WO2020232688A1 - 一种轻质耐磨万向节 - Google Patents

一种轻质耐磨万向节 Download PDF

Info

Publication number
WO2020232688A1
WO2020232688A1 PCT/CN2019/088046 CN2019088046W WO2020232688A1 WO 2020232688 A1 WO2020232688 A1 WO 2020232688A1 CN 2019088046 W CN2019088046 W CN 2019088046W WO 2020232688 A1 WO2020232688 A1 WO 2020232688A1
Authority
WO
WIPO (PCT)
Prior art keywords
fork
universal joint
stress
concave surface
inner concave
Prior art date
Application number
PCT/CN2019/088046
Other languages
English (en)
French (fr)
Inventor
朱国平
王建明
范建萍
卢银
Original Assignee
江苏格尔顿传动有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏格尔顿传动有限公司 filed Critical 江苏格尔顿传动有限公司
Priority to PCT/CN2019/088046 priority Critical patent/WO2020232688A1/zh
Publication of WO2020232688A1 publication Critical patent/WO2020232688A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/387Fork construction; Mounting of fork on shaft; Adapting shaft for mounting of fork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected

Definitions

  • the invention relates to the field of universal joints, in particular to a lightweight wear-resistant universal joint.
  • the flange fork is an important part of the car. It is the main part connecting the transmission and the drive axle and the part that bears high-speed transmission. Its structure and processing technology directly affect the performance of the parts, thereby affecting the power transmission effect of the whole vehicle. Its structure is relatively simple, but the processing technology is complicated. In the selection of materials, understand the processing technology, and in the process design, rationally arrange the processing procedures. A reasonable design of fixtures is of great significance to the final quality of the product. However, based on the concept of lightweight automotive products, the weight of the vehicle is proportional to the fuel consumption. In order to achieve the effect of energy saving and environmental protection of vehicle fuel consumption and emissions, it is necessary to find ways to reduce the weight of auto parts without affecting the performance of auto parts. Therefore, it is very necessary to design a kind of reduced quality, but the performance is unchanged or even better. Automobile universal joint.
  • the technical problem to be solved by the present invention is to provide a lightweight wear-resistant universal joint to solve the above-mentioned defects caused in the prior art.
  • a lightweight wear-resistant universal joint comprising a universal joint fork, a flange fork and a universal joint cross shaft, and the universal joint cross shaft is provided with a universal joint fork And flange fork; characterized in that: the flange fork includes a fork lug, a mounting hole and a connecting hub, two fork lugs are provided on both sides of the connecting hub, and a coaxial Mounting hole;
  • the universal joint cross shaft is provided with an elastic retaining ring and the mounting hole is connected and fixed;
  • the fork lug is provided with an inner concave surface, and a reinforcing rib A is provided between the fork lugs;
  • a transmission shaft is arranged on the universal joint fork, a shaft tube and a spline sleeve are arranged on the transmission shaft, a dust-proof shell is arranged outside the spline sleeve; and a processing part is arranged on the connecting hub.
  • the inner concave surface has a slope of 10°, and the inner concave surface is inverted U-shaped Structure, the top of the inner concave surface is tangent to the mounting hole.
  • the width of the reinforcing rib B is 16mm
  • the internal fillet of the fork lug is set to R30
  • the fillet of the processing part is set to R2.
  • the stress of the flange fork assembly is 1227Mpa
  • the maximum and minimum component stresses are respectively 1199Mpa in the processing part, 457Mpa in the internal fillet, and 192Mpa in the concave surface.
  • the processed part can be reserved as a reference point for the subsequent optimization model to optimize the two points of the internal fillet and the internal concave surface.
  • the stress on the inner concave surface is excessive, and the material is removed here.
  • a certain width on both sides needs to be reserved as reinforcing ribs, and the inner concave surface is set
  • the slope is 18°, the width of the reinforcing rib B is 12, and the optimized component is established; replace the original component with the optimized component, and other conditions remain unchanged, continue to calculate and analyze the model to obtain the stress data;
  • the total stress is 1303Mpa, the component stress is the highest and the lowest. It is 1268Mpa, 465Mpa, and 225Mpa.
  • the stresses of the assembly and the change points have risen, which proves that the changes are effective.
  • the next step is to determine the specific values.
  • the parameterized design of the width of the reinforcing rib B is 10-18; the setting range of the internal fillet is R25-30; the setting range of the processing part is R1-5, and the stress curve is obtained by analysis and calculation.
  • the width of the reinforcing rib B is set to 16, and the internal fillet is set to R30;
  • the calculated stress is basically the same as the original model, which proves that the concave surface can still be deepened.
  • the stress of the model is slightly increased when the slope of the inner concave surface is set to 10°; when the fillet R2 of the processing part is set, the overall stress is reduced by 1/4, and the stress of the concave surface in the improved area and other parts of the component increases by 27%.
  • the invention combines the finite element structure theory, applies analysis software, simulates working conditions, analyzes and calculates the given boundary conditions of the components, and optimizes the structure through parameterized design. While reducing the weight of the universal joint, it can maintain or improve the vehicle and The original performance level of the component. Reduce the consumption of raw materials, reduce vehicle fuel consumption and emissions, and achieve the effect of energy saving and environmental protection.
  • Figure 1 is a schematic diagram of the transmission of the present invention
  • Figure 2 is a top view of the present invention
  • FIG. 3 is a structural diagram of the present invention.
  • Figure 4 is the stress curve of the reinforcing rib B of the present invention.
  • Figure 5 is the stress curve of the internal fillet of the present invention.
  • Fig. 6 is a stress curve of a processed part of the present invention.
  • a lightweight wear-resistant universal joint including universal joint fork 1, flange fork 2 and universal joint cross shaft 3,
  • the universal joint cross shaft 3 is provided with a universal joint fork 1 and a flange fork 2; the characteristic is that the flange fork 2 includes a fork lug 4, a mounting hole 5 and a connecting hub 6, and the connecting hub 6
  • Two fork lugs 4 are provided on both sides, and a coaxial installation hole 5 is provided on the fork lug 4; an elastic retaining ring 15 is provided on the universal joint cross shaft 3 to be connected and fixed with the installation hole 5;
  • the fork lug 4 is provided with an inner concave surface 7, and a reinforcing rib A8 is provided between the fork lugs 4;
  • a transmission shaft 9 is provided on the universal joint fork 1, and the transmission shaft 9 is provided with
  • the shaft tube 10 and the spline sleeve 11 are provided with a dust-proof
  • the central surface is removed from the material to form an inner concave surface 7, and the two sides are retained with reinforcing ribs B14.
  • the slope of the inner concave surface 7 is 10°
  • the inner concave surface 7 is an inverted U-shaped structure
  • the top of the inner concave surface 7 is tangent to the mounting hole 5.
  • the width of the reinforcing rib B14 is 16 mm
  • the inner rounded corner 16 of the fork lug 4 is set to R30.
  • the rounded corner of the processing part 13 is set to R2.
  • the total stress of the flange fork 2 is 1227Mpa, and the maximum and minimum component stress is 13 1199Mpa for the processing part, 16457Mpa for the inner rounded corner, and 7192Mpa for the inner concave surface.
  • the processed part 13 can be reserved as a reference point for the subsequent optimization model to optimize the internal fillet 16 and the internal concave surface 7.
  • the inner concave surface has 7 points of stress excess, and the material is removed here.
  • the reinforcement bar B14 has a bar width of 12, to establish an optimized component; replace the original component with the optimized component, and other conditions remain unchanged, continue to calculate and analyze the model to obtain the stress data; the total stress is 1303Mpa, and the maximum and minimum component stresses are 1268Mpa, 465Mpa, 225Mpa. The stresses of the assembly and the change points have risen, which proves that the changes are effective. The next step is to determine the specific values.
  • the setting range is 10-18; the internal fillet 16 is the setting range R25-30; the processing part 13 is the setting range R1-5, and the stress curve is obtained by analysis and calculation.
  • the stress curve the rib width of the reinforcing rib B14 is set to 16, and the internal fillet 16 is set to R30; the calculated stress is basically flat compared with the original model, which proves that the concave surface can still be deepened.
  • the present invention is based on the concept of lightweight automotive products, and the weight of the entire vehicle is proportional to the fuel consumption.
  • the purpose is to reduce the weight of the vehicle and the component while maintaining or improving the vehicle and The original performance level of the component. Reduce the consumption of raw materials, reduce the weight of components, reduce vehicle fuel consumption and emissions, and achieve the effect of energy saving and environmental protection.
  • the component sub-assembly is modeled, the assembly working condition analysis is simulated, and the boundary conditions are analyzed and calculated, and the maximum and minimum stress values of the component are divided.
  • the minimum stress area excludes unchangeable points . From the surface and internal stress distribution of the model, the unchangeable points are excluded and the points that can be changed are identified. Focus on optimizing the inner concave surface, inner fillet and processing parts. The inner concave surface stress is surplus, and the material is removed here. After considering the removal of material, no additional stress will be added to the adjacent inner rounded area, and a certain width of both sides should be reserved as reinforcing ribs, and only the central part should be added with a concave. Compared with the original model, the calculated stress is basically the same, which proves that the concave surface can still be deepened.
  • the concave slope is set to 10°, and the stress of the 10° concave slope is slightly increased.
  • the maximum stress of the model is reflected in the step transition part of the processing part. After the processing part is increased with fillet, the assembly stress drops by 1/4, and the stress in the concave surface and other parts of the part in the improvement area increases by 27%, but it is still very low compared to other parts, which proves the improvement Safe and reliable; the weight of the parts is reduced by 0.21Kg, and the weight is reduced by 5%, and the shape of the parts tends to be beautiful.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

一种轻质耐磨万向节,包括万向节叉(1)、突缘叉(2)与万向节十字轴(3),万向节十字轴(3)上设置有万向节叉(1)与突缘叉(2);突缘叉(2)包括叉耳(4)、安装孔(5)与连接毂(6),连接毂(6)两侧设置有两个叉耳(4),叉耳(4)上设置有同轴的安装孔(5);叉耳(4)上设置有内凹面(7),叉耳(4)之间设置有加强筋A(8);万向节叉(1)上设置有传动轴(9),传动轴(9)上设置有轴管(10)与花键套(11),花键套(11)外设置有防尘外壳(12);连接毂(6)上设置有加工部位(13)。

Description

一种轻质耐磨万向节 技术领域
本发明涉及万向节领域,特别涉及一种轻质耐磨万向节。
背景技术
突缘叉是汽车上的重要部件,它是连接变速器和驱动桥的主要零件也是承受高速传动的零件。其结构和加工工艺直接影响零件的性能,进而影响整车动力传递的效果,其结构相对简单,但是加工工艺复杂,在选材中,了解其加工工艺,并在工艺设计中,合理安排加工工序,设计合理的夹具,对产品的最终质量具有十分重要的意义。但基于汽车产品轻量化的理念,整车重量和油耗成正比的关系。要使得车辆油耗和排放,达到节能环保的效果,就必须想办法在不影响汽车零件性能的情况下减少汽车零件的重量,因此非常有必要设计一种质量减轻,但性能不变甚至更加优秀的汽车万向节。
发明内容
本发明所要解决的技术问题是提供一种轻质耐磨万向节,以解决现有技术中导致的上述缺陷。
本发明的目的是这样实现的:一种轻质耐磨万向节,包括万向节叉、突缘叉与万向节十字轴,所述的万向节十字轴上设置有万向节叉与突缘叉;其特征在于:所述的突缘叉包括叉耳、安装孔与连接毂,所述的连接毂两侧设置有两个叉耳,所述的叉耳上设置有同轴的安装孔;所述的万向节十字轴上设置有弹性挡圈与安装孔连接固定;所述的叉耳上设置有内凹面,所述的叉耳之间设置有加强筋A;所述的万向节叉上设置有传动轴,所述的传动轴上设置有轴管与花键套,所述的花键套外设置有防尘外壳;所述的连接毂上设置有加工部位。
作为优选的技术方案:所述的叉耳仅中心面去除材料形成内凹面,两侧保留设置有加强筋B;所述的内凹面斜度为10°,所述的内凹面为倒置的U形结构,所述的内凹面顶部与安装孔相切。
作为优选的技术方案:所述的加强筋B筋宽16mm,所述的叉耳的内部圆角设定为R30;所述的加工部位圆角设定为R2。
作为优选的技术方案:所述的突缘叉总成应力1227Mpa,部件应力最高最低分别为加工部位1199Mpa、内部圆角457Mpa、内凹面192Mpa。加工部位可以保留作为后续优化模型的参考点,对内部圆角、内凹面两点进行优化。
作为优选的技术方案:所述的内凹面点应力富余,在此处去除材料,为了对其相邻的内部圆角不额外增加应力,需保留两侧边一定宽度作为加强筋,设定内凹面斜度18°,加强筋B筋宽12,建立优化部件;用优化部件替换原部件,其它条件不变,继续对模型进行计算分析,得出应力数据;总成应力1303Mpa,部件应力最高最低分别为1268Mpa、465Mpa、225Mpa。总成和更改点应力均上升,证明更改有效果,下一步确定具体数值。
作为优选的技术方案:对加强筋B筋宽参数化设计,设定范围10~18;内部圆角设定范围R25~30;加工部位设定范围R1~5,分析计算,得到应力曲线。
作为优选的技术方案:根据应力曲线,将加强筋B筋宽设定16,内部圆角设定R30;计算应力与最初模型比较,基本持平,证明内凹面仍可加深。根据锻造特性,设定内凹面斜度为10°模型应力略微上升;设定加工部位圆角R2,总成应力下降1/4,改进区域内凹面与部件其它区域应力上升27%。
本发明结合有限元结构理论,应用分析软件,模拟工况,对部件给定边界条件进行分析计算、通过参数化设计,优化结构,在减轻万向节重量的同时,还能维持或提升车辆和部件的原有性能水平。减少原材料的耗用,降低车辆油耗和排放,达到节能环保的效果。
附图说明
图1是本发明传动示意图;
图2是本发明的俯视图;
图3是本发明的结构图;
图4是本发明加强筋B的应力曲线;
图5是本发明内部圆角的应力曲线;
图6是本发明加工部位的应力曲线。
图中:1.万向节叉;2.突缘叉;3.万向节十字轴;4.叉耳;5.安装孔;6.连接毂;7.内凹面;8.加强筋A;9.传动轴;10.轴管;11.花键套;12.防尘外壳;13.加工部位;14.加强筋B;15.弹性挡圈;16.内部圆角。
具体实施方式
下面结合附图对本发明作进一步说明,但不作为对本发明的限制:一种轻质耐磨万向节,包括万向节叉1、突缘叉2与万向节十字轴3,所述的万向节十字轴3上设置有万向节叉1与突缘叉2;其特征在于:所述的突缘叉2包括叉耳4、安装孔5与连接毂6,所述的连接毂6两侧设置有两个叉耳4,所述的叉耳4上设置有同轴的安装孔5;所述的万向节十字轴3上设置有弹性挡圈15与安装孔5连接固定;所述的叉耳4上设置有内凹面7,所述的叉耳4之间设置有加强筋A8;所述的万向节叉1上设置有传动轴9,所述的传动轴9上设置有轴管10与花键套11,所述的花键套11外设置有防尘外壳12;所述的连接毂6上设置有加工部位13。所述的叉耳4仅中心面去除材料形成内凹面7,两侧保留设置有加强筋B14。所述的内凹面7斜度为10°,所述的内凹面7为倒置的U形结构,所述的内凹面7顶部与安装孔5相切。所述的加强筋B14筋宽16mm,所述的叉耳4的内部圆角16设定为R30。所述的加工部位13圆角设定为R2。所述的突缘叉2总成应力1227Mpa,部件应力最高最低分别为加工部位13 1199Mpa、内部圆角16 457Mpa、内凹面7 192Mpa。加工部位13可以保留作为后续优化模型的参考点,对内部圆角16、内凹面7两点进行优化。所述的内凹面7点应力富余,在此处去除材料,为了对其相邻的内部圆角16不额外增加应力,需保留两侧边一定宽度作为加强筋,设定内凹面7斜度18°,加强筋B14筋宽12,建立优化部件;用优化部件替换原部件,其它条件不变,继续对模型进行计算分析,得出应力数据;总成应力1303Mpa,部件应力最高最低分别为1268Mpa、465Mpa、225Mpa。总成和更改点应力均上升,证明更改有效果,下一步确定具体数值。对加强筋B14筋宽参数化设计,设定范围10~18;内部圆角16设定范围R25~30;加工部位13设定范围R1~5,分析计算,得到应力曲线。根据应力曲线,将加强筋B14筋宽设定16,内部圆角16设定R30;计算应力与最初模型比较,基本持平,证明内凹面仍可加深。根据锻造特性,设定内凹面(7)斜度为10°模型应力略微上升;设定加工部位13圆角R2,总成应力下降1/4,改进区域内凹面7与部件其它区域应力上升27%。
具体实施时:本发明基于汽车产品轻量化的理念,整车重量和油耗成正比的关系。结合有限元结构理论,应用分析软件,模拟工况,对部件给定边界条件进行分析计算、通过参数化设计,优化结构,目的是在减轻车辆和部件重量的同时,还能维持或提升车辆和部件的原有性能水平。减少原材料的耗用,减轻部件的重量,降低车辆油耗和排放,达到节能环保的效果。在现有零件的结构中,对部件分总成建模,模拟总成工况分析,给定边界条件进行分析计算,划分出该部件应力值最大和最小部位,应力最小值区域排 除不可变动点。从模型的表面和内部应力分布情况,排除不可变动点,识别出可以改变的点。重点对内凹面、内部圆角与加工部位进行优化。内凹面应力富余,在此处去除材料。考虑去除材料后,对其相邻的内部圆角区域不额外增加应力,需保留两侧边一定宽度作为加强筋,仅中心部位增加一内凹。计算应力与最初模型比较,基本持平,证明内凹面仍可加深。根据锻造特性,设定内凹面斜度为10°,内凹斜面10°模型应力略微上升。模型最大应力体现在加工部位台阶过渡部位,加工部位增加圆角后,总成应力下降1/4,改进区域内凹面与部件其它区域应力上升27%,但相比较其它部位仍很低,证明改进安全可靠;部件重量降低0.21Kg,减重5%,部件造型趋于美观。
本发明的上述实施例,仅仅是清楚地说明本发明所做的举例,但不用来限制本发明的保护范围,所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由各项权利要求限定。

Claims (2)

  1. 一种轻质耐磨万向节,包括万向节叉(1)、突缘叉(2)与万向节十字轴(3),所述的万向节十字轴(3)上设置有万向节叉(1)与突缘叉(2);其特征在于:所述的突缘叉(2)包括叉耳(4)、安装孔(5)与连接毂(6),所述的连接毂(6)两侧设置有两个叉耳(4),所述的叉耳(4)上设置有同轴的安装孔(5);所述的万向节十字轴(3)上设置有弹性挡圈(15)与安装孔(5)连接固定;所述的叉耳(4)上设置有内凹面(7),所述的叉耳(4)之间设置有加强筋A(8);所述的万向节叉(1)上设置有传动轴(9),所述的传动轴(9)上设置有轴管(10)与花键套(11),所述的花键套(11)外设置有防尘外壳(12);所述的连接毂(6)上设置有加工部位(13)。
  2. 根据权利要求1所述的一种轻质耐磨万向节,其特征在于:所述的叉耳(4)仅中心面去除材料形成内凹面(7),两侧保留设置有加强筋B(14);所述的内凹面(7)斜度为10°,所述的内凹面(7)为倒置的U形结构,所述的内凹面(7)顶部与安装孔(5)相切。3.根据权利要求1所述的一种轻质耐磨万向节,其特征在于:所述的加强筋B(14)筋宽16mm,所述的叉耳(4)的内部圆角(16)设定为R30;所述的加工部位(13)圆角设定为R2。4.根据权利要求1所述的一种轻质耐磨万向节,其特征在于:所述的突缘叉(2)总成应力1227Mpa,部件应力最高最低分别为加工部位(13)1199Mpa、内部圆角(16)457Mpa、内凹面(7)192Mpa;加工部位(13)可以保留作为后续优化模型的参考点,对内部圆角(16)、内凹面(7)两点进行优化。5.根据权利要求1所述的一种轻质耐磨万向节,其特征在于:所述的内凹面(7)点应力富余,在此处去除材料,为了对其相邻的内部圆角(16)不额外增加应力,需保留两侧边一定宽度作为加强筋,设定内凹面(7)斜度18°,加强筋B(14)筋宽12,建立优化部件;用优化部件替换原部件,其它条件不变,继续对模型进行计算分析,得出应力数据;总成应力1303Mpa,部件应力最高最低分别为1268Mpa、465Mpa、225Mpa;总成和更改点应力均上升,证明更改有效果,下一步确定具体数值。6.根据权利要求1所述的一种轻质耐磨万向节,其特征在于:对加强筋B(14)筋宽参数化设计,设定范围10~18;内部圆角(16)设定范围R25~30;加工部位(13)设定范围R1~5,分析计算,得到应力曲线。7.根据权利要求1所述的一种轻质耐磨万向节,其特征在于:根据应力曲线,将加强筋B(14)筋宽设定16,内部圆角(16)设定R30;计算应力与最初模型比较,基本持平,证明内凹面仍可加深;根据锻造特性,设定内凹面(7)斜度为10°模型应力略微上升;设定加工部位(13)圆角R2,总成应力下降1/4,改进区域内凹面(7)与部件其它区域应力上升27%。
PCT/CN2019/088046 2019-05-23 2019-05-23 一种轻质耐磨万向节 WO2020232688A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088046 WO2020232688A1 (zh) 2019-05-23 2019-05-23 一种轻质耐磨万向节

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088046 WO2020232688A1 (zh) 2019-05-23 2019-05-23 一种轻质耐磨万向节

Publications (1)

Publication Number Publication Date
WO2020232688A1 true WO2020232688A1 (zh) 2020-11-26

Family

ID=73459321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088046 WO2020232688A1 (zh) 2019-05-23 2019-05-23 一种轻质耐磨万向节

Country Status (1)

Country Link
WO (1) WO2020232688A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560169A (zh) * 2020-11-27 2021-03-26 东风越野车有限公司 车辆动力总成传动系统的参数化布置方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188474A (en) * 1990-04-12 1993-02-23 Nippon Seiko Kabushiki Kaisha Yoke for universal joint
CN206555310U (zh) * 2017-03-17 2017-10-13 温州市冠盛汽车零部件集团股份有限公司 一种轻量化角接触式高抗扭大摆角万向节总成
CN207421173U (zh) * 2017-11-07 2018-05-29 南京冠盛汽配有限公司 一种高效轻量化双偏置等速万向节
CN108825672A (zh) * 2017-07-24 2018-11-16 江苏格尔顿传动有限公司 一种轻质耐磨万向节

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188474A (en) * 1990-04-12 1993-02-23 Nippon Seiko Kabushiki Kaisha Yoke for universal joint
CN206555310U (zh) * 2017-03-17 2017-10-13 温州市冠盛汽车零部件集团股份有限公司 一种轻量化角接触式高抗扭大摆角万向节总成
CN108825672A (zh) * 2017-07-24 2018-11-16 江苏格尔顿传动有限公司 一种轻质耐磨万向节
CN207421173U (zh) * 2017-11-07 2018-05-29 南京冠盛汽配有限公司 一种高效轻量化双偏置等速万向节

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112560169A (zh) * 2020-11-27 2021-03-26 东风越野车有限公司 车辆动力总成传动系统的参数化布置方法及设备
CN112560169B (zh) * 2020-11-27 2024-05-14 东风越野车有限公司 车辆动力总成传动系统的参数化布置方法及设备

Similar Documents

Publication Publication Date Title
CN203395144U (zh) 基于拓扑优化的变速箱壳体结构
WO2020232688A1 (zh) 一种轻质耐磨万向节
CN109533041A (zh) 一种基于高强钢的全承载客车车架轻量化方法
CN105653799B (zh) 金属隔膜贮箱一体化设计方法
CN110717282B (zh) 一种兼顾轻量化及刚度的汽车整备质量的计算方法
CN108825672A (zh) 一种轻质耐磨万向节
CN106844862B (zh) 一种基于cae分析的铝制车身节点刚度评价方法
CN104500559A (zh) 一种止推轴瓦
CN112696258B (zh) 一种排气歧管热变形设计的控制方法
CN207416953U (zh) 副车架结构
CN203548918U (zh) 一种后轮组合式旋转油封
CN207349293U (zh) 一种轻质耐磨万向节
CN209756632U (zh) 一种降噪铝合金轮毂
CN208698877U (zh) 一种汽车车身及其后纵梁前段
CN207416444U (zh) 农用机车桥
CN208831585U (zh) 一种汽车飞轮总成
CN202264607U (zh) 重型汽车整体式铸钢桥壳
CN107344569A (zh) 一体式补强块及采用该补强块的前舱梁连接结构
CN201566691U (zh) 一种盘式制动器前桥转向节机构
CN208772146U (zh) 一种线材轧辊
CN206439235U (zh) 免铆钉安装的抽油烟机风轮用轴套
CN117113528A (zh) 一种一体化压铸中后地板结构有限元建模方法
CN204344669U (zh) 一种止推轴瓦
CN105138807A (zh) 均匀接触应力液压联轴节及其优化方法
CN203770364U (zh) 一种汽车球笼主轴装配结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929560

Country of ref document: EP

Kind code of ref document: A1