈绕组的靠外的两匝线圈的宽度相同,这两匝线圈均具有2个切槽,这2个切槽将这两匝线圈分成3股子导线。该线圈绕组的最外匝线圈的宽度大于最内匝线圈的宽度,该线圈绕组的最内匝线圈具有1个切槽,这1个切槽将该线圈绕组的最内匝线圈分成2股子导线。
可选地,宽度较大的线圈位于宽度较小的线圈的外侧。可选地,按照从最外匝线圈到最内匝线圈的顺序,该线圈绕组的多匝线圈的宽度逐渐减小。
可选地,对于该线圈绕组中切槽数量不同的相邻的两匝线圈,这两匝线圈中的一匝线圈具有的一个切槽与另一匝线圈具有的其中一个切槽连通,或者这两匝线圈中的一匝线圈具有的所有切槽与另一匝线圈具有的所有切槽均不连通。
如图3所示,对于该线圈绕组中次外匝线圈和次内匝线圈来说,该次外匝线圈具有两个切槽,该次内匝线圈具有一个切槽,则该次内匝线圈所具有的一个切槽与该次外匝线圈所具有的两个切槽中的其中一个切槽连通。
然而,如图6所示,对于该线圈绕组中次外匝线圈和次内匝线圈来说,该次外匝线圈具有两个切槽,该次内匝线圈具有一个切槽,但是,该次内匝线圈所具有的一个切槽与该次外匝线圈所具有的两个切槽中的任意一个切槽均是不连通的。
可选地,参见图7,位于该线圈绕组内且切槽数量不同的相邻的两匝线圈中的其中一匝线圈位于绝缘层的一侧,另一匝线圈位于绝缘层的另一侧。也即是,这两匝线圈位于不同的平面。
这种情况下,一种可能的实现方式中,这两匝线圈可以通过至少一个第二过孔实现电气连接,该至少一个第二过孔贯穿这两匝线圈,这两匝线圈通过该至少一个第二过孔实现电气连接。另一种可能的实现方式中,这两匝线圈还可以通过hot bar工艺或激光焊接工艺等工艺实现电气连接。又一种可能的实现方式中,该线圈绕组还可以包括第二连接部,第二连接部位于这两匝线圈之间,这两匝线圈通过第二连接部实现电气连接。
例如,如图7所示,该线圈绕组内的次外匝线圈和次内匝线圈是相邻的,且该次外匝线圈具有两个切槽,而该次内匝线圈具有一个切槽,该次外匝线圈位于绝缘层的一侧,该次内匝线圈位于绝缘层的另一侧。
进一步地,参见图8,第一部分线圈包括第三段导线03,第二部分线圈包括第四段导线04,第三段导线03具有M个切槽,且第三段导线03被其具有的M个切槽分成M+1股第三子导线33,第四段导线04也具有M个切槽,且第四段导线04也被其具有的M个切槽分成M+1股第四子导线44,其中,每一切槽均沿对应的一段导线的延伸方向延伸,M为大于或等于1的整数,且M与N不同。M+1股第三子导线33与M+1股第四子导线44一对一的电气连接,形成M+1对子导线,该M+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第三子导线33和对应的一股第四子导线44。
需要说明的是,第三段导线03与第四段导线04之间形成的串联交叉结构与上述第一段导线01与第二段导线02之间形成的串联交叉结构类似,本申请实施例对此不再赘述。
值得说明的是,该线圈绕组中不仅可以包括切槽数量相同的第一段导线01和第二段导线 02,还可以包括切槽数量相同的第三段导线03和第四段导线04,且第一段导线01的切槽数量与第三段导线03的切槽数量不同。该线圈绕组中切槽数量相同的第三段导线03与第四段导线04之间形成串联交叉结构,即该M+1对子导线中形成至少一个交叉结构。在此情况下,磁场穿过该M+1对子导线之间的切槽时,该M+1对子导线中至少两对子导线中每对子导线中的一股第三子导线33产生的感应电流与对应的一股第四子导线44产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈绕组中的环流损耗,提高该线圈绕组的无线充电效率。
在本申请实施例中,线圈绕组包括绝缘层、位于绝缘层一侧的第一部分线圈和位于绝缘层另一侧的第二部分线圈。第一部分线圈包括第一段导线01,第二部分线圈包括第二段导线02,第一段导线01具有N个切槽,且第一段导线01被其具有的N个切槽分成N+1股第一子导线11,第二段导线02也具有N个切槽,且第二段导线02也被其具有的N个切槽分成N+1股第二子导线22,其中,每一切槽均沿对应的一段导线的延伸方向延伸,N为大于或等于1的整数。N+1股第一子导线11与N+1股第二子导线22一对一的电气连接,形成N+1对子导线,该N+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第一子导线11和对应的一股第二子导线22。在此情况下,磁场穿过该N+1对子导线之间的切槽时,该N+1对子导线中至少两对子导线中每对子导线中的一股第一子导线11产生的感应电流与对应的一股第二子导线22产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈绕组中的环流损耗,提高该线圈绕组的无线充电效率。
本申请实施例还提供了一种线圈模组,下面对该线圈模组进行说明。
第一种可能的实现方式中,该线圈模组包括上述图1-图8任一所示的线圈模组。
可选地,该线圈模组还可以包括与外部电路连接的引入端和引出端。外部电路可以通过该引入端和该引出端为该线圈绕组提供电能,或者,该线圈绕组可以通过该引入端和该引出端向外部电路输出电能。
这种情况下,该线圈模组可以包括第一导线和第二导线,第一导线的一端为该线圈模组的第一端,第一导线的另一端与该线圈绕组的最内匝线圈的端部连接;第二导线的第一端为该线圈模组的第二端,第二导线的另一端与该线圈绕组的最外匝线圈的端部连接;该线圈模组的第一端和该线圈模组的第二端中其中一个为引出端,另一个为引出端。
可选地,该线圈模组还可以包括导磁片,该线圈绕组位于导磁片上,且与导磁片绝缘。
需要说明的是,当该线圈模组正常放置时,导磁片可以位于该线圈绕组的下方。导磁片具有导磁作用,可以提高该线圈绕组的电感量,同时防止磁场泄露到导磁片的下方,对导磁片的下方空间起到良好的屏蔽效果。导磁片可由铁氧体、非晶、纳米晶、金属粉等一种或多种磁材料构成,本申请实施例对此不作限定。
第二种可能的实现方式中,参见图9-图16,该线圈模组可以包括绝缘层、第一线圈绕组1和第二线圈绕组2,第一线圈绕组1和第二线圈绕组2均为如图1-图8所示的线圈绕组,且第一线圈绕组1和第二线圈绕组2分别位于绝缘层的两侧。
可选地,第一线圈绕组1的第一部分线圈01与第二线圈绕组2的第二部分线圈02均位于绝缘层的一侧,且第一线圈绕组1的第二部分线圈02与第二线圈绕组2的第一部分线圈01均位于绝缘层的另一侧。
例如,第一线圈绕组1的第一部分线圈01与第二线圈绕组2的第二部分线圈02可以位 于同一平面线圈内,且相互不接触。换句话说,第一线圈绕组1的第一部分线圈01可以与第二线圈绕组2的第二部分线圈02组成第一平面线圈绕组。第一线圈绕组1的第一部分线圈01与第二线圈绕组2的第二部分线圈02虽然位于同一平面内,但是是相互独立的,因此,第一平面线圈绕组是不连续的,或者可以说是断开的。
又例如,第一线圈绕组1的第二部分线圈02与第二线圈绕组2的第一部分线圈01可以位于同一平面线圈内,且相互不接触。换句话说,第一线圈绕组1的第二部分线圈02可以与第二线圈绕组2的第一部分线圈01组成第二平面线圈绕组。第一线圈绕组1的第二部分线圈02与第二线圈绕组2的第一部分线圈01虽然位于同一平面内,但是是相互独立的,因此,第二平面线圈绕组是不连续的,或者可以说是断开的。
下面对第一线圈绕组1和第二线圈绕组2彼此之间各种可能的连接结构进行说明。第一线圈模组1与第二线圈模组2之间的连接结构可以包括如下几种可能的结构。
第一种可能的结构:参见图9-图11,第一线圈绕组1的最内匝线圈位于绝缘层的一侧,第二线圈绕组2的最内匝线圈位于绝缘层的另一侧,第二线圈绕组2的最内匝线圈的端部与第一线圈绕组1的最内匝线圈的端部实现电气连接。
需要说明的是,绝缘层为第一线圈绕组1的最内匝线圈与第二线圈绕组2的最内匝线圈之间的绝缘材料层,用于隔离第一线圈绕组1的最内匝线圈与第二线圈绕组2的最内匝线圈,使两者之间除彼此连接部分之外的其他部分保持绝缘。此时,第一线圈绕组1的最内匝线圈与第二线圈绕组2的最内匝线圈处于不同的平面。
另外,从外部电路流入该线圈模组的电流或该线圈模组自身产生的电流,可以先流入第一线圈绕组1,再经第一线圈绕组1的最内匝线圈流入第二线圈绕组2的最内匝线圈中,最后从第二线圈绕组2中流出。或者,从外部电路流入该线圈模组的电流或该线圈模组自身产生的电流,可以先流入第二线圈绕组2,再经第二线圈绕组2的最内匝线圈流入第一线圈绕组1的最内匝线圈中,最后从第一线圈绕组1中流出。
作为一种示例,参见图9,第一线圈绕组1的最内匝线圈的端部只有一个,第二线圈绕组2的最内匝线圈的端部也只有一个,第二线圈绕组2的最内匝线圈的端部直接与第一线圈绕组1的最内匝线圈的端部实现电气连接。
需要说明的是,第二线圈绕组2的最内匝线圈的端部直接与第一线圈绕组1的最内匝线圈的端部实现电气连接的方式与上述第一子导线11与第二子导线22实现电气连接的方式类似,本申请实施例对此不再赘述。
作为另一种示例,参见图10或图11,第一线圈绕组1的最内匝线圈中包括第五段导线05,第五段导线05具有C个切槽,且第五段导线05被其具有的C个切槽分成C+1股第五子导线55,C+1股第五子导线55的端部均为第一线圈绕组1的最内匝线圈的端部,C为大于或等于1的整数。第二线圈绕组2的最内匝线圈中包括第六段导线06,第六段导线06具有C个切槽,且第六段导线06被其具有的C个切槽分成C+1股第六子导线66,C+1股第六子导线66的端部均为第二线圈绕组2的最内匝线圈的端部。C+1股第五子导线55与C+1股第六子导线66一对一的电气连接,形成C+1对子导线,该C+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第五子导线55和对应的一股第六子导线66。
需要说明的是,第五段导线05与第六段导线06之间形成的串联交叉结构与上述第一段导线01与第二段导线02之间形成的串联交叉结构类似,本申请实施例对此不再赘述。
值得说明的是,第一线圈绕组1中的第五段导线05与第二线圈绕组2中的第六段导线06之间形成串联交叉结构,即该C+1对子导线中形成至少一个交叉结构。在此情况下,磁场穿过该C+1对子导线之间的切槽时,该C+1对子导线中至少两对子导线中每对子导线中的一股第五子导线55产生的感应电流与对应的一股第六子导线66产生的感应电流的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低该线圈模组中的环流损耗,提高该线圈模组的无线充电效率。
可选地,C与N不同,也即是,第一线圈绕组1中最内匝线圈中的一段导线与第二线圈绕组2中最内匝线圈中的一段导线可以构造串联交叉结构,第一线圈绕组1中较靠外的线圈中的两段导线可以构造串联交叉结构,第二线圈绕组2中较靠外的线圈中的两段导线可以构造串联交叉结构。如此,可以进一步降低该线圈模组中的环流损耗。
第二种可能的结构:参见图12或图13,该线圈模组还可以包括C+1个第三连接部L3,C+1个第三连接部L3之间无电气连接,C为大于或等于1的整数。第一线圈绕组1的最内匝线圈位于绝缘层的一侧,第二线圈绕组2的最内匝线圈位于绝缘层的另一侧。第一线圈绕组1的最内匝线圈中包括第七段导线07和第八段导线08,第七段导线07和第八段导线08均具有C个切槽,且第七段导线07被其具有的C个切槽分成C+1股第七子导线77,第八段导线08被其具有的C个切槽分成C+1股第八子导线88。第二线圈绕组2的最内匝线圈中包括第九段导线09和第十段导线010,第九段导线09和第十段导线010均具有C个切槽,且第九段导线09被其具有的C个切槽分成C+1股第九子导线99,第十段导线010被其具有的C个切槽分成C+1股第十子导线100。C+1股第七子导线77与C+1股第九子导线99是一对一的并联,C+1股第八子导线88与C+1股第十子导线100是一对一的并联。
第j个第三连接部L3位于第j股第七子导线77与第j股第八子导线88之间,第j股第七子导线77与第j股第八子导线88通过第j个第三连接部L3实现电气连接;或者,第j个第三连接部L3位于第j股第九子导线99与第j股第十子导线100之间,第j股第九子导线99与第j股第十子导线100通过第j个第三连接部L3实现电气连接,j为大于或等于1且小于或等于C+1的整数。如此,可以形成C+1组子导线,该C+1组子导线中形成至少一个交叉结构,每一组子导线包括一股第七子导线77、与这一股第七子导线77并联的一股第九子导线99、一个第三连接部L3、一股第八子导线88和与这一股第八子导线88并联的一股第十子导线100。
这种情况下,第一线圈绕组1的最内匝线圈与第二线圈绕组2的最内匝线圈是并联交叉结构。可选地,C与N不同,也即是,第一线圈绕组1的最内匝线圈与第二线圈绕组2的最内匝线圈可以构造并联交叉结构,第一线圈绕组1中较靠外的线圈中的两段导线可以构造串联交叉结构,第二线圈绕组2中较靠外的线圈中的两段导线可以构造串联交叉结构。如此,可以进一步降低该线圈模组中的环流损耗。
需要说明的是,从外部电路流入该线圈模组的电流或者该线圈模组自身产生的电流,可以先流入第一线圈绕组1,然后同时流入第一线圈绕组1的最内匝线圈和第二线圈绕组2的最内匝线圈,最后从第二线圈绕组2中流出。或者,从外部电路流入该线圈模组的电流或者该线圈模组自身产生的电流,可以先流入第二线圈绕组2,然后同时流入第二线圈绕组2的最内匝线圈和第一线圈绕组1的最内匝线圈,最后从第一线圈绕组1中流出。
另外,第七段导线07与第八段导线08之间具有开口,第九段导线09与第十段导线010 之间具有开口,C+1个第三连接部L3中的第j个第三连接部L3位于第七段导线07与第八段导线08之间的开口内,或者第j个第三连接部L3位于第九段导线09与第十段导线010之间的开口内。
其中,第j个第七子导线77与第j个第九子导线99并联时,第j个第七子导线77与第j个第九子导线99可以通过至少两个过孔实现并联。第j个第八子导线88与第j个第十子导线100并联时,第j个第八子导线88与第j个第十子导线100也可以通过至少两个过孔实现并联。
值得说明的是,参见图14,第一线圈绕组1中的最内匝线圈与第二线圈绕组2中的最内匝线圈之间形成并联交叉结构,即该C+1组子导线中形成至少一个交叉结构。在此情况下,磁场穿过该C+1组子导线之间的切槽时,该C+1组子导线中至少两组子导线中每组子导线中的一股第七子导线77和一股第九子导线99产生的感应电流与对应的一股第八子导线88和一股第十子导线100产生的感应电流I E的方向相反,因而它们至少可以相互抵消一部分,从而可以有效降低第一线圈绕组1和第二线圈绕组2中的环流损耗,提高该线圈模组的无线充电效率。
在上述第一种可能的结构或第二种可能的结构的基础上,参见图15或图16,第一线圈绕组1的最外匝线圈和第二线圈绕组2的最外匝线圈之间也可以形成并联交叉结构,第一线圈绕组1的最外匝线圈和第二线圈绕组2的最外匝线圈之间形成的并联交叉结构与上述第二种可能的结构类似,本申请实施例对此不再赘述。如此,可以进一步有效降低第一线圈绕组1和第二线圈绕组2中的环流损耗,提高该线圈模组的无线充电效率。
上述结构下,该线圈模组还可以包括与外部电路连接的引入端和引出端。
需要说明的是,外部电路可以通过该引入端和该引出端为第一线圈绕组1和第二线圈绕组2提供电能,或者,第一线圈绕组1和第二线圈绕组2可以通过该引入端和该引出端向外部电路输出电能。这种情况下,参见图9-图16,该线圈模组可以包括第一导线D1和第二导线D2,第一导线D1的一端为该线圈模组的第一端,第一导线D1的另一端与第一线圈绕组1的最外匝线圈的端部连接;第二导线D2的第一端为该线圈模组的第二端,第二导线D2的另一端与第二线圈绕组2的最外匝线圈的端部或次外匝线圈的端部连接;该线圈模组的第一端和该线圈模组的第二端中其中一个为引出端,另一个为引出端。
进一步地,参见图9-图16,该线圈模组还包括导磁片3;第一线圈绕组1和第二线圈绕组2均位于导磁片3上,且与导磁片3绝缘。
需要说明的是,当该线圈模组正常放置时,导磁片3可以位于第一线圈绕组1和第二线圈绕组2的下方。导磁片3具有导磁作用,可以提高第一线圈绕组1和第二线圈绕组2的电感量,同时防止磁场泄露到导磁片3的下方,对导磁片3的下方空间起到良好的屏蔽效果。导磁片3可由铁氧体、非晶、纳米晶、金属粉等一种或多种磁材料构成,本申请实施例对此不作限定。
图17是本申请实施例提供的一种无线充电发射装置的结构示意图。参见图17,该无线充电发射装置包括:直流/交流转换电路172、控制单元173和上述的线圈模组174;
直流/交流转换电路172的输入端连接直流电源171;直流/交流转换电路172在控制单元173的控制下将直流电源171输入的直流信号转换为交流信号,并将该交流信号传输到线圈模组174,以使线圈模组174对该交流信号进行发射。
其中,直流/交流转换电路172的输出端与线圈模组174连接,控制单元173的控制端与直流/交流转换电路172的被控端连接。
需要说明的是,该无线充电发射装置可以给无线充电接收装置进行无线充电,如该无线充电发射装置可以为无线充电器等。
其中,控制单元173可以在该无线充电发射装置需要为无线充电接收装置进行无线充电时,控制直流/交流转换电路172的开关导通,以使直流/交流转换电路172开始工作,将直流电源171输入的直流信号转换为交流信号。
进一步地,参见图18,控制单元173的第一电压检测端与直流电源171连接,控制单元173的第二电压检测端与线圈模组174连接,控制单元173的第一电流检测端与直流电源171连接,控制单元173的第二电流检测端与线圈模组174连接。
此时,控制单元173可以检测直流电源171的电压和电流,以及检测线圈模组174的电压和电流,之后根据检测到的电压和电流,来对直流/交流转换电路172进行控制。
进一步地,参见图19,该无线充电发射装置还包括:匹配电路175;匹配电路175连接在直流/交流转换电路172与线圈模组174之间,用于与线圈模组174发生谐振,使得直流/交流转换电路172输出的交流信号可以高效率地传输到线圈模组174中。
更进一步地,参见图20,控制单元173的控制端与匹配电路175的被控端连接。
此时控制单元173可以在该无线充电发射装置需要为无线充电接收装置进行无线充电时,控制匹配电路175的开关导通,以使匹配电路175开始工作,与线圈模组174发生谐振。
在本申请实施例中,无线充电发射装置包括线圈模组174,线圈模组174的环流损耗较少,因而可以提高该无线充电发射装置的无线充电效率。
图21是本申请实施例提供的一种无线充电接收装置的结构示意图。参见图21,该无线充电接收装置包括:交流/直流转换电路211、控制单元212、负载213和上述的线圈模组214;
线圈模组214与交流/直流转换电路211的输入端连接;线圈模组214接收交流信号,并将该交流信号传输到交流/直流转换电路211;交流/直流转换电路211在控制单元212的控制下将该交流信号转换为直流信号,并将该直流信号输出给负载213,以为负载213供电。
其中,交流/直流转换电路211的输出端与负载213连接,控制单元212的控制端与交流/直流转换电路211的被控端连接。
需要说明的是,该无线充电接收装置可以使用无线充电发射装置对自身进行无线充电,如该无线充电接收装置可以为手机、平板电脑等电子设备。
其中,控制单元212可以在该无线充电接收装置需要使用无线充电发射装置对自身进行无线充电时,控制交流/直流转换电路211的开关导通,以使交流/直流转换电路211开始工作,将线圈模组214输入的交流信号转换为直流信号,并将该直流信号输出给负载213。
进一步地,参见图22,控制单元212的第一电压检测端与线圈模组214连接,控制单元212的第二电压检测端与负载213连接,控制单元212的第一电流检测端与线圈模组214连接,控制单元212的第二电流检测端与负载213连接。
此时,控制单元212可以检测线圈模组214的电压和电流,以及检测负载213的电压和电流,之后根据检测到的电压和电流,来对交流/直流转换电路211进行控制。
进一步地,参见图23,该无线充电接收装置还包括:匹配电路215;匹配电路215连接在线圈模组214与交流/直流转换电路211之间,用于与线圈模组214发生谐振,使得线圈模 组214输出的交流信号可以高效率地传输到交流/直流转换电路211中。
更进一步地,参见图24,控制单元212的控制端与匹配电路215的被控端连接。
此时控制单元212可以在该无线充电接收装置需要使用无线充电发射装置对自身进行无线充电时,控制匹配电路215的开关导通,以使匹配电路215开始工作,与线圈模组214发生谐振。
在本申请实施例中,无线充电接收装置包括线圈模组214,线圈模组214的环流损耗较少,因而可以提高该无线充电接收装置的无线充电效率。
图25是本申请实施例提供的一种无线充电系统的结构示意图。参见图25,该无线充电系统包括上述的无线充电发射装置251,以及包括上述的无线充电接收装置252,无线充电发射装置用于为无线充电接收装置进行无线充电。
需要说明的是,无线充电发射装置中的线圈模组发射的交流信号产生磁场,通过磁耦合可以使得无线充电接收装置中的线圈模组产生电压,继而可以完成无线充电发射装置为无线充电接收装置中的负载的无线充电。
在本申请实施例中,无线充电系统包括无线充电发射装置和无线充电接收装置,无线充电发射装置和无线充电接收装置均包括线圈模组,该线圈模组的环流损耗较少,因而可以提高该无线充电系统的无线充电效率。
图26是本申请实施例提供的一种终端的结构示意图。参见图26,该终端包括工作负载电路261、交流/直流转换电路262、充电控制单元263和上述的线圈模组264;
线圈模组264与交流/直流转换电路262的输入端连接;线圈模组264接收交流信号,并将该交流信号传输到交流/直流转换电路262;交流/直流转换电路262在充电控制单元263的控制下将该交流信号转换为直流信号,并将该直流信号输出给工作负载电路261。
其中,交流/直流转换电路262的输出端与工作负载电路261连接,充电控制单元263的控制端与交流/直流转换电路262的被控端连接。
需要说明的是,该终端可以为手机、平板电脑等电子设备。
其中,充电控制单元263可以在该终端需要使用无线充电器对自身进行无线充电时,控制交流/直流转换电路262的开关导通,以使交流/直流转换电路262开始工作,将线圈模组264输入的交流信号转换为直流信号,并将该直流信号输出给工作负载电路261。
进一步地,参见图27,充电控制单元263的第一电压检测端与线圈模组264连接,充电控制单元263的第二电压检测端与工作负载电路261连接,充电控制单元263的第一电流检测端与线圈模组264连接,充电控制单元263的第二电流检测端与工作负载电路261连接。
此时,充电控制单元263可以检测线圈模组264的电压和电流,以及检测工作负载电路261的电压和电流,之后根据检测到的电压和电流,来对交流/直流转换电路262进行控制。
进一步地,参见图28,该终端还包括:匹配电路265;匹配电路265连接在线圈模组264与交流/直流转换电路262之间,用于与线圈模组264发生谐振,使得线圈模组264输出的交流信号可以高效率地传输到交流/直流转换电路262中。
更进一步地,参见图29,充电控制单元263的控制端与匹配电路265的被控端连接。
此时充电控制单元263可以在该终端需要使用无线充电器对自身进行无线充电时,控制匹配电路265的开关导通,以使匹配电路265开始工作,与线圈模组264发生谐振。
在本申请实施例中,终端包括线圈模组264,线圈模组264的环流损耗较少,因而可以 提高该终端的无线充电效率。
以上所述为本申请提供的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种线圈绕组,其特征在于,所述线圈绕组包括:绝缘层、位于所述绝缘层一侧的第一部分线圈和位于所述绝缘层另一侧的第二部分线圈。
    所述第一部分线圈包括第一段导线,所述第二部分线圈包括第二段导线,所述第一段导线具有N个切槽,且所述第一段导线被其具有的N个切槽分成N+1股第一子导线,所述第二段导线也具有N个切槽,且所述第二段导线也被其具有的N个切槽分成N+1股第二子导线,其中,每一切槽均沿对应的一段导线的延伸方向延伸,N为大于或等于1的整数;
    所述N+1股第一子导线与所述N+1股第二子导线一对一的电气连接,形成N+1对子导线,所述N+1对子导线中形成至少一个交叉结构,每一对子导线包括一股第一子导线和对应的一股第二子导线。
  2. 根据权利要求1所述的线圈绕组,其特征在于,所述N+1对子导线中每一对子导线与其他至少一对子导线之间形成交叉结构。
  3. 根据权利要求1或2所述的线圈绕组,其特征在于,所述N+1对子导线中每一对子导线均与其他每一对子导线之间形成交叉结构。
  4. 根据权利要求1至3任一项所述的线圈绕组,其特征在于,
    所述第一段导线在所述绝缘层所在平面内的投影与所述第二段导线在所述绝缘层所在平面内的投影形成连续的线条图案,所述线条图案的长度大于所述第一段导线和所述第二段导线中较长的导线的长度,且小于所述第一段导线和所述第二段导线的长度之和。
  5. 根据权利要求1至4任一项所述的线圈绕组,其特征在于,所述线圈绕组不是平面线圈绕组。
  6. 根据权利要求1至5任一项所述的线圈绕组,其特征在于,所述N为大于或等于2的整数,则所述第一段导线被分为至少3股第一子导线,且所述第二段导线也被分为至少3股第二子导线。
  7. 根据权利要求1至6任一项所述的线圈绕组,其特征在于,穿过所述第一段导线内的N个切槽的磁场产生的感应电流与穿过所述第二段导线内的N个切槽的磁场产生的感应电流方向相反且大小相等。
  8. 一种线圈模组,其特征在于,所述线圈模组包括绝缘层、第一线圈绕组和第二线圈绕组,所述第一线圈绕组和所述第二线圈绕组均为如权利要求1至7任一项所述的线圈绕组,且所述第一线圈绕组和所述第二线圈绕组分别位于所述绝缘层的两侧。
  9. 根据权利要求8所述的线圈模组,其特征在于,所述第一线圈绕组的第一部分线圈与所述第二线圈绕组的第二部分线圈均位于所述绝缘层的一侧,且所述第一线圈绕组的第二部分线圈与所述第二线圈绕组的第一部分线圈均位于所述绝缘层的另一侧。
  10. 根据权利要求8或9所述的线圈模组,其特征在于,所述第一线圈绕组的第一部分线圈与所述第二线圈绕组的第二部分线圈位于同一平面线圈内,且相互不接触。
  11. 一种无线充电发射装置,其特征在于,所述装置包括:直流/交流转换电路、控制单元和上述权利要求8至10任一项所述的线圈模组;
    所述直流/交流转换电路的输入端连接直流电源;
    所述直流/交流转换电路在所述控制单元的控制下将所述直流电源输入的直流信号转换为交流信号,并将所述交流信号传输到所述线圈模组,以使所述线圈模组对所述交流信号进行发射。
  12. 一种无线充电接收装置,其特征在于,所述装置包括:交流/直流转换电路、控制单元、负载和上述权利要求8至10任一项所述的线圈模组;
    所述线圈模组与所述交流/直流转换电路的输入端连接;
    所述线圈模组接收交流信号,并将所述交流信号传输到所述交流/直流转换电路;所述交流/直流转换电路在所述控制单元的控制下将所述交流信号转换为直流信号,并将所述直流信号输出给负载,以为所述负载供电。
  13. 一种无线充电系统,其特征在于,所述系统包括上述权利要求11所述的无线充电发射装置,以及包括上述权利要求12所述的无线充电接收装置,所述无线充电发射装置用于为所述无线充电接收装置进行无线充电。
  14. 一种终端,其特征在于,所述终端包括工作负载电路、交流/直流转换电路、充电控制单元和上述权利要求8至10任一项所述的线圈模组;
    所述线圈模组与所述交流/直流转换电路的输入端连接;
    所述线圈模组接收交流信号,并将所述交流信号传输到所述交流/直流转换电路;所述交流/直流转换电路在所述充电控制单元的控制下将所述交流信号转换为直流信号,并将所述直流信号输出给所述工作负载电路。
PCT/CN2019/128685 2019-05-24 2019-12-26 线圈绕组、线圈模组、发射装置、接收装置、系统和终端 WO2020238192A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19930245.6A EP3809431A4 (en) 2019-05-24 2019-12-26 COIL WINDING, COIL MODULE, TRANSMISSION DEVICE, RECEIVING DEVICE, SYSTEM AND TERMINAL DEVICE
US17/158,629 US11887773B2 (en) 2019-05-24 2021-01-26 Coil winding, coil module, transmitting apparatus, receiving apparatus, system, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910441832.XA CN110289156B (zh) 2019-05-24 2019-05-24 线圈绕组、线圈模组、发射装置、接收装置、系统和终端
CN201910441832.X 2019-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,629 Continuation US11887773B2 (en) 2019-05-24 2021-01-26 Coil winding, coil module, transmitting apparatus, receiving apparatus, system, and terminal

Publications (1)

Publication Number Publication Date
WO2020238192A1 true WO2020238192A1 (zh) 2020-12-03

Family

ID=68002333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128685 WO2020238192A1 (zh) 2019-05-24 2019-12-26 线圈绕组、线圈模组、发射装置、接收装置、系统和终端

Country Status (4)

Country Link
US (1) US11887773B2 (zh)
EP (1) EP3809431A4 (zh)
CN (1) CN110289156B (zh)
WO (1) WO2020238192A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215978B (zh) * 2018-09-29 2021-01-08 维沃移动通信有限公司 一种无线充电线圈及终端设备
CN109887724B (zh) * 2019-02-28 2021-10-01 华为技术有限公司 线圈模组、无线充电发射、接收装置、系统及移动终端
CN110289156B (zh) 2019-05-24 2020-11-10 华为技术有限公司 线圈绕组、线圈模组、发射装置、接收装置、系统和终端
JP2021057554A (ja) * 2019-10-02 2021-04-08 Tdk株式会社 コイル部品
CN113130283B (zh) * 2019-12-31 2023-01-24 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其加热器
CN113126787A (zh) * 2020-01-15 2021-07-16 东莞宝德电子有限公司 无线充电鼠标及其充电方法
CN113628851B (zh) * 2020-05-07 2024-01-23 台达电子企业管理(上海)有限公司 绕组组件及磁性元件
CN112185660B (zh) * 2020-09-11 2022-06-03 瑞声新能源发展(常州)有限公司科教城分公司 线圈和无线充电设备
CN114256989B (zh) * 2020-09-22 2024-01-02 华为技术有限公司 一种线圈组件、电子设备及无线充电器
CN213905105U (zh) * 2020-11-03 2021-08-06 瑞声精密制造科技(常州)有限公司 一种无线充电fpc线圈结构
CN113364144A (zh) * 2021-07-05 2021-09-07 浙江晶日科技股份有限公司 线圈、无线充电发射、接收装置及移动终端
CN113346635A (zh) * 2021-07-05 2021-09-03 浙江晶日科技股份有限公司 线圈、无线充电发射、接收装置及移动终端
CN115020077B (zh) * 2021-12-01 2023-05-02 荣耀终端有限公司 无线充电线圈、电子设备及天线
CN114425956B (zh) * 2022-03-08 2024-04-16 哈尔滨工业大学(威海) 一种用于无人机充电的磁耦合充电设备以及系统
CN218920063U (zh) * 2022-08-02 2023-04-25 荣耀终端有限公司 一种电子设备、手写笔的无线充电耦合结构及供电器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715781A (zh) * 2014-01-06 2014-04-09 邢益涛 一种新型无线充电传输装置
CN107046333A (zh) * 2016-02-05 2017-08-15 三星电机株式会社 线圈模块及使用该线圈模块的无线电力接收器
CN108321914A (zh) * 2017-11-20 2018-07-24 华为技术有限公司 一种线圈及无线充电接收装置、与发射装置与系统
CN108565102A (zh) * 2018-03-28 2018-09-21 华为技术有限公司 线圈模组、无线充电发射装置、接收装置、系统和终端
CN110289156A (zh) * 2019-05-24 2019-09-27 华为技术有限公司 线圈绕组、线圈模组、发射装置、接收装置、系统和终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064044A (ja) * 2003-08-13 2005-03-10 Fuji Heavy Ind Ltd 電気機器用コイルの製造方法及び製造装置
JP4893301B2 (ja) * 2006-12-28 2012-03-07 住友電気工業株式会社 超電導コイルの製造方法
JP2012230972A (ja) * 2011-04-25 2012-11-22 Sumida Corporation コイル部品、圧粉インダクタおよびコイル部品の巻回方法
US9570233B2 (en) * 2014-06-13 2017-02-14 Globalfoundries Inc. High-Q multipath parallel stacked inductor
JP7187143B2 (ja) * 2017-10-26 2022-12-12 Tdk株式会社 コイル部品
CN109961942B (zh) 2018-08-04 2020-06-16 华为技术有限公司 线圈模组、无线充电发射装置、接收装置、系统和终端
CN109616303A (zh) * 2018-12-07 2019-04-12 浙江省东阳市东磁诚基电子有限公司 无线充电fpc线圈结构
JP7078004B2 (ja) * 2019-03-28 2022-05-31 株式会社村田製作所 インダクタとその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715781A (zh) * 2014-01-06 2014-04-09 邢益涛 一种新型无线充电传输装置
CN107046333A (zh) * 2016-02-05 2017-08-15 三星电机株式会社 线圈模块及使用该线圈模块的无线电力接收器
CN108321914A (zh) * 2017-11-20 2018-07-24 华为技术有限公司 一种线圈及无线充电接收装置、与发射装置与系统
CN108565102A (zh) * 2018-03-28 2018-09-21 华为技术有限公司 线圈模组、无线充电发射装置、接收装置、系统和终端
CN110289156A (zh) * 2019-05-24 2019-09-27 华为技术有限公司 线圈绕组、线圈模组、发射装置、接收装置、系统和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809431A4

Also Published As

Publication number Publication date
CN110289156A (zh) 2019-09-27
US20210151247A1 (en) 2021-05-20
CN110289156B (zh) 2020-11-10
US11887773B2 (en) 2024-01-30
EP3809431A1 (en) 2021-04-21
EP3809431A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
WO2020238192A1 (zh) 线圈绕组、线圈模组、发射装置、接收装置、系统和终端
US11837877B2 (en) Coil module, wireless charging transmitting apparatus, receiving apparatus, system, and terminal
US11978583B2 (en) Coil module, wireless charging transmitting apparatus, wireless charging receiving apparatus, wireless charging system, and mobile terminal
CN108321914B (zh) 一种线圈及无线充电接收装置、与发射装置与系统
US20210142942A1 (en) Coil Module, Wireless Charging Transmitting Apparatus, Wireless Charging Receiving Apparatus, Wireless Charging System, and Terminal
RU2481662C2 (ru) Плоская катушка
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
CN105720695B (zh) 感应式无线电力传输系统
JP2002208527A (ja) 漏れ磁束型電力変換トランス
CN112865337A (zh) 一种能实现多自由度多负载无线电能传输装置
US20140340938A1 (en) Flyback converter using coaxial cable transformer
CN108270078A (zh) 一种高效率无线充电接收天线
CN105720699B (zh) 感应式无线电力传输系统
US10693321B2 (en) Inductive power transfer using diverted magnetic field
JP2011229202A (ja) 無線電力伝送用コイル
EP2954544B1 (en) Transmission of electric power
CN214753198U (zh) 线圈绕组、线圈模组、发射装置以及接收装置
US20140111020A1 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
JP5461277B2 (ja) アンテナ装置、送電装置、受電装置および非接触電力伝送システム
CN113579450B (zh) 一种电磁焊接结构
CN115173576A (zh) 用于大气隙无线充电的螺线管磁耦合机构及制作方法
RU2516291C1 (ru) Сверхпроводящий многожильный ленточный провод для переменных и постоянных токов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019930245

Country of ref document: EP

Effective date: 20210115

NENP Non-entry into the national phase

Ref country code: DE