WO2020233573A1 - 一种矩阵式车灯光学装置、车灯及车辆 - Google Patents

一种矩阵式车灯光学装置、车灯及车辆 Download PDF

Info

Publication number
WO2020233573A1
WO2020233573A1 PCT/CN2020/091072 CN2020091072W WO2020233573A1 WO 2020233573 A1 WO2020233573 A1 WO 2020233573A1 CN 2020091072 W CN2020091072 W CN 2020091072W WO 2020233573 A1 WO2020233573 A1 WO 2020233573A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
light
condensers
middle position
optical axis
Prior art date
Application number
PCT/CN2020/091072
Other languages
English (en)
French (fr)
Inventor
张大攀
祝贺
桑文慧
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to CN202080001752.3A priority Critical patent/CN112135997B/zh
Publication of WO2020233573A1 publication Critical patent/WO2020233573A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources

Definitions

  • the present invention relates to a car lamp, in particular to a matrix type car lamp optical device.
  • the present invention also relates to a vehicle light and a vehicle including the matrix type vehicle light optical device.
  • ADB Adaptive Driving Beam, adaptive high beam system
  • the reflective lighting module is composed of a plurality of reflective bowls arranged and combined to form light spots in different regions;
  • the projection lighting module generally has an imaging lens in the form of a convex lens, and a matrix-arranged light pattern is formed by the light guide rods arranged in a matrix.
  • the disadvantage of the reflective lighting module is that the reflective bowl needs a larger opening, and the arrangement of multiple pixels takes up the space of the lamp. At the same time, the solid angle of the reflective bowl is not large, and the light efficiency is not high; the projection lighting module generally has Two-level optical parts, the more mature solution for the first-level optical parts is optical-grade silicone material, which is difficult to form and assemble.
  • the entire system is more complicated and the installation and production costs are high; in addition, the projection type
  • the appearance of the lighting module is a lens, which is not much different from ordinary projection low beam or high beam, which can easily lead to aesthetic fatigue. After the loss of the two-stage optical parts, the light efficiency is not high.
  • the prior art matrix optical device for vehicle lights has low optical efficiency and a relatively complicated structure.
  • the problem to be solved by the first aspect of the present invention is to provide a matrix-type vehicle lamp optical device with simple structure and high optical efficiency.
  • the problem to be solved in the second aspect of the present invention is to provide a vehicle lamp in which the matrix-type vehicle lamp optical device in the vehicle lamp has a simple structure and high optical efficiency.
  • the problem to be solved in the third aspect of the present invention is to provide a vehicle with a simple structure and high optical efficiency.
  • the first aspect of the present invention provides a matrix-type optical device for vehicle lights, which includes a plurality of condensers suitable for free arrangement; the focal point of each condenser is provided with an LED light source, and each The LED light source is suitable for independent lighting to form a multi-pixel adaptive high beam through the direct projection of the condenser.
  • each of the condensers is integrally formed into at least one row of condenser groups, and the single row of condenser groups has the condensers arranged continuously in a horizontal or vertical or diagonal direction.
  • the optical axis of each of the condensers coincides with the optical axis of the corresponding LED light source, and the optical axes of the plurality of condensers located on both sides of the condenser in the middle position are parallel
  • the optical axis of the condenser at the middle position; or the optical axes of the plurality of condensers on the first side of the condenser at the middle position are rotated clockwise and horizontally by different angles, so that the more The farther the condenser is located at the middle position, the greater the angle between the optical axis of the condenser and the optical axis of the condenser at the middle position;
  • the multiple light concentrators on the second side of the light concentrator are rotated counterclockwise horizontally at different angles, so that the farther away the light from the central position of the multiple light concentrators is, the light is collected
  • the included angle between the optical axes of two adjacent condensers is 1°.
  • the light-emitting surfaces of all the condensers located in the middle position are formed as a plane and are perpendicular to the optical axis of the condenser at the middle position.
  • An included angle is formed between the light-emitting surface of the light concentrator on both sides of the condenser and the light-emitting surface of the light concentrator at the middle position.
  • the light exit surfaces of the light concentrators located on both sides of the light concentrator in the middle position are adapted to totally reflect the light incident from the light concentrators adjacent thereto, and each of the light concentrators
  • the transverse section of the light-emitting surface is suitable for splicing into a concave backward concave curve.
  • each of the concentrators is divided into a plurality of concentrator groups, and each of the concentrator groups has a plurality of the concentrators continuously arranged horizontally or vertically or diagonally, each The concentrator groups are arranged horizontally or vertically or diagonally at intervals.
  • the optical axes of the two condensers located in the middle position are parallel, and are adjacent to one side of the condenser of the two condensers located in the middle position.
  • the optical axes of the multiple condensers rotate clockwise and horizontally at different angles, so that the farther away from the condenser at the middle position among the multiple condensers, the optical axis of the condenser and the middle position.
  • the greater the angle between the optical axes of the condenser; the multiple condensers adjacent to the other of the two condensers located in the middle position are rotated horizontally by different angles counterclockwise, so that The farther away from the condenser in the middle position among the plurality of condensers, the greater the angle between the optical axis of the condenser and the optical axis of the condenser in the middle position.
  • the angle between the optical axes of two adjacent condensers is 1°.
  • each of the condensers is rectangular
  • each of the LED light sources is a single-chip LED light source
  • the light spot formed by the light emitted by each of the LED light sources is directly projected by the corresponding condenser. Light spot.
  • the outer sides of the condenser located at the outermost sides on the left and right sides gradually approach the optical axis direction of the condenser at the middle position from back to front along the light propagation direction.
  • light-shielding members are provided around the concentrator group.
  • the heat sink is provided with positioning pins, and the positioning pins are adapted to pass through the circuit board, the condenser group and the light shield in sequence.
  • the width of the transverse cross-section of the condenser located in the middle position is larger than the width of the condensers on both sides of the same transverse cross-section.
  • a second aspect of the present invention provides a vehicle lamp, including the matrix type vehicle lamp optical device described in any of the technical solutions of the first aspect.
  • a third aspect of the present invention provides a vehicle including the vehicle lamp described in the technical solution of the second aspect.
  • the matrix-type car light optical device includes multiple condensers, excluding complicated optical systems such as reflectors and lenses.
  • the light emitted by the LED light source can be directly projected after passing through the condenser, thereby realizing ADB lighting. Reduce the light loss of multi-stage refraction and improve the optical efficiency;
  • the system cost is low: the parts have good manufacturability, few system parts and low cost;
  • a more flexible ADB function can be realized: the light-emitting surface of the concentrator or the concentrator is rotated at different angles to form light spots at different positions.
  • the ADB lighting function can be flexibly realized, and multiple concentrators are based
  • the collimating units are staggered at a certain angle to illuminate different areas. Different areas can be illuminated by the on and off of the LED light source.
  • the on-board camera to realize the ADB function, the volume is smaller, the structure is more compact, and simple, and it can be used in limited vehicles. Realize more flexible ADB function in the light space;
  • the arrangement of the condenser can be flexibly arranged according to the increasingly compact car lamp shape. Multiple condensers can be integrated to form one or more condenser groups, and the number of pixels in the condenser groups Can be customized, more or less; the arrangement can also be arranged horizontally, vertically, diagonally, etc.
  • Fig. 1 is one of the three-dimensional structural schematic diagrams of the first specific embodiment of the concentrator group of the present invention
  • FIG 2 is the second three-dimensional structural diagram of the first specific embodiment of the concentrator group of the present invention.
  • Figure 3 is a top view of Figure 1;
  • Figure 4 is a rear view of Figure 1;
  • Figure 5 is a cross-sectional view of A-A of the concentrator group of the present invention.
  • Figure 6 is a sectional view of B-B of the concentrator group of the present invention.
  • FIG. 7 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102a;
  • FIG. 8 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102b;
  • FIG. 9 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102c;
  • FIG. 10 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102d;
  • FIG. 11 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102e;
  • FIG. 12 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102f;
  • FIG. 13 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102g;
  • FIG. 14 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102h;
  • 15 is a schematic diagram of a light spot formed by projection of light from the light-emitting surface 102i;
  • 16 is a schematic diagram of a light spot formed by projection of light from the condenser group of FIG. 1;
  • FIG. 17 is a schematic diagram of the light spot formed by the projection of the emitted light after the LED light sources corresponding to the light emitting surfaces 102a, 102b, and 102c are extinguished;
  • FIG. 18 is a schematic diagram of the structure of the concentrator group and the shading member of the present invention.
  • Figure 19 is a C-C cross-sectional view of Figure 18;
  • Figure 20 is a D-D sectional view of Figure 18;
  • Figure 21 is a light path diagram of the most lateral condenser
  • Figure 22 is an optical path diagram of the condenser in the middle position in Figure 18;
  • Figure 23 is a schematic diagram of the structure of the concentrator group, circuit board and heat sink of the present invention.
  • Figure 24 is an exploded view of Figure 23;
  • 25 is a schematic diagram of a three-dimensional structure of a specific embodiment of a single condenser of the present invention.
  • Figure 26 is a cross-sectional view of Figure 25;
  • Figure 27 is a top view of Figure 25;
  • FIG. 28 is a schematic structural diagram of a second specific embodiment of the concentrator group of the present invention.
  • FIG. 29 is a schematic diagram of the structure of the light emitting surface of the condenser group of FIG. 28;
  • FIG. 30 is a schematic structural diagram of a third specific embodiment of the concentrator group of the present invention.
  • Fig. 31 is a light pattern diagram of a single pixel of Fig. 25;
  • Fig. 32 is a multi-pixel light pattern diagram of the condenser group of Fig. 28;
  • FIG. 33 is a diagram of the ADB shielding light pattern of multiple condensers in a specific embodiment of the matrix type vehicle light optical device of the present invention.
  • orientation words such as “rear”, “front”, etc.
  • the end where the light-emitting surface of the condenser 101 is located is the front end, and vice versa is the rear end.
  • the left and right directions of the condenser 101 are the left and right directions.
  • connection should be understood in a broad sense, unless otherwise clearly defined and limited.
  • it may be a fixed connection or a detachable connection, or It is an integral connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
  • connection should be understood according to specific circumstances.
  • the matrix-type vehicle light optical device of the present invention includes a plurality of condensers 101 suitable for free arrangement; the focal point of each condenser 101 is provided with an LED The light source 7, and each of the LED light sources 7 is adapted to be independently lit to form a multi-pixel adaptive high beam through direct projection of the condenser 101.
  • the condenser 101 of the present invention is in the shape of a condenser cup, the LED light source 7 and the condenser 101 are arranged in one-to-one correspondence, and the luminous center of the LED light source 7 coincides with the focal point of the condenser 101, each The LED light source 7 is configured to be able to turn on and off independently, so that a multi-pixel adaptive high beam can be formed by direct projection of the condenser 101.
  • the light-emitting area of the LED light source 7 is preferably 0.5 mm 2 or less.
  • the matrix-type vehicle light optical device includes two rows of horizontally arranged condenser groups 1, and each row of condenser groups 1 includes 5 condensers.
  • the light device 101, and 10 light concentrators 101 are integrally formed.
  • the light-emitting surface of the condenser 101 at the middle position of the two rows of condenser groups 1 is formed as a light-emitting surface 102a.
  • the light-emitting surface 102a is a plane perpendicular to the optical axis 6 of the condenser at the middle position, and the light-emitting surface 102a emits light.
  • the two rows of condenser groups 1 in the middle of the two condensers 101 output light Both are projected to the central area of the high beam, and the two condensers 101 are larger than the other condensers 101, and the light utilization rate is also higher.
  • the optical axis 6 of each condenser coincides with the optical axis of the LED light source 7.
  • the matrix-type vehicle light optical device cannot realize multi-pixel adaptive high-beam illumination in which multiple pixels are connected to each other.
  • the light-emitting surface 102b , 102c, 102d, 102e, 102f, 102g, 102h, and 102i have different degrees of inclination relative to the light-emitting surface 102a, that is, the light-emitting surface of the condenser 101 on both sides and the light-emitting surface of the condenser 101 in the middle position
  • An angle is formed between the surfaces, and the light spots formed by the projection of the light exiting surfaces on both sides of the light exiting surface 102a are shown in Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15. Show. If all the LED light sources 7 corresponding to the condenser 101 are turned on, the high beam type as shown in FIG.
  • the light spots of different widths can also be obtained by adjusting the light-emitting surface of each condenser 101 to Realize multi-pixel adaptive high beam with high middle resolution and low resolution on both sides. If the LED light sources 7 corresponding to the light-emitting surfaces 102a, 102b, and 102c are extinguished, the high beam type with dark areas as shown in FIG. 17 is formed.
  • the multiple condensers 101 are integrally formed, light beams will occur between the condensers 101, and part of the light from the condenser 101 will be incident on the light exit surface of the adjacent condenser 101, and The stray light is emitted from the light-emitting surface. In order to avoid this part of stray light, as shown in Figure 22, except for the condenser 101 at the middle position, the light of the remaining condensers 101 faces the condenser 101 at the middle position.
  • the light-emitting surface of the light-emitting surface is inclined, and the inclination angle meets that the light refracted from the adjacent condenser 101 to the light-emitting surface of the light-emitting surface of the condenser 101 can be totally reflected.
  • the lines can be spliced into a concave curve that is concave backwards, so as to avoid the formation of stray light after this part of light exits from the light exit surface, thereby affecting the high beam lighting effect.
  • the ratio of the length of the concentrator 101 along the optical axis from back to front to the width in the left and right directions is small, which can make the concentrator 101
  • the length of the front and rear direction is shorter.
  • the matrix-type vehicle light optical device includes 11 vertically continuously arranged condensers 101, and 11 condensers 101 are integrated into one condenser Group 1.
  • an LED light source with a small light-emitting area (not shown in the figure) is provided at the focal point of each condenser 101, and the light-emitting area of the LED light source is 0.1 mm 2 -1 mm 2 .
  • the light-emitting surface of each condenser 101 is cut into a rectangle, so that the light emitted by the LED light source is directly projected by the condenser 101 to form an approximately rectangular spot.
  • the condenser 101 As shown in Figure 31, it is a light spot formed by a single LED light source passing through the condenser 101 directly.
  • the width of the left and right sides is about 5°, and the center of the pixel is 0° in the left and right directions, which is a two-dimensional The origin of the coordinate system.
  • the 11 condensers 101 can be integrally formed to reduce the matching error.
  • the corresponding 11 LED light sources can be installed on a circuit board to reduce the circuit volume. Since complex optical systems such as mirrors and lenses are not included, the light emitted by the LED light source is directly projected by the condenser 101 to achieve illumination, which reduces the light loss of multi-stage refraction and improves optical efficiency.
  • the LED light source can be a single pixel or an LED light source with multiple light-emitting areas to meet the needs of the light intensity of different illumination areas in the Matrix light type.
  • the direction of the optical axis 6 of the concentrator is defined as the Z axis, the left and right direction is the X axis, and the vertical direction is the Y axis.
  • the 11 condensers 101 arranged vertically from top to bottom are rotated around their Y-axis by -5°/-4°/-3°/-2 °/-1°/0°/1°/2°/3°/4°/5°, that is, the condenser 101 at the middle position does not move or rotates 0°
  • the condenser 101 at the middle position is two Among the two concentrators 101 adjacent to each other, the optical axis of one concentrator rotates 1° counterclockwise horizontally, which is represented by a vector, that is, rotates -1°, and the optical axis of the other concentrator rotates clockwise horizontally by 1° °, expressed by a vector that is rotated by +1°, and so on, among the other four condensers 101 on the side of the condenser 101 at the middle position, the distance from the condenser 101 at the middle position is determined by The near and far are rotated by -2°, -3°, -4° and -5° respectively.
  • the other four condensers 101 on the other side of the condenser 101 at the middle position are pressed against the condenser at the middle position.
  • the distance between the devices 101 is rotated by +2°, +3°, +4° and +5° from near to far.
  • the rotation directions of the condensers 101 on both sides of the condenser 101 located in the middle position are exchanged to have the same technical effect.
  • the angle between the optical axes of adjacent condensers is 1°; correspondingly, among the 11 condensers 101, the center positions (left and right) of the pixels of the 11 LED light sources are: -5° /-4°/-3°/-2°/-1°/0°/1°/2°/3°/4°/5°; 11 pixels overlap each other to ensure the uniform connection of pixels; Staggered by 1° ensures that the pixels can independently illuminate an area; 11 pixels are superimposed to form an overall light pattern, as shown in Figure 32.
  • the pixels formed by the middle LED light sources can be automatically turned off to realize the ADB shielding function in the middle area, as shown in Figure 33.
  • the condenser 101 can be rotated at different angles to form light spots at different positions. Through the angle design of a single lighting unit, the ADB lighting function can be flexibly realized. Multiple collimating units based on the condenser 101 are staggered at a certain angle to illuminate different areas. The lighting of different areas can be realized through the on and off of the LED light source, and the ADB function can be realized by cooperating with the on-board camera. The volume is smaller, the structure is more compact, and simple, and the more flexible ADB function can be realized in the limited car light space.
  • the matrix-type optical device for vehicle lights of the present invention may also include 11 concentrators 101 arranged horizontally and continuously, and its working principle is the same as that of the embodiment shown in FIG. 28, and will not be repeated here.
  • the matrix optical device for vehicle lights includes 12 condensers 101, which are divided into 4 condenser groups 1, and each group of 3 condensers 101 is vertical. It is arranged continuously to form a condenser group 1.
  • the two concentrators 101 marked in FIG. 30 are the concentrators 101 in the middle position, and the five concentrators 101 on the upper side of the upper concentrator 101 are at a distance from the concentrator 101.
  • the arrangement of the condenser 101 can be flexibly arranged according to the increasingly compact car lamp shape.
  • the number of the condenser 101 can be customized, which can be more or less; the arrangement can also be arranged horizontally, vertically, Diagonal arrangement, etc.; not only can be arranged continuously, but also can be arranged in sections.
  • three condensers 101 can be used as one condenser group 1, which is arranged in 6 groups; or a group of 5 can be arranged in 4 groups. Arrangement, etc.
  • each of the condensers 101 is integrally formed into at least one row of condenser groups 1, and a single row of the condenser groups 1
  • the concentrator 101 is continuously arranged horizontally, vertically or diagonally.
  • the optical axis 6 of each condenser coincides with the optical axis of the corresponding LED light source 7, and the multiple condensers located on both sides of the condenser 101 in the middle position
  • the optical axis 6 is parallel to the optical axis 6 of the condenser located in the middle position.
  • the condenser at the middle position refers to a condenser at the middle position; and when the condenser in the single condenser group 1 When the number of the condensers 101 is an even number, the condenser at the middle position is the two condensers 101 at the middle position.
  • the optical axis 6 of each condenser coincides with the optical axis of the LED light source 7, so as to ensure that the light emitted by the LED light source 7 can enter the condenser 101, which improves the utilization of light. It can also form a multi-pixel adaptive high beam.
  • the optical axis 6 of the condenser refers to the axis along the light transmission direction and passing through the focal point of the condenser 101;
  • the optical axis of the LED light source 7 refers to the axis along the central light propagation direction and passing through The axis of the emission center of the LED light source 7.
  • the optical axes 6 of the multiple condensers on the first side of the condenser 101 located in the middle position are rotated clockwise and horizontally at different angles, so that the multiple condensers The farther away the lighter 101 is from the condenser 101 at the middle position, the greater the angle between the optical axis 6 of the condenser and the optical axis 6 of the condenser at the middle position;
  • the multiple light concentrators 101 on the second side of the light concentrator 101 are rotated counterclockwise horizontally at different angles, so that the farther away the light concentrator 101 is located in the middle position among the multiple light concentrators 101 The greater the angle between the optical axis 6 of the condenser and the optical axis 6 of the condenser at the middle position.
  • the optical axis 6 of the condenser located on both sides may form a certain angle with the optical axis 6 of the condenser located in the middle position, and the condenser located in the middle position
  • the optical axis 6 coincides with the optical axis of the LED light source 7, and the condensers 101 on both sides are staggered at a certain angle, which can illuminate different areas, and can realize the lighting of different areas by the LED light source 7. .
  • the angle between the optical axes 6 of two adjacent condensers is 1°.
  • the light exit surfaces of all the condensers 101 located in the middle position are formed as a plane and are perpendicular to the optical axis 6 of the condensers located in the middle position. An angle is formed between the light-emitting surface of the light concentrator 101 on the side and the light-emitting surface of the light concentrator 101 at the middle position.
  • the light exit surface of the condenser 101 in the middle position is formed as a vertical plane perpendicular to the optical axis 6 of the condenser, and the light exit surfaces on both sides are opposite to The vertical plane has different degrees of inclination, that is, an angle is formed between the light-emitting surface on both sides and the light-emitting surface located in the middle position, so that the light spots projected by the condensers 101 can be staggered, so as to form a multi-pixel mutual Connected multi-pixel high beam type.
  • the light is emitted from the light exit surface of the adjacent condenser 101 to form stray light.
  • the light exit surfaces of the light concentrators 101 on both sides of the light concentrator 101 are adapted to totally reflect the light incident from the adjacent light concentrators 101, and the light exit surfaces of the light concentrators 101 are transversely
  • the section line is suitable for splicing into a concave curve that is concave backward.
  • the transverse sections of the light exit surface of all the condensers 101 are spliced together to form a concave curve.
  • the transverse section line refers to the line of intersection between the virtual plane and the light-emitting surface after the virtual plane that is parallel to the optical axis of the condenser 101 and extends in the left-right direction cuts the condenser group 1.
  • each of the concentrators 101 is divided into a plurality of concentrator groups 1, and each of the concentrator groups 1 has a plurality of concentrators 101 arranged continuously in a horizontal, vertical or diagonal direction. , Each of the concentrator groups 1 is arranged horizontally or vertically or diagonally at intervals.
  • the optical axes 6 of the two condensers located in the middle position are parallel, and are adjacent to one of the two condensers 101 located in the middle position.
  • the optical axes 6 of the multiple condensers on the side of the condenser 101 are rotated clockwise and horizontally at different angles, so that the farther away from the condenser 101 located in the middle of the multiple condensers 101, the light is collected.
  • the optical devices 101 are rotated counterclockwise horizontally at different angles, so that the farther away the optical axis 6 of the optical concentrator is from the optical concentrator 101 in the middle position among the plurality of optical concentrators 101 The greater the angle between the optical axes 6 is.
  • the angle between the optical axes 6 of the two adjacent condensers is 1°.
  • the number of condensers 101 in each row of condenser groups 1 is an odd number with the same number, while the number of condenser groups 1 is It is an even number, so the condensers located in the middle position are the two condensers 101 marked in Figure 30.
  • the optical axes 6 of these two condensers are parallel, and the condensers 101 on both sides are relatively in the middle.
  • the optical axes 6 of the two concentrators in the position rotate horizontally at different angles, and the farther away from the concentrator 101 in the middle position, the greater the rotation angle.
  • each of the condensers 101 is rectangular
  • each of the LED light sources 7 is a single-chip LED light source
  • the light emitted by each of the LED light sources 7 is directly projected by the corresponding condenser 101.
  • the light spot is a rectangular light spot.
  • the outer sides of the condenser 101 located at the outermost sides on the left and right sides gradually approach the optical axis 6 of the condenser at the middle position from back to front along the light propagation direction.
  • the outer sides of the condenser 101 located on the outermost sides of the left and right sides of the condenser group 1 gradually approach the optical axis 6 from back to front, so that the LED light source 7
  • the light projected on the outer surface can be refracted from the outer surface, instead of being totally reflected from the outer surface to the light exit surface of the condenser 101 and emitted from the light exit surface to form stray light.
  • light-shielding members 2 are provided around the concentrator group 1.
  • the light exit surfaces of the condenser 101 on both sides of the condenser 101 in the middle position are formed as a total reflection surface, and part of the light is totally reflected by the total reflection surface from the condenser group 1
  • the light emitted from the side surface forms part of stray light; in addition, the light emitted obliquely from the outer surface of the condenser group 1 also forms stray light.
  • a shading member 2 can be arranged around the concentrator group 1.
  • the shading member 2 can be a shading hood made of black shading material, or a shading hood coated with matt black paint or other shading materials , Or directly set a light-shielding layer around the concentrator group 1.
  • the light-shielding layer can be matt black paint or a skin texture structure, and a dark coating is applied to the surface of the skin texture structure.
  • the dark coating can be bright black paint or other dark bright paint, or other light-shielding structures other than the above-mentioned structures, all of which are used to shield stray light emitted from the side of the condenser group 1.
  • Fig. 23 and Fig. 24 as another specific structure, it also includes a circuit board 3 and a heat sink 4.
  • the heat sink 4 is provided with positioning pins 5, which are suitable for passing through the The circuit board 3, the concentrator group 1 and the light-shielding member 2 utilize positioning pins 5 to simultaneously position multiple components, the structure is simple, and the positioning effect between the components is good.
  • the width of the transverse section of the condenser 101 at the middle position is greater than the width of the condenser 101 on both sides of the same transverse section, so from the appearance, the central condenser 101 is larger than two.
  • the concentrator 101 on the side can meet the high illuminance requirements of the central area of the high beam and improve the light utilization rate.
  • the ratio of the length from back to front of each concentrator 101 along the light propagation direction to the width in the left and right direction is small, so that the front and back length of the concentrator 101 can be shorter than the width in the left and right direction.
  • the incident angle of the total reflection surface formed by the light exit surfaces of the condenser 101 on both sides can be made larger, so that more light can be totally reflected.
  • the second aspect of the present invention also provides a vehicle lamp, comprising the matrix type vehicle lamp optical device according to any one of the technical solutions of the first aspect.
  • the third aspect of the present invention also provides a vehicle, including the vehicle lamp according to the technical solution of the second aspect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种矩阵式车灯光学装置、车灯及车辆,其中,矩阵式车灯光学装置包括多个适于自由排列的聚光器(101);各聚光器(101)的焦点处设有LED光源(7),且各LED光源(7)适于独立点亮以通过聚光器(101)的直接投射形成多像素自适应远光。矩阵式车灯光学装置包括多个聚光器(101),不包含反射镜、透镜等复杂的光学系统,LED光源(7)发出的光通过聚光器(101)的直接投射实现ADB照明,减少多级折射的光损失,提高了光学效率。

Description

一种矩阵式车灯光学装置、车灯及车辆
相关申请的交叉引用
本申请要求2019年05月20日提交的中国专利申请201920726090.0的权益,该申请的内容通过引用被合并于本申请。
技术领域
本发明涉及汽车车灯,具体地,涉及一种矩阵式车灯光学装置。此外,本发明还涉及一种包括所述矩阵式车灯光学装置的车灯和车辆。
背景技术
为了提高夜间驾驶安全,具有ADB(Adaptive Driving Beam,自适应远光灯系统)功能的矩阵式车灯日渐成为汽车配置主流,从高端车到中级车越来越普及。ADB一般指至少具有两个像素化的远光,能够对目标物实现遮蔽,防止道路其他使用者的炫目,提高驾驶安全性。
另外,未来不管是新能源车还是燃油车,节能减排成为汽车领域持久不变的技术发展方向。车灯作为汽车的必要部件,提高车灯的光学效率更能有效降低车灯的功率,较高的发光效率成为行业发展的必然选择,有利于节约能源。
再有,汽车的外观是客户选择购买的一大要素。一款摆脱传统造型,新颖独特的车灯,会让消费者眼前一亮,成为汽车的重要卖点。目前车灯具有向小型化、扁平化方向发展的趋势。
目前,实现矩阵式车灯的照明模组主要有反射式和投射式两种。反射式照明模组由多个反射碗排列组合,形成不同区域的光斑;投射式照明模组一般具有一个成凸透镜样式的成像透镜,通过矩阵式排列的导光柱形成矩阵排列的光型。而反射式照明模组的缺点是:反射碗需要较大开口,多个像素排列起来比较占用灯内空间,同时反射碗的立体角不大,光效不高;投射式照明模组里一般有两级光学件,其中第一级光学件较为成熟的方案为光学级硅胶材料,成型难度大,组装困难,加上二级光学件,整个系统较为复杂,安装及生产成本高;此外,投射式照明模组外观上是一块透镜,与普通投射式近光或远光并无太大差异,容易导致审美疲劳。经过两级光学件的损耗,其光效也不高。
有鉴于此,现有技术的矩阵式车灯光学装置光学效率不高,结构比较复杂。
发明内容
本发明第一方面所要解决的问题是提供一种矩阵式车灯光学装置结构简单,光学效率高。
此外,本发明第二方面要解决的问题是提供一种车灯,该车灯内的矩阵式车灯光学装置结构简单,光学效率高。
进一步地,本发明第三方面要解决的问题是提供一种车辆,该车辆的车灯结构简单,光学效率高。
为了实现上述目的,本发明第一方面提供一种矩阵式车灯光学装置,包括多个适于自由排列的聚光器;各所述聚光器的焦点处设有LED光源,且各所述LED光源适于独立点亮以通过所述聚光器的直接投射形成多像素自适应远光。
作为一种优选实施方式,各所述聚光器一体形成为至少一排聚光器组,单排所述聚光器组具有横向或竖向或斜向连续排布的所述聚光器。
更优选地,各所述聚光器的光轴与各自对应的所述LED光源的光轴重合,位于中间位置的所述聚光器的两侧的多个所述聚光器的光轴平行于位于中间位置的所述聚光器的光轴;或者位于中间位置的所述聚光器的第一侧的多个所述聚光器的光轴分别顺时针水平旋转不同角度,使得该多个所述聚光器中离位于中间位置的所述聚光器越远其聚光器的光轴与位于中间位置的所述聚光器的光轴之间的夹角越大;位于中间位置的所述聚光器第二侧的多个所述聚光器分别逆时针水平旋转不同角度,使得该多个所述聚光器中离位于中间位置的所述聚光器越远其聚光器的光轴与位于中间位置的所述聚光器的光轴之间的夹角越大。
进一步优选地,相邻两个所述聚光器的光轴的夹角为1°。
作为另一种优选实施方式,所有位于中间位置的所述聚光器的出光面形成为一个平面,且与位于中间位置的所述聚光器的光轴垂直,位于中间位置的所述聚光器的两侧的所述聚光器的出光面与位于中间位置的所述聚光器的出光面之间形成有夹角。
更优选地,位于中间位置的所述聚光器的两侧的所述聚光器的出光面适于将由与其相邻的所述聚光器射入的光线全反射,各所述聚光器的出光面的横向截线适于拼接为向后凹入的内凹曲线。
作为另一种优选实施方式,各所述聚光器分成多个聚光器组,各所述聚光器组具有多个横向或竖向或斜向连续排布的所述聚光器,各所述聚光器组横向或竖向或斜向间 隔排布。
进一步优选地,所有所述聚光器中,位于中间位置的两个所述聚光器的光轴平行,毗邻位于中间位置的两个所述聚光器中的其中一个聚光器一侧的多个聚光器的光轴分别顺时针水平旋转不同角度,使得该多个聚光器中离位于中间位置的所述聚光器越远其聚光器的光轴与位于中间位置的所述聚光器的光轴之间的夹角越大;毗邻位于中间位置的两个所述聚光器中的另一个聚光器一侧的多个聚光器分别逆时针水平旋转不同角度,使得该多个聚光器中离位于中间位置的所述聚光器越远其聚光器的光轴与位于中间位置的聚光器光轴之间的夹角越大。
更优选地,除位于中间位置的所述聚光器外,相邻两个所述聚光器的光轴夹角为1°。
进一步优选地,各所述聚光器的出光面为矩形,各所述LED光源为单芯片LED光源,各所述LED光源发出的光经对应的所述聚光器直接投射形成的光斑为矩形光斑。
作为一种具体结构形式,左右两侧位于最外侧的所述聚光器的外侧面沿光线传播方向由后向前逐渐向位于中间位置的所述聚光器的光轴方向靠近。
更具体地,所述聚光器组的四周设有遮光件。
作为另一种具体结构形式,还包括线路板和散热器,所述散热器上设有定位销,所述定位销适于依次穿过所述线路板、聚光器组和遮光件。
作为又一种具体结构形式,位于中间位置的所述聚光器的横向截面的宽度大于同一横向截面上的两侧所述聚光器的宽度。
本发明第二方面提供一种车灯,包括第一方面任一技术方案中所述的矩阵式车灯光学装置。
本发明第三方面提供一种车辆,包括第二方面技术方案中所述的车灯。
通过本发明的上述技术方案,可以达到:
1、光效高:矩阵式车灯光学装置包括多个聚光器,不包含反射镜、透镜等复杂的光学系统,LED光源发出的光通过聚光器后可直接投射,从而实现ADB照明,减少多级折射的光损失,提高了光学效率;
2、工艺性好:聚光器制造工艺成熟;系统零件少,装配简单;
3、系统成本低:零件工艺性好,系统零件少,成本低;
4、可实现更加灵活的ADB功能:聚光器或者是聚光器的出光面按不同角度旋转形成不同位置光斑,通过单个照明单元的角度设计,灵活实现ADB照明功能,多个基 于聚光器的准直单元相互以一定角度错开以照射不同的区域,通过LED光源的亮灭实现不同区域的点亮,配合车载摄像头实现ADB功能,体积更小、结构更紧凑、简单,可以在有限的车灯空间内实现更加灵活的ADB功能;
5、造型适应性高:聚光器的排布形式可根据日渐紧凑的车灯造型实现灵活布置,多个聚光器可一体形成一个或多个聚光器组,聚光器组的像素数量可以定制,可多可少;排布也可以水平排布、竖向排布、斜向排布等。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是本发明的聚光器组的第一个具体实施例的立体结构示意图之一;
图2是本发明的聚光器组的第一个具体实施例的立体结构示意图之二;
图3是图1的俯视图;
图4是图1的后视图;
图5是本发明的聚光器组的A-A的剖面图;
图6是本发明的聚光器组的B-B的剖面图;
图7是出光面102a出射光线投射形成的光斑示意图;
图8是出光面102b出射光线投射形成的光斑示意图;
图9是出光面102c出射光线投射形成的光斑示意图;
图10是出光面102d出射光线投射形成的光斑示意图;
图11是出光面102e出射光线投射形成的光斑示意图;
图12是出光面102f出射光线投射形成的光斑示意图;
图13是出光面102g出射光线投射形成的光斑示意图;
图14是出光面102h出射光线投射形成的光斑示意图;
图15是出光面102i出射光线投射形成的光斑示意图;
图16是图1的聚光器组出射光线投射形成的光斑示意图;
图17是熄灭出光面102a、102b和102c对应的LED光源后出射光线投射形成的光斑示意图;
图18是本发明的聚光器组和遮光件的结构示意图;
图19是图18的C-C剖面图;
图20是图18的D-D剖面图;
图21是最侧面的聚光器的光路图;
图22是图18中位于中间位置的聚光器的光路图;
图23是本发明的聚光器组、电路板和散热器的结构示意图;
图24是图23的爆炸图;
图25是本发明的单个聚光器的一个具体实施例的立体结构示意图;
图26是图25的剖视图;
图27是图25的俯视图;
图28是本发明的聚光器组的第二个具体实施例的结构示意图;
图29是图28的聚光器组的出光面的结构示意图;
图30是本发明的聚光器组的第三个具体实施例的结构示意图;
图31是图25的单像素光型图;
图32是图28的聚光器组的多像素光型图;
图33是本发明矩阵式车灯光学装置一个具体实施例中多个聚光器的ADB遮蔽光型图。
附图标记说明
1聚光器组                  101聚光器
102a出光面                 102b出光面
102c出光面                 102d出光面
102e出光面                 102g出光面
102h出光面                 102i出光面
2遮光件                    3线路板
4散热器                    5定位销
6聚光器的光轴              7LED光源
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,本发明的保护范围并不局限于下述的具体 实施方式。
首先需要说明的是,在下文的描述中为清楚地说明本发明的技术方案而涉及的一些方位词,例如“后”、“前”等均是按照出光方向所指的方位类推所具有的含义,例如,以单个聚光器101为例,聚光器101的出光面所在的一端为前端,反之则为后端,从后向前,聚光器101的左右即为左右方向。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或者是一体连接;可以是直接连接,也可以是通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1至图4、图28至图30所示,本发明的矩阵式车灯光学装置包括多个适于自由排列的聚光器101;各所述聚光器101的焦点处设有LED光源7,且各所述LED光源7适于独立点亮以通过所述聚光器101的直接投射形成多像素自适应远光。
在这里需要说明的是,本发明的聚光器101呈聚光杯状,LED光源7与聚光器101一一对应设置,并且LED光源7的发光中心与聚光器101的焦点重合,各LED光源7被配置为能够独立亮灭,从而可以通过聚光器101的直接投射而形成多像素自适应远光,LED光源7的发光面积优选0.5mm 2或者更小。
如图1、图2所示,在本发明的第一个具体实施例中,矩阵式车灯光学装置包括两排横向排列的聚光器组1,每排聚光器组1包括5个聚光器101,10个聚光器101一体成型。两排聚光器组1的位于中间位置的聚光器101的出光面形成为出光面102a,出光面102a是垂直于该位于中间位置的聚光器的光轴6的平面,出光面102a出射的光线对应形成如图7所示的远光中心区域光型,由于远光中心区域照度要求较高,因此,两排聚光器组1的位于中间位置的两个聚光器101的出射光线均投射至远光中心区域,而且该两个聚光器101相比其他聚光器101要大,光线利用率也更高。为了提高聚光器101的光学效率,各聚光器的光轴6均与LED光源7的光轴重合,但是,如果出光面102b、102c、102d、102e、102f、102g、102h和102i均是如出光面102a一样是垂直于位于中间位置的聚光器的光轴6的平面,则该矩阵式车灯光学装置无法实现多像素相互衔接的多像素自适应远光照明,因此,出光面102b、102c、102d、102e、102f、102g、102h和102i相对于出光面102a均有不同程度的倾斜,也就是位于两侧的聚光器101的出光面与位于中间位置的聚光器101的出光面之间形成有夹角,位于出光面102a两侧的出 光面的出射光线投射形成的光斑依次如图8、图9、图10、图11、图12、图13、图14和图15所示。如果所有聚光器101所对应的LED光源7全部打开,则能够形成如图16所示的远光光型,还可以通过调整每个聚光器101的出光面来得到不同宽度的光斑,以实现中间分辨率高、两侧分辨率低的多像素自适应远光。而如果熄灭出光面102a、102b和102c所对应的LED光源7,则形成如图17所示的具有暗区的远光光型。
进一步地,因多个聚光器101一体成型,各聚光器101相互之间会发生窜光,聚光器101的部分光线会射至与其相邻的聚光器101的出光面上,并从该出光面射出形成杂散光,为了避免这部分杂散光出现,如图22所示,除位于中间位置的聚光器101外,其余聚光器101的出光面向位于中间位置的聚光器101的出光面倾斜,其倾斜角度满足从与其相邻的聚光器101上折射至该聚光器101的出光面的光线能够发生全反射,此时,各聚光器101的出光面的横向截线能够拼接为向后凹入的内凹曲线,从而能够避免这部分光线从该出光面射出后形成杂散光,从而影响远光照明效果。同时,为了能够满足光线全反射的临界条件(入射角大于临界角),聚光器101由后向前沿着光轴方向的长度与左右方向的宽度的比值较小,这样可以使得聚光器101的前后方向的长度较短。
如图28所示,在本发明的第二个具体实施例中,矩阵式车灯光学装置包括11个竖向连续排列的聚光器101,11个聚光器101一体形成为一个聚光器组1。如图28所示,每个聚光器101的焦点处设有一颗小发光面积的LED光源(图中未示出),LED光源的发光面积为0.1mm 2~1mm 2。为了更好地对聚光器101进行排列组合,每个聚光器101的出光面被切割成矩形,这样,LED光源发出的光经聚光器101直接投射形成的光型为近似矩形的光斑,如图31所示,为单颗LED光源发出的光通过聚光器101直射形成的光斑,左右两侧的宽度均为5°左右,像素中心位置左右方向均为0°,即为二维坐标系的原点。11个聚光器101可以一体成型,以减小配合误差。对应的11颗LED光源可安装在一块电路板上,以减小电路体积。由于不包含反射镜、透镜等复杂的光学系统,LED光源发出的光通过聚光器101的直接投射实现照明,减少多级折射的光损失,提高了光学效率。LED光源可以是单像素的,也可以是多发光区域的LED光源,以满足Matrix光型中不同照明区域的光照强度的需要。
如图25至图27所示,规定聚光器的光轴6的方向为Z轴,左右方向为X轴,上下方向为Y轴。在上述实施例的基础上,如图29所示,从上到下竖向排列的11个聚光器101分别绕着自己的Y轴旋转-5°/-4°/-3°/-2°/-1°/0°/1°/2°/3°/4°/5°,即位于中间位置的聚光器101不动或转动0°,与位于中间位置的聚光器101两侧分别相邻 的两个聚光器101中,其中一个聚光器的光轴逆时针水平旋转1°,用向量表示即旋转-1°,另一个聚光器的光轴顺时针水平旋转1°,用向量表示即旋转+1°,以此类推,位于中间位置的聚光器101一侧的另4个聚光器101中,按与位于中间位置的聚光器101之间的距离由近及远分别旋转-2°、-3°、-4°和-5°,位于中间位置的聚光器101另一侧的另4个聚光器101中,按与位于中间位置的聚光器101之间的距离由近及远分别旋转+2°、+3°、+4°和+5°。或者,位于中间位置的聚光器101两侧的聚光器101的旋转方向交换一下,具有同样的技术效果。由此可见,相邻聚光器的光轴夹角为1°;与此对应,11个聚光器101中,11颗LED光源发光型成像素的中心位置(左右)分别为:-5°/-4°/-3°/-2°/-1°/0°/1°/2°/3°/4°/5°;11个像素相互有重叠,保证像素衔接的均匀;像素相互错开1°,又保证像素可以独立照亮一个区域;11个像素叠加,形成整体光型,如图32所示。具体使用时,借助车载摄像头感应到迎面驶/走来的车辆或行人时,可自动将中间几颗LED光源形成的像素灭掉,以实现中间区域的ADB遮蔽功能,如图33所示。聚光器101可按不同角度旋转形成不同位置光斑,通过单个照明单元的角度设计,灵活实现ADB照明功能,多个基于聚光器101的准直单元相互以一定角度错开以照射不同的区域,通过LED光源的亮灭实现不同区域的点亮,配合车载摄像头实现ADB功能,体积更小、结构更紧凑、简单,可以在有限的车灯空间内实现更加灵活的ADB功能。
当然,本发明的矩阵式车灯光学装置还可以是包括11个横向连续排列的聚光器101,其工作原理同图28所示的实施例,此处不再赘述。
如图30所示,在本发明的第三个具体实施例中,矩阵式车灯光学装置包括12个聚光器101,分成4个聚光器组1,每组3个聚光器101竖向连续排布组成一个聚光器组1。图30中标记出的两个聚光器101为位于中间位置的聚光器101,其中位于上方的聚光器101上侧的5个聚光器101按与该聚光器101之间的距离由近及远分别旋转-1°、-2°、-3°、-4°和-5°,位于下方的聚光器101下侧的5个聚光器101按与该聚光器101之间的距离由近及远分别旋转+1°、+2°、+3°、+4°和+5°。或者,位于中间位置的两个聚光器101两侧的聚光器101的旋转方向交换一下,具有同样的技术效果。
具体使用时,聚光器101的排布形式可根据日渐紧凑的车灯造型实现灵活布置,聚光器101数量可以定制,可多可少;排布也可以水平排布、竖向排布、斜向排布等;不仅可以连续排布,还可以分段排布,比如以3个聚光器101为一个聚光器组1,做6组排布;或者5个一组,做4组排布,等等。
作为一种优选实施方式,如图1和图2、图28和图29所示,各所述聚光器101一体形成为至少一排聚光器组1,单排所述聚光器组1具有横向或竖向或斜向连续排布的所述聚光器101。
作为另一种优选实施方式,各聚光器的光轴6与各自对应的所述LED光源7的光轴重合,位于中间位置的所述聚光器101的两侧的多个聚光器的光轴6平行于位于中间位置的聚光器的光轴6。
在这里,单个聚光器组1内的聚光器101的数量为奇数时,位于中间位置的聚光器指的是位于中间位置的一个聚光器;而当单个聚光器组1内的聚光器101的数量为偶数时,位于中间位置的聚光器为位于中间位置的两个聚光器101。
为了提高聚光器101的光学效率,各聚光器的光轴6均与LED光源7的光轴重合,这样可以保证LED光源7发出的光线都能够进入聚光器101,提高光线利用率的同时还能够形成多像素自适应远光。
在这里需要解释的是,聚光器的光轴6是指沿着光线传输方向,且经过聚光器101的焦点的轴线;LED光源7的光轴是指沿着中心光线传播方向,且经过LED光源7的发光中心的轴线。
作为上述优选实施方式中的一种可选实施方式,位于中间位置的聚光器101第一侧的多个聚光器的光轴6分别顺时针水平旋转不同角度,使得该多个所述聚光器101中离位于中间位置的所述聚光器101越远其聚光器的光轴6与位于中间位置的聚光器的光轴6之间的夹角越大;位于中间位置的所述聚光器101第二侧的多个所述聚光器101分别逆时针水平旋转不同角度,使得该多个所述聚光器101中离位于中间位置的所述聚光器101越远其聚光器的光轴6与位于中间位置的聚光器的光轴6之间的夹角越大。
同样地,为了出光光型的需要,位于两侧的聚光器的光轴6相对于位于中间位置的聚光器的光轴6可形成有一定的夹角,而位于中间位置的聚光器的光轴6则与LED光源7的光轴是重合的,两侧的聚光器101相互以一定角度错开,能够照射不同的区域,并且能够通过LED光源7的亮灭实现不同区域的点亮。
更优选地,相邻两个聚光器光轴6的夹角为1°。
进一步优选地,所有位于中间位置的所述聚光器101的出光面形成为一个平面,且与位于中间位置的聚光器的光轴6垂直,位于中间位置的所述聚光器101的两侧的所述聚光器101的出光面与位于中间位置的所述聚光器101的出光面之间形成有夹角。
可以看出,不管形成有几排聚光器组1,位于中间位置的聚光器101的出光面均形 成为一个垂直于聚光器的光轴6的垂直平面,而两侧的出光面相对于该垂直平面具有不同程度的倾斜,即两侧的出光面与位于中间位置的出光面之间形成有夹角,这样可以使各聚光器101投射形成的光斑相互错开,从而能够形成多像素相互衔接的多像素远光光型。
更进一步优选地,为了防止各聚光器101折射至与其相邻的聚光器101的出光面上光线从该相邻的聚光器101的出光面射出而形成杂散光,位于中间位置的所述聚光器101的两侧的所述聚光器101的出光面适于将由与其相邻的所述聚光器101射入的光线全反射,各所述聚光器101的出光面的横向截线适于拼接为向后凹入的内凹曲线。
如图5和图6所示,所有聚光器101的出光面的横向截线拼接在一起后呈内凹曲线。在这里,横向截线指的是经过平行于聚光器101的光轴,且沿左右方向延伸的虚拟平面虚拟切割聚光器组1后,虚拟平面与出光面的交线。
如图30所示,各所述聚光器101分成多个聚光器组1,各所述聚光器组1具有多个横向或竖向或斜向连续排布的所述聚光器101,各所述聚光器组1横向或竖向或斜向间隔排布。
作为又一种优选实施方式,所有所述聚光器101中,位于中间位置的两个聚光器的光轴6平行,毗邻位于中间位置的两个所述聚光器101中的其中一个所述聚光器101一侧的多个聚光器的光轴6分别顺时针水平旋转不同角度,使得该多个聚光器101中离位于中间位置的所述聚光器101越远其聚光器的光轴6与位于中间位置的聚光器的光轴6之间的夹角越大;毗邻位于中间位置的两个聚光器101中的另一个聚光器101一侧的多个聚光器101分别逆时针水平旋转不同角度,使得该多个聚光器101中离位于中间位置的所述聚光器101越远其聚光器的光轴6与位于中间位置的聚光器的光轴6之间的夹角越大。
更优选地,除位于中间位置的两个所述聚光器101外,相邻两个聚光器的光轴6夹角为1°。
在这里,如30所示的独立结构的多个聚光器组1,各排聚光器组1内的聚光器101的数量都是数量相等的奇数,而聚光器组1的数量则为偶数,这样位于中间位置的聚光器则为图30中标注出的两个聚光器101,这两个聚光器的光轴6平行,位于两侧的聚光器101相对于位于中间位置的两个聚光器的光轴6水平旋转不同的角度,且越远离位于中间位置的聚光器101,其旋转的角度越大。
进一步地,各所述聚光器101的出光面为矩形,各所述LED光源7为单芯片LED 光源,各所述LED光源7发出的光经对应的所述聚光器101直接投射形成的光斑为矩形光斑。
作为一种具体结构形式,左右两侧位于最外侧的所述聚光器101的外侧面沿光线传播方向由后向前逐渐向位于中间位置的聚光器的光轴6方向靠近。
结合图5、图6、图21和图22,聚光器组1上位于左右两侧最外侧的聚光器101的外侧面由后向前逐渐向光轴6方向靠近,这样可使得LED光源7投射在该外侧面上的光线能够从该外侧面折射出去,而不是由该外侧面全反射至聚光器101的出光面并由出光面射出而形成杂散光。
作为另一种具体结构形式,所述聚光器组1的四周设有遮光件2。
如图18至图22所示,位于中间位置的聚光器101的两侧的聚光器101的出光面形成为全反射面,部分光线经全反射面全反射后从聚光器组1的侧面射出,形成为一部分杂散光;另外,由聚光器组1的外侧面倾斜出射的光也会形成杂散光。为了消除杂散光,可以在聚光器组1的四周设置遮光件2,该遮光件2可以是黑色遮光材料成型的遮光罩,也可以是涂覆有亚光黑漆或其他遮光材料的遮光罩,或者是直接在聚光器组1的四周设置一层遮光层,该遮光层可以是亚光黑漆、或皮纹结构,并在皮纹结构的表面涂覆一层深色涂层,该深色涂层可以是亮光黑漆或其他深色亮光漆,还可以是上述结构以外的其他遮光结构,其目的均是为了遮蔽从聚光器组1的侧面射出的杂散光。
如图23和图24所示,作为又一种具体结构形式,还包括线路板3和散热器4,所述散热器4上设有定位销5,所述定位销5适于依次穿过所述线路板3、聚光器组1和遮光件2,利用定位销5将多个部件同时定位,结构简单,各零件之间定位效果好。
进一步地,位于中间位置的所述聚光器101的横向截面的宽度大于同一横向截面上的两侧所述聚光器101的宽度,这样从外观看起来,就是中心聚光器101要大于两侧的聚光器101,这样可以满足远光中心区域照度要求较高,提高光线利用率。
另外,各聚光器101沿光线传播方向由后向前的长度与左右方向的宽度的比值较小,这样可以使得聚光器101的前后长度相较于左右方向的宽度而言比较短,这样可以使得由两侧的聚光器101的出光面形成的全反射面的入射角度较大,能够使得更多的光线发生全反射。
本发明第二方面还提供一种车灯,包括根据上述第一方面的技术方案中任一项所述的矩阵式车灯光学装置。
本发明第三方面还提供一种车辆,包括根据上述第二方面技术方案中所述的车灯。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
此外,本发明实施例的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明实施例的思想,其同样应当视为本发明实施例所公开的内容。

Claims (16)

  1. 一种矩阵式车灯光学装置,其特征在于,包括多个适于自由排列的聚光器(101);各所述聚光器(101)的焦点处设有LED光源(7),且各所述LED光源(7)适于独立点亮以通过所述聚光器(101)的直接投射形成多像素自适应远光。
  2. 根据权利要求1所述的矩阵式车灯光学装置,其特征在于,各所述聚光器(101)一体形成为至少一排聚光器组(1),单排所述聚光器组(1)具有横向或竖向或斜向连续排布的所述聚光器(101)。
  3. 根据权利要求2所述的矩阵式车灯光学装置,其特征在于,各聚光器的光轴(6)与各自对应的所述LED光源(7)的光轴重合,位于中间位置的所述聚光器(101)的两侧的多个所述聚光器的光轴(6)平行于位于中间位置的所述聚光器的光轴(6);或者
    位于中间位置的所述聚光器(101)的第一侧的多个所述聚光器的光轴(6)分别顺时针水平旋转不同角度,使得该多个所述聚光器(101)中离位于中间位置的所述聚光器(101)越远其聚光器的光轴(6)与位于中间位置的所述聚光器的光轴(6)之间的夹角越大;位于中间位置的所述聚光器(101)第二侧的多个所述聚光器(101)分别逆时针水平旋转不同角度,使得该多个所述聚光器(101)中离位于中间位置的所述聚光器(101)越远其聚光器的光轴(6)与位于中间位置的所述聚光器的光轴(6)之间的夹角越大。
  4. 根据权利要求3所述的矩阵式车灯光学装置,其特征在于,相邻两个所述聚光器的光轴(6)的夹角为1°。
  5. 根据权利要求2所述的矩阵式车灯光学装置,其特征在于,所有位于中间位置的所述聚光器(101)的出光面形成为一个平面,且与位于中间位置的所述聚光器的光轴(6)垂直,位于中间位置的所述聚光器(101)的两侧的所述聚光器(101)的出光面与位于中间位置的所述聚光器(101)的出光面之间形成有夹角。
  6. 根据权利要求5所述的矩阵式车灯光学装置,其特征在于,位于中间位置的所述聚光器(101)的两侧的所述聚光器(101)的出光面适于将由与其相邻的所述聚光器(101)射入的光线全反射,各所述聚光器(101)的出光面的横向截线适于拼接为向后凹入的内凹曲线。
  7. 根据权利要求1所述的矩阵式车灯光学装置,其特征在于,各所述聚光器(101)分成多个聚光器组(1),各所述聚光器组(1)具有多个横向或竖向或斜向连续排布的所述聚光器(101),各所述聚光器组(1)横向或竖向或斜向间隔排布。
  8. 根据权利要求7所述的矩阵式车灯光学装置,其特征在于,所有所述聚光器(101)中,位于中间位置的两个所述聚光器的光轴(6)平行,毗邻位于中间位置的两个所述聚光器(101)中的其中一个聚光器(101)一侧的多个聚光器的光轴(6)分别顺时针水平旋转不同角度,使得该多个聚光器(101)中离位于中间位置的所述聚光器(101)越远其聚光器的光轴(6)与位于中间位置的所述聚光器的光轴(6)之间的夹角越大;毗邻位于中间位置的两个所述聚光器(101)中的另一个聚光器(101)一侧的多个聚光器(101)分别逆时针水平旋转不同角度,使得该多个聚光器(101)中离位于中间位置的所述聚光器(101)越远其聚光器的光轴(6)与位于中间位置的聚光器的光轴(6)之间的夹角越大。
  9. 根据权利要求8所述的矩阵式车灯光学装置,其特征在于,除位于中间位置的两个所述聚光器(101)外,相邻两个所述聚光器的光轴(6)夹角为1°。
  10. 根据权利要求1所述的矩阵式车灯光学装置,其特征在于,各所述聚光器(101)的出光面为矩形,各所述LED光源(7)为单芯片LED光源,各所述LED光源(7)发出的光经对应的所述聚光器(101)直接投射形成的光斑为矩形光斑。
  11. 根据权利要求1至10中任一项所述的矩阵式车灯光学装置,其特征在于,左右两侧位于最外侧的所述聚光器(101)的外侧面沿光线传播方向由后向前逐渐向位于中间位置的所述聚光器的光轴(6)方向靠近。
  12. 根据权利要求1至10中任一项所述的矩阵式车灯光学装置,其特征在于,所述聚光器组(1)的四周设有遮光件(2)。
  13. 根据权利要求12所述的矩阵式车灯光学装置,其特征在于,还包括线路板(3)和散热器(4),所述散热器(4)上设有定位销(5),所述定位销(5)适于依次穿过所述线路板(3)、聚光器组(1)和遮光件(2)。
  14. 根据权利要求1至10中任一项所述的矩阵式车灯光学装置,其特征在于,位于中间位置 的所述聚光器(101)的横向截面的宽度大于同一横向截面上的两侧所述聚光器(101)的宽度。
  15. 一种车灯,其特征在于,包括根据权利要求1至14中任一项所述的矩阵式车灯光学装置。
  16. 一种车辆,其特征在于,包括权利要求15所述的车灯。
PCT/CN2020/091072 2019-05-20 2020-05-19 一种矩阵式车灯光学装置、车灯及车辆 WO2020233573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080001752.3A CN112135997B (zh) 2019-05-20 2020-05-19 一种矩阵式车灯光学装置、车灯及车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920726090.0 2019-05-20
CN201920726090.0U CN209688726U (zh) 2019-05-20 2019-05-20 一种矩阵式车灯光学装置、车灯及车辆

Publications (1)

Publication Number Publication Date
WO2020233573A1 true WO2020233573A1 (zh) 2020-11-26

Family

ID=68608969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091072 WO2020233573A1 (zh) 2019-05-20 2020-05-19 一种矩阵式车灯光学装置、车灯及车辆

Country Status (2)

Country Link
CN (2) CN209688726U (zh)
WO (1) WO2020233573A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209688726U (zh) * 2019-05-20 2019-11-26 华域视觉科技(上海)有限公司 一种矩阵式车灯光学装置、车灯及车辆
CN113883472A (zh) * 2021-09-10 2022-01-04 岚图汽车科技有限公司 一种汽车信号灯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM500702U (zh) * 2015-03-02 2015-05-11 Depo Auto Parts Ind Co Ltd 具雙曲面透鏡之led車燈
JP6314462B2 (ja) * 2013-12-10 2018-04-25 市光工業株式会社 車両用前照灯
CN108131639A (zh) * 2016-11-30 2018-06-08 隆达电子股份有限公司 透镜阵列、车灯透镜组及车灯总成
CN207471429U (zh) * 2017-12-04 2018-06-08 杭州上达光电科技有限公司 一种光学调节随动大灯及汽车
CN108561846A (zh) * 2018-04-25 2018-09-21 华域视觉科技(上海)有限公司 一种车辆用矩阵式照明装置
CN209688726U (zh) * 2019-05-20 2019-11-26 华域视觉科技(上海)有限公司 一种矩阵式车灯光学装置、车灯及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408708B2 (en) * 2004-04-16 2008-08-05 Dai Nippon Printing Co., Ltd. Diffusing sheet, surface light source unit, and transmission type display
KR101541279B1 (ko) * 2008-06-04 2015-08-03 삼성디스플레이 주식회사 광학 필름, 상기 광학 필름을 구비한 백라이트 유닛, 및상기 백라이트 유닛을 구비한 lcd 장치
DE102013206488A1 (de) * 2013-04-11 2014-10-30 Automotive Lighting Reutlingen Gmbh Lichtmodul für eine Kraftfahrzeugbeleuchtungseinrichtung
CN107664295B (zh) * 2017-09-14 2024-02-02 华域视觉科技(上海)有限公司 一种准直透镜及其车用光学模组
US10851959B2 (en) * 2017-11-22 2020-12-01 Stanley Electric Co., Ltd. Vehicle headlight

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314462B2 (ja) * 2013-12-10 2018-04-25 市光工業株式会社 車両用前照灯
TWM500702U (zh) * 2015-03-02 2015-05-11 Depo Auto Parts Ind Co Ltd 具雙曲面透鏡之led車燈
CN108131639A (zh) * 2016-11-30 2018-06-08 隆达电子股份有限公司 透镜阵列、车灯透镜组及车灯总成
CN207471429U (zh) * 2017-12-04 2018-06-08 杭州上达光电科技有限公司 一种光学调节随动大灯及汽车
CN108561846A (zh) * 2018-04-25 2018-09-21 华域视觉科技(上海)有限公司 一种车辆用矩阵式照明装置
CN209688726U (zh) * 2019-05-20 2019-11-26 华域视觉科技(上海)有限公司 一种矩阵式车灯光学装置、车灯及车辆

Also Published As

Publication number Publication date
CN112135997A (zh) 2020-12-25
CN209688726U (zh) 2019-11-26
CN112135997B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US7322729B2 (en) Light guiding unit, light guiding unit assembly, and lighting device including the same
JP6074630B2 (ja) 照明装置およびその照明装置を搭載した自動車
JP7330272B2 (ja) 車両ランプ用光学素子、車両ランプモジュール、車両ヘッドライト及び車両
JP7097974B2 (ja) ヘッドライト装置
CN112752925B (zh) 车灯光学元件、车灯模组、车辆前照灯及车辆
EP2503224B1 (en) Vehicle lighting unit
US8231255B2 (en) Vehicle light
US11668445B2 (en) Multi-beam vehicle light
JP2012003986A (ja) 車両用灯具ユニット
WO2020233573A1 (zh) 一种矩阵式车灯光学装置、车灯及车辆
CN208269047U (zh) 远光系统
WO2022105196A1 (zh) 车灯光学系统、车灯模组、车灯及车辆
CN114270097A (zh) 前照灯模块和前照灯装置
WO2021103755A1 (zh) 车灯模组、车辆前照灯及车辆
CN210219619U (zh) 一种近光iii区照明模块、遮光板、照明装置及车辆
WO2020244080A1 (zh) 一种车灯光学元件、车灯模组、车辆前照灯和车辆
CN218209358U (zh) 反射式光学模组及使用其的照明装置及车辆
CN111486409A (zh) 一种高光效光导结构及应用该结构的厚壁件
WO2020052398A1 (zh) 一种车灯
CN115638383A (zh) 反射式光学模组及使用其的照明装置及车辆
JP7317205B2 (ja) 光学素子、車両ランプモジュール、車両ランプ及び車両
CN114719226A (zh) 一种透镜条、配光透镜、条形灯及道路照明装置
TW201631279A (zh) 車燈
CN210740278U (zh) 一种光源模块、车灯及车辆
EP4123218B1 (en) Multi-pixel high beam system, vehicle lamp, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808872

Country of ref document: EP

Kind code of ref document: A1