WO2020233036A1 - 光伏电池组件 - Google Patents

光伏电池组件 Download PDF

Info

Publication number
WO2020233036A1
WO2020233036A1 PCT/CN2019/120131 CN2019120131W WO2020233036A1 WO 2020233036 A1 WO2020233036 A1 WO 2020233036A1 CN 2019120131 W CN2019120131 W CN 2019120131W WO 2020233036 A1 WO2020233036 A1 WO 2020233036A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cell
sheet
photovoltaic cell
cross
Prior art date
Application number
PCT/CN2019/120131
Other languages
English (en)
French (fr)
Inventor
郑分刚
郑诚
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2020233036A1 publication Critical patent/WO2020233036A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to the field of photovoltaic module packaging and photovoltaic module power generation efficiency, and in particular to a photovoltaic cell module resistant to PID effect.
  • Solar cells are generally not used directly as power sources. They usually encapsulate glass, cross-linked adhesive films (EVA, PVB, PVF, etc.) and cells into photovoltaic modules, which are a key part of photovoltaic power generation systems.
  • EVA cross-linked adhesive films
  • PVB cross-linked adhesive films
  • PVF photovoltaic power generation systems
  • PID effect
  • the PID effect is also known as potential induced attenuation.
  • the existing anti-PID technologies are as follows: choosing a special high-anti-PID cross-linking film, adding a layer of anti-PID film between the glass cells, or adding additional electrical devices to eliminate induced potential, etc. Whether these technologies are true and effective remains to be seen Further verification, and the use of these technologies in the industry will undoubtedly greatly increase production costs, so it can be said that there is no effective low-cost anti-PID technology. At present, it is very clear that glass and film have a clear relationship to the occurrence of PID phenomenon.
  • the glass used for photovoltaic modules is glass containing sodium ions. It has been reported in the literature that alkali precipitates on the surface of silicate glass under high temperature and high humidity, and the main components are Na 2 O and MgO.
  • the cost is very high, and the feasibility is not great; and when the glass is replaced with quartz glass, under the same test conditions, no PID phenomenon is found.
  • the cell is very fragile and easy to oxidize when exposed to the air for a long time, the cell must be encapsulated with a cross-linked adhesive film and photovoltaic glass. Then the cross-linked adhesive film is between the cell and the glass, which acts as sodium and magnesium ions. The medium that migrates from the glass to the cell.
  • the transparency of the cross-linked film will also affect the power generation capacity of the module, and long-term outdoor work will make the performance of the cross-linked film worse, the transparency will become low, and the risk of macular degeneration will seriously affect the light absorption on the battery surface. ability.
  • the cross-linked adhesive film with the best transparency (transmittance greater than 90%) on the market can absorb 10% of the solar power, which cannot be effectively used by the solar cell.
  • the light transmittance of photovoltaic glass is only about 90%, which will also affect the power generation capacity of photovoltaic modules.
  • an anti-reflection coating (antireflection coating) is deposited on the upper surface of the glass during the production process to increase the transmittance of sunlight.
  • CN105130205B provides a high-weather-resistant photovoltaic glass antireflection film, which improves the light transmittance of the film layer under high humidity conditions on the basis of maintaining high hardness of the antireflection film.
  • the Chinese patent with publication number CN104628265A provides a multilayer broad-spectrum hydrophobic antireflection film. This composite film increases the antireflection wavelength range in the visible light range and has a certain hydrophobicity.
  • the patent with publication number CN103943691A provides a silica/titanium dioxide composite anti-reflection film prepared by magnetron sputtering, with a transmittance of 98% in the light wave region of 800-900nm. At the same time, it uses the photocatalytic self-cleaning function of titanium dioxide to achieve self-cleaning. The effect of cleaning.
  • the above-mentioned methods are all improved on the film layer on the photovoltaic glass and have certain effects.
  • There are few researches on improving the transparency of EVA The current research on EVA is to improve its UV resistance and crosslinking performance without affecting the transmittance, while the transmittance of the crosslinked film EVA is still 90%. %about.
  • the purpose of the present invention is to provide a photovoltaic cell module.
  • the present invention can effectively improve the utilization rate of sunlight, improve the conversion efficiency of photovoltaic modules and avoid the PID effect.
  • the technical scheme of the present invention has simple process and relatively low cost. low.
  • the present invention provides a photovoltaic cell module that can be packaged by a traditional hot pressing method, comprising at least one cell, a cross-linked adhesive film layer is provided above and below the cell, and the cross-linked adhesive film layer is provided with at least one hollow
  • the battery sheet is arranged facing the hollow part, and in the horizontal direction, the area of the hollow part is not less than the area of the battery sheet, so that the upper and lower sides of the battery sheet are not covered by the cross-linked adhesive film.
  • the cross-linked adhesive film layer is provided with at least one hollow part, which means that part of the cross-linked adhesive film is removed from the entire cross-linked adhesive film layer to form a mesh film with a hollow structure; the shape of the hollow part can match the battery sheet The same or different, it is only necessary to ensure that the area of the hollow part is equal to or slightly larger than the area of the cell, so that there is no cross-linked adhesive film on the upper and lower surfaces of the cell after packaging.
  • cross-linked adhesive film layer is EVA, PVB or PVF.
  • the photovoltaic cell module further includes an upper base layer and a back sheet layer, the upper base layer and the back sheet layer are respectively located on the side of the cross-linked adhesive film layer away from the battery sheet.
  • the upper surface and the lower surface of the upper base layer are provided with an anti-reflection film A; the refractive index of the anti-reflection film A is 1.15-1.46; preferably 1.28.
  • the upper base layer is transparent glass
  • the back sheet layer is glass or TPT, TPE, PET, AAA and other types of polymer back sheets.
  • the upper surface of the battery sheet is also provided with an anti-reflection film B, and the refractive index of the anti-reflection film B layer is 1.15-1.75; preferably 1.36.
  • the area of the anti-reflection film B is not less than the area of the cell.
  • the material can be selected from MgF 2 (refractive index 1.38), CaF 2 (refractive index 1.43), SiO 2 (refractive index 1.45), KCl (refractive index 1.49), EVA (refractive index 1.50), Si 3 N 4 (refractive index 2.0)
  • MgF 2 reffractive index 1.38
  • CaF 2 reffractive index 1.43
  • SiO 2 reffractive index 1.45
  • KCl refractive index 1.49
  • EVA refractive index 1.50
  • Si 3 N 4 reffractive index 2.0
  • One or several composite films such as ), TiO 2 (refractive index 2.55), etc., and other films with increased light transmittance can also be selected.
  • the antireflection film A in the present invention adopts acid- and alkali-catalyzed TEOS mixed sol, and the preparation method is as follows:
  • the thickness of the antireflection film A is controlled by controlling the pulling speed. The faster the pulling speed, the thicker the film The thicker. For example: the pulling speed is 2mm/s, the immersion time in the coating solution is 60s, and after the pulling is finished, the transmittance of the coated photovoltaic glass at the wavelength of 600-900nm reaches more than 98%.
  • the antireflection film B in the present invention adopts a TEOS and TiO 2 mixed sol catalyzed by acid and alkali.
  • the preparation method of acid- and base-catalyzed TEOS sol is the same as the antireflection coating A;
  • the preparation method of TiO 2 sol is as follows: dissolve Ti-containing organic esters, such as tetrabutyl titanate, titanium isopropoxide, etc. Ethylene glycol methyl ether, adding appropriate amount of acetic acid as a stabilizer, the preferred ratio of ethylene glycol hexyl ether to acetic acid is 1:1; the concentration of TiO 2 sol is 0.2 mol/L.
  • the photovoltaic cell assembly further includes a light-reflecting layer directly under the cell, and the area of the light-reflecting layer is not less than the area of the cell.
  • the function of the light-reflecting layer is to reflect the transmitted light passing through the cell sheet back to the cell sheet again, thereby improving the utilization rate of sunlight.
  • the reflective layer can be white paper, white paint, or a film with metallic luster, etc., without other special requirements. In terms of cost and effect, metal aluminum foil is preferred.
  • the cells can be arranged in a 3 ⁇ 3 array, 6 ⁇ 6 array, 12 ⁇ 6 array, etc. between the base layer and the backplane layer.
  • the thickness of the cell sheet is not greater than the thickness of the hollow part. Since the cross-linked adhesive film layer is required to cross-link the upper base layer and the back sheet layer to protect the battery sheet, the cross-linked adhesive film cannot be completely removed, and part of the cross-linked adhesive film needs to be retained. Since the upper and lower surfaces of the cell do not have cross-linked adhesive films, the incident sunlight can directly reach the cell, thereby improving the utilization of sunlight; in addition, because the thickness of the cell is not greater than the thickness of the hollow part, the upper base layer and the back There is a layer of air or other protective gas between the plate layer and the cell (depending on the packaging environment). Metal ions such as sodium and magnesium in the upper base layer and back plate layer cannot migrate into the cell, so it will not happen PID effect.
  • the present invention has at least the following advantages:
  • the upper and lower sides of the cell are not covered by the cross-linked adhesive film, and the cross-linked adhesive film around the cell is used to cross-link the module. Since there is no cross-linked adhesive film on the surface of the battery sheet to absorb incident light, the light absorption efficiency of the battery sheet is improved, thereby improving the conversion efficiency of the battery.
  • the amount of cross-linked adhesive film used is reduced, and the production cost is reduced to a certain extent.
  • antireflection films are prepared on the upper and lower surfaces of the upper base layer, and the transmittance is above 98% at the light wavelength of 600-900nm, and the transmittance is above 96% at the light wavelength of 500-1100nm.
  • the materials used are environmentally friendly and pollution-free, the process is simple and the cost is low, and the pulling method is suitable for mass production.
  • Figure 1 shows the transmission spectra of the upper base layer with different AR coatings A.
  • Figure 2 shows the reflectance spectrum incident on the surface of the cell (with the antireflection coating B on the upper surface) in the present invention.
  • Figure 3 is a schematic structural diagram of Comparative Example 1
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 4 of the present invention.
  • Fig. 8 is a schematic structural diagram of Embodiment 5 of the present invention.
  • Figure 9 is the I-V curve of Comparative Example 1 and Examples 1-4;
  • Figure 10 is the I-V curve of Example 5.
  • Figure 11 is the I-V curve of Example 6
  • Figure 12 is the I-V curve of Example 7.
  • 1-Anti-reflection film A 2-Upper base layer; 3-EVA layer; 4-Anti-reflection film B; 5-Cell sheet; 6-Reflective paper; 7-Backboard layer.
  • the single cell selected is a polycrystalline silicon cell with an area of 2.5 ⁇ 2.5 (cm 2 ).
  • the sheet parameter in the standard battery source (100mW / cm 2) as follows: the open circuit voltage of about 0.61V, the short-circuit current is about 32mA / cm 2, the series resistance of 0.5 ⁇ , the parallel resistance 2000 ⁇ , conversion efficiency of about 14.5%.
  • the output characteristics are tested under a standard light source to obtain the conversion efficiency;
  • the anti-PID test conditions of the comparative example and the embodiment are: humidity 85%, temperature 85°C, The surface is covered with aluminum foil and connected to the 200V positive electrode, and the battery is connected to the negative electrode.
  • the test time is 48 hours.
  • both the upper base layer 2 and the back plate layer 7 are glass.
  • Figure 1 is the transmission spectrum of transparent glass (with antireflection coating A on the upper and lower surfaces) of the present invention with different refractive indexes (n). For comparison, the original glass without antireflection coating and the glass with antireflection coating on the upper surface The transmission spectrum is also plotted.
  • the transmittance of the anti-reflection coating A (refractive index 1.28) on the upper and lower surfaces is close to 100% (the ideal anti-reflection coating A refractive index value is 1.23) ;
  • the refractive index of AR coating A deviates from 1.28, the transmittance decreases.
  • the refractive index of the antireflection film A is 1.46 (close to 1.52 for glass), the antireflection effect is significantly reduced.
  • the refractive index of the antireflection film A of the comparative example and all the examples of the present invention is selected to be 1.28.
  • Figure 2 is the reflectance spectrum incident on the surface of the cell (with antireflection coating B on the upper surface) in the present invention.
  • the reflectance spectrum of the original cell is also plotted.
  • the maximum anti-reflection wavelength of 600nm corresponding to the strongest line in the solar spectrum
  • the reflectivity of the upper surface of the original cell is close to zero.
  • the refractive index of the antireflection coating B starts to increase from 1.15, the reflectance at 600nm gradually rises; at the same time, the reflectivity at about 400nm and within the range of 700-1100nm gradually decreases.
  • the refractive index of the antireflection film B is between 1.15 and 1.75, the antireflection effect is better than that of the original cell, and the refractive index of the antireflection film B is preferably 1.36.
  • the refractive index of antireflection film B is greater than 1.75, there is no antireflection effect.
  • the refractive index of the antireflection film B of all the embodiments of the present invention is selected to be 1.36.
  • the antireflection film A used is a TEOS mixed sol catalyzed by acid and base;
  • the antireflection film B is TEOS and TiO 2 mixed sol catalyzed by acid and base.
  • the crosslinked adhesive film layer used is an EVA layer.
  • a photovoltaic cell module of this comparative example includes an upper base layer 2, an EVA layer 3, a cell sheet 5, an EVA layer 3 and a back sheet layer 7 arranged sequentially from top to bottom.
  • the upper and lower sides of the sheet 5 are fully covered by the EVA layer 3, and the upper surface of the upper base layer 2 is provided with an antireflection film A1.
  • the I-V curve of the comparative example obtained by testing under a standard light source is shown in curve 1 in FIG. 9.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 13.8%. After the anti-PID test, the photoelectric conversion efficiency dropped significantly by 2.6 percentage points.
  • a photovoltaic cell module of the present invention includes an upper base layer 2, an EVA layer 3, a battery sheet 5, an EVA layer 3, and a back sheet layer 7 arranged sequentially from top to bottom.
  • the upper surface of the bottom layer 2 is provided with an anti-reflection film A 1
  • the EVA layer 3 is provided with a hollow portion with the same area and shape as the battery sheet 5, and the battery sheet 5 is arranged directly opposite to the hollow portion to ensure that there is no EVA above and below the battery sheet 5 Cover and surround the battery sheet 5 with EVA.
  • the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in curve 2 in FIG. 9.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 14.3%.
  • the reason for the enhanced power generation efficiency is mainly because after removing the EVA above and below the cell 5, incident sunlight can directly reach the cell 5, thereby avoiding the absorption of EVA. After the anti-PID test, the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention includes an upper base layer 2, an EVA layer 3, a cell 5, an EVA layer 3, and a back sheet layer 7 arranged in sequence from top to bottom. Both the upper and lower surfaces of the bottom layer 2 are provided with antireflection film A1.
  • the EVA layer 3 is provided with a hollow part with the same area and shape as the battery sheet 5, and the battery sheet 5 is arranged directly opposite to the hollow part to ensure the upper side of the battery sheet 5 There is no EVA covering and the battery sheet 5 is surrounded by EVA.
  • the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in curve 3 in FIG. 9.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 14.4%.
  • the reason for the increased power generation efficiency is mainly due to the fact that the lower surface of the upper base layer 2 also has the anti-reflection coating A 1, which reduces the reflection of incident sunlight on the lower surface of the upper glass, thereby increasing Sunlight incident on the cell 5.
  • the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention includes an upper base layer 2, an EVA layer 3, a cell sheet 5, an EVA layer 3, and a back sheet layer 7 arranged in order from top to bottom. Both the upper and lower surfaces of the bottom layer 2 are provided with antireflection film A1.
  • the EVA layer 3 is provided with a hollow part with the same area and shape as the battery sheet 5, and the battery sheet 5 is arranged directly opposite to the hollow part to ensure the upper side of the battery sheet 5 There is no EVA covering and the battery sheet 5 is surrounded by EVA.
  • the upper surface of the battery sheet 5 is provided with an antireflection film B4. Along the thickness direction of the photovoltaic cell assembly, the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in curve 4 in FIG. 9.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 14.9%.
  • the reason for the enhanced power generation efficiency is mainly due to the fact that the lower surface of the upper base layer 2 also has the anti-reflection film A 1 and the anti-reflection film B 4 on the upper surface of the cell 5, which increases the incidence to the cell 5 sunlight. After the anti-PID test, the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention includes an upper base layer 2, an EVA layer 3, a cell sheet 5, an EVA layer 3, and a back sheet layer 7 arranged in sequence from top to bottom. Both the upper and lower surfaces of the bottom layer 2 are provided with antireflection film A1.
  • the EVA layer 3 is provided with a hollow part with the same area and shape as the battery sheet 5, and the battery sheet 5 is arranged directly opposite to the hollow part to ensure the upper side of the battery sheet 5 There is no EVA covering and the battery sheet 5 is surrounded by EVA.
  • the upper surface of the battery sheet 5 is provided with an antireflection film B4. Reflective paper 6 is provided directly under the battery sheet 5. Along the thickness direction of the photovoltaic cell assembly, the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in curve 5 in FIG. 9.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 15.4%.
  • the reason for the increased power generation efficiency is mainly due to the antireflection coating A1 on the lower surface of the upper glass and the antireflection coating B4 on the upper surface of the cell 5, which increases the incidence of the cell 5 Sunlight;
  • the sunlight passing through the cell 5 is reflected back to the cell 5 by the reflective paper 6 again, thereby improving the utilization of sunlight.
  • the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention includes an upper base layer 2, an EVA layer 3, 9 cells 5, an EVA layer 3, and a back sheet layer 7 arranged in sequence from top to bottom.
  • Both the upper surface and the lower surface of the base layer 2 are provided with an antireflection film A 1, and the EVA layer 3 is provided with a plurality of hollow parts.
  • the area and shape of each hollow part are the same as that of the cell 5, and each cell 5 faces the hollow
  • the parts are arranged to ensure that there is no EVA covering above and below the battery sheet 5 and the battery sheet 5 is surrounded by EVA, so that there is no EVA film between the 9 battery sheets 5 and the upper base layer 2.
  • each solar cell 5 has an antireflection film B 4 on the upper surface.
  • a reflective paper 6 is provided directly below each cell 5.
  • the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in FIG. 10.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 15.41%. After the anti-PID test, the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention has a structure similar to that of Embodiment 5, and includes an upper base layer 2, an EVA layer 3, 36 cells 5, an EVA layer 3, and a back sheet layer 7 arranged sequentially from top to bottom.
  • the upper surface and the lower surface of the upper base layer 2 are provided with antireflection film A 1
  • the EVA layer 3 is provided with a plurality of hollow parts, and the area and shape of each hollow part are the same as the cell 5, and each cell 5 is positive
  • the hollow part is provided to ensure that there is no EVA covering above and below the battery sheet 5 and the battery sheet 5 is surrounded by EVA, so that there is no EVA film between the 36 battery sheets 5 and the upper base layer 2.
  • the 36 cells 5 form a 6 ⁇ 6 array, and the 36 cells 5 are connected in series; each cell 5 has an antireflection film B 4 on the upper surface.
  • a reflective paper 6 is provided directly below each cell 5.
  • the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in FIG. 11.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 15.44%. After the anti-PID test, the photoelectric conversion efficiency did not drop significantly.
  • a photovoltaic cell module of the present invention has a structure similar to that of Embodiment 5, and includes an upper base layer 2, an EVA layer 3, 72 cells 5, an EVA layer 3, and a back sheet layer 7 arranged sequentially from top to bottom.
  • the upper surface and the lower surface of the upper base layer 2 are provided with antireflection film A 1
  • the EVA layer 3 is provided with a plurality of hollow parts, and the area and shape of each hollow part are the same as the cell 5, and each cell 5 is positive
  • the hollow part is provided to ensure that there is no EVA covering above and below the battery sheet 5 and the battery sheet 5 is surrounded by EVA, so that there is no EVA film between the 72 battery sheets 5 and the upper base layer 2.
  • each cell 5 has an antireflection film B 4 on the upper surface.
  • a reflective paper 6 is provided directly below each cell 5.
  • the thickness of the cell sheet 5 is smaller than the thickness of the hollow part.
  • the I-V curve of this embodiment obtained by testing under a standard light source is shown in FIG. 12.
  • the photoelectric conversion efficiency calculated according to the I-V curve is 15.46%. After the anti-PID test, the photoelectric conversion efficiency did not drop significantly.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种光伏电池组件,包括至少一个电池片,电池片的上方和下方各设有交联胶膜层,交联胶膜层设有至少一个镂空部,电池片正对镂空部设置,沿水平方向上,镂空部的面积不小于电池片的面积,以使得所述电池片的上方和下方无交联胶膜覆盖。本发明能有效提高太阳光利用率,提升光伏组件的转换效率同时避免发生PID效应;同时本发明技术方案工艺简单,成本较低。

Description

光伏电池组件 技术领域
本发明涉及光伏组件封装和光伏组件发电效率领域,尤其涉及一种抗PID效应的光伏电池组件。
背景技术
太阳能单体电池一般不直接作为电源使用,通常是将玻璃、交联胶膜(EVA、PVB、PVF等)和电池片等封装成光伏组件,光伏组件是光伏发电系统中的关键部分。在光伏发电系统中,由于光伏组件常年工作在户外,潮湿、高温的环境容易产生水蒸气,如果水汽深入组件内部,那么封装材料的导电率上升,相应组件的泄漏电流增大,会造成组件表面极化现象,即PID效应。PID效应又称电势诱导衰减,是电池组件的封装材料和其上表面及下表面的材料、电池片与其接地金属边框之间的高电压作用下出现离子迁移,而造成组件性能衰减的现象,因此,组件发生PID效应会导致组件输出功率大大受损。PID效应产生的真正原因到目前为止没有明确的定论,但各个光伏电池组件厂和研究机构的数据表明,PID与电池、玻璃、胶膜、温度、湿度和电压有关。
现有的抗PID技术以下几种:选择特殊高抗PID交联胶膜、在玻璃电池片之间增加一层抗PID膜、或者增加额外电学装置消除诱导电势等,这些技术是否真实有效还有待进一步验证,并且工业上如果采用这些技术无疑会大幅增加生产成本,因此可以说当前还没有一种有效的低成本抗PID技术。目前可以非常明确是,玻璃和胶膜对PID现象的发生有明确的关系。用于光伏组件的玻璃是含钠离子的玻璃,有文献报道,在高温高湿情况下硅酸盐玻璃表面会有碱析出,主要成分是Na 2O、MgO。但要降低玻璃中钠、镁离子的含量,成本非常高,可行性不大;而当把玻璃更换成石英玻璃后,在同样的测试条件下,没有发现PID现象。由于电池片非常脆弱,长时间暴露在空气中容易氧化,必须用交联胶膜和光伏玻璃封装电池片,那么交联胶膜就处于电池片和玻璃之间,无形中充当了钠、镁离子从玻璃迁移到电池片的介质。另外,交联胶膜的透明性也会影响组件的发电能力,且长时间的户外工作会使交联胶膜性能变差,透明度变低,产生黄斑变性等风险,严重影响电池表面的光吸收能力。但是,即使市场上透明度最好的交联胶膜(透过率大于90%),也能吸收10%的太阳光功率,这部分太阳光不能被电池片有效利用。另外,光伏玻璃的透光率也只有90%左右,这也会影响了光伏组件的发电能力。
为了提高光伏电池片对太阳光中300-1100nm波长范围光的吸收能力,生产过程中会在玻璃上表面沉积减反膜(增透膜),从而增加太阳光的透射率。CN105130205B提供了一种高耐候型光伏玻璃增透膜,在保持增透膜硬度较高的基础上,提高了膜层在高湿度条件下的光透过率。公开号为CN104628265A的中国专利提供了一种多层宽光谱疏水型增透膜,这种复合薄膜提升了可见光范围内的增透波长范围,同时具有一定疏水性能。公开号为CN103943691A的专利提供了一种用磁控溅射制备二氧化硅/二氧化钛复合减反膜,在800-900nm光波区透过率达98%,同时利用二氧化钛的光催化自洁功能达到自清洁的效果。上述几种方法都是在光伏玻璃上的膜层进行改进,有一定效果。但是,对于EVA透明度的改进研究较少,目前对于EVA的研究都是在不影响透过率的情况下提升其耐紫外光性能和交联性能,而交联膜EVA的透过率仍在90%左右。
发明内容
为解决上述技术问题,本发明的目的是提供一种光伏电池组件,本发明能有效提高太阳光利用率,提升光伏组件的转换效率同时避免发生PID效应;同时本发明技术方案工艺简单,成本较低。
本发明提供了一种可采用传统的热压方式封装的光伏电池组件,包括至少一个电池片,电池片的上方和下方各设有交联胶膜层,交联胶膜层设有至少一个镂空部,电池片正对镂空部设置,沿水平方向上,镂空部的面积不小于电池片的面积,以使得所述电池片的上方和下方无交联胶膜覆盖。
交联胶膜层设有至少一个镂空部,是指在整张交联胶膜层中去除部分交联胶膜,使其形成带有镂空结构的网状膜;镂空部的形状可与电池片相同,也可以不同,只需保证镂空部的面积等于或略大于电池片面积,使得封装后电池片上下表面没有交联胶膜。
进一步地,交联胶膜层为EVA、PVB或PVF。
进一步地,光伏电池组件还包括一上基底层和一背板层,上基底层和背板层分别位于交联胶膜层远离电池片的一侧。
进一步地,上基底层的上表面和下表面设有增透膜A;增透膜A的折射率为1.15-1.46;优选为1.28。
进一步地,上基底层为透明玻璃;背板层为玻璃或TPT、TPE、PET、AAA等类型的高分子背板。
进一步地,电池片的上表面还设有增透膜B,增透膜B层的折射率为1.15-1.75;优选为 1.36。
进一步地,增透膜B的面积不小于电池片的面积。
上述技术方案中,对增透膜A和增透膜B的要求除了膜厚和折射率之外,没有其他特殊要求。其材质可选择MgF 2(折射率1.38)、CaF 2(折射率1.43)、SiO 2(折射率1.45)、KCl(折射率1.49)、EVA(折射率1.50)、Si 3N 4(折射率2.0)、TiO 2(折射率2.55)等一种或几种复合薄膜,也可以选择其他具有增加光透射率的薄膜。
为了节约成本,本发明中的增透膜A采用酸、碱催化的TEOS混合溶胶,其制备方法如下:
将无水乙醇、正硅酸乙酯、水和盐酸混合,摩尔比为n HCl:n H2O:n TEOS:n EtOH=0.01:0.1:0.05:2,常温搅拌4h后陈化5天备用,得到酸催化TEOS溶胶。
将无水乙醇、正硅酸乙酯、水和氨水混合,摩尔比n NH4OH:n H2O:n TEOS:n EtOH=0.032:0.1:0.05:2,常温搅拌4h后再80℃水浴24h以去除多余的氨,同时补充除氨过程中蒸发的部分乙醇,最后陈化5天备用,得到碱催化TEOS溶胶。
将上述得到的酸催化溶胶和碱催化溶胶按体积比混合(优选的V :V =1:4)混合常温搅拌1h,制得备增透膜A膜液。然后在上基底层上制备增透膜A,将上述所得镀膜液在上基底层上用浸渍提拉法镀膜,通过控制提拉速度控制增透膜A的厚度,提拉速度越快,膜厚越厚。例如:提拉速度为2mm/s,浸入镀膜液时间为60s,提拉结束晾干后制得镀膜光伏玻璃在600-900nm波长的透过率达到98%以上。
本发明中的增透膜B采用酸、碱催化的TEOS和TiO 2混合溶胶。其中,酸、碱催化的TEOS溶胶的制备方法与增透膜A相同;TiO 2溶胶的制备方法如下:将含Ti的有机酯类物质,如钛酸四丁酯、异丙醇钛等溶于乙二醇甲醚,加入适量乙酸作为稳定剂,优选的乙二醇己醚与乙酸的比例为1:1;TiO 2溶胶的浓度为0.2mol/L。将酸、碱催化TEOS混合溶胶与TiO 2溶胶按需要的比例混合,可以得到不同折射率(1.15~2.55)的增透膜B。
进一步地,光伏电池组件还包括正对电池片下方的反光层,反光层的面积不小于电池片的面积。反光层的作用是将透过电池片的透射光线再次反射回电池片,从而提高太阳光的利用率。反光层可以是白纸、白色涂料、也可以是带金属光泽的薄膜等,无其他特殊要求。从成本和效果考虑,优选为金属铝箔。
进一步地,电池片为多个,多个电池片排布成阵列结构。电池片可在基底层和背板层之间排布成3×3阵列、6×6阵列、12×6阵列等。
进一步地,沿光伏电池组件的厚度方向,电池片的厚度不大于镂空部的厚度。由于需要 交联胶膜层交联上基底层和背板层,从而保护电池片,因此不能完全去除交联胶膜,而需保留部分交联胶膜。由于电池片的上下表面没有交联胶膜,入射的太阳光可以直接达到电池片,从而提高了太阳光的利用率;另外,由于电池片的厚度不大于镂空部的厚度,上基底层和背板层与电池片之间隔着一层空气或其他保护气体(取决于封装环境),上基底层和背板层中的钠、镁等金属离子不可能迁移到电池片中,因此,不会发生PID效应。
借由上述方案,本发明至少具有以下优点:
1、本发明光伏组件中,电池片的上方和下方无交联胶膜覆盖,而利用电池片周围的交联胶膜用于交联组件。由于电池片的表面无交联胶膜吸收入射光,因此提高了电池片的光吸收效率,进而提升电池的转换效率。
2、本发明光伏组件上基底层和背板层与电池片之间隔着一层空气或其他保护气体(取决于封装环境),玻璃中的钠、镁等金属离子不可能迁移到电池片中,因此,不会发生PID效应。
3、本发明光伏组件中减少了交联胶膜的使用量,一定程度上降低了生产成本。
4、本发明光伏组件中,在上基底层上下表面制备增透膜,在600-900nm光波长下透过率98%以上,在500-1100nm光波长下透过率96%以上。所用材料环保无污染、工艺简单且成本较低,提拉法适于大规模生产。
5、本发明光伏组件背板层和电池间增加一层反光层,最大程度的提升了组件的光利用率,增加反光层后光电转换效率提升约0.5%,但几乎不增加成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
附图1为带有不同增透膜A的上基底层的透射光谱。
附图2为本发明中的入射到电池片(上表面带有增透膜B)表面的反射光谱。
附图3为对比例1的结构示意图;
附图4为本发明实施例1的结构示意图;
附图5为本发明实施例2的结构示意图;
附图6为本发明实施例3的结构示意图;
附图7为本发明实施例4的结构示意图;
附图8为本发明实施例5的结构示意图;
附图9为对比例1和实施例1-4的I-V曲线;
附图10为实施例5的I-V曲线;
附图11为实施例6的I-V曲线;
附图12为实施例7的I-V曲线;
附图标记说明:
1-增透膜A;2-上基底层;3-EVA层;4-增透膜B;5-电池片;6-反光纸;7-背板层。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明实施例与对比例中,选用的单个电池片是面积为2.5×2.5(cm 2)的多晶硅电池片。该电池片在标准光源(100mW/cm 2)下的参数如下:开路电压约为0.61V,短路电流约为32mA/cm 2,串联电阻0.5Ω,并联电阻2000Ω,转换效率约为14.5%。所述电池片按照对比例和实施例封装构成组件后,在标准光源下测试输出特性,得到转换效率;对比例和实施例的抗PID测试条件为:湿度85%、温度85℃下,在组件表面覆盖铝箔并连接200V的正极,电池连接负极,测试时间48小时。
本发明以下实施例中,上基底层2和背板层7均选择玻璃。图1为本发明具有不同折射率(n)的透明玻璃(上下表面带有增透膜A)的透射光谱,为了作为对比,无增透膜的原玻璃和上表面带增透膜的玻璃的透射光谱也一并画出。在最大增透波长600nm处(对应太阳光谱中最强的谱线),上下表面带有增透膜A(折射率1.28)的透射率接近100%(理想增透膜A折射率值为1.23);当增透膜A的折射率偏离1.28时,透射率下降。当增透膜A的折射率为1.46(接近玻璃1.52)时,增透效果明显下降。本发明中对比例与全部实施例的增透膜A的折射率选为1.28。
图2为本发明中入射到电池片(上表面带有增透膜B)表面的反射光谱,作为对比,原始电池片的反射光谱也一并画出。在最大增透波长600nm处(对应太阳光谱中最强的谱线),原始电池片的上表面(带有Si 3N 4层,折射率2.0左右)的反射率接近0。当增透膜B的折射率从1.15开始增加时,600nm处的反射率逐渐上升;同时,在400nm左右和700-1100nm范围内的反射率逐渐下降。综合来看,当增透膜B的折射率在1.15-1.75时,增透效果要好于原始电池片,增透膜B的折射率优选为1.36。当增透膜B的折射率大于1.75时,无增透效果。本发明中全部实施例的增透膜B选择折射率为1.36。
本发明以下实施例和对比例中,所使用的增透膜A为酸、碱催化的TEOS混合溶胶;增透膜B采用酸、碱催化的TEOS和TiO 2混合溶胶。所使用的交联胶膜层为EVA层。
对比例1
如图3所示,本对比例的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、一电池片5、EVA层3和一背板层7,电池片5的上方和下方被EVA层3全部覆盖,上基底层2的上表面带有增透膜A 1。
在标准光源下测试得到该对比例的I-V曲线见图9中的曲线1。按照I-V曲线计算得到的光电转换效率为13.8%。经抗PID测试后,光电转换效率明显下降2.6个百分点。
实施例1
如图4所示,本发明的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、一电池片5、EVA层3和一背板层7,上基底层2的上表面带有增透膜A 1,EVA层3上设有与电池片5面积和形状相同的镂空部,电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图9中的曲线2。按照I-V曲线计算得到的光电转换效率为14.3%。与对比例1相比,发电效率增强的原因,主要是由于去掉电池片5上下方的EVA之后,入射太阳光可以直接到达电池片5,从而避免EVA的吸收。经抗PID测试后,光电转换效率无明显下降。
实施例2
如图5所示,本发明的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、一电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与电池片5面积和形状相同的镂空部,电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图9中的曲线3。按照I-V曲线计算得到的光电转换效率为14.4%。与对比例1相比,发电效率增强的原因,主要是由于上基底层2的下表面同样带有增透膜A 1,入射太阳光在上部玻璃的下表面处的反射减少了,从而增加了入射到电池片5的太阳光。经抗PID测试后,光电转换效率无明显下降。
实施例3
如图6所示,本发明的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、一电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与电池片5面积和形状相同的镂空部,电池片5正对镂空部设置,保证电池 片5的上方和下方无EVA覆盖且电池片5周围环绕EVA。电池片5的上表面带有增透膜B 4。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图9中的曲线4。按照I-V曲线计算得到的光电转换效率为14.9%。与对比例相比,发电效率增强的原因,主要是由于上基底层2的下表面同样带有增透膜A 1,以及电池片5上表面的增透膜B 4,增加了入射到电池片5的太阳光。经抗PID测试后,光电转换效率无明显下降。
实施例4
如图7所示,本发明的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、一电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与电池片5面积和形状相同的镂空部,电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA。电池片5的上表面带有增透膜B 4。电池片5的正下方设有反光纸6。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图9中的曲线5。按照I-V曲线计算得到的光电转换效率为15.4%。与对比例相比,发电效率增强的原因,主要是由于上部玻璃的下表面同样带有增透膜A 1,以及电池片5上表面的增透膜B 4,增加了入射到电池片5的太阳光;同时,穿过电池片5的太阳光被反光纸6再次反射回电池片5,从而提高了太阳光的利用率。经抗PID测试后,光电转换效率无明显下降。
实施例5
如图8所示,本发明的一种光伏电池组件,包括自上而下依次设置的一上基底层2、EVA层3、9片电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与多个镂空部,各镂空部的面积和形状与电池片5相同,各电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA,这样9片电池片5与上基底层2之间没有EVA胶膜存在。9片电池片5构成3×3阵列,9片电池片5以串联形式连接;各电池片5的上表面都带有增透膜B 4。在各电池片5的正下方各设有一反光纸6。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图10。按照I-V曲线计算得到的光电转换效率为15.41%。经抗PID测试后,光电转换效率无明显下降。
实施例6
本发明的一种光伏电池组件,其结构与实施例5类似,包括自上而下依次设置的一上基 底层2、EVA层3、36片电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与多个镂空部,各镂空部的面积和形状与电池片5相同,各电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA,这样36片电池片5与上基底层2之间没有EVA胶膜存在。36片电池片5构成6×6阵列,36片电池片5以串联形式连接;各电池片5的上表面都带有增透膜B 4。在各电池片5的正下方各设有一反光纸6。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图11。按照I-V曲线计算得到的光电转换效率为15.44%。经抗PID测试后,光电转换效率无明显下降。
实施例7
本发明的一种光伏电池组件,其结构与实施例5类似,包括自上而下依次设置的一上基底层2、EVA层3、72片电池片5、EVA层3和一背板层7,上基底层2的上表面和下表面均带有增透膜A 1,EVA层3上设有与多个镂空部,各镂空部的面积和形状与电池片5相同,各电池片5正对镂空部设置,保证电池片5的上方和下方无EVA覆盖且电池片5周围环绕EVA,这样72片电池片5与上基底层2之间没有EVA胶膜存在。72片电池片5构成12×6阵列,72片电池片5以串联形式连接;各电池片5的上表面都带有增透膜B 4。在各电池片5的正下方各设有一反光纸6。沿光伏电池组件的厚度方向,电池片5的厚度小于镂空部的厚度。
在标准光源下测试得到本实施例的I-V曲线见附图12。按照I-V曲线计算得到的光电转换效率为15.46%。经抗PID测试后,光电转换效率无明显下降。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种光伏电池组件,包括至少一个电池片,其特征在于:所述电池片的上方和下方各设有交联胶膜层,所述交联胶膜层设有至少一个镂空部,所述电池片正对所述镂空部设置,沿水平方向上,所述镂空部的面积不小于所述电池片的面积,以使得所述电池片的上方和下方无交联胶膜覆盖。
  2. 根据权利要求1所述的光伏电池组件,其特征在于:还包括一上基底层和一背板层,所述上基底层和背板层分别位于所述交联胶膜层远离电池片的一侧。
  3. 根据权利要求2所述的光伏电池组件,其特征在于:所述上基底层的上表面和下表面设有增透膜A;所述增透膜A的折射率为1.15-1.46。
  4. 根据权利要求2所述的光伏电池组件,其特征在于:所述上基底层为透明玻璃,所述背板层为玻璃背板或高分子背板。
  5. 根据权利要求2所述的光伏电池组件,其特征在于:所述电池片的上表面还设有增透膜B,所述增透膜B层的折射率为1.15-1.75。
  6. 根据权利要求5所述的光伏电池组件,其特征在于:所述增透膜B的面积不小于所述电池片的面积。
  7. 根据权利要求1所述的光伏电池组件,其特征在于:还包括正对所述电池片下方的反光层,所述反光层的面积不小于所述电池片的面积。
  8. 根据权利要求1所述的光伏电池组件,其特征在于:所述电池片为多个,多个所述电池片排布成阵列结构。
  9. 根据权利要求1所述的光伏电池组件,其特征在于:所述交联胶膜层为EVA、PVB或PVF。
  10. 根据权利要求1所述的光伏电池组件,其特征在于:沿所述光伏电池组件的厚度方向,所述电池片的厚度不大于所述镂空部的厚度。
PCT/CN2019/120131 2019-05-17 2019-11-22 光伏电池组件 WO2020233036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910414897.5A CN109994564B (zh) 2019-05-17 2019-05-17 光伏电池组件
CN201910414897.5 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020233036A1 true WO2020233036A1 (zh) 2020-11-26

Family

ID=67136763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120131 WO2020233036A1 (zh) 2019-05-17 2019-11-22 光伏电池组件

Country Status (3)

Country Link
CN (1) CN109994564B (zh)
LU (1) LU102080B1 (zh)
WO (1) WO2020233036A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994564B (zh) * 2019-05-17 2023-10-27 苏州大学 光伏电池组件
CN110911514A (zh) * 2019-11-06 2020-03-24 余长岳 一种太阳能发电板
US11987734B2 (en) 2020-06-29 2024-05-21 Hangzhou First Applied Material Co., Ltd. Anti-PID encapsulation adhesive film, photovoltaic module, and photovoltaic module manufacturing method
CN113644155B (zh) * 2021-07-28 2024-05-10 浙江晶科能源有限公司 背板以及光伏组件
CN116435392A (zh) * 2023-05-16 2023-07-14 武汉美格科技股份有限公司 一种柔性光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280512A (zh) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 一种具有高转换效率的太阳能电池组件
JP2015115577A (ja) * 2013-12-16 2015-06-22 大日本印刷株式会社 太陽電池モジュール封止材の製造方法及び太陽電池モジュール封止材
CN205845972U (zh) * 2016-08-01 2016-12-28 中电投西安太阳能电力有限公司 抗电位诱发衰减效应的太阳能电池组件
CN106945378A (zh) * 2017-03-03 2017-07-14 杭州福斯特应用材料股份有限公司 一种网格状双层结构光伏组件封装胶膜及其制备方法
CN109994564A (zh) * 2019-05-17 2019-07-09 苏州大学 光伏电池组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650999Y2 (ja) * 1989-04-28 1994-12-21 セントラル硝子株式会社 太陽電池モジュール
JP2004063673A (ja) * 2002-07-26 2004-02-26 Bridgestone Corp 太陽電池用封止膜及び太陽電池モジュールの製造方法
CN204424284U (zh) * 2015-03-27 2015-06-24 阿特斯(中国)投资有限公司 一种耐候型光伏组件
CN205488162U (zh) * 2016-04-05 2016-08-17 湖南永港伟方科技有限公司 一种偏选型光伏组件
CN207868211U (zh) * 2017-11-20 2018-09-14 珠海格力电器股份有限公司 光伏组件
CN208622744U (zh) * 2018-05-23 2019-03-19 杭州福斯特应用材料股份有限公司 一种具有定向反射功能的胶膜及光伏组件
CN208667573U (zh) * 2018-06-15 2019-03-29 苏州阿特斯阳光电力科技有限公司 封装胶膜及采用该封装胶膜的光伏组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280512A (zh) * 2010-06-11 2011-12-14 南通美能得太阳能电力科技有限公司 一种具有高转换效率的太阳能电池组件
JP2015115577A (ja) * 2013-12-16 2015-06-22 大日本印刷株式会社 太陽電池モジュール封止材の製造方法及び太陽電池モジュール封止材
CN205845972U (zh) * 2016-08-01 2016-12-28 中电投西安太阳能电力有限公司 抗电位诱发衰减效应的太阳能电池组件
CN106945378A (zh) * 2017-03-03 2017-07-14 杭州福斯特应用材料股份有限公司 一种网格状双层结构光伏组件封装胶膜及其制备方法
CN109994564A (zh) * 2019-05-17 2019-07-09 苏州大学 光伏电池组件

Also Published As

Publication number Publication date
LU102080B1 (en) 2021-01-29
CN109994564A (zh) 2019-07-09
LU102080A1 (en) 2020-11-17
CN109994564B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2020233036A1 (zh) 光伏电池组件
CN110002767B (zh) 一种用于光伏玻璃的高透光率疏水涂膜的制备方法
CN102945877B (zh) 一种太阳能电池背板及太阳能电池
CN102424533B (zh) 减反射可见光与反射近红外线双功能镀膜玻璃及其制备方法
CN102315331B (zh) 一种轻量化薄膜太阳能电池组件及其制作方法
KR102360087B1 (ko) 컬러필름 적용 태양광 모듈 및 이의 제조방법
JPH08139350A (ja) 太陽電池モジュール
KR101172560B1 (ko) 건축외장용 태양전지 모듈
CN103943691B (zh) 自清洁太阳能电池减反膜
CA3064553A1 (en) Colored photovoltaic module with nanoparticle layer
CN101913780A (zh) 具有双层减反射涂层的太阳能电池组件封装玻璃
CN110571285A (zh) 一种光伏组件玻璃及其制作方法、光伏组件
JP2002270880A (ja) 太陽電池モジュール及びその製造方法
US20090000656A1 (en) Photovoltaic Module
CN111244213B (zh) 一种光伏组件
CN116031318A (zh) 一种双面柔性的模块化光伏电池组件
CN201956361U (zh) 一种用于薄膜太阳能电池的减反射系统
CN209626241U (zh) 光伏电池组件
CN202293533U (zh) 一种太阳能电池背板复合膜
CN210443575U (zh) 防眩光光伏组件
JP2005197553A (ja) 太陽電池用バックシート
CN204271100U (zh) 一种高反射率太阳能电池背板
CN209963068U (zh) 太阳能复合封装板及太阳能组件
US20220077337A1 (en) Cover sheet for photovoltaic panel
CN210110796U (zh) 一种电池背板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929589

Country of ref document: EP

Kind code of ref document: A1