WO2020235129A1 - マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置 - Google Patents

マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置 Download PDF

Info

Publication number
WO2020235129A1
WO2020235129A1 PCT/JP2020/000838 JP2020000838W WO2020235129A1 WO 2020235129 A1 WO2020235129 A1 WO 2020235129A1 JP 2020000838 W JP2020000838 W JP 2020000838W WO 2020235129 A1 WO2020235129 A1 WO 2020235129A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchip
analysis
electrophoresis
cleaning
timing
Prior art date
Application number
PCT/JP2020/000838
Other languages
English (en)
French (fr)
Inventor
英郷 熊谷
昭博 荒井
亨 原田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US17/611,366 priority Critical patent/US20220229015A1/en
Priority to JP2021520040A priority patent/JP7276439B2/ja
Publication of WO2020235129A1 publication Critical patent/WO2020235129A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2550/00Electrophoretic profiling, e.g. for proteome analysis

Definitions

  • the present invention relates to a microchip electrophoresis method and a microchip electrophoresis apparatus.
  • the electrophoresis device uses devices such as microchips or capillaries to perform high-speed separation of trace samples by electrophoresis.
  • devices such as microchips or capillaries to perform high-speed separation of trace samples by electrophoresis.
  • Patent Document 1 discloses a microchip electrophoresis apparatus.
  • the microchip is formed by joining a base substrate having a flow path for electrophoresis separation and a flow path for introducing a sample, and a base substrate having a through hole that functions as a reservoir for the sample and the separation medium. It is configured.
  • the present invention has been made to solve such a problem, and an object of the present invention is a microchip electrophoresis method and a microchip electrophoresis method capable of efficiently suppressing deterioration of analytical performance when a microchip is repeatedly used. It is to provide a microchip electrophoresis apparatus.
  • the first aspect of the present invention is a microchip electrophoresis method, in which a step of sequentially analyzing a plurality of samples and a microchip cleaning step by repeating an analysis step by electrophoresis separation with a microchip are performed. It includes a step to be executed and a step to set the timing of the microchip cleaning step at an arbitrary timing between a plurality of analysis steps.
  • the second aspect of the present invention relates to a microchip electrophoresis apparatus.
  • the microchip electrophoresis apparatus includes a microchip in which an electrophoresis flow path is formed, a dispensing probe, a moving mechanism, a filling / discharging unit, and a controller.
  • the dispensing probe is configured to inject the separation medium, sample and cleaning solution into the electrophoresis channel of the microchip.
  • the moving mechanism moves the dispensing probe between the suction position of the separation medium, sample and cleaning solution and the dispensing position on the microchip.
  • the filling / discharging unit is configured to fill the electrophoresis flow path with the separation medium and the cleaning liquid and discharge the separation medium and the cleaning liquid from the electrophoresis flow path.
  • the controller controls the operation of the dispensing probe, moving mechanism and filling / discharging section.
  • the controller is configured to repeatedly execute the analysis step by electrophoretic separation on the microchip and to perform the cleaning step of the microchip.
  • the controller is communicated with an input unit that accepts an input operation for setting the timing of the microchip cleaning process at an arbitrary timing between a plurality of analysis processes.
  • microchip electrophoresis method and a microchip electrophoresis apparatus that can efficiently suppress a decrease in analytical performance when a microchip is repeatedly used.
  • FIG. 1 It is a figure which shows schematic the whole structure of the microchip electrophoresis apparatus which concerns on embodiment of this invention. It is a figure which shows schematic structure of the main part of the microchip electrophoresis apparatus shown in FIG. It is a block diagram which shows the control structure of the controller shown in FIG. It is a figure which shows an example of a microchip. It is a figure which shows an example of a microchip. It is a figure which shows roughly the connection state of the air supply port of the separation buffer filling / discharging part and a microchip. It is a perspective view which shows the process order of a cleaning process. It is a perspective view which shows the analysis process in process order. It is a perspective view which shows the analysis process in process order.
  • FIG. 1 is a diagram schematically showing an overall configuration of a microchip electrophoresis apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of a main part of the microchip electrophoresis apparatus 100 shown in FIG.
  • the microchip electrophoresis apparatus 100 includes a dispensing unit 2, a syringe pump 4, a separation buffer filling / discharging unit 16, a suction pump unit 23, a high-pressure power supply unit 26, and a fluorescence measuring unit.
  • a 31 and a controller 38 are provided.
  • the microchip electrophoresis device 100 is communicated with the control device 70.
  • the microchip electrophoresis apparatus 100 further includes a plurality of (for example, four) microchips 5-1 to 5-4, a holding unit 7, and a microtiter plate 12.
  • Each of the microchips 5-1 to 5-4 has one electrophoresis flow path formed for processing one sample.
  • the microchips 5-1 to 5-4 are held by the holding unit 7.
  • the microchips 5-1 to 5-4 may be collectively referred to as the microchip 5.
  • the microchip 5 can be used repeatedly.
  • the dispensing unit 2 is configured to dispense the separation buffer solution and the sample into the microchips 5-1 to 5-4.
  • the separation buffer solution is also used as a "separation medium” and contains, for example, a pH buffer and at least one of a water-soluble polymer (such as a cellulosic polymer).
  • the dispensing unit 2 constitutes a "moving mechanism" for moving the dispensing probe 8 between the suction position of the liquid to be dispensed and the dispensing position on the microchip 5.
  • the dispensing unit 2 includes a dispensing probe 8, a syringe pump 4, at least one container 10 for holding at least one type of cleaning liquid, and a three-way solenoid valve 6.
  • the dispensing probe 8 has a dispensing nozzle.
  • the syringe pump 4 sucks and discharges the separation buffer solution, the sample or the cleaning solution.
  • the dispensing probe 8 and at least one container 10 are connected to the syringe pump 4 via a three-way solenoid valve 6.
  • the sample is housed in the well 12W on the microtiter plate 12 and dispensed into the microchips 5-1 to 5-4 by the dispensing unit 2.
  • the separation buffer solution is housed in a container (not shown) and dispensed into microchips 5-1 to 5-4 by the dispensing unit 2.
  • the separation buffer filling / discharging unit 16 and the suction pump unit 23 constitute a buffer solution filling mechanism for filling the electrophoresis flow path of the microchip 5 with the separation buffer solution.
  • the separation buffer filling / discharging unit 16 injects a fixed amount of the separation buffer solution into one reservoir of the electrophoresis flow path, and fills the injected separation buffer solution from the reservoir with air pressure into the electrophoresis flow path.
  • the separation buffer filling / discharging unit 16 has an air supply port 18 and a suction nozzle 22.
  • the suction pump unit 23 discharges unnecessary separation buffer solution that has overflowed into other reservoirs.
  • the separation buffer filling / discharging unit 16 and the suction pump unit 23 are commonly provided for the four microchips 5-1 to 5-4.
  • the dispensing unit 2 sucks the separation buffer solution or the sample into the dispensing probe 8 by connecting the three-way solenoid valve 6 in the direction in which the dispensing probe 8 and the syringe pump 4 are connected.
  • the dispensing unit 2 uses the syringe pump 4 to move the dispensing probe 8 into the reservoir of any of the electrophoresis channels of the microchips 5-1 to 5-4. Discharge.
  • the cleaning unit 14 is for cleaning the dispensing probe 8 and is filled with a cleaning liquid.
  • the dispensing unit 2 When cleaning the dispensing probe 8, the dispensing unit 2 switches the three-way solenoid valve 6 in the direction of connecting the syringe pump 4 and the container 10 for the cleaning liquid, and sucks the cleaning liquid into the syringe pump 4. Next, the dispensing unit 2 immerses the dispensing probe 8 in the cleaning liquid of the cleaning unit 14, switches the three-way solenoid valve 6 to the side connecting the syringe pump 4 and the dispensing probe 8, and from the inside of the dispensing probe 8. The dispensing probe 8 is cleaned by discharging the cleaning liquid.
  • the dispensing unit 2 When cleaning the electrophoresis flow path of the microchips 5-1 to 5-4, the dispensing unit 2 switches in the direction of connecting the three-way solenoid valve 6 and the syringe pump 4 to the container 10, and charges the syringe pump 4 with the cleaning liquid. Suction. The dispensing unit 2 moves the dispensing probe 8 to the reservoirs of the microchips 5-1 to 5-4, and dispenses a predetermined amount of the cleaning liquid into the reservoir. The cleaning liquid dispensed into the reservoir enters the electrophoresis flow path by capillarity.
  • the separation buffer filling / discharging unit 16 is also used when discharging the cleaning liquid after holding the cleaning liquid in the electrophoresis flow path for a predetermined time.
  • the separation buffer filling / discharging unit 16 moves onto the microchips 5-1 to 5-4, and the electrophoretic flow path of the microchips 5-1 to 5-4.
  • the air supply port 18 is kept airtight and pressed onto the reservoir at one end (reservoir into which the separation buffer solution is dispensed), and the suction nozzle 22 is inserted into the other reservoir. In this state, air is blown from the air supply port 18 to push the separation buffer solution into the electrophoresis flow path, and the separation buffer solution overflowing from other reservoirs is sucked from the suction nozzle 22 by the suction pump unit 23 and discharged to the outside. To do.
  • the high-voltage power supply unit 26 independently applies a voltage for electrophoresis to the electrophoresis flow paths of the microchips 5-1 to 5-4, so that each microchip 5 has a plurality of (for example, four) independent high-voltage power supplies. It has power supplies 26-1 to 26-4.
  • the fluorescence measurement unit 31 is configured to detect sample components electrophoretically separated in each of the separation channels 55 of the microchips 5-1 to 5-4.
  • the fluorescence measurement unit 31 includes a plurality of (for example, 4) LEDs (Liquid Emitting Diodes) 30-1 to 30-4 and a plurality of (for example, 4) optical fibers 32-1 to 32-4. , A plurality of (for example, 4) filters 34-1 to 34-4, and a photomultiplier tube 36.
  • LEDs 30-1 to 30-4 irradiate a part of the electrophoresis flow path of the microchips 5-1 to 5-4 with excitation light, respectively.
  • the optical fibers 32-1 to 32-4 receive the fluorescence generated by exciting the sample components moving in the electrophoresis flow path by the excitation light from the LEDs 30-1 to 30-4, respectively.
  • the filters 34-1 to 34-4 remove the excitation light component from the fluorescence from the optical fibers 32-1 to 32-4 and allow only the fluorescent component to pass through.
  • the photomultiplier tube 36 receives the fluorescent component that has passed through the filters 34-1 to 34-4.
  • the filters 34-1 to 34-4 transmit different fluorescence. Therefore, different fluorescence can be detected between the microchips 5-1, 5-2, 5-3, 5-4.
  • one filter can be used in common.
  • the LEDs 30-1 to 30-4 By causing the LEDs 30-1 to 30-4 to emit light at different times, the fluorescence from a plurality of microchips 5-1 to 5-4 can be identified and detected by one photomultiplier tube 36.
  • the light source of the excitation light is not limited to the LED, and an LD (Laser Diode) may be used.
  • the controller 38 operates the dispensing unit 2 so as to shift to the separation buffer solution filling and sample injection into the next electrophoresis flow path when the separation buffer solution filling and sample injection into one electrophoresis flow path are completed.
  • the controller 38 controls the operation of the high-voltage power supply units 26 (high-voltage power supplies 26-1 to 26-4) so as to apply an electrophoresis voltage in the electrophoresis flow path after sample injection to cause electrophoresis.
  • the controller 38 controls the detection operation by the fluorescence measuring unit 31.
  • the controller 38 further controls the cleaning operation of the electrophoretic flow path before filling the separation buffer solution into the electrophoretic flow path for which the analysis of the previous sample has been completed in order to use the microchip 5 repeatedly.
  • the controller 38 has a CPU (Central Processing Unit) 60, a storage unit for storing programs and data, and a communication I / F (Interface) 68 as main components.
  • the components are connected to each other by a data bus.
  • the storage unit includes a ROM (Read Only Memory) 62, a RAM (Random Access Memory) 64, and an HDD (Hard Disk Drive) 66.
  • the ROM 62 can store a program executed by the CPU 60.
  • the RAM 64 can temporarily store data generated by executing a program in the CPU 60 and data input via the communication I / F 68, and functions as a temporary data memory used as a work area. can do.
  • the HDD 66 is a non-volatile storage device, and can store information generated by the microchip electrophoresis device 100 such as a detection result by the fluorescence measuring unit 31.
  • a semiconductor storage device such as a flash memory may be adopted instead of the HDD 66.
  • the communication I / F68 is an interface for communicating with an external device including the control device 70.
  • Communication I / F is realized by an adapter, a connector, or the like.
  • the communication method may be, for example, wireless communication such as Bluetooth (registered trademark) or wireless LAN (Local Area Network), or wired communication using USB (Universal Serial Bus) or the like. ..
  • the control device 70 is communicated and connected to the microchip electrophoresis device 100, and exchanges data with the microchip electrophoresis device 100.
  • the control device 70 is configured to control the operation of the microchip electrophoresis device 100 and to take in and process the data acquired by the fluorescence measurement unit 31.
  • control device 70 is mainly composed of the CPU 72, which is an arithmetic processing unit.
  • the control device 70 for example, a personal computer or the like can be used.
  • the control device 70 includes a CPU 72, a storage unit (ROM76, RAM74 and HDD78), a communication I / F84, an input unit 82, and a display 80.
  • the ROM 76 can store a program executed by the CPU 72.
  • the RAM 74 can temporarily store data generated by executing a program in the CPU 72 and data input via the communication I / F 84 or the input unit 82, and is used as a work area. It can function as a memory.
  • the HDD 78 is a non-volatile storage device, and can store the information generated by the control device 70. Alternatively, a semiconductor storage device such as a flash memory may be adopted instead of the HDD 78.
  • the communication I / F 84 is an interface for the control device 70 to communicate with an external device including the microchip electrophoresis device 100.
  • the input unit 82 receives an input operation including an instruction from the measurer to the microchip electrophoresis apparatus 100.
  • the input unit 82 includes a keyboard, a mouse, a touch panel integrated with the display screen of the display 80, and the like. As will be described later, the input unit 82 accepts registration of an analysis schedule for sequentially analyzing a plurality of samples, and also receives an instruction regarding the timing of the cleaning process of the microchip 5.
  • the display 80 can display an analysis schedule input screen when registering the analysis schedule (see FIG. 14).
  • the display 80 can display an input screen for the timing of the cleaning process when instructing the timing of the cleaning process of the microchip 5 (see FIG. 14).
  • the display 80 can display the detection data by the fluorescence measurement unit 31, the analysis result for each sample, and the like.
  • FIG. 3 is a block diagram showing a control configuration of the controller 38 shown in FIG.
  • the controller 38 has a migration control unit 92, a cleaning control unit 94, and an analysis scheduler 96. These functional configurations are realized by the CPU 60 executing a predetermined program in the microchip electrophoresis apparatus 100 shown in FIG.
  • the migration control unit 92 repeatedly executes the analysis step by electrophoresis for each microchip 5.
  • the analysis steps are (1) a buffer solution filling step of filling an empty electrophoresis flow path with a separation buffer solution, (2) a sample dispensing step of dispensing a sample into a reservoir for sample supply, and (3) a plurality of reservoirs.
  • the cleaning control unit 94 executes at least one cleaning step for each microchip 5.
  • the cleaning step is a step of supplying a certain amount of cleaning liquid to one reservoir with the electrophoresis flow path and the reservoir empty by using at least one kind of cleaning liquid held in at least one container 10.
  • At least one type of cleaning solution includes water or a cleaning solution other than water (such as a cleaning solution containing an organic solvent or a surfactant).
  • the analysis scheduler 96 determines the execution order of a plurality of analysis steps and at least one cleaning step for each microchip 5.
  • the analysis scheduler 96 allocates processing resources (program time, memory, etc.) to the electrophoresis control unit 92 and the cleaning control unit 94 according to the analysis schedule and the timing of the cleaning process registered in advance.
  • the control device 70 has a data processing unit 86.
  • the data processing unit 86 receives an instruction from the input unit 82, the data processing unit 86 transmits data indicating the content of the instruction to the controller 38.
  • the data processing unit 86 receives the detection data from the fluorescence measurement unit 31 from the controller 38, the data processing unit 86 processes the received detection data and displays the processing result on the display 80.
  • microchip 5 4 and 5 are diagrams showing an example of the microchip 5.
  • the "microchip” means a device for electrophoresis in which an electrophoresis flow path is formed in a substrate, and is not necessarily limited to a device having a small size.
  • FIG. 4 (A) is a plan view of the transparent substrate 51 of the microchip 5
  • FIG. 4 (B) is a plan view of the transparent substrate 52 of the microchip 5
  • FIG. 4 (C) is a plan view of the microchip 5. It is a front view.
  • the microchip 5 has a pair of transparent substrates 51, 52.
  • the transparent substrates 51 and 52 are, for example, quartz glass or other glass substrate or resin substrate.
  • the transparent substrate 51 and the transparent substrate 52 are overlapped and joined.
  • the capillary groove 55 constitutes a separation flow path 55 for electrophoretic separation of samples.
  • the capillary groove 54 constitutes a sample introduction flow path 54 for introducing a sample into the separation flow path 55.
  • the sample introduction flow path 54 and the separation flow path 55 form an "electrophoretic flow path".
  • the sample introduction flow path 54 and the separation flow path 55 intersect at the intersection position 56.
  • the transparent substrate 51 is formed with four through holes at positions corresponding to the ends of the capillary grooves 54 and 55.
  • the four through holes form reservoirs 53-1 to 54-4, respectively.
  • the reservoirs 53-1 to 53-4 may be collectively referred to as the reservoir 53.
  • the microchip 5 basically has the configuration shown in FIG. 4, but in order to facilitate handling, as shown in FIG. 5, an electrode terminal for applying an electrophoretic voltage is provided on the microchip 5. Can be formed.
  • FIG. 5 is a plan view of the microchip 5.
  • the four reservoirs 53-1 to 53-4 constitute ports for applying voltage to the electrophoresis channels 54 and 55.
  • Port # 1 (reservoir 53-1) and port # 2 (reservoir 53-2) are located at both ends of the sample introduction flow path 54.
  • Port # 3 (reservoir 53-3) and port # 4 (reservoir 53-4) are located at both ends of the separation flow path 55.
  • Four electrode patterns 61 to 64 are formed on the surface of the microchip 5 (transparent substrate 51) in order to apply a voltage to each of the ports # 1 to # 4.
  • the electrode patterns 61 to 64 are formed so as to extend from the corresponding ports to the measuring end portion of the microchip 5, and are connected to the high voltage power supplies 26-1 to 26-4 (see FIG. 2), respectively.
  • FIG. 6 is a diagram schematically showing a connection state between the air supply port 18 of the separation buffer filling / discharging unit 16 and the microchip 5.
  • an O-ring 20 is provided at the tip of the air supply port 18.
  • the air supply port 18 By pressing the air supply port 18 onto one reservoir 53 of the microchip 5, the air supply port 18 can be attached to the electrophoresis flow paths 54 and 55 of the microchip 5 while maintaining airtightness. As a result, air can be pressurized from the air supply port 18 and sent out into the electrophoresis channels 54 and 55.
  • a suction nozzle 22 is inserted into the other reservoir 53, and unnecessary separation buffer solution or cleaning solution overflowing from the electrophoresis channels 54 and 55 is sucked in and discharged.
  • the microchip 5 is repeatedly used in a state of being fixed to the holding portion 7.
  • the controller 38 of the microchip electrophoresis apparatus 100 executes the microchip electrophoresis method according to the present embodiment by executing the program stored in the ROM 62.
  • the microchip electrophoresis method includes a washing step of washing the microchip 5 and an analysis step of electrophoretic separation on the microchip 5.
  • the analysis step is repeated for each microchip 5.
  • the cleaning step is performed at least once for each microchip 5 at any time in the plurality of analysis steps.
  • FIG. 7 is a perspective view showing the order of the cleaning steps.
  • cleaning is performed on the microchip 5 with the electrophoresis channels 54 and 55 and the reservoir 53 empty.
  • the dispensing probe 8 is moved onto the reservoir 53-4 and the cleaning solution is dispensed.
  • the cleaning liquid water or a cleaning liquid other than water (such as a cleaning liquid containing an organic solvent or a surfactant) and various kinds can be used.
  • the amount of the cleaning liquid to be dispensed can be preset in the controller 70 or the controller 38 as the cleaning conditions.
  • the microchip 5 is held for a predetermined time in a state where the cleaning liquid is dispensed into the reservoir 53-4.
  • the cleaning liquid dispensed into the reservoir 53-4 is introduced into the electrophoresis flow paths 54 and 55 by the capillary phenomenon.
  • the predetermined time can be set in advance in the controller 70 or the controller 38 as cleaning conditions.
  • the air supply port 18 of the separation buffer filling / discharging unit 16 is pressed onto the reservoir 53-4 in an airtight state, and the pressurized air is released. It is supplied from the reservoir 53-4 to the electrophoresis channels 54 and 55. Suction nozzles 22-1 to 22-3 are inserted into the other reservoirs 53-1 to 53-3, respectively, and the cleaning liquid extruded from the electrophoresis channels 54 and 55 into the reservoirs 53-1 to 53-3 is sucked. Is removed.
  • a series of steps shown in FIGS. 7A to 7C is regarded as one cycle, and this one cycle is repeatedly executed a predetermined number of times.
  • the number of repetitions can be preset in the controller 70 or the controller 38 as a cleaning condition.
  • FIGS. 8 to 11 are perspective views showing the analysis steps in process order.
  • FIG. 11 is a flowchart showing a processing procedure of the analysis process. Reference numerals A to P in the flowchart of FIG. 11 correspond to reference numerals A to P of the steps shown in FIGS. 8 to 10, respectively.
  • the analysis process is repeatedly executed for each microchip 5.
  • the microchip 5 for the first analysis step or the microchip 5 in which the separation buffer solution is discharged from the microchip 5 used in the previous analysis step is used.
  • the dispensing probe 8 is moved onto the reservoir 53-4 and the separation buffer solution is dispensed.
  • the air supply port 18 is pressed onto the reservoir 53-4 in an airtight state, and the suction nozzles 22-1 to 22 are applied to the other reservoirs 53-1 to 53-3, respectively. -3 is inserted.
  • the pressurized air is supplied from the air supply port 18 to the electrophoresis channels 54 and 55 via the reservoirs 53-4, and overflows from the electrophoresis channels 54 and 55 into the reservoirs 53-1 to 53-3.
  • the liquid is sucked and removed by the suction nozzles 22-1 to 22-3.
  • the suction nozzle 22-4 is inserted into the reservoir 53-4, and the separation buffer solution in the reservoir 53-4 is sucked and removed. As a result, the separation buffer solution remains only in the electrophoresis channels 54 and 55.
  • the separation buffer solution is sequentially dispensed to the reservoirs 53-1 to 53-4 by the dispensing probe 8.
  • electrodes are inserted into each of the reservoirs 53-1 to 53-4, and an electrophoresis test is performed.
  • the current value between the electrodes is detected to check whether dust or bubbles are mixed in the electrophoresis flow path.
  • the voltage applied to the electrophoresis flow path may be the same as the electrophoresis voltage for electrophoretic separation of the sample, or may be a voltage lower than the electrophoresis voltage.
  • the dispensing probe 8 into which the separation buffer solution has been dispensed is introduced into the rinse port 110, and the entire amount of the separation buffer solution in the dispensing probe 8 is discharged, and the inside and outside of the dispensing probe 8 are washed.
  • the process proceeds to the step of FIG. 9 (I) for injecting a sample and analyzing.
  • the step of FIG. 8 (A) is to refill the electrophoresis flow path with the separation buffer solution.
  • the number of times n that allows the separation buffer solution to be refilled in the electrophoresis flow path is preset.
  • the microchip 5 was removed from the holding unit 7 and replaced with another microchip 5. After that, it starts from the step of FIG. 8 (A).
  • the suction nozzle 22-1 is inserted only into the reservoir 53-1 for sample supply, and the separation buffer solution in the reservoir 53-1 is sucked and removed.
  • the cleaning liquid is supplied to the reservoir 53-1 for sample supply by the dispensing probe 8.
  • the suction nozzle 22-1 is inserted into the reservoir 53-1 for sample supply, and the cleaning liquid is sucked and removed.
  • FIGS. 9 (J) and 9 (K) are cleaning steps for removing the separation buffer solution remaining in the reservoir 53-1 for sample supply. This cleaning step may be repeated a plurality of times as needed.
  • the sample is injected from the dispensing probe 8 into the reservoir 53-1 for sample supply.
  • the internal standard may be dispensed from the dispensing probe 8 into the reservoir 53-1 following sample injection.
  • Internal standard materials include, for example, low molecular weight markers (LM) and high molecular weight markers (UM).
  • electrodes are inserted into each of the reservoirs 53-1 to 53-4, and a voltage for sample introduction is applied. As a result, the sample is guided to the intersection position 56 of the sample introduction flow path 54 and the separation flow path 55.
  • the voltage applied to the electrode is switched to the voltage for migration separation.
  • the sample is electrophoretically separated in the direction of the reservoir 53-4 in the separation flow path 55 and detected by the fluorescence measuring unit 31.
  • the air supply port 18 is pressed onto the reservoir 53-4 in an airtight state, and the suction nozzles 22 are pressed against the other reservoirs 53-1 to 53-3, respectively. -1 to 22-3 are inserted.
  • the pressurized air is supplied from the air supply port 18 to the electrophoresis channels 54 and 55 via the reservoirs 53-4, and overflows from the electrophoresis channels 54 and 55 into the reservoirs 53-1 to 53-3.
  • the liquid is sucked and removed by the suction nozzles 22-1 to 22-3.
  • each of the suction nozzles 22-1 to 22-4 is inserted into the rinse pool 102 to suck the cleaning liquid, the inside and outside of the nozzle are cleaned, and the dispensing probe 8 is the rinse port 110. It is inserted into and the inside and outside are washed.
  • step (A) to (P) the electrophoretic analysis cycle of one sample in one microchip 5 is completed.
  • step (A) to (P) the electrophoretic analysis cycle of one sample in one microchip 5 is completed.
  • FIG. 12 is a flowchart for explaining a processing procedure of the microchip electrophoresis method according to the present embodiment.
  • FIG. 13 is a flowchart for explaining the processing flow of the analysis schedule registration (S10).
  • S10 a plurality of samples to be analyzed per operation of the microchip electrophoresis apparatus 100 are registered (S11).
  • S12 the timing of the cleaning process of the microchip 5 is registered (S12).
  • the analysis schedule can be registered, for example, by using the analysis schedule input screen displayed on the display 80.
  • FIG. 14 is a diagram showing an example of an analysis schedule input screen.
  • a plan view of the microtiter plate 12 is schematically shown as a sample selection screen 200 on the analysis schedule input screen.
  • the microtiter plate 12 has a plurality of wells 12W arranged in a matrix.
  • the measurer can select a well 12W containing a sample from a plurality of wells 12W. For example, the measurer can select a sample by clicking the corresponding well 12W on the selection screen 200 with the mouse.
  • the analysis step is repeatedly executed in the automatic analysis step (S30) described later. Since the microchip electrophoresis apparatus 100 has a plurality of microchips 5, the analysis steps can be executed in parallel by processing the plurality of microchips 5 in parallel.
  • the measurer can set the timing of the cleaning process of each microchip 5 to an arbitrary timing between a plurality of analysis processes.
  • an operation button 210 for setting cleaning conditions in the cleaning process is displayed on the analysis schedule input screen.
  • the measurer clicks the operation button 210 with the mouse the operation screen 212 for setting the timing of the cleaning process is displayed.
  • the measurer can set the timing of the cleaning process by using the operation screen 212.
  • the measurer allows for (a) frequency of performing the cleaning step, (b) interval of performing the cleaning step, and (c) electrophoretic separation ability of the microchip 5 for one microchip 5.
  • One of the values can be selected and set.
  • (A) Frequency of executing the cleaning process As the frequency of executing the cleaning process, the measurer sets how many times the cleaning process is executed while the analysis process is repeatedly executed a plurality of times for one microchip 5. Can be done. In this case, when the measurer sets the number of cleaning steps, the number of repetitions of the analysis step is divided by the set number of cleaning steps to determine the number of analyzes performed between two consecutive cleaning steps. The number of times is determined. According to this, in the automatic analysis step (S30) described later, when the analysis step is repeated a determined number of times after the previous cleaning step, the cleaning step is automatically executed.
  • the measurer can set the frequency of executing the cleaning step according to the number of times one microchip 5 is used, the number of samples to be analyzed per operation, the number of samples, the analysis conditions, and the like. For example, as the number of times the microchip 5 is used increases, the frequency of cleaning steps per operation can be increased. Alternatively, when the sample has a component that is easily adsorbed on the surface of the electrophoresis flow path of the microchip 5, the frequency of cleaning steps per operation can be increased. By appropriately setting the timing of the cleaning process in this way, it is possible to effectively and efficiently suppress the deterioration of the analysis performance when the microchip 5 is repeatedly used.
  • the measurer can set the number of analysis steps executed between two consecutive cleaning steps. It differs from the above (a) in that the interval at which the cleaning step is executed during one operation can be changed.
  • the number of analysis steps performed between two consecutive cleaning steps can be reduced. Specifically, when the number of times the microchip 5 is used is less than the threshold value, the number of analysis steps executed between two consecutive cleaning steps is set to the first value, while the microchip 5 is used. When the number of times exceeds the threshold value, the number of analysis steps performed during the two consecutive cleaning steps can be set to a second value smaller than the first value. By doing so, the frequency of the cleaning step increases as the number of times the microchip 5 is used increases, and it is possible to suppress a decrease in analysis performance when the microchip 5 is used repeatedly.
  • the number of analysis steps performed between two consecutive cleaning steps can be reduced.
  • the frequency of the washing step can be increased as the number of repetitions of the analysis step increases.
  • the measurer can set the timing of the cleaning step based on the electrophoretic separation ability of the microchip 5. In this case, the measurer can set the timing for evaluating the electrophoretic separation ability and the allowable value for determining the electrophoretic separation ability for one microchip 5.
  • FIG. 15 is a diagram showing an example of the analysis result.
  • the vertical axis of FIG. 15 indicates the signal strength (unit: mV), and the horizontal axis indicates the travel time (unit: sec).
  • the two peaks indicated by the black triangle marks in the figure indicate a peak derived from the low molecular weight marker (LM) and a peak derived from the high molecular weight marker (UM).
  • the electrophoretic separation ability of the microchip 5 can be evaluated based on the theoretical plate number and retention time of these two peaks.
  • the number of theoretical plates N can be calculated by the half width method defined by the following equation.
  • N 5.54 (tr / W 0.5h ) 2
  • tr is the retention time of the peak obtained by electrophoretic analysis
  • W 0.5h is the half width of the peak.
  • the retention time is the time from injection of the sample to the detection of the peak.
  • the electrophoretic separation ability of the microchip 5 is evaluated based on the theoretical plate number and the holding time of the polymer marker (UM).
  • the measurer can set an allowable value for each of the theoretical plate number and the holding time by using the input unit 82. According to this, the timing when the number of theoretical plates of the polymer marker (UM) falls below the permissible value or the timing when the holding time of the polymer marker (UM) exceeds the permissible value can be set as the timing of the cleaning step. ..
  • the measurer also evaluates the electrophoretic separation ability based on the analysis result of which of the plurality of samples processed by one microchip 5 as the timing for evaluating the electrophoretic separation ability of the microchip 5. You can set whether to do it.
  • the polymer marker (UM) which is an internal standard substance is subsequently dispensed. It will be.
  • the timing for evaluating the electrophoretic separation ability of the microchip 5 can be set according to the evaluation frequency or the evaluation interval. Specifically, as the frequency for evaluating the electrophoretic separation ability, the measurer sets how many times the electrophoretic separation ability is evaluated while the analysis step is repeatedly executed a plurality of times for one microchip 5. Can be done. In this case, when the measurer sets the number of evaluations, the number of times of analysis performed between two consecutive evaluations is determined by dividing the number of repetitions of the analysis process by the set number of evaluations. Will be done. According to this, when the analysis process is repeated a determined number of times after the previous evaluation, the next evaluation is executed.
  • the measurer can set the frequency of evaluation per operation according to the number of times one microchip 5 is used, the components of the sample to be analyzed per operation, the number of samples, the analysis conditions, and the like. According to this, when the deterioration of the analysis performance is detected, the washing step can be executed promptly, so that the electrophoretic separation ability of the microchip 5 can be recovered immediately.
  • the measurer can set the number of analysis steps to be performed during two consecutive evaluations.
  • the interval at which the evaluation is executed during one operation can be different.
  • the measurer can reduce the number of analytical steps performed during two consecutive evaluations as the number of times the microchip 5 is used increases. Specifically, when the number of times the microchip 5 is used is less than the threshold value, the number of analysis steps executed during the two consecutive evaluations is set to the first value, while the number of times the microchip 5 is used. When exceeds the threshold value, the number of analysis steps performed during the two consecutive evaluations can be set to a second value smaller than the first value. In this way, the frequency of evaluation increases as the number of times the microchip 5 is used increases, so that a deterioration in analytical performance can be detected and the cleaning step can be executed promptly.
  • the number of analysis steps performed during two consecutive evaluations can be reduced.
  • the evaluation frequency is increased as the number of repetitions of the analysis step increases, so that the deterioration of the analysis performance is detected and the cleaning step is promptly started. It can be executed, and as a result, the deterioration of analysis performance can be quickly recovered.
  • step S20 Set of sample and reagent
  • Reagents include separation buffer and internal standard samples (polymer marker UM, small molecule marker LM).
  • the microtiter plate 12 containing the sample is set in the microchip electrophoresis apparatus 100, and the reagent is set in the reagent holder of the microchip electrophoresis apparatus 100.
  • controller 38 executes the cleaning step described in (1) above at preset timings between the plurality of analysis steps on each microchip 5.
  • FIG. 16 is a flowchart for explaining the processing flow of the automatic analysis (S30).
  • the controller 38 electrophoresis control unit 92
  • step S31 the electrophoresis analysis cycle shown in FIGS. 8 to 10 is executed.
  • the controller 38 determines whether or not it is the timing of the cleaning step in step S32. If it is determined that it is the timing of the cleaning step (YES in S32), the process proceeds to step S33, and the controller 38 (cleaning control unit 94) executes the cleaning step.
  • step S34 the controller 38 (analysis scheduler 96) determines whether or not the analysis step has been completed for all the samples.
  • the process returns to the analysis step in step S31.
  • the controller 38 (electrophoresis control unit 92) executes an analysis step on the next sample. If the analysis step is completed for all the samples (YES in S34), the controller 38 (analysis scheduler 96) ends the automatic analysis step (S30).
  • FIG. 17 is a flowchart for explaining a first example of the process of step S32 of FIG.
  • the controller 38 analyzes the analysis step after the previous cleaning step in step S321, which is the actual value (actual number of times). ) Is incremented.
  • the controller 38 determines in step S322 whether or not the actual number of analysis steps is equal to or greater than the set value.
  • the “set value” in step S322 is based on the frequency of cleaning steps or the interval between cleaning steps set in the registration of the analysis schedule (step S10 in FIG. 12).
  • the controller 38 determines that it is the timing of the cleaning process, and executes the cleaning process in step S33.
  • the controller 38 determines that it is not the timing of the cleaning step, and in step S34, the analysis step is performed for all the samples. Determine if it has finished.
  • FIG. 18 is a flowchart for explaining a second example of the process of step S32 of FIG.
  • the controller 38 (analysis scheduler 96) determines whether or not it is time to evaluate the electrophoretic separation ability of the microchip 5 in step S323. judge.
  • the determination in step S323 is based on the frequency or interval of evaluation of the electrophoretic separation ability set in the registration of the analysis schedule (step S10 of FIG. 12).
  • the controller 38 evaluates the electrophoretic separation ability of the microchip 5 in step S324. To do. Specifically, in cooperation with the control device 70 (data processing unit 86), the theoretical plate number and holding time of the polymer marker (UM), which is an internal standard substance, are calculated from the analysis result of the sample.
  • UM polymer marker
  • the controller 38 determines in step S325 whether or not the electrophoretic separation ability of the microchip 5 is below the permissible value. Specifically, the controller 38 determines whether or not at least one of the theoretical plate number and the holding time of the polymer marker (UM) is below the permissible value. When at least one of the theoretical plate number and the holding time of the polymer marker (UM) is less than the permissible value, the controller 38 determines that the electrophoretic separation ability of the microchip 5 is less than the permissible value, and determines that the polymer marker (UM) has an electrophoretic separation ability. When both the theoretical plate number and the holding time of (UM) are equal to or more than the allowable value, it is determined that the electrophoretic separation ability of the microchip 5 is equal to or more than the allowable value.
  • the controller 38 determines that it is the timing of the cleaning step, and cleaning in step S33. Perform the process.
  • the controller 38 determines that it is not the timing of the cleaning step, and in step S34, Determine if the analysis process is complete for all samples.
  • the control device 70 displays the analysis result on the display screen of the display 80.
  • the step of displaying the analysis result (S40) is not limited to the configuration in which the analysis result is displayed when the analysis of all the samples is completed, and the analysis result is displayed in order from the sample in which the analysis is completed. You can also do it.
  • the microchip electrophoresis method includes a step (S31) of sequentially analyzing a plurality of samples by repeating an analysis step by electrophoresis separation in the microchip (5), and a microchip.
  • the step (S33) for executing the cleaning step of (5) and the step (S12) for setting the timing of the cleaning step of the microchip (5) at an arbitrary timing between the plurality of analysis steps are provided.
  • the timing of the microchip cleaning process can be arbitrarily set, so that the measurer can set the number of times the microchip is used and the sample to be analyzed per operation.
  • the timing of the cleaning process can be appropriately set according to the components, the number of samples, the analysis conditions, and the like. According to this, it is possible to improve the efficiency of the analysis work while suppressing the deterioration of the analysis performance.
  • the step (S12) for setting the timing of the cleaning process includes a step of accepting an input operation for instructing the timing of the cleaning process.
  • the timing of the cleaning process can be arbitrarily set by the input operation, so that the convenience of the measurer can be improved.
  • the microchip electrophoresis method according to paragraph 2 further includes a step (S10) of accepting an input operation for setting an analysis schedule for sequentially analyzing a plurality of samples.
  • the step of accepting the input operation for setting the analysis schedule (S10) includes the step of accepting the input operation for instructing the timing of the cleaning step (S12).
  • the timing of the washing step can also be set, so that the measurer can set the analysis performance and the efficiency of the analysis work.
  • the timing of the cleaning process can be appropriately set in consideration of the above.
  • the step (S12) of accepting an input operation for instructing the timing of the cleaning step is a cleaning step for one microchip (5). Includes a step of accepting an input operation that specifies the frequency of, or the number of analytical steps performed between two consecutive cleaning steps.
  • the timing of the cleaning process can be arbitrarily set by the input operation, so that the convenience of the measurer can be improved.
  • the frequency of the cleaning process can be adjusted according to the number of times the microchip is used, the number of samples to be analyzed per operation, the number of samples, and the analysis conditions, so that deterioration of analysis performance can be efficiently suppressed. be able to.
  • the microchip electrophoresis method according to item 1 further includes a step (S324) for evaluating the electrophoresis separation ability of the microchip (5) at an arbitrary timing between a plurality of analysis steps. ..
  • step (S12) of setting the timing of the cleaning step the timing at which the electrophoretic separation ability of the microchip (5) falls below the permissible value is set as the timing of the cleaning step.
  • the washing step can be performed in accordance with the decrease in the electrophoresis separation ability of the microchip, so that the decrease in analytical performance can be efficiently and effectively suppressed. Can be done.
  • the step (S324) for evaluating the electrophoresis separation ability of the microchip (5) is an internal standard sample included in the analysis result of the latest analysis step. Evaluate at least one of the theoretical plates and retention times of the peaks derived from.
  • the timing of the cleaning step is set when the number of theoretical plates falls below the permissible value or when the holding time exceeds the permissible value.
  • the washing step can be performed in accordance with the decrease in the electrophoresis separation ability of the microchip, so that the decrease in analytical performance can be efficiently and effectively suppressed. Can be done.
  • the step (S12) of setting the timing of the washing step determines the timing and allowable value for evaluating the electrophoresis separation ability of the microchip. Includes a step to accept the input operation to be set.
  • the timing and evaluation criteria for evaluating the electrophoresis separation ability of the microchip can be arbitrarily set, so that the convenience of the measurer can be improved. ..
  • the microchip electrophoresis apparatus (100) includes a microchip (5) in which an electrophoresis flow path (54,55) is formed, a dispensing probe (8), and a moving mechanism (8). 2), a filling / discharging unit (16), and a controller (38) are provided.
  • the dispensing probe (8) is configured to inject the separation medium, sample and cleaning solution into the electrophoresis flow path (54,55) of the microchip (5).
  • the moving mechanism (2) moves the dispensing probe (8) between the suction position of the separation medium, the sample and the cleaning solution and the dispensing position on the microchip (5).
  • the filling / discharging section (16) is configured to fill the electrophoresis flow path (54,55) with the separation medium and the cleaning liquid, and discharge the separation medium and the cleaning liquid from the electrophoresis flow path (54,55). ..
  • the controller (38) controls the operation of the dispensing probe (8), the moving mechanism (2), and the filling / discharging unit (16).
  • the controller (38) is configured to repeatedly execute the analysis step (S31) by electrophoretic separation on the microchip (5) and to execute the cleaning step (S33) of the microchip (5).
  • the controller (38) communicates with an input unit (82) that receives an input operation for setting the timing of the cleaning step (S33) of the microchip (5) at an arbitrary timing between the plurality of analysis steps (S31). Be connected.
  • the timing of the microchip cleaning process can be arbitrarily set via the input unit, so that the measurer can use the microchip for the number of times of use and one operation.
  • the timing of the cleaning process can be appropriately set according to the components of the sample to be analyzed, the number of samples, the analysis conditions, and the like. According to this, it is possible to improve the efficiency of the analysis work while suppressing the deterioration of the analysis performance.
  • Dispensing part (moving mechanism), 4 Syringe pump, 5,5-1 to 5-4 microchip, 6 three-way electromagnetic valve, 7 holding part, 8 dispensing probe, 10 container, 12 microtiter plate, 12W well, 14 cleaning unit, 16 separation buffer filling / discharging unit, 18 air supply port, 20 O-ring, 22 suction nozzle, 23 suction pump unit, 26 high-voltage power supply unit, 30-1 to 30-4 LED, 31 fluorescence measurement unit, 32 -1 to 32-4 optical fiber, 34-1, 34-2 filter, 36 photoelectron double tube, 38 controller, 51, 52 transparent substrate, 54 electrophoresis flow path (sample introduction flow path), 55 electrophoresis flow path (sample introduction flow path) Separation flow path), 56 intersection position, 60,72 CPU, 61-64 electrode pattern, 62,76 ROM, 64,74 RAM, 70 control device, 80 display, 82 input unit, 86 data processing unit, 92 electrophoresis control unit , 94 cleaning control unit, 96 analysis schedule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

マイクロチップ電気泳動方法は、マイクロチップ(5-1~5-4)での電気泳動分離による分析工程を繰り返すことにより、複数のサンプルを順番に分析するステップと、マイクロチップ(5-1~5-4)の洗浄工程を実行するステップと、複数回の分析工程の間の任意のタイミングにマイクロチップ(5-1~5-4)の洗浄工程のタイミングを設定するステップとを備える。

Description

マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置
 本発明は、マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置に関する。
 電気泳動装置は、マイクロチップまたはキャピラリなどのデバイスを用いて、電気泳動法により微量試料の分離を高速に行なうものである。例えば、特開2012-251821号公報(特許文献1)には、マイクロチップ電気泳動装置が開示される。マイクロチップは、電気泳動分離を行なう流路と、試料を導入する流路とが形成されたベース基板と、試料および分離媒体のリザーバとして機能する貫通孔が形成されたベース基板とを接合して構成されている。
 特許文献1に記載のマイクロチップ電気泳動装置では、マイクロチップを繰り返し使用することにより、分析コストの低減を図っている。その一方で、マイクロチップを繰り返し使用すると、前の分析のサンプルに含まれていた成分または分離媒体に含まれていた成分が流路の表面に吸着することによって、使用回数が増えるに従って分析性能が低下することが懸念される。そのため、特許文献1では、マイクロチップでの複数回の分析工程の開始前、分析工程ごとに、または複数回の分析工程の後に、マイクロチップの流路を洗浄液で洗浄する洗浄工程が行なうことによって分析性能を回復させている。
特開2012-251821号公報
 上述したマイクロチップ電気泳動装置において1稼働当たりに複数のサンプルを分析する場合、当該複数のサンプルの分析開始前に洗浄工程を行なっても、サンプルの分析が進行するのに伴って、分析性能が徐々に低下していくことが起こり得る。このような場合、分析性能が低下している状態で分析が繰り返し行なわれることで、分析性能および分析再現性が低いデータを取得してしまうことが懸念される。また、そのようなデータを取得することで、サンプルを無駄に消費してしまうことが懸念される。
 一方で、1つのサンプルの分析が終了するごとに洗浄工程を行なう構成とすると、分析性能の低下を抑制できるが、全てのサンプルの分析を終えるのに長い時間がかかってしまうことが懸念される。
 この発明はこのような課題を解決するためになされたものであって、その目的は、マイクロチップを繰り返し使用したときの分析性能の低下を効率的に抑制することができるマイクロチップ電気泳動方法およびマイクロチップ電気泳動装置を提供することである。
 本発明の第1の態様は、マイクロチップ電気泳動方法であって、マイクロチップでの電気泳動分離による分析工程を繰り返すことにより、複数のサンプルを順番に分析するステップと、マイクロチップの洗浄工程を実行するステップと、複数回の分析工程の間の任意のタイミングにマイクロチップの洗浄工程のタイミングを設定するステップとを備える。
 本発明の第2の態様は、マイクロチップ電気泳動装置に関する。マイクロチップ電気泳動装置は、電気泳動流路が形成されたマイクロチップと、分注プローブと、移動機構と、充填排出部と、コントローラとを備える。分注プローブは、マイクロチップの電気泳動流路に分離媒体、サンプルおよび洗浄液を注入するように構成される。移動機構は、分離媒体、サンプルおよび洗浄液の吸入位置と、マイクロチップ上の分注位置との間で分注プローブを移動させる。充填排出部は、電気泳動流路に分離媒体および洗浄液を充填し、かつ、電気泳動流路から分離媒体および洗浄液を排出するように構成される。コントローラは、分注プローブ、移動機構および充填排出部の動作を制御する。コントローラは、マイクロチップでの電気泳動分離による分析工程を繰り返し実行するとともに、マイクロチップの洗浄工程を実行するように構成される。コントローラは、複数回の分析工程の間の任意のタイミングにマイクロチップの洗浄工程のタイミングを設定するための入力操作を受け付ける入力部と通信接続される。
 本発明によれば、マイクロチップを繰り返し使用したときの分析性能の低下を効率的に抑制することができるマイクロチップ電気泳動法およびマイクロチップ電気泳動装置を提供することができる。
本発明の実施の形態に係るマイクロチップ電気泳動装置の全体構成を概略的に示す図である。 図1に示したマイクロチップ電気泳動装置の要部の構成を概略的に示す図である。 図1に示したコントローラの制御構成を示すブロック図である。 マイクロチップの一例を示す図である。 マイクロチップの一例を示す図である。 分離バッファ充填・排出部の空気供給口とマイクロチップとの接続状態を概略的に示す図である。 洗浄工程の工程順に示す斜視図である。 分析工程を工程順に示す斜視図である。 分析工程を工程順に示す斜視図である。 分析工程を工程順に示す斜視図である。 分析工程の処理手順を示すフローチャートである。 本実施の形態に係るマイクロチップ電気泳動方法の処理手順を説明するためのフローチャートである。 分析スケジュール登録の処理の流れを説明するためのフローチャートである。 分析スケジュールの入力画面の一例を示す図である。 分析結果の一例を示す図である。 自動分析の処理の流れを説明するためのフローチャートである。 図16のステップS32の処理の第1の例を説明するためのフローチャートである。 図16のステップS32の処理の第2の例を説明するためのフローチャートである。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
 [マイクロチップ電気泳動装置の構成]
 図1は、本発明の実施の形態に係るマイクロチップ電気泳動装置100の全体構成を概略的に示す図である。図2は、図1に示したマイクロチップ電気泳動装置100の要部の構成を概略的に示す図である。
 図1を参照して、マイクロチップ電気泳動装置100は、分注部2と、シリンジポンプ4と、分離バッファ充填・排出部16と、吸引ポンプ部23と、高圧電源部26と、蛍光測定部31と、コントローラ38とを備える。マイクロチップ電気泳動装置100は、制御装置70と通信接続される。
 図2を参照して、マイクロチップ電気泳動装置100は、複数(例えば4個)のマイクロチップ5-1~5-4と、保持部7と、マイクロタイタプレート12とをさらに備える。
 マイクロチップ5-1~5-4の各々は、1サンプルを処理するための1つの電気泳動流路が形成されたものである。分析操作中、マイクロチップ5-1~5-4は保持部7に保持されている。以下、マイクロチップ5-1~5-4を総称してマイクロチップ5という場合がある。マイクロチップ5は繰り返し使用することができる。
 分注部2は、マイクロチップ5-1~5-4に分離バッファ液とサンプルとを分注するように構成される。分離バッファ液は「分離媒体」としても使用されるものであり、例えばpH緩衝剤および水溶性高分子(セルロース系高分子など)の少なくとも一方を含む。分注部2は、分注すべき液の吸入位置とマイクロチップ5上の分注位置との間で分注プローブ8を移動させる「移動機構」を構成する。具体的には、分注部2は、分注プローブ8と、シリンジポンプ4と、少なくとも1種類の洗浄液を保持する少なくとも1つの容器10と、三方電磁弁6とを有する。
 分注プローブ8は、分注ノズルを有する。シリンジポンプ4は、分離バッファ液、サンプルまたは洗浄液の吸引と吐出とを行なう。分注プローブ8と少なくとも1つの容器10とは三方電磁弁6を介してシリンジポンプ4に接続されている。
 サンプルは、マイクロタイタプレート12上のウェル12Wに収容されて、分注部2によりマイクロチップ5-1~5-4に分注される。分離バッファ液は図示しない容器に収容され、分注部2によりマイクロチップ5-1~5-4に分注される。
 分離バッファ充填・排出部16および吸引ポンプ部23は、マイクロチップ5の電気泳動流路に分離バッファ液を充填するバッファ液充填機構を構成する。分離バッファ充填・排出部16は、電気泳動流路の1つのリザーバに一定量の分離バッファ液を注入し、その注入された分離バッファ液をそのリザーバから空気圧により電気泳動流路に充填する。分離バッファ充填・排出部16は、空気供給口18および吸引ノズル22を有する。吸引ポンプ部23は、他のリザーバに溢れた不用な分離バッファ液を排出する。分離バッファ充填・排出部16および吸引ポンプ部23は、4つのマイクロチップ5-1~5-4について共通に備えられる。
 分注部2は、三方電磁弁6を分注プローブ8とシリンジポンプ4とが接続される方向に接続することにより、分離バッファ液またはサンプルを分注プローブ8に吸引する。分注部2は、分注プローブ8をマイクロチップ5-1~5-4上へ移動させると、シリンジポンプ4によりマイクロチップ5-1~5-4のいずれかの電気泳動流路のリザーバに吐出する。
 洗浄部14は、分注プローブ8を洗浄するためのものであり、洗浄液が充填されている。
 分注部2は、分注プローブ8を洗浄する際、三方電磁弁6をシリンジポンプ4と洗浄液用の容器10とを接続する方向に切り替え、シリンジポンプ4に洗浄液を吸引する。次に、分注部2は、分注プローブ8を洗浄部14の洗浄液に浸し、三方電磁弁6をシリンジポンプ4と分注プローブ8とを接続する側に切り替えて分注プローブ8の内部から洗浄液を吐出することにより、分注プローブ8を洗浄する。
 マイクロチップ5-1~5-4の電気泳動流路を洗浄するときには、分注部2は、三方電磁弁6およびシリンジポンプ4と容器10とを接続する方向に切り替え、シリンジポンプ4に洗浄液を吸引する。分注部2は、分注プローブ8をマイクロチップ5-1~5-4のリザーバへ移動させ、所定量の洗浄液をそのリザーバへ分注する。リザーバに分注された洗浄液は、毛細管現象により電気泳動流路に入っていく。
 分離バッファ充填・排出部16は、電気泳動流路に洗浄液が入った状態で所定時間保持した後、その洗浄液を排出する際にも使用される。
 電気泳動流路に分離バッファ液を充填するとき、分離バッファ充填・排出部16は、マイクロチップ5-1~5-4上へ移動し、マイクロチップ5-1~5-4の電気泳動流路の一端のリザーバ(分離バッファ液が分注されたリザーバ)上に空気供給口18を気密に保って押し付けるとともに、他のリザーバに吸引ノズル22を挿入する。この状態で、空気供給口18から空気を吹き込んで分離バッファ液を電気泳動流路に押し込むとともに、他のリザーバから溢れた分離バッファ液を吸引ノズル22から吸引ポンプ部23により吸引して外部へ排出する。電気流動流路内の洗浄液を排出するときも同様であり、マイクロチップ5-1~5-4の一端のリザーバ上に空気供給口18を気密に保って押し付けるとともに、他のリザーバに吸引ノズル22を挿入する。この状態で、空気供給口18から空気を吹き込んで洗浄液を電気泳動流路に押し込むとともに、他のリザーバから溢れた洗浄液を吸引ノズル22から吸引ポンプ部23により吸引して外部へ排出する。
 高圧電源部26は、マイクロチップ5-1~5-4の電気泳動流路に独立して電気泳動用の電圧を印加するために、マイクロチップ5ごとに独立した複数(例えば4個)の高圧電源26-1~26-4を有する。
 蛍光測定部31は、マイクロチップ5-1~5-4の各々の分離流路55で電気泳動分離されたサンプル成分を検出するように構成される。具体的には、蛍光測定部31は、複数(例えば4個)のLED(Liquid Emitting Diode)30-1~30-4と、複数(例えば4個)の光ファイバ32-1~32-4と、複数(例えば4個)のフィルタ34-1~34-4と、光電子倍増管36とを有する。
 LED30-1~30-4は、それぞれ、マイクロチップ5-1~5-4の電気泳動流路の一部に励起光を照射する。光ファイバ32-1~32-4は、電気泳動流路を移動するサンプル成分がLED30-1~30-4からの励起光によりそれぞれ励起されて発生した蛍光を受光する。フィルタ34-1~34-4は、光ファイバ32-1~32-4からの蛍光から励起光成分を除去し、蛍光成分のみを透過させる。光電子倍増管36は、フィルタ34-1~34-4を透過した蛍光成分を受光する。
 本実施の形態では、フィルタ34-1~34-4は互いに異なる蛍光を透過させる。したがって、マイクロチップ5-1,5-2,5-3,5-4間で互いに異なる蛍光を検出することができる。
 ただし、マイクロチップ5-1~5-4で同じ蛍光を検出する場合には1つのフィルタを共通に使用することができる。LED30-1~30-4を互いに時間をずらして発光させることにより、1つの光電子倍増管36で複数のマイクロチップ5-1~5-4からの蛍光を識別して検出することができる。なお、励起光の光源としては、LEDに限定されず、LD(Laser Diode)を用いてもよい。
 コントローラ38は、1つの電気泳動流路への分離バッファ液充填およびサンプル注入が終了すると、次の電気泳動流路への分離バッファ液充填およびサンプル注入に移行するように、分注部2の動作を制御する。コントローラ38は、サンプル注入が終了した電気泳動流路で泳動電圧を印加して電気泳動を起こさせるように高圧電源部26(高圧電源26-1~26-4)の動作を制御する。コントローラ38は、蛍光測定部31による検出動作を制御する。コントローラ38はさらに、マイクロチップ5を繰り返して使用するために、前のサンプルの分析が終了した電気泳動流路への分離バッファ液を充填する前にその電気泳動流路の洗浄動作を制御する。
 コントローラ38は、主たる構成要素として、CPU(Central Processing Unit)60と、プログラムおよびデータを格納する記憶部と、通信I/F(Interface)68とを有する。各構成要素はデータバスによって相互に接続されている。
 記憶部は、ROM(Read Only Memory)62、RAM(Random Access Memory)64およびHDD(Hard Disk Drive)66を含む。ROM62は、CPU60にて実行されるプログラムを格納することができる。RAM64は、CPU60におけるプログラムの実行により生成されるデータ、および通信I/F68を経由して入力されたデータを一時的に格納することができ、作業領域として利用される一時的なデータメモリとして機能することができる。HDD66は、不揮発性の記憶装置であり、蛍光測定部31による検出結果などマイクロチップ電気泳動装置100で生成された情報を格納することができる。あるいは、HDD66に代えて、フラッシュメモリなどの半導体記憶装置を採用してもよい。
 通信I/F68は、制御装置70を含む外部機器と通信するためのインターフェイスである。通信I/Fは、アダプタまたはコネクタなどによって実現される。なお、通信方式としては、例えば、Bluetooth(登録商標)または無線LAN(Local Area Network)などの無線通信であってもよいし、USB(Universal Serial Bus)などを利用した有線通信であってもよい。
 制御装置70は、マイクロチップ電気泳動装置100と通信接続され、マイクロチップ電気泳動装置100との間でデータを遣り取りする。制御装置70は、マイクロチップ電気泳動装置100の動作を制御するとともに、蛍光測定部31が取得したデータを取り込んで処理するように構成される。
 具体的には、制御装置70は、演算処理部であるCPU72を主体として構成される。制御装置70には、例えばパーソナルコンピュータなどを利用することができる。制御装置70は、CPU72と、記憶部(ROM76、RAM74およびHDD78)と、通信I/F84と、入力部82と、ディスプレイ80とを有する。
 ROM76は、CPU72にて実行されるプログラムを格納することができる。RAM74は、CPU72におけるプログラムの実行により生成されるデータおよび、通信I/F84または入力部82を介して入力されたデータを一時的に格納することができ、作業領域として利用される一時的なデータメモリとして機能することができる。HDD78は、不揮発性の記憶装置であり、制御装置70で生成された情報を格納することができる。あるいは、HDD78に代えて、フラッシュメモリなどの半導体記憶装置を採用してもよい。
 通信I/F84は、制御装置70がマイクロチップ電気泳動装置100を含む外部機器と通信するためのインターフェイスである。入力部82は、測定者からのマイクロチップ電気泳動装置100に対する指示を含む入力操作を受け付ける。入力部82は、キーボード、マウスおよびディスプレイ80の表示画面と一体的に構成されるタッチパネルなどを含む。入力部82は、後述するように、複数のサンプルを順番に分析するための分析スケジュールの登録を受け付けるとともに、マイクロチップ5の洗浄工程のタイミングについての指示を受け付ける。
 ディスプレイ80は、分析スケジュールを登録する際に、分析スケジュールの入力画面を表示することができる(図14参照)。ディスプレイ80は、マイクロチップ5の洗浄工程のタイミングを指示する際に、洗浄工程のタイミングの入力画面を表示することができる(図14参照)。分析測定中または測定後において、ディスプレイ80は、蛍光測定部31による検出データおよびサンプルごとの分析結果などを表示することができる。
 図3は、図1に示したコントローラ38の制御構成を示すブロック図である。
 図3を参照して、コントローラ38は、泳動制御部92と、洗浄制御部94と、分析スケジューラ96とを有する。これらの機能構成は、図1に示すマイクロチップ電気泳動装置100において、CPU60が所定のプログラムを実行することで実現される。
 泳動制御部92は、各マイクロチップ5について、電気泳動による分析工程を繰り返し実行する。分析工程は、(1)空の電気泳動流路に分離バッファ液を充填するバッファ液充填工程、(2)サンプル供給用のリザーバにサンプルを分注するサンプル分注工程、(3)複数のリザーバ間に泳動電圧を印加することにより、分離流路でのサンプルの電気泳動分離を行なう泳動分離工程、および(4)1つのリザーバから加圧気体を供給し、他のリザーバから分離バッファ液を吸引することにより電気泳動流路およびリザーバ内の分離バッファ液を除去するバッファ液除去工程を有する。
 洗浄制御部94は、各マイクロチップ5について、少なくとも1回の洗浄工程を実行する。洗浄工程は、少なくとも1つの容器10に保持されている少なくとも1種類の洗浄液を用いて、(1)電気泳動流路およびリザーバが空の状態で1つのリザーバに一定量の洗浄液を供給する工程、(2)一定時間保持して電気泳動流路内に洗浄液を毛細管現象により導入させる工程、および(3)1つのリザーバから加圧気体を供給し、他のリザーバから洗浄液を吸引することにより電気泳動流路およびリザーバ内の洗浄液を除去する工程を有する。少なくとも1種類の洗浄液は、水もしくは水以外の洗浄液(有機溶剤または界面活性剤を含有した洗浄液など)を含む。
 分析スケジューラ96は、各マイクロチップ5について、複数回の分析工程および、少なくとも1回の洗浄工程の実行順序を決定する。分析スケジューラ96は、泳動制御部92および洗浄制御部94に対して、予め登録された分析スケジュールおよび洗浄工程のタイミングに従って、処理リソース(プログラム時間およびメモリなど)を割り当てる。
 制御装置70は、データ処理部86を有する。データ処理部86は、入力部82から指示を受け付けると、その指示内容を示すデータをコントローラ38へ伝送する。データ処理部86は、コントローラ38から蛍光測定部31による検出データを受信すると、受信した検出データを処理して処理結果をディスプレイ80に表示する。
 [マイクロチップ5の構成例]
 図4および図5は、マイクロチップ5の一例を示す図である。本願明細書において、「マイクロチップ」は基板内に電気泳動流路が形成された電気泳動用のデバイスを意味しており、必ずしもサイズの小さいものに限定されるものではない。
 図4(A)はマイクロチップ5が有する透明基板51の平面図であり、図4(B)はマイクロチップ5が有する透明基板52の平面図であり、図4(C)はマイクロチップ5の正面図である。
 図4(C)を参照して、マイクロチップ5は、一対の透明基板51,52を有する。透明基板51,52は、例えば石英ガラスその他のガラス基板または樹脂基板である。透明基板51と透明基板52とは重ねられて接合されている。
 図4(B)に示すように、透明基板52の表面には、互いに交差する泳動用キャピラリ溝54,55が形成されている。キャピラリ溝55は、サンプルの電気泳動分離用の分離流路55を構成する。キャピラリ溝54は、分離流路55にサンプルを導入するためのサンプル導入流路54を構成する。サンプル導入流路54および分離流路55は「電気泳動流路」を構成する。サンプル導入流路54および分離流路55は交差位置56で交差する。
 図4(A)に示すように、透明基板51には、キャピラリ溝54,55の端部に対応する位置に4つの貫通孔が形成されている。4つの貫通孔はリザーバ53-1~54-4をそれぞれ構成する。以下、リザーバ53-1~53-4を総称してリザーバ53という場合がある。
 マイクロチップ5は基本的には図4に示した構成を有するが、取り扱いを容易にするために、図5に示すように、マイクロチップ5上には、泳動電圧を印加するための電極端子を形成することができる。図5は、マイクロチップ5の平面図である。
 図5を参照して、4つのリザーバ53-1~53-4は電気泳動流路54,55に電圧を印加するためのポートを構成する。ポート#1(リザーバ53-1)とポート#2(リザーバ53-2)とはサンプル導入流路54の両端に位置する。ポート#3(リザーバ53-3)とポート#4(リザーバ53-4)とは分離流路55の両端に位置する。ポート#1~#4のそれぞれに電圧を印加するために、マイクロチップ5(透明基板51)の表面に4つの電極パターン61~64が形成されている。電極パターン61~64は、対応するポートからマイクロチップ5の測端部に延びるように形成されており、高圧電源26-1~26-4(図2参照)にそれぞれ接続される。
 図6は、分離バッファ充填・排出部16の空気供給口18とマイクロチップ5との接続状態を概略的に示す図である。
 図6を参照して、空気供給口18の先端にはOリング20が設けられている。空気供給口18をマイクロチップ5の1つのリザーバ53上に押し当てることにより、気密を保ちながら、マイクロチップ5の電気泳動流路54,55に対して空気供給口18を取り付けることができる。これにより、空気供給口18から空気を加圧して電気泳動流路54,55内に送り出すことができる。他のリザーバ53には吸引ノズル22が挿入され、電気泳動流路54,55から溢れだした不用な分離バッファ液または洗浄液を吸入して排出する。
 [マイクロチップ電気泳動方法]
 次に、本実施の形態に係るマイクロチップ電気泳動装置100において実行される電気泳動方法について説明する。
 マイクロチップ電気泳動装置100において、マイクロチップ5は保持部7に固定された状態で繰り返し使用される。マイクロチップ電気泳動装置100のコントローラ38は、ROM62に格納されているプログラムを実行することにより、本実施の形態に係るマイクロチップ電気泳動方法を実行する。
 本実施の形態に係るマイクロチップ電気泳動方法は、マイクロチップ5を洗浄する洗浄工程と、マイクロチップ5での電気泳動分離による分析工程とを含んでいる。分析工程は、各マイクロチップ5について繰り返し実行される。洗浄工程は、各マイクロチップ5について、複数回の分析工程における任意のタイミングに、少なくとも1回実行される。
 (1)洗浄工程
 最初に、図7を用いて洗浄工程の処理手順について説明する。図7は、洗浄工程の工程順に示す斜視図である。
 図7(A)を参照して、洗浄は、電気泳動流路54,55およびリザーバ53が空の状態のマイクロチップ5について行なわれる。分注プローブ8がリザーバ53-4上に移動され、洗浄液が分注される。洗浄液としては、水もしくは水以外の洗浄液(有機溶剤または界面活性剤を含有した洗浄液など)、種々のものを使用することができる。洗浄液の分注量は、洗浄条件として制御装置70またはコントローラ38において予め設定しておくことができる。
 図7(B)を参照して、マイクロチップ5は、リザーバ53-4に洗浄液が分注された状態で所定時間保持される。この状態で、リザーバ53-4に分注された洗浄液は、毛細管現象により電気泳動流路54,55内に導入される。所定時間は、洗浄条件として制御装置70またはコントローラ38において予め設定しておくことができる。
 図7(C)を参照して、所定時間の経過後、リザーバ53-4上に分離バッファ充填・排出部16の空気供給口18が気密を保った状態で押し付けられ、加圧された空気がリザーバ53-4から電気泳動流路54,55に供給される。他のリザーバ53-1~53-3にはそれぞれ吸引ノズル22-1~22-3が挿入され、電気泳動流路54,55からリザーバ53-1~53-3に押し出された洗浄液が吸引されて除去される。
 洗浄工程では、図7(A)~(C)に示す一連の工程を1サイクルとして、この1サイクルが所定回数繰り返し実行される。繰り返し回数は、洗浄条件として制御装置70またはコントローラ38において予め設定しておくことができる。
 (2)分析工程
 次に、図8から図11を用いて、マイクロチップ5での電気泳動分離による分析工程について説明する。図8から図10は、分析工程を工程順に示す斜視図である。図11は、分析工程の処理手順を示すフローチャートである。図11のフローチャート中での符号A~Pは、図8から図10に示す工程の符号A~Pにそれぞれ対応する。
 各マイクロチップ5について、分析工程は繰り返し実行される。以下に示す処理では、1回目の分析工程のためのマイクロチップ5、または前回の分析工程で使用されたマイクロチップ5から分離バッファ液が排出された状態のマイクロチップ5が使用される。
 図8(A)を参照して、分注プローブ8がリザーバ53-4上に移動され、分離バッファ液が分注される。
 図8(B)を参照して、リザーバ53-4上に空気供給口18が気密を保った状態で押し付けられ、他のリザーバ53-1~53-3にはそれぞれ吸引ノズル22-1~22-3が挿入される。加圧された空気が空気供給口18からリザーバ53-4を経て電気泳動流路54,55に供給され、電気泳動流路54,55からリザーバ53-1~53-3に溢れ出した分離バッファ液が吸引ノズル22-1~22-3により吸引されて除去される。
 図8(C)を参照して、リザーバ53-4に吸引ノズル22-4が挿入され、リザーバ53-4内の分離バッファ液が吸引されて除去される。これにより、電気泳動流路54,55内にのみ分離バッファ液が残る状態となる。
 図8(D)および図9(E)~(G)を参照して、リザーバ53-1~53-4に対し、分注プローブ8により分離バッファ液が順次分注される。
 図9(H)を参照して、リザーバ53-1~53-4の各々に電極が挿入され、泳動テストが行なわれる。泳動テストでは、電極間の電流値を検出することにより、電気泳動流路内にゴミまたは気泡が混入していないかどうかを確認する。なお、電気泳動流路に印加される電圧は、サンプルを電気泳動分離するための泳動電圧と同じであってもよいし、泳動電圧よりも低い電圧であってもよい。
 分離バッファ液を分注した分注プローブ8はリンスポート110に導入され、分注プローブ8内の分離バッファ液が全量吐出されるとともに、分注プローブ8の内外が洗浄される。
 図9(H)の泳動テストにて電気泳動流路へ分離バッファ液が正常に充填されたと判定された場合、サンプルを注入して分析するために図9(I)の工程へ進む。これに対して、泳動テストにて分離バッファ液が正常に充填されていないと判定された場合には、電気泳動流路に分離バッファ液を充填し直しするために、図8(A)の工程に戻る。
 電気泳動流路へ分離バッファ液の充填し直しを許容する回数nは予め設定されている。回数nだけ分離バッファ液を充填し直しても電気泳動流路へ分離バッファ液が正常に充填されたと判定されなかった場合、マイクロチップ5を保持部7から取り外し、別のマイクロチップ5に交換した後、図8(A)の工程から開始する。回数nは特に限定されるものではないが、例えばn=2または3に設定される。
 図9(I)を参照して、サンプル供給用のリザーバ53-1にのみ吸引ノズル22-1が挿入され、リザーバ53-1内の分離バッファ液が吸入されて除去される。
 図9(J)を参照して、分注プローブ8によりサンプル供給用のリザーバ53-1に洗浄液が供給される。
 図9(K)を参照して、サンプル供給用のリザーバ53-1に吸引ノズル22-1が挿入され、洗浄液が吸引されて除去される。
 図9(J),(K)の工程は、試料供給用のリザーバ53-1内に残留する分離バッファ液を除去するための洗浄工程である。この洗浄工程は必要に応じて複数回繰り返し行なわれるようにしてもよい。
 図10(L)を参照して、サンプル供給用のリザーバ53-1に分注プローブ8からサンプルが注入される。必須ではないが、サンプル注入に続いてリザーバ53-1に分注プローブ8から内部標準物質が分注されることがある。内部標準物質は、例えば低分子マーカ(LM)および高分子マーカ(UM)を含む。
 図10(M)を参照して、リザーバ53-1~53-4の各々に電極が挿入されてサンプル導入用の電圧が印加される。これにより、サンプルがサンプル導入流路54と分離流路55との交差位置56に導かれる。
 図10(N)を参照して、電極への印加電圧が泳動分離用の電圧に切り替えられる。サンプルが分離流路55でリザーバ53-4の方向に電気泳動分離され、蛍光測定部31により検出される。
 図10(O)を参照して、分析終了後、リザーバ53-4上に空気供給口18が気密を保った状態で押し付けられ、他のリザーバ53-1~53-3にはそれぞれ吸引ノズル22-1~22-3が挿入される。加圧された空気が空気供給口18からリザーバ53-4を経て電気泳動流路54,55に供給され、電気泳動流路54,55からリザーバ53-1~53-3に溢れ出した分離バッファ液が吸引ノズル22-1~22-3により吸引されて除去される。
 図10(P)を参照して、吸引ノズル22-1~22-4の各々はリンスプール102に挿入されて洗浄液が吸引され、ノズル内外が洗浄されるとともに、分注プローブ8がリンスポート110に挿入されて内外が洗浄される。
 工程(A)から工程(P)を実行することにより1つのマイクロチップ5における1つのサンプルの電気泳動分析サイクルが終了する。そのマイクロチップ5について新たなサンプルの電気泳動分析サイクルが実行されるときには、工程(A)に戻って操作が繰り返される。
 (3)マイクロチップ電気泳動方法
 図12は、本実施の形態に係るマイクロチップ電気泳動方法の処理手順を説明するためのフローチャートである。
 (3-1)分析スケジュール登録(S10)
 図12を参照して、まず、電気泳動分析を実行するために、ステップS10により、複数のサンプルを順番に分析するための分析スケジュールが登録される。
 図13は、分析スケジュール登録(S10)の処理の流れを説明するためのフローチャートである。図13を参照して、分析スケジュールを登録する工程では、最初に、マイクロチップ電気泳動装置100の1稼働当たりの分析対象となる複数のサンプルが登録される(S11)。次に、マイクロチップ5の洗浄工程のタイミングが登録される(S12)。分析スケジュールの登録は、例えば、ディスプレイ80に表示された分析スケジュールの入力画面を用いて行なうことができる。
 図14は、分析スケジュールの入力画面の一例を示す図である。図14を参照して、分析スケジュールの入力画面には、サンプルの選択画面200として、マイクロタイタプレート12の平面図が模式的に示される。マイクロタイタプレート12は、マトリクス状に配置された複数のウェル12Wを有する。測定者は、複数のウェル12Wの中からサンプルが収容されたウェル12Wを選択することができる。例えば、測定者は、選択画面200上で該当するウェル12Wをマウスでクリックすることにより、サンプルを選択することができる。複数のサンプルが選択された場合、後述する自動分析工程(S30)において、分析工程が繰り返し実行されることになる。なお、マイクロチップ電気泳動装置100は複数のマイクロチップ5を有するため、複数のマイクロチップ5を並列して処理することで、分析工程を並行して実行することができる。
 測定者は、各マイクロチップ5の洗浄工程のタイミングを、複数回の分析工程の間の任意のタイミングに設定することができる。図14の例では、分析スケジュールの入力画面には、洗浄工程における洗浄条件を設定するための操作ボタン210が表示される。測定者が操作ボタン210をマウスでクリックすると、洗浄工程のタイミングを設定するための操作画面212が表示される。測定者は、操作画面212を用いて、洗浄工程のタイミングを設定することができる。
 本実施の形態では、測定者は、1つのマイクロチップ5について、(a)洗浄工程を実行する頻度、(b)洗浄工程を実行する間隔、(c)マイクロチップ5の電気泳動分離能力の許容値のうちの1つを選択して設定することができる。
 (a)洗浄工程を実行する頻度
 洗浄工程を実行する頻度として、測定者は、1つのマイクロチップ5について分析工程を複数回繰り返し実行する間に、何回洗浄工程を実行するかを設定することができる。この場合、測定者が洗浄工程の回数を設定すると、分析工程の繰り返し回数を、設定された洗浄工程の回数で除算することにより、連続する2回の洗浄工程の間で実行される分析回数の回数が決定される。これによると、後述する自動分析の工程(S30)において、前回の洗浄工程の後、決定された回数だけ分析工程が繰り返されると、自動的に洗浄工程が実行されることになる。
 測定者は、1つのマイクロチップ5の使用回数、1稼働当たりに分析するサンプルの成分、サンプル数および分析条件などに応じて、洗浄工程を実行する頻度を設定することができる。例えば、マイクロチップ5の使用回数が増えるに従って、1稼働当たりの洗浄工程の頻度を高めることができる。あるいは、サンプルがマイクロチップ5の電気泳動流路表面に吸着しやすい成分を有する場合には、1稼働当たりの洗浄工程の頻度を高めることができる。このように洗浄工程のタイミングを適切に設定することで、マイクロチップ5を繰り返し使用したときの分析性能の低下を効果的かつ効率的に抑制することができる。
 (b)洗浄工程を実行する間隔
 洗浄工程を実行する間隔として、測定者は、連続する2回の洗浄工程の間に実行される分析工程の回数を設定することができる。上記(a)とは、1稼働中に洗浄工程を実行する間隔を異ならせることができる点が異なる。
 例えば、マイクロチップ5の使用回数が増えるに従って、連続する2回の洗浄工程の間に実行される分析工程の回数を減らすことができる。具体的には、マイクロチップ5の使用回数が閾値未満のときには、連続する2回の洗浄工程の間に実行される分析工程の回数を第1の値に設定する一方で、マイクロチップ5の使用回数が閾値を超えると、連続する2回の洗浄工程の間に実行される分析工程の回数を第1の値よりも小さい第2の値に設定することができる。このようにすると、マイクロチップ5の使用回数が増えるに従って洗浄工程の頻度が増えることになり、マイクロチップ5を繰り返し使用したときの分析性能の低下を抑制することができる。
 あるいは、サンプルの分析が進行するに伴って、連続する2回の洗浄工程の間に実行される分析工程の回数を減らすことができる。サンプルがマイクロチップ5の電気泳動流路の表面に吸着しやすい成分を有する場合、分析工程の繰り返し回数が増えるに従って洗浄工程の頻度を高めることができる。このように洗浄工程のタイミングを適切に設定することで、マイクロチップ5を繰り返し使用したときの分析性能の低下を効率的かつ効果的に抑制することができる。
 (c)マイクロチップ5の電気泳動分離能力の許容値
 測定者は、マイクロチップ5の電気泳動分離能力を基準として、洗浄工程のタイミングを設定することができる。この場合、測定者は、1つのマイクロチップ5について、電気泳動分離能力を評価するタイミング、および電気泳動分離能力を判定するための許容値を設定することができる。
 マイクロチップ5の電気泳動分離能力は、内部標準試料(高分子マーカ(UM)および低分子マーカ(LM))が混合されたサンプルの分析結果に基づいて評価することができる。図15は、分析結果の一例を示す図である。図15の縦軸は信号強度(単位はmV)を示し、横軸は移動時間(単位はsec)を示す。図中に黒三角マークで示された2つのピークは、低分子マーカ(LM)に由来するピークと、高分子マーカ(UM)に由来するピークとを示している。
 マイクロチップ5の電気泳動分離能力は、これら2つのピークの理論段数および保持時間に基づいて評価することができる。理論段数Nは、次式により定義される半値幅法により算出することができる。
 N=5.54(tr/W0.5h
trは電気泳動分析で得られるピークの保持時間であり、W0.5hはピークの半値幅である。保持時間は、サンプルを注入してからピークが検出されるまでの時間である。
 本実施の形態では、高分子マーカ(UM)の理論段数および保持時間に基づいて、マイクロチップ5の電気泳動分離能力を評価するものとする。測定者は、入力部82を用いて、理論段数および保持時間の各々について許容値を設定することができる。これによると、高分子マーカ(UM)の理論段数が許容値を下回ったタイミング、または、高分子マーカ(UM)の保持時間が許容値を超えたタイミングを、洗浄工程のタイミングとすることができる。
 測定者はまた、マイクロチップ5の電気泳動分離能力を評価するタイミングとして、1つのマイクロチップ5にて処理される複数のサンプルのうちのどのサンプルの分析結果に基づいて、電気泳動分離能力を評価するかを設定することができる。なお、選択されたサンプルの分析工程では、マイクロチップ5のサンプル供給用のリザーバ53-1にサンプルが分注されると、続いて内部標準物質である高分子マーカ(UM)が分注されることになる。
 マイクロチップ5の電気泳動分離能力を評価するタイミングは、評価する頻度または、評価する間隔により設定することができる。具体的には、電気泳動分離能力を評価する頻度として、測定者は、1つのマイクロチップ5について分析工程を複数回繰り返し実行する間に、何回電気泳動分離能力を評価するかを設定することができる。この場合、測定者が評価の回数を設定すると、分析工程の繰り返し回数を、設定された評価の回数で除算することにより、連続する2回の評価の間で実行される分析回数の回数が決定される。これによると、前回の評価の後、決定された回数だけ分析工程が繰り返されると、次回の評価が実行されることになる。
 測定者は、1つのマイクロチップ5の使用回数、1稼働当たりに分析するサンプルの成分、サンプル数および分析条件などに応じて、1稼働当たりの評価の頻度を設定することができる。これによると、分析性能の低下が検出されると、速やかに洗浄工程を実行することができるため、マイクロチップ5の電気泳動分離能力を早急に回復させることができる。
 電気泳動分離能力を評価する間隔として、測定者は、連続する2回の評価の間に実行される分析工程の回数を設定することができる。この場合、1稼働中に評価を実行する間隔を異ならせることができる。例えば、測定者は、マイクロチップ5の使用回数が増えるに従って、連続する2回の評価の間に実行される分析工程の回数を減らすことができる。具体的には、マイクロチップ5の使用回数が閾値未満のときには、連続する2回の評価の間に実行される分析工程の回数を第1の値に設定する一方で、マイクロチップ5の使用回数が閾値を超えると、連続する2回の評価の間に実行される分析工程の回数を第1の値よりも小さい第2の値に設定することができる。このようにすると、マイクロチップ5の使用回数が増えるに従って評価の頻度が増えることになるため、分析性能の低下を検出して速やかに洗浄工程を実行することができる。
 あるいは、サンプルの分析が進行するに伴って、連続する2回の評価の間に実行される分析工程の回数を減らすことができる。サンプルがマイクロチップ5の電気泳動流路の表面に吸着しやすい成分を有する場合、分析工程の繰り返し回数が増えるに従って評価の頻度を増やすことで、分析性能の低下を検出して速やかに洗浄工程を実行することができ、結果的に分析性能の低下を早急に回復させることができる。
 このようにマイクロチップ5の電気泳動分離能力を基準として洗浄工程のタイミングを適切に設定することで、マイクロチップ5を繰り返し使用したときの分析性能の低下を効率的かつ効果的に抑制することができる。
 (3-2)サンプルおよび試薬のセット(S20)
 分析スケジュールの登録が完了すると(S10)、ステップS20により、マイクロチップ電気泳動装置100にサンプルおよび試薬がセットされる。試薬は、分離バッファ液および内部標準試料(高分子マーカUM、低分子マーカLM)を含む。サンプルが収容されたマイクロタイタプレート12がマイクロチップ電気泳動装置100にセットされるとともに、マイクロチップ電気泳動装置100の試薬ホルダに試薬がセットされる。
 (3-3)自動分析(S30)
 測定者によって、ディスプレイ80の表示画面に表示された開始ボタン220(図14参照)が操作されると、複数のサンプルの電気泳動分析が自動的に実行される。本工程では、コントローラ38は、予め登録された分析スケジュールに従って、各マイクロチップ5において上記(2)で説明した分析工程を繰り返し実行する。
 コントローラ38はさらに、各マイクロチップ5において、複数の分析工程の間の予め設定されたタイミングに上記(1)で説明した洗浄工程を実行する。
 図16は、自動分析(S30)の処理の流れを説明するためのフローチャートである。図16を参照して、ステップS31にて、コントローラ38(泳動制御部92)は、1つのサンプルについて分析工程を実行する。ステップS31では、図8から図10に示した電気泳動分析サイクルが実行される。
 次に、1つのサンプルについて電気泳動分析サイクルが終了すると、ステップS32により、コントローラ38(分析スケジューラ96)は、洗浄工程のタイミングであるか否かを判定する。洗浄工程のタイミングであると判定された場合(S32にてYES)、ステップS33に進み、コントローラ38(洗浄制御部94)は洗浄工程を実行する。
 一方、洗浄工程のタイミングでなければ(S32にてNO)、ステップS34に進み、コントローラ38(分析スケジューラ96)は、全てのサンプルについて分析工程が終了したか否かを判定する。
 全てのサンプルについて分析工程が終了していない場合(S34にてNO)、ステップS31の分析工程に戻る。コントローラ38(泳動制御部92)は次のサンプルについて分析工程を実行する。全てのサンプルについて分析工程が終了していれば(S34にてYES)、コントローラ38(分析スケジューラ96)は自動分析工程(S30)を終了する。
 図17は、図16のステップS32の処理の第1の例を説明するためのフローチャートである。図17を参照して、コントローラ38(分析スケジューラ96)は、1つのマイクロチップ5において分析工程が終了すると、ステップS321により、前回の洗浄工程の後に分析工程を行なった回数の実績値(実績回数)をインクリメントする。コントローラ38(分析スケジューラ96)は、ステップS322により、分析工程の実績回数が設定値以上であるか否かを判定する。ステップS322における「設定値」は、分析スケジュールの登録(図12の工程S10)で設定された洗浄工程の頻度または洗浄工程の間隔に基づいている。
 分析工程の実績回数が設定値以上である場合(S322にてYES)、コントローラ38(分析スケジューラ96)は、洗浄工程のタイミングであると判定し、ステップS33の洗浄工程を実行する。一方、分析工程の実績回数が設定値未満である場合(S322にてNO)、コントローラ38(分析スケジューラ96)は洗浄工程のタイミングでないと判定し、ステップS34にて、全てのサンプルについて分析工程が終了したか否かを判定する。
 図18は、図16のステップS32の処理の第2の例を説明するためのフローチャートである。図18を参照して、コントローラ38(分析スケジューラ96)は、1つのマイクロチップ5において分析工程が終了すると、ステップS323により、マイクロチップ5の電気泳動分離能力を評価するタイミングであるか否かを判定する。ステップS323の判定は、分析スケジュールの登録(図12の工程S10)で設定された、電気泳動分離能力の評価の頻度または評価の間隔に基づいている。
 マイクロチップ5の電気泳動分離能力を評価するタイミングであると判定された場合(S323にてYES)、コントローラ38(分析スケジューラ96)は、ステップS324にて、マイクロチップ5の電気泳動分離能力を評価する。具体的には、制御装置70(データ処理部86)と協働して、サンプルの分析結果から内部標準物質である高分子マーカ(UM)の理論段数および保持時間を算出する。
 コントローラ38は、ステップS325により、マイクロチップ5の電気泳動分離能力が許容値を下回っているか否かを判定する。具体的には、コントローラ38は、高分子マーカ(UM)の理論段数および保持時間の少なくとも一方が許容値を下回っているか否かを判定する。コントローラ38は、高分子マーカ(UM)の理論段数および保持時間の少なくとも一方が許容値を下回っている場合、マイクロチップ5の電気泳動分離能力が許容値を下回っていると判定し、高分子マーカ(UM)の理論段数および保持時間がともに許容値以上である場合、マイクロチップ5の電気泳動分離能力が許容値以上であると判定する。
 マイクロチップ5の電気泳動分離能力が許容値を下回っていると判定された場合(S325にてYES)、コントローラ38(分析スケジューラ96)は、洗浄工程のタイミングであると判定し、ステップS33の洗浄工程を実行する。一方、マイクロチップ5の電気泳動分離能力が許容値以上であると判定された場合(S325にてNO)、コントローラ38(分析スケジューラ96)は洗浄工程のタイミングでないと判定し、ステップS34にて、全てのサンプルについて分析工程が終了したか否かを判定する。
 (4)分析結果を表示(S40)
 図12に戻って、複数のサンプルの自動分析(S30)が終了すると、制御装置70は、分析結果をディスプレイ80の表示画面に表示する。なお、分析結果を表示する工程(S40)は、全てのサンプルの分析が終了したときに分析結果を表示させる構成に限定されず、分析が終了したサンプルからその分析結果を順に表示させる構成とすることもできる。
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係るマイクロチップ電気泳動方法は、マイクロチップ(5)での電気泳動分離による分析工程を繰り返すことにより、複数のサンプルを順番に分析するステップ(S31)と、マイクロチップ(5)の洗浄工程を実行するステップ(S33)と、複数回の分析工程の間の任意のタイミングにマイクロチップ(5)の洗浄工程のタイミングを設定するステップ(S12)とを備える。
 第1項に記載のマイクロチップ電気泳動方法によれば、マイクロチップの洗浄工程のタイミングを任意に設定することができるため、測定者は、マイクロチップの使用回数、1稼働当たりに分析するサンプルの成分、サンプル数および分析条件などに応じて、洗浄工程のタイミングを適切に設定することができる。これによると、分析性能の低下を抑制しながら、分析作業の効率を向上させることができる。
 (第2項)第1項に記載のマイクロチップ電気泳動方法において、洗浄工程のタイミングを設定するステップ(S12)は、洗浄工程のタイミングを指示する入力操作を受け付けるステップを含む。
 第2項に記載のマイクロチップ電気泳動方法によれば、入力操作によって洗浄工程のタイミングを任意に設定することができるため、測定者の利便性を向上させることができる。
 (第3項)第2項に記載のマイクロチップ電気泳動方法は、複数のサンプルを順番に分析するための分析スケジュールを設定する入力操作を受け付けるステップ(S10)をさらに備える。分析スケジュールを設定する入力操作を受け付けるステップは(S10)、洗浄工程のタイミングを指示する入力操作を受け付けるステップ(S12)を含む。
 第3項に記載のマイクロチップ電気泳動方法によれば、複数のサンプルの分析スケジュールを設定する際に、洗浄工程のタイミングも設定することができるため、測定者は、分析性能および分析作業の効率を考慮して、洗浄工程のタイミングを適切に設定することができる。
 (第4項)第2項または第3項に記載のマイクロチップ電気泳動方法において、洗浄工程のタイミングを指示する入力操作を受け付けるステップ(S12)は、1つのマイクロチップ(5)について、洗浄工程の頻度、または、連続する2回の洗浄工程の間に実行される分析工程の回数を指定する入力操作を受け付けるステップを含む。
 第4項に記載のマイクロチップ電気泳動方法によれば、入力操作によって洗浄工程のタイミングを任意に設定することができるため、測定者の利便性を向上させることができる。また、マイクロチップの使用回数、1稼働当たりに分析するサンプルの成分、サンプル数および分析条件などに応じて、洗浄工程の頻度を調整することができるため、分析性能の低下を効率的に抑制することができる。
 (第5項)第1項に記載のマイクロチップ電気泳動方法は、複数回の分析工程の間の任意のタイミングにマイクロチップ(5)の電気泳動分離能力を評価するステップ(S324)をさらに備える。洗浄工程のタイミングを設定するステップ(S12)は、マイクロチップ(5)の電気泳動分離能力が許容値を下回ったタイミングを、洗浄工程のタイミングに設定する。
 第5項に記載のマイクロチップ電気泳動方法によれば、マイクロチップの電気泳動分離能力の低下に合わせて洗浄工程を行なうことができるため、効率的かつ効果的に分析性能の低下を抑制することができる。
 (第6項)第5項に記載のマイクロチップ電気泳動方法において、マイクロチップ(5)の電気泳動分離能力を評価するステップ(S324)は、直近の分析工程の分析結果に含まれる内部標準試料に由来するピークの理論段数および保持時間の少なくとも1つを評価する。洗浄工程のタイミングを設定するステップ(S12)は、理論段数が許容値を下回ったとき、または保持時間が許容値を超えたときを、洗浄工程のタイミングに設定する。
 第6項に記載のマイクロチップ電気泳動方法によれば、マイクロチップの電気泳動分離能力の低下に合わせて洗浄工程を行なうことができるため、効率的かつ効果的に分析性能の低下を抑制することができる。
 (第7項)第5項または第6項に記載のマイクロチップ電気泳動方法において、洗浄工程のタイミングを設定するステップ(S12)は、マイクロチップの電気泳動分離能力を評価するタイミングおよび許容値を設定する入力操作を受け付けるステップを含む。
 第7項に記載のマイクロチップ電気泳動方法によれば、マイクロチップの電気泳動分離能力を評価するタイミングおよび評価基準を任意に設定することができるため、測定者の利便性を向上させることができる。
 (第8項)一態様に係るマイクロチップ電気泳動装置(100)は、電気泳動流路(54,55)が形成されたマイクロチップ(5)と、分注プローブ(8)と、移動機構(2)と、充填排出部(16)と、コントローラ(38)とを備える。分注プローブ(8)は、マイクロチップ(5)の電気泳動流路(54,55)に分離媒体、サンプルおよび洗浄液を注入するように構成される。移動機構(2)は、分離媒体、サンプルおよび洗浄液の吸入位置と、マイクロチップ(5)上の分注位置との間で分注プローブ(8)を移動させる。充填排出部(16)は、電気泳動流路(54,55)に分離媒体および洗浄液を充填し、かつ、電気泳動流路(54,55)から分離媒体および洗浄液を排出するように構成される。コントローラ(38)は、分注プローブ(8)、移動機構(2)および充填排出部(16)の動作を制御する。コントローラ(38)は、マイクロチップ(5)での電気泳動分離による分析工程(S31)を繰り返し実行するとともに、マイクロチップ(5)の洗浄工程(S33)を実行するように構成される。コントローラ(38)は、複数回の分析工程(S31)の間の任意のタイミングにマイクロチップ(5)の洗浄工程(S33)のタイミングを設定するための入力操作を受け付ける入力部(82)と通信接続される。
 第8項に記載のマイクロチップ電気泳動分析装置によれば、入力部を介してマイクロチップの洗浄工程のタイミングを任意に設定することができるため、測定者は、マイクロチップの使用回数、1稼働当たりに分析するサンプルの成分、サンプル数および分析条件などに応じて、洗浄工程のタイミングを適切に設定することができる。これによると、分析性能の低下を抑制しながら、分析作業の効率を向上させることができる。
 なお、上述した実施の形態について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 2 分注部(移動機構)、4 シリンジポンプ、5,5-1~5-4 マイクロチップ、6 三方電磁弁、7 保持部、8 分注プローブ、10 容器、12 マイクロタイタプレート、12W ウェル、14 洗浄部、16 分離バッファ充填・排出部、18 空気供給口、20 Oリング、22 吸引ノズル、23 吸引ポンプ部、26 高圧電源部、30-1~30-4 LED、31 蛍光測定部、32-1~32-4 光ファイバ、34-1,34-2 フィルタ、36 光電子倍増管、38 コントローラ、51,52 透明基板、54 電気泳動流路(サンプル導入流路)、55 電気泳動流路(分離流路)、56 交差位置、60,72 CPU、61~64 電極パターン、62,76 ROM、64,74 RAM、70 制御装置、80 ディスプレイ、82 入力部、86 データ処理部、92 泳動制御部、94 洗浄制御部、96 分析スケジューラ、100 マイクロチップ電気泳動装置、102 リンスプール、110 リンスポート、200 選択画面、210 操作ボタン、220 操作画面。

Claims (8)

  1.  マイクロチップでの電気泳動分離による分析工程を繰り返すことにより、複数のサンプルを順番に分析するステップと、
     前記マイクロチップの洗浄工程を実行するステップと、
     複数回の前記分析工程の間の任意のタイミングに前記マイクロチップの洗浄工程のタイミングを設定するステップとを備える、マイクロチップ電気泳動方法。
  2.  前記洗浄工程のタイミングを設定するステップは、前記洗浄工程のタイミングを指示する入力操作を受け付けるステップを含む、請求項1に記載のマイクロチップ電気泳動方法。
  3.  前記複数のサンプルを順番に分析するための分析スケジュールを設定する入力操作を受け付けるステップをさらに備え、
     前記分析スケジュールを設定する入力操作を受け付けるステップは、前記洗浄工程のタイミングを指示する入力操作を受け付けるステップを含む、請求項2に記載のマイクロチップ電気泳動方法。
  4.  前記洗浄工程のタイミングを指示する入力操作を受け付けるステップは、1つの前記マイクロチップについて、前記洗浄工程の頻度、または、連続する2回の前記洗浄工程の間に実行される前記分析工程の回数を指定する入力操作を受け付けるステップを含む、請求項2または3に記載のマイクロチップ電気泳動方法。
  5.  複数回の前記分析工程の間の任意のタイミングに前記マイクロチップの電気泳動分離能力を評価するステップをさらに備え、
     前記洗浄工程のタイミングを設定するステップは、前記マイクロチップの電気泳動分離能力が許容値を下回ったタイミングを、前記洗浄工程のタイミングに設定する、請求項1に記載のマイクロチップ電気泳動方法。
  6.  前記マイクロチップの電気泳動分離能力を評価するステップは、直近の前記分析工程の分析結果に含まれる内部標準試料に由来するピークの理論段数および保持時間の少なくとも1つを評価し、
     前記洗浄工程のタイミングを設定するステップは、前記理論段数が前記許容値を下回ったとき、または、前記保持時間が前記許容値を超えたときを、前記洗浄工程のタイミングに設定する、請求項5に記載のマイクロチップ電気泳動方法。
  7.  前記洗浄工程のタイミングを設定するステップは、前記マイクロチップの電気泳動分離能力を評価するタイミングおよび前記許容値を設定する入力操作を受け付けるステップを含む、請求項5または6に記載のマイクロチップ電気泳動方法。
  8.  電気泳動流路が形成されたマイクロチップと、
     前記マイクロチップの前記電気泳動流路に分離媒体、サンプルおよび洗浄液を注入するための分注プローブと、
     前記分離媒体、前記サンプルおよび前記洗浄液の吸入位置と、前記マイクロチップ上の分注位置との間で前記分注プローブを移動させる移動機構と、
     前記電気泳動流路に前記分離媒体および前記洗浄液を充填し、かつ、前記電気泳動流路から前記分離媒体および前記洗浄液を排出するように構成された充填排出部と、
     前記分注プローブ、前記移動機構および前記充填排出部の動作を制御するコントローラとを備え、
     前記コントローラは、前記マイクロチップでの電気泳動分離による分析工程を繰り返し実行するとともに、前記マイクロチップの洗浄工程を実行するように構成され、
     前記コントローラは、複数回の前記分析工程の間の任意のタイミングに前記マイクロチップの洗浄工程のタイミングを設定するための入力操作を受け付ける入力部と通信接続される、マイクロチップ電気泳動装置。
PCT/JP2020/000838 2019-05-17 2020-01-14 マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置 WO2020235129A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/611,366 US20220229015A1 (en) 2019-05-17 2020-01-14 Microchip electrophoresis method and microchip electrophoresis device
JP2021520040A JP7276439B2 (ja) 2019-05-17 2020-01-14 マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093668 2019-05-17
JP2019093668 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235129A1 true WO2020235129A1 (ja) 2020-11-26

Family

ID=73459427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000838 WO2020235129A1 (ja) 2019-05-17 2020-01-14 マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置

Country Status (3)

Country Link
US (1) US20220229015A1 (ja)
JP (1) JP7276439B2 (ja)
WO (1) WO2020235129A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813892A (zh) * 2021-01-27 2022-07-29 株式会社岛津制作所 微芯片电泳装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181161A (ja) * 1993-12-22 1995-07-21 Toa Denpa Kogyo Kk 濃度計の電極性能診断方法及び診断機能付き濃度計
JP2012047457A (ja) * 2010-08-24 2012-03-08 Shimadzu Corp マイクロ流体デバイスのクリーニング方法及びクリーニング液
JP2012251821A (ja) * 2011-06-01 2012-12-20 Shimadzu Corp マイクロチップ電気泳動方法及び装置
US20140238444A1 (en) * 2013-02-27 2014-08-28 Shimadzu Corporation Method for cleaning microfluidic device and cleaning liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181161A (ja) * 1993-12-22 1995-07-21 Toa Denpa Kogyo Kk 濃度計の電極性能診断方法及び診断機能付き濃度計
JP2012047457A (ja) * 2010-08-24 2012-03-08 Shimadzu Corp マイクロ流体デバイスのクリーニング方法及びクリーニング液
JP2012251821A (ja) * 2011-06-01 2012-12-20 Shimadzu Corp マイクロチップ電気泳動方法及び装置
US20140238444A1 (en) * 2013-02-27 2014-08-28 Shimadzu Corporation Method for cleaning microfluidic device and cleaning liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114813892A (zh) * 2021-01-27 2022-07-29 株式会社岛津制作所 微芯片电泳装置

Also Published As

Publication number Publication date
US20220229015A1 (en) 2022-07-21
JP7276439B2 (ja) 2023-05-18
JPWO2020235129A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
US8187442B2 (en) Microchip processing method and apparatus
JP5477341B2 (ja) マイクロチップ電気泳動方法及び装置
JP4720419B2 (ja) マイクロチップへの分離バッファ液充填装置とそれを備えたマイクロチップ処理装置
US7939032B2 (en) Microchip processing apparatus
JP2007107915A (ja) キャピラリ流路における電気泳動方法及びマイクロチップ処理装置
JPH10148628A (ja) マイクロチップ電気泳動装置
WO2020235129A1 (ja) マイクロチップ電気泳動方法およびマイクロチップ電気泳動装置
US7931789B2 (en) Device for charging separation buffer liquid to microchip, and microchip processing device equipped with the charging device, electrophoresis method in capillary channel and its microchip processing device
CZ20023371A3 (cs) Způsob vytváření biopolymerních sad a zařízení k jeho provádění
JP6627580B2 (ja) マイクロチップ電気泳動装置
JP2007506092A (ja) 電気泳動装置及び方法、並びに電気泳動部材及び試料分注プローブ
JP4438502B2 (ja) マイクロチップ分析方法及び装置
US11085897B2 (en) Microchip electrophoresis apparatus
JP5573771B2 (ja) マイクロチップ電気泳動装置
JP5310605B2 (ja) マイクロチップ電気泳動方法及び装置
US20020072068A1 (en) Spotting pin and device for fabricating biochips
JP7347256B2 (ja) 電気泳動装置
US20230010554A1 (en) Electrophoresis apparatus and method
CN111551614A (zh) 微芯片电泳装置和微芯片电泳方法
US20210231608A1 (en) Electrophoresis apparatus, electrophoresis system, and method of controlling electrophoresis apparatus
JP6102711B2 (ja) 電気泳動分離方法
US20230176008A1 (en) Electrophoresis system and electrophoresis analysis method
JPWO2007138654A1 (ja) 電気泳動の前処理方法、分析用基板及び電気泳動用前処理装置
CN116448857A (zh) 电泳系统、电泳装置以及电泳解析方法
CN116465951A (zh) 电泳系统、电泳装置以及电泳解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809030

Country of ref document: EP

Kind code of ref document: A1