WO2020235093A1 - ドハティ増幅器 - Google Patents

ドハティ増幅器 Download PDF

Info

Publication number
WO2020235093A1
WO2020235093A1 PCT/JP2019/020509 JP2019020509W WO2020235093A1 WO 2020235093 A1 WO2020235093 A1 WO 2020235093A1 JP 2019020509 W JP2019020509 W JP 2019020509W WO 2020235093 A1 WO2020235093 A1 WO 2020235093A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
amplifier transistor
input
parallel
transistor
Prior art date
Application number
PCT/JP2019/020509
Other languages
English (en)
French (fr)
Inventor
修一 坂田
拓真 鳥居
新庄 真太郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/020509 priority Critical patent/WO2020235093A1/ja
Publication of WO2020235093A1 publication Critical patent/WO2020235093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation

Definitions

  • the present invention relates to a Doherty amplifier.
  • Amplifying elements such as field effect transistors (hereinafter referred to as FETs) have good power efficiency during large signal operation operating near the saturation region, but the linearity of input / output characteristics deteriorates. Further, in the small signal operation in which the amplification element operates in a power region lower than the saturation region, the linearity of the input / output characteristics is improved, but there is a problem that the power efficiency is lowered.
  • a Doherty amplifier is known as an amplifier that solves this problem (see, for example, Patent Document 1). In the Doherty amplifier, both the carrier amplifier and the peak amplifier operate in the saturation region of the carrier amplifier, and only the carrier amplifier operates in the power region lower than the saturation region, resulting in high linearity of input / output characteristics and high power efficiency. And can be realized.
  • a harmonic control circuit may be provided in each of the subsequent stages of the transistor.
  • the harmonic control circuit is a circuit that controls the impedance for a harmonic having a frequency that is an integral multiple of the fundamental wave that is the operating frequency.
  • the impedance of the fundamental wave cannot be matched to the optimum load, so it is necessary to provide a fundamental wave matching circuit after each harmonic control circuit.
  • an offset line and a load modulation line having an electric length of 90 degrees at the operating frequency are provided after the fundamental wave matching circuit on the transistor side for the carrier amplifier. It is necessary to provide an offset line after the fundamental wave matching circuit on the peak amplifier transistor side.
  • the present invention solves the above problems, and an object of the present invention is to obtain a Doherty amplifier capable of controlling harmonics without separately providing a harmonic control circuit, a fundamental wave matching circuit, and an offset line. ..
  • the Doherty amplifier includes a carrier amplifier transistor, a peak amplifier transistor, a first parallel resonance circuit which is a parallel circuit of an inductor and a capacitor connected to the output end of the carrier amplifier transistor, and a peak amplifier.
  • a parallel inductor connected to the output end of the transistor and a second parallel resonance circuit, which is a parallel circuit of the inductor and the capacitor, connected in series between the output ends of the carrier amplifier transistor and the peak amplifier transistor.
  • An output matching circuit connected to the output end of the peak amplifier transistor, a first input matching circuit connected to the input side of the carrier amplifier transistor, and a second input matching circuit connected to the input side of the peak amplifier transistor.
  • An input matching circuit an input phase adjusting line connected to the input side of the second input matching circuit and having an electric length of 90 degrees, and a signal input to the input terminal on the carrier amplifier transistor side and the input phase adjusting line side. It is equipped with an input distributor that distributes to.
  • a first parallel resonance circuit which is a parallel circuit of an inductor and a capacitor connected to the output end of a carrier amplifier transistor, a parallel inductor connected to the output end of a peak amplifier transistor, and a carrier.
  • the circuit including the second parallel resonance circuit which is a parallel circuit of the inductor and the capacitor, connected in series between the output ends of the amplifier transistor and the peak amplifier transistor is the parasitic capacitance of the carrier amplifier transistor and the peak amplifier. Utilizing the parasitic capacitance of the transistor, it functions as a load modulation circuit in the fundamental wave, and further, this load modulation circuit equivalently operates as a harmonic control circuit.
  • the present invention can control harmonics even if the harmonic control circuit, the fundamental wave matching circuit, and the offset line are not separately provided. Therefore, it is possible to reduce the circuit size of the Doherty amplifier.
  • FIG. It is a circuit diagram which shows the structural example of the Doherty amplifier which concerns on Embodiment 1.
  • FIG. It is a circuit diagram which shows the structure of the load modulation line. It is a circuit diagram which shows the equivalent circuit of the load modulation line of FIG. It is a circuit diagram which shows the circuit which replaced the inductor in the circuit of FIG. 3 with a resonance circuit. It is a figure which shows the calculation result (from the low frequency side to the high frequency side) of the impedance which looked at the output side from the current source of the carrier amplifier transistor in the circuit of FIG. 3 and the circuit of FIG.
  • FIG. 1 is a circuit diagram showing a configuration example of a Doherty amplifier according to the first embodiment.
  • the Doherty amplifier shown in FIG. 1 includes an input terminal 1a, an input distributor 1, input matching circuits 2a and 2b, an input phase adjustment line 3, a carrier amplifier transistor 4 and a peak amplifier transistor 5, and further, parallel resonance. It includes a load modulation circuit 9 having a circuit 6, a parallel resonant circuit 7, and a parallel inductor 8, an output matching circuit 10, and an output terminal 10a.
  • the input distributor 1 is a circuit that distributes the signal input to the input terminal 1a to the carrier amplifier transistor 4 side and the input phase adjustment line 3 side.
  • the input matching circuit 2a is a first input matching circuit connected to the input side of the carrier amplifier transistor 4, and performs impedance matching on the input side of the carrier amplifier transistor 4.
  • the input matching circuit 2b is a second input matching circuit connected to the input side of the peak amplifier transistor 5, and performs impedance matching on the input side of the peak amplifier transistor 5.
  • the input phase adjustment line 3 is a line connected to the input side of the input matching circuit 2b and having an electric length of 90 degrees.
  • the phase of the input signal distributed by the input distributor 1 is delayed by 90 degrees by the input phase adjusting line 3.
  • the carrier amplifier transistor 4 is a transistor that amplifies the input signal and outputs the amplified signal from the output terminal 4a.
  • the peak amplifier transistor 5 is a transistor that amplifies the input signal and outputs the amplified signal from the output terminal 5a.
  • FETs can be used for the carrier amplifier transistor 4 and the peak amplifier transistor 5, and bipolar transistors can also be used.
  • the carrier amplifier transistor 4 and the peak amplifier transistor 5 are FETs
  • the carrier amplifier transistor 4 amplifies the signal input to the gate terminal and outputs the amplified signal to the drain terminal 4a at the output terminal 4a. Output from.
  • the peak amplifier transistor 5 amplifies the signal input to the gate terminal, and outputs the amplified signal from the drain terminal which is the output terminal 5a.
  • the carrier amplifier transistor 4 and the peak amplifier transistor 5 are FETs.
  • the peak amplifier transistor 5 is turned off when the input signal is small, and the input signal at this time is lost in the peak amplifier transistor 5. On the other hand, when the input signal becomes large beyond the level that saturates the carrier amplifier transistor 4, the peak amplifier transistor 5 is turned on and the input signal is amplified together with the carrier amplifier transistor 4.
  • the parallel resonance circuit 6 is the first parallel resonance circuit, and as shown in FIG. 1, is a parallel circuit of an inductor and a capacitor connected to the output terminal 4a of the carrier amplifier transistor 4.
  • the parallel resonant circuit 6 cancels a part of the parasitic capacitance generated on the output side of the carrier amplifier transistor 4 (the capacitance C1 arranged in parallel with the carrier amplifier transistor 4 in FIG. 1) and performs harmonic processing.
  • the parallel resonance circuit 7 is a second parallel resonance circuit, and as shown in FIG. 1, is connected in series between the output terminal 4a of the carrier amplifier transistor 4 and the output end 5a of the peak amplifier transistor 5. It is a parallel circuit of an inductor and a capacitor. The parallel resonant circuit 7 performs harmonic processing.
  • the parallel inductor 8 is an inductor connected to the output end 5a of the peak amplifier transistor 5.
  • the parallel inductor 8 cancels a part of the parasitic capacitance generated on the output side of the peak amplifier transistor 5 (the capacitance C2 arranged in parallel with the peak amplifier transistor 5 in FIG. 1).
  • the circuit including the parallel resonant circuit 6, the parallel resonant circuit 7, and the parallel inductor 8 functions as a load modulation circuit 9 using the parasitic capacitance C1 of the carrier amplifier transistor 4 and the parasitic capacitance C2 of the peak amplifier transistor 5.
  • the parallel inductance on the carrier amplifier transistor 4 side in the parallel resonance circuit 6 and the series inductance on the carrier amplifier transistor 4 side in the parallel resonance circuit 7 are appropriately set, so that the fundamental wave
  • the function of the Doherty type load modulation circuit can be obtained, and the impedance seen from the output end 4a of the carrier amplifier transistor 4 in the harmonic can be opened. Since the transistor operates with high efficiency when the impedance of the harmonics is open, a highly efficient Doherty amplifier can be realized.
  • the output matching circuit 10 is connected to the output terminal 5a of the peak amplifier transistor 5.
  • the output matching circuit 10 matches the impedance at the combination point of the output of the carrier amplifier transistor 4 and the output of the peak amplifier transistor 5 with the impedance of the output terminal 10a.
  • FIG. 2 is a circuit diagram showing the configuration of the load modulation line 100, showing the load modulation line 100 included in a general Doherty amplifier.
  • Transistor 4 carrier amplifier operates as a current source 4b of the current I C
  • the transistor 5 for the peak amplifier operates as a current source 5b of the current I P.
  • the peak amplifier transistor 5 when the input signal is small, the peak amplifier transistor 5 is turned off, only the carrier amplifier transistor 4 amplifies the input signal, and when the input signal is large, the peak amplifier transistor 5 is turned on.
  • the input signal is amplified together with the carrier amplifier transistor 4.
  • the Doherty operation is realized by introducing the load modulation line 100 and the load resistor RL .
  • Load modulation line 100 is a transmission line having an electrical length of 90 degrees at a center frequency of a and use frequency characteristic impedance Z C, as shown in FIG. 2, between the current source 4b and the current source 5b Be loaded.
  • the load resistor RL is a resistor connected in parallel to the current source 5b.
  • the signal of the center frequency of the used frequency corresponds to the fundamental wave.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the load modulation line 100.
  • Load modulation line 100 shown in FIG. 2 consists inductor capacitor C out, C of the capacitor, the capacitance C out, P of the capacitor, the inductance L C of the inductor, the inductance L P of the inductor and the inductance L T shown in FIG. 3 It can be represented equivalently by the circuit 100A.
  • Inductance L C and L P is the inductance of the connected parallel inductor in parallel between the transistor 4 and the peak amplifier transistor 5 carrier amplifier.
  • the inductance L T is the inductance of the series inductor connected in series between the transistor 4 and the peak amplifier transistor 5 carrier amplifier.
  • the parasitic capacitance C1 generated on the output side of the carrier amplifier transistor 4 and the parasitic capacitance C2 generated on the output side of the peak amplifier transistor 5 can be used. That is, in the Doherty amplifier shown in FIG. 1, the parasitic capacitances C1 and C2 are partially canceled by the parallel resonant circuit 6 and the parallel inductor 8 to use the circuit 100A without preparing a new parallel capacitor. It is possible to realize it.
  • Inductance L C of the parallel inductor the inductance L T between L P and the series inductor can be expressed using the following equation (1) and the following formula (2).
  • f 0 is the center frequency of the frequency used by the Doherty amplifier
  • Z C is the characteristic impedance of the circuit 100A.
  • C out and C are the parasitic capacitance C1 of the carrier amplifier transistor 4
  • C out and P are the parasitic capacitance C2 of the peak amplifier transistor 5.
  • an inductor (inductance L C and L T) in the circuit 100A it is a circuit diagram showing the circuit 100B is replaced with the resonant circuit.
  • the inductance L C and the inductance L T series inductor of the parallel inductor using the following equation (3) to (6), by replacing each of the resonant circuit corresponding to the parallel resonant circuit 6 and the parallel resonance circuit 7
  • the circuit 100B shown in FIG. 4 is obtained.
  • the circuit 100B is a circuit corresponding to the load modulation circuit 9 shown in FIG. 1, and is a harmonic (frequency f 1) while maintaining the function as a Doherty type load modulation circuit in the fundamental wave (signal with a center frequency f 0 ).
  • the impedance seen from the drain end of the carrier amplifier transistor 4 on the output side is open.
  • f 1 is the frequency of the harmonic.
  • the capacitance connected between the parallel resonant circuit 6 and the parallel inductor 8 and the ground is omitted because it can be regarded as a short circuit in the high frequency region.
  • Figure 5 is a diagram showing in a circuit 100A and the circuit 100B, a current source 4b output impedance of the calculation result as viewed from the (from the low-frequency side 0.75 F 0 to a high frequency side 1.25f 0).
  • the normalized impedance is set to the characteristic impedance Z C of the equivalent 90-degree line.
  • the change in impedance with reference numeral A is the calculation result of circuit 100A
  • the change in impedance with reference numeral B is the calculation result of the Doherty amplifier having circuit 100B.
  • Marker m1 shows the impedance at the center frequency f 0.
  • FIG. 6 is a graph showing the reflection coefficient, which is the calculation result of the impedance when the output side is viewed from the current source 4b in the circuit 100A and the circuit 100B, in decibel notation.
  • the change in the reflectance coefficient with reference numeral C is the calculation result of the circuit 100A
  • the change in the reflection coefficient with the reference numeral D is the calculation result of the circuit 100B.
  • the impedance of both the circuit 100A and the circuit 100B is matched to Z C at the center frequency f 0 .
  • FIG. 7 is a diagram showing impedance calculation results (from fundamental wave f 0 to double wave 2f 0 ) when the output side is viewed from the current source 4b of the carrier amplifier transistor 4 in the circuit 100A and the circuit 100B.
  • the circuit 100B is a circuit corresponding to the load modulation circuit 9.
  • the normalized impedance is set to the characteristic impedance Z C of the equivalent 90-degree line.
  • the change in impedance with reference numeral A1 is the calculation result of circuit 100A
  • the change in impedance with reference numeral B1 is the calculation result of the Doherty amplifier having circuit 100B.
  • Marker m2 indicates the impedance of the circuit 100A in the second harmonic (2f 0)
  • the marker m3 indicates the impedance of the circuit 100B in the second harmonic (2f 0).
  • the impedance of the circuit 100A is not open in the double wave, but the impedance of the circuit 100B corresponding to the load modulation circuit 9 is open in the double wave.
  • the load modulation circuit 9 including the parallel resonant circuit 6, the parallel resonant circuit 7, and the parallel inductor 8 contains the parasitic capacitance C1 of the carrier amplifier transistor 4 and the peak amplifier transistor. It functions as a load modulation circuit using the parasitic capacitance C2 of 5, and further, the load modulation circuit 9 operates equivalently as a harmonic control circuit.
  • the Doherty amplifier according to the first embodiment can control harmonics even if it does not include a harmonic control circuit, a fundamental wave matching circuit, and an offset line, and the circuit size can be reduced. Is.
  • FIG. 8 is a circuit diagram showing a configuration example of the Doherty amplifier according to the second embodiment.
  • the Doherty amplifier shown in FIG. 8 includes an input terminal 1a, an input distributor 1, input matching circuits 2a and 2b, an input phase adjustment line 3, a carrier amplifier transistor 4 and a peak amplifier transistor 5, and further, parallel resonance. It includes a load modulation circuit 9A having a circuit 6, a parallel resonant circuit 7, and a parallel resonant circuit 12, an output matching circuit 10, and an output terminal 10a.
  • the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the parallel inductor 8 shown in FIG. 1 is replaced with a parallel resonance circuit 12 which is a parallel circuit of the inductor and the capacitor.
  • the parallel resonant circuit 12 is a circuit that cancels a part of the parasitic capacitance generated on the output side of the peak amplifier transistor 5 and performs harmonic processing.
  • the load modulation circuit 9A can be converted into a load modulation circuit. It can function in the same manner as 9.
  • f 1 is a harmonic frequency.
  • the load modulation circuit 9A including the parallel resonance circuit 6, the parallel resonance circuit 7, and the parallel resonance circuit 12 is the parasitic capacitance C1 of the carrier amplifier transistor 4 and the peak amplifier. It functions as a load modulation circuit using the parasitic capacitance C2 of the transistor 5, and further, the load modulation circuit 9A operates equivalently as a harmonic control circuit.
  • the Doherty amplifier according to the second embodiment can control the harmonics even if the harmonic control circuit, the fundamental wave matching circuit, and the offset line are not separately provided. Therefore, it is possible to reduce the circuit size of the Doherty amplifier.
  • the Doherty amplifier according to the present invention can control harmonics without separately providing a harmonic control circuit, a fundamental wave matching circuit, and an offset line, and thus can be used, for example, in a mobile communication system. is there.
  • 1 Input distributor 1a input terminal, 2a input matching circuit, 2b input matching circuit, 3 input phase adjustment line, 4 carrier amplifier transistor, 4a, 5a output terminal, 4b, 5b current source, 5 peak amplifier transistor, 6 , 7, 12 parallel resonant circuit, 8 parallel inductor, 9, 9A load modulation circuit, 10 output matching circuit, 10a output terminal, 100 load modulation line, 100A, 100B circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

並列共振回路(6)、並列共振回路(7)および並列インダクタ(8)を含む負荷変調回路(9)が、キャリア増幅器用トランジスタ(4)の寄生容量およびピーク増幅器用トランジスタ(5)の寄生容量を利用した負荷変調回路として機能し、高調波制御回路として機能する。

Description

ドハティ増幅器
 本発明は、ドハティ増幅器に関する。
 電界効果トランジスタ(以下、FETと記載する)などの増幅素子は、飽和領域付近で動作する大信号動作時に、電力効率は良好になるが、入出力特性の線形性が劣化する。
 また、増幅素子は、飽和領域よりも低い電力領域で動作する小信号動作時では、入出力特性の線形性は良好になるが、電力効率が低下するという問題がある。この問題を解決している増幅器として、ドハティ増幅器が知られている(例えば、特許文献1参照)。
 ドハティ増幅器では、キャリア増幅器の飽和領域においてキャリア増幅器とピーク増幅器の双方が動作し、飽和領域よりも低い電力領域においてキャリア増幅器のみが動作することで、入出力特性の高い線形性と、高い電力効率とを実現することができる。
特開2008-199625号公報
 従来、ドハティ増幅器をより高効率に動作させるためにトランジスタの後段のそれぞれに高調波制御回路を設ける場合がある。
 高調波制御回路は、使用周波数である基本波の整数倍の周波数を有する高調波に対するインピーダンスを制御する回路である。高調波制御回路を設けることにより、高調波制御回路の出力側のインピーダンスによらず、各トランジスタから出力側を見たときの高調波のインピーダンスが固定される。高調波のインピーダンスがオープンであるときに、トランジスタは最も高効率に動作するので、高調波制御回路には、高調波のインピーダンスがオープンとなる回路が使用される。
 一方、高調波制御回路では、基本波のインピーダンスを最適負荷に整合させることができないため、各高調波制御回路の後段には、基本波整合回路を設ける必要がある。また、ドハティ型負荷変調回路を実現するためには、キャリア増幅器用トランジスタ側の基本波整合回路の後段に、オフセット線路と、使用周波数で90度の電気長を有した負荷変調線路とを設け、ピーク増幅器用トランジスタ側の基本波整合回路の後段に、オフセット線路を設ける必要がある。
 このように、従来は、ドハティ増幅器を高効率で動作させるために、高調波制御回路を設ける場合、当該高調波制御回路と、基本波整合回路と、オフセット線路とを別々に設ける必要があり、回路サイズが大型化するという課題があった。
 本発明は上記課題を解決するものであり、高調波制御回路と、基本波整合回路と、オフセット線路とを別々に設ける必要なく、高調波の制御が可能なドハティ増幅器を得ることを目的とする。
 本発明に係るドハティ増幅器は、キャリア増幅器用トランジスタと、ピーク増幅器用トランジスタと、キャリア増幅器用トランジスタの出力端に接続された、インダクタとコンデンサの並列回路である第1の並列共振回路と、ピーク増幅器用トランジスタの出力端に接続された並列インダクタと、キャリア増幅器用トランジスタとピーク増幅器用トランジスタとの出力端の間に直列に接続された、インダクタとコンデンサの並列回路である第2の並列共振回路と、ピーク増幅器用トランジスタの出力端に接続された出力整合回路と、キャリア増幅器用トランジスタの入力側に接続された第1の入力整合回路と、ピーク増幅器用トランジスタの入力側に接続された第2の入力整合回路と、第2の入力整合回路の入力側に接続され、90度の電気長を有する入力位相調整線路と、入力端子に入力された信号をキャリア増幅器用トランジスタ側と入力位相調整線路側に分配する入力分配器を備える。
 本発明によれば、キャリア増幅器用トランジスタの出力端に接続された、インダクタとコンデンサの並列回路である第1の並列共振回路、ピーク増幅器用トランジスタの出力端に接続された並列インダクタ、および、キャリア増幅器用トランジスタとピーク増幅器用トランジスタとの出力端の間に直列に接続された、インダクタとコンデンサの並列回路である第2の並列共振回路を含む回路が、キャリア増幅器用トランジスタの寄生容量およびピーク増幅器用トランジスタの寄生容量を利用して、基本波において負荷変調回路として機能し、さらに、この負荷変調回路は、等価的に高調波制御回路として動作する。これにより、本発明は、高調波制御回路と、基本波整合回路と、オフセット線路とを別々に備えていなくても、高調波の制御が可能となる。従って、ドハティ増幅器の回路サイズを小型化することが可能である。
実施の形態1に係るドハティ増幅器の構成例を示す回路図である。 負荷変調線路の構成を示す回路図である。 図2の負荷変調線路の等価回路を示す回路図である。 図3の回路におけるインダクタを共振回路に置き換えた回路を示す回路図である。 図3の回路と図4の回路において、キャリア増幅器用トランジスタの電流源から出力側を見たインピーダンスの計算結果(低周波側から高周波側まで)を示す図である。 図3の回路と図4の回路において、キャリア増幅器用トランジスタの電流源から出力側を見たインピーダンスの計算結果である反射係数を、デジベル表記で示すグラフである。 図3の回路と図4の回路において、キャリア増幅器用トランジスタの電流源から出力側を見たインピーダンスの計算結果(基本波から2倍波まで)を示す図である。 実施の形態2に係るドハティ増幅器の構成例を示す回路図である。
実施の形態1.
 図1は、実施の形態1に係るドハティ増幅器の構成例を示す回路図である。図1に示すドハティ増幅器は、入力端子1a、入力分配器1、入力整合回路2a,2b、入力位相調整線路3、キャリア増幅器用トランジスタ4およびピーク増幅器用トランジスタ5を備えており、さらに、並列共振回路6、並列共振回路7および並列インダクタ8を有する負荷変調回路9と、出力整合回路10および出力端子10aを備える。
 入力分配器1は、入力端子1aに入力された信号をキャリア増幅器用トランジスタ4側と入力位相調整線路3側とに分配する回路である。入力整合回路2aは、キャリア増幅器用トランジスタ4の入力側に接続された第1の入力整合回路であって、キャリア増幅器用トランジスタ4の入力側におけるインピーダンス整合を行う。入力整合回路2bは、ピーク増幅器用トランジスタ5の入力側に接続された第2の入力整合回路であり、ピーク増幅器用トランジスタ5の入力側におけるインピーダンス整合を行う。
 入力位相調整線路3は、入力整合回路2bの入力側に接続され90度の電気長を有する線路である。入力分配器1によって分配された入力信号の位相は、入力位相調整線路3によって90度遅れる。キャリア増幅器用トランジスタ4は、入力された信号を増幅して、増幅された信号を出力端4aから出力するトランジスタである。同様に、ピーク増幅器用トランジスタ5は、入力された信号を増幅し、増幅された信号を出力端5aから出力するトランジスタである。
 キャリア増幅器用トランジスタ4およびピーク増幅器用トランジスタ5には、FETを用いることができ、バイポーラトランジスタを用いることもできる。例えば、キャリア増幅器用トランジスタ4およびピーク増幅器用トランジスタ5がFETである場合、キャリア増幅器用トランジスタ4は、ゲート端子に入力された信号を増幅して、増幅後の信号を出力端4aであるドレイン端子から出力する。ピーク増幅器用トランジスタ5は、ゲート端子に入力された信号を増幅し、増幅後の信号を出力端5aであるドレイン端子から出力する。なお、以下の説明では、キャリア増幅器用トランジスタ4およびピーク増幅器用トランジスタ5がFETであるものとする。
 ピーク増幅器用トランジスタ5は、入力信号が小さいときにオフ状態となり、このときの入力信号は、ピーク増幅器用トランジスタ5において消失される。一方、キャリア増幅器用トランジスタ4を飽和させるレベルを超えて入力信号が大きくなると、ピーク増幅器用トランジスタ5は、オン状態となり、キャリア増幅器用トランジスタ4とともに、入力信号を増幅する。
 並列共振回路6は、第1の並列共振回路であり、図1に示すように、キャリア増幅器用トランジスタ4の出力端4aに接続された、インダクタとコンデンサの並列回路である。並列共振回路6は、キャリア増幅器用トランジスタ4の出力側に生じた寄生容量の一部(図1において、キャリア増幅器用トランジスタ4に並列に配置されている容量C1)を取り消し、かつ高調波処理を行う。並列共振回路7は、第2の並列共振回路であり、図1に示すように、キャリア増幅器用トランジスタ4の出力端4aとピーク増幅器用トランジスタ5の出力端5aの間に直列に接続された、インダクタとコンデンサの並列回路である。並列共振回路7は、高調波処理を行う。並列インダクタ8は、ピーク増幅器用トランジスタ5の出力端5aに接続されたインダクタである。並列インダクタ8は、ピーク増幅器用トランジスタ5の出力側に生じた寄生容量の一部(図1において、ピーク増幅器用トランジスタ5に並列に配置されている容量C2)を取り消す。
 並列共振回路6、並列共振回路7および並列インダクタ8を含む回路は、キャリア増幅器用トランジスタ4の寄生容量C1およびピーク増幅器用トランジスタ5の寄生容量C2を利用した負荷変調回路9として機能する。例えば、負荷変調回路9は、並列共振回路6におけるキャリア増幅器用トランジスタ4側の並列インダクタンスと、並列共振回路7におけるキャリア増幅器用トランジスタ4側の直列インダクタンスが適切に設定されることで、基本波においてドハティ型負荷変調回路の機能が得られ、高調波においてキャリア増幅器用トランジスタ4の出力端4aから出力側を見たインピーダンスをオープンにすることができる。トランジスタは、高調波のインピーダンスがオープンであるときに高効率に動作するので、高効率なドハティ増幅器を実現することができる。
 出力整合回路10は、ピーク増幅器用トランジスタ5の出力端5aに接続される。出力整合回路10は、キャリア増幅器用トランジスタ4の出力とピーク増幅器用トランジスタ5の出力との合成点におけるインピーダンスを、出力端子10aのインピーダンスに整合させる。
 次に、実施の形態1に係るドハティ増幅器が備える負荷変調回路9についてより詳細に説明する。図2は、負荷変調線路100の構成を示す回路図であって、一般的なドハティ増幅器が備える負荷変調線路100を示している。キャリア増幅器用トランジスタ4は、電流Iの電流源4bとして動作し、ピーク増幅器用トランジスタ5は、電流Iの電流源5bとして動作する。
 ドハティ動作は、入力信号が小さいときに、ピーク増幅器用トランジスタ5はオフされ、キャリア増幅器用トランジスタ4のみが入力信号を増幅し、入力信号が大きくなったときに、ピーク増幅器用トランジスタ5がオンされて、キャリア増幅器用トランジスタ4とともに、入力信号を増幅する。ドハティ動作は、負荷変調線路100および負荷抵抗Rを導入することで実現される。負荷変調線路100は、特性インピーダンスZを有しかつ使用周波数の中心周波数で90度の電気長を有する伝送線路であり、図2に示すように、電流源4bと電流源5bとの間に装荷される。負荷抵抗Rは、電流源5bに並列に接続された抵抗である。なお、使用周波数の中心周波数の信号が基本波に相当する。
 図3は、負荷変調線路100の等価回路を示す回路図である。図2に示した負荷変調線路100は、図3に示す容量Cout,Cのコンデンサ、容量Cout,Pのコンデンサ、インダクタンスLのインダクタ、インダクタンスLのインダクタおよびインダクタンスLのインダクタから構成された回路100Aで等価的に表すことができる。インダクタンスLおよびLは、キャリア増幅器用トランジスタ4とピーク増幅器用トランジスタ5との間に並列に接続された並列インダクタのインダクタンスである。また、インダクタンスLは、キャリア増幅器用トランジスタ4とピーク増幅器用トランジスタ5との間に直列に接続された直列インダクタのインダクタンスである。
 容量Cout,Cおよび容量Cout,Pには、キャリア増幅器用トランジスタ4の出力側に生じた寄生容量C1およびピーク増幅器用トランジスタ5の出力側に生じた寄生容量C2を用いることができる。すなわち、図1に示したドハティ増幅器は、寄生容量C1,C2を、その一部を並列共振回路6および並列インダクタ8によって取り消して用いることにより、新たな並列コンデンサを用意することなく、回路100Aを実現することが可能である。
 並列インダクタのインダクタンスL,Lおよび直列インダクタのインダクタンスLは、下記式(1)と下記式(2)を用いて表すことができる。ただし、下記式(1)、(2)において、fは、ドハティ増幅器の使用周波数の中心周波数であり、Zは、回路100Aの特性インピーダンスである。さらに、Cout,Cは、キャリア増幅器用トランジスタ4の寄生容量C1であり、Cout,Pは、ピーク増幅器用トランジスタ5の寄生容量C2である。

Figure JPOXMLDOC01-appb-I000001
 図4は、回路100Aにおけるインダクタ(インダクタンスLおよびL)を、共振回路に置き換えた回路100Bを示す回路図である。ここで、並列インダクタのインダクタンスLおよび直列インダクタのインダクタンスLを、下記式(3)から(6)までを用いて、並列共振回路6および並列共振回路7に相当する共振回路にそれぞれ置き換えることで、図4に示す回路100Bが得られる。回路100Bは、図1に示した負荷変調回路9に相当する回路であり、基本波(中心周波数fの信号)においてドハティ型負荷変調回路としての機能を保ちつつ、高調波(周波数fの信号)においては、キャリア増幅器用トランジスタ4のドレイン端から出力側を見たインピーダンスがオープンになっている。なお、fは高調波の周波数である。また、図4では、並列共振回路6および並列インダクタ8とグラウンドの間に接続される容量は、高周波領域では短絡とみなせることから記載を省略している。

Figure JPOXMLDOC01-appb-I000002
 図5は、回路100Aと回路100Bとにおいて、電流源4bから出力側を見たインピーダンスの計算結果(低周波側0.75fから高周波側1.25fまで)を示す図である。図5に示すスミスチャートにおいて、規格化インピーダンスは等価的90度線路の特性インピーダンスZに設定されている。符号Aを付したインピーダンスの変化は、回路100Aの計算結果であり、符号Bを付したインピーダンスの変化は、回路100Bを有したドハティ増幅器の計算結果である。マーカm1は、中心周波数fにおけるインピーダンスを示している。
 図6は、回路100Aと回路100Bにおいて、電流源4bから出力側を見たインピーダンスの計算結果である反射係数を、デシベル表記で示すグラフである。符号Cを付した反射係数の変化は、回路100Aの計算結果であり、符号Dを付した反射係数の変化は、回路100Bの計算結果である。図5および図6から明らかなように、回路100Aおよび回路100Bは、ともに中心周波数fにおいて、インピーダンスがZに整合している。
 図7は、回路100Aと回路100Bとにおいて、キャリア増幅器用トランジスタ4の電流源4bから出力側を見たインピーダンスの計算結果(基本波fから2倍波2fまで)を示す図である。回路100Bは、前述したように、負荷変調回路9に相当する回路である。図7に示すスミスチャートにおいて、図5と同様に、規格化インピーダンスは、等価的90度線路の特性インピーダンスZに設定されている。符号A1を付したインピーダンスの変化は、回路100Aの計算結果であり、符号B1を付したインピーダンスの変化は、回路100Bを有したドハティ増幅器の計算結果である。マーカm2は、2倍波(2f)における回路100Aのインピーダンスを示しており、マーカm3は、2倍波(2f)における回路100Bのインピーダンスを示している。図7から明らかなように、回路100Aは、2倍波でインピーダンスがオープンになっていないが、負荷変調回路9に相当する回路100Bは、2倍波でインピーダンスがオープンになっている。
 以上のように、実施の形態1に係るドハティ増幅器において、並列共振回路6、並列共振回路7および並列インダクタ8を含む負荷変調回路9が、キャリア増幅器用トランジスタ4の寄生容量C1とピーク増幅器用トランジスタ5の寄生容量C2を利用した負荷変調回路として機能し、さらに、負荷変調回路9は、等価的に高調波制御回路として動作する。これにより、実施の形態1に係るドハティ増幅器は、高調波制御回路、基本波整合回路およびオフセット線路を備えていなくても、高調波の制御が可能であり、回路サイズが小型化することが可能である。
実施の形態2.
 図8は、実施の形態2に係るドハティ増幅器の構成例を示す回路図である。図8に示すドハティ増幅器は、入力端子1a、入力分配器1、入力整合回路2a,2b、入力位相調整線路3、キャリア増幅器用トランジスタ4およびピーク増幅器用トランジスタ5を備えており、さらに、並列共振回路6、並列共振回路7および並列共振回路12を有する負荷変調回路9Aと、出力整合回路10および出力端子10aを備える。図8において、図1と同一の構成要素には同一の符号を付して説明を省略する。
 負荷変調回路9Aは、図1に示した並列インダクタ8が、インダクタとコンデンサの並列回路である並列共振回路12に置き換えられている。並列共振回路12は、ピーク増幅器用トランジスタ5の出力側に生じた寄生容量の一部を取り消し、かつ高調波処理を行う回路である。並列共振回路12のインダクタのインダクタンスLPRとコンデンサの容量CPRの回路定数を、下記式(7)と下記式(8)とを用いて設定することで、負荷変調回路9Aを、負荷変調回路9と同様に機能させることができる。なお、fは、高調波の周波数である。

Figure JPOXMLDOC01-appb-I000003
 以上のように、実施の形態2に係るドハティ増幅器において、並列共振回路6、並列共振回路7および並列共振回路12を含んだ負荷変調回路9Aが、キャリア増幅器用トランジスタ4の寄生容量C1とピーク増幅器用トランジスタ5の寄生容量C2を利用した負荷変調回路として機能し、さらに、負荷変調回路9Aは、等価的に高調波制御回路として動作する。これにより、実施の形態2に係るドハティ増幅器は、高調波制御回路と、基本波整合回路と、オフセット線路とを別々に備えていなくても、高調波の制御が可能となる。従って、ドハティ増幅器の回路サイズを小型化することが可能である。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本発明に係るドハティ増幅器は、高調波制御回路と、基本波整合回路と、オフセット線路とを別々に備えていなくても高調波の制御が可能となるので、例えば、移動通信システムに利用可能である。
 1 入力分配器、1a 入力端子、2a 入力整合回路、2b 入力整合回路、3 入力位相調整線路、4 キャリア増幅器用トランジスタ、4a,5a 出力端、4b,5b 電流源、5 ピーク増幅器用トランジスタ、6,7,12 並列共振回路、8 並列インダクタ、9,9A 負荷変調回路、10 出力整合回路、10a 出力端子、100 負荷変調線路、100A,100B 回路。

Claims (2)

  1.  キャリア増幅器用トランジスタと、
     ピーク増幅器用トランジスタと、
     前記キャリア増幅器用トランジスタの出力端に接続された、インダクタとコンデンサの並列回路である第1の並列共振回路と、
     前記ピーク増幅器用トランジスタの出力端に接続された並列インダクタと、
     前記キャリア増幅器用トランジスタと前記ピーク増幅器用トランジスタとの出力端の間に直列に接続された、インダクタとコンデンサの並列回路である第2の並列共振回路と、
     前記ピーク増幅器用トランジスタの出力端に接続された出力整合回路と、
     前記キャリア増幅器用トランジスタの入力側に接続された第1の入力整合回路と、
     前記ピーク増幅器用トランジスタの入力側に接続された第2の入力整合回路と、
     前記第2の入力整合回路の入力側に接続され、90度の電気長を有する入力位相調整線路と、
     入力端子に入力された信号を前記キャリア増幅器用トランジスタ側と前記入力位相調整線路側とに分配する入力分配器と、
     を備えたことを特徴とするドハティ増幅器。
  2.  前記並列インダクタは、前記ピーク増幅器用トランジスタの出力端に接続された、インダクタとコンデンサの並列回路であること
     を特徴とする請求項1記載のドハティ増幅器。
PCT/JP2019/020509 2019-05-23 2019-05-23 ドハティ増幅器 WO2020235093A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020509 WO2020235093A1 (ja) 2019-05-23 2019-05-23 ドハティ増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020509 WO2020235093A1 (ja) 2019-05-23 2019-05-23 ドハティ増幅器

Publications (1)

Publication Number Publication Date
WO2020235093A1 true WO2020235093A1 (ja) 2020-11-26

Family

ID=73458975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020509 WO2020235093A1 (ja) 2019-05-23 2019-05-23 ドハティ増幅器

Country Status (1)

Country Link
WO (1) WO2020235093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022249380A1 (ja) * 2021-05-27 2022-12-01

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188520A (ja) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp 移相器
WO2017145258A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 負荷変調増幅器
US20180034418A1 (en) * 2016-07-26 2018-02-01 Nxp Usa, Inc. Doherty input power splitter and linearization method
JP2018074320A (ja) * 2016-10-27 2018-05-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. ドハティ型増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188520A (ja) * 1998-12-22 2000-07-04 Mitsubishi Electric Corp 移相器
WO2017145258A1 (ja) * 2016-02-23 2017-08-31 三菱電機株式会社 負荷変調増幅器
US20180034418A1 (en) * 2016-07-26 2018-02-01 Nxp Usa, Inc. Doherty input power splitter and linearization method
JP2018074320A (ja) * 2016-10-27 2018-05-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. ドハティ型増幅器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022249380A1 (ja) * 2021-05-27 2022-12-01
WO2022249380A1 (ja) * 2021-05-27 2022-12-01 三菱電機株式会社 ドハティ増幅器
JP7418662B2 (ja) 2021-05-27 2024-01-19 三菱電機株式会社 ドハティ増幅器

Similar Documents

Publication Publication Date Title
US7151407B2 (en) Switched-mode power amplifier using lumped element impedance inverter for parallel combining
JP4926722B2 (ja) 安定化回路網を有する電力増幅器
CN108702134B (zh) 负载调制放大器
JP4793807B2 (ja) 増幅器
EP0837559A1 (en) High efficiency linear power amplifier of plural frequency bands and high efficiency power amplifier
US10601382B2 (en) Power amplifier circuit
US20020105384A1 (en) Harmonic matching network for a saturated amplifier
KR20120116104A (ko) 개선된 선형적 특징을 가지는 전력 증폭기
US20130176079A1 (en) Radio frequency power amplifier
WO2016056952A1 (en) Amplifier circuit and method
US8264279B2 (en) Electronic circuit
JP2008125044A (ja) 増幅器
CN112106293B (zh) 放大电路
US9543898B2 (en) Microwave amplifier device
WO2020235093A1 (ja) ドハティ増幅器
KR102585866B1 (ko) 공통 게이트 증폭 회로 및 그것을 이용한 전력 증폭기
JP2006515723A (ja) マルチバンド信号処理装置、処理方法及び製造物
JP2006005848A (ja) 電力増幅器及び高周波通信装置
JP6156148B2 (ja) 逆f級増幅回路及び逆f級増幅回路の寄生回路補償方法
CN112020826A (zh) 放大器
US9543902B2 (en) Power amplifier
JP2009239672A (ja) 高周波電力増幅器
JP2005341447A (ja) 高周波電力増幅器
JP2008228149A (ja) 低雑音増幅器
WO2020217319A1 (ja) ドハティ増幅器及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP