WO2020230753A1 - 電流測定装置 - Google Patents

電流測定装置 Download PDF

Info

Publication number
WO2020230753A1
WO2020230753A1 PCT/JP2020/018802 JP2020018802W WO2020230753A1 WO 2020230753 A1 WO2020230753 A1 WO 2020230753A1 JP 2020018802 W JP2020018802 W JP 2020018802W WO 2020230753 A1 WO2020230753 A1 WO 2020230753A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensors
current
measured
measuring device
conductors
Prior art date
Application number
PCT/JP2020/018802
Other languages
English (en)
French (fr)
Inventor
一馬 竹中
徹也 石川
美菜子 寺尾
晃太朗 小河
紗希 小箱
直記 野口
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to US17/609,984 priority Critical patent/US20220214383A1/en
Priority to EP20806018.6A priority patent/EP3971587A4/en
Publication of WO2020230753A1 publication Critical patent/WO2020230753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Definitions

  • One aspect of the present invention relates to a current measuring device.
  • the present application claims priority based on Japanese Patent Application No. 2019-091311 filed in Japan on May 14, 2019, the contents of which are incorporated herein by reference.
  • Typical examples of such a current measuring device include a CT (Current Transformer) type current measuring device, a zero flux type current measuring device, a Rogowski type current measuring device, and a Hall element type.
  • CT Current Transformer
  • the current measuring device and the like can be mentioned.
  • CT type and zero flux type current measuring devices For example, in CT type and zero flux type current measuring devices, a magnetic core in which a winding is wound is provided around the conductor to be measured, and the magnetic flux generated in the magnetic core by the current flowing through the conductor to be measured (primary side) is canceled. The current flowing through the winding (secondary side) is detected as described above. As a result, the CT type and zero flux type current measuring devices measure the current flowing through the conductor to be measured.
  • a Rogowski coil air core coil
  • the Rogowski coil air core coil
  • the Rogovski-type current measuring device measures the current flowing through the conductor to be measured.
  • Patent Document 1 discloses an example of a zero flux type current measuring device.
  • Patent Document 2 below discloses a current measuring device using a plurality of magnetic sensors. Specifically, in the current measuring device disclosed in Patent Document 2 below, two magnetic sensors are arranged at different distances from each conductor to be measured, and the magnetic sensor and the conductor to be measured are obtained from the outputs of these magnetic sensors. The distance from and is obtained, and the magnitude of the current flowing through the conductor to be measured is obtained using the obtained distance.
  • a plurality of conductors to be measured which are targets for measuring current
  • a pair of conductors to be measured in which currents flowing in opposite directions may be arranged close to each other in parallel.
  • there is a current path of a current flowing through one of the conductors to be measured for example, an outward path
  • a current path of a current flowing through the other conductor to be measured for example, a return path
  • the measurement accuracy will be affected by the magnetic field generated by the current flowing through the other current path. It gets worse. Specifically, when trying to measure the current flowing in the outward path, it is affected by the magnetic field generated by the current flowing in the return path. On the contrary, when trying to measure the current flowing in the return path, it is affected by the magnetic field generated by the current flowing in the outward path. Further, in such a case, the distance between the current paths is narrow, and it is often difficult to install the above-mentioned magnetic core around the conductor to be measured, for example.
  • One aspect of the present invention has been made in view of the above circumstances, in which currents in opposite directions flow, flexible arrangement is possible with respect to current paths arranged close to each other, and the current flowing through the current paths can be used. It is an object of the present invention to provide a current measuring device capable of measuring with high accuracy without contact.
  • the current measuring device (1) has four or more three arranged in a predetermined positional relationship so that the magnetic sensing directions are parallel to each other. Based on the detection results of the axial magnetic sensors (11 to 14), the four or more triaxial magnetic sensors, and the positional relationship of the four or more triaxial magnetic sensors, they are arranged close to each other and currents are applied in opposite directions.
  • a calculation unit (25) for obtaining a current flowing through a pair of flowing conductors to be measured (MC1, MC2) is provided.
  • the calculation unit uses the detection results of the four or more triaxial magnetic sensors and the positional relationship of the four or more triaxial magnetic sensors to form the pair.
  • Position estimation unit (25b) that estimates the position ( VA , V B , or v A , v B ) of the conductor to be measured, the position estimated by the position estimation unit, and the four or more three axes.
  • a current calculation unit (25d) for obtaining a current flowing through the pair of conductors to be measured based on the detection result of the magnetic sensor is provided.
  • the calculation unit is based on the detection results of the four or more triaxial magnetic sensors and the positional relationship of the four or more triaxial magnetic sensors.
  • a background magnetic field estimation unit (25c) for estimating a background magnetic field ( ⁇ or ⁇ ) that uniformly acts on one or more three-axis magnetic sensors is provided, and the current calculation unit is a position estimated by the position estimation unit. Based on the detection results of the four or more triaxial magnetic sensors and the background magnetic field estimated by the background magnetic field estimation unit, the current flowing through the pair of conductors to be measured is obtained.
  • the calculation unit further includes a noise removing unit (25a) for removing noise components included in the detection results of the four or more three-axis magnetic sensors.
  • the current flowing through the pair of conductors to be measured is obtained by using the detection results of the four or more triaxial magnetic sensors whose noise components have been removed by the noise removing unit.
  • the noise removing unit averages the detection results of the four or more three-axis magnetic sensors obtained at predetermined fixed periods. By individually performing the processing or the square root processing of the sum of squares, the noise components included in the detection results of the four or more three-axis magnetic sensors are removed.
  • the current measuring device includes a sensor head (10) including the four or more three-axis magnetic sensors, and a circuit unit (20) including the calculation unit.
  • the signal indicating the detection result of the four or more three-axis magnetic sensors is a digital signal.
  • the current measuring device by projecting a detection result of the three-axis magnetic sensor to the complex plane and h m, the current flowing through the pair of measured conductor and I, a projection position of the position of the four or more three-axis magnetic sensor in the complex plane and p m, and the position of the pair of measured conductor on the complex plane v a, and v B, the background on the complex plane
  • the calculation unit sets the current I to It is calculated using the formula of.
  • the magnetic field which is the detection result of the four or more triaxial magnetic sensors is H m
  • the current flowing through the pair of conductors to be measured is I
  • the current I is H m
  • j be the unit vector in the direction in which the current flows
  • be the background magnetic field obtained by restoring the background magnetic field on the complex plane to the XYZ orthogonal coordinate system, and the pair from each of the four or more three-axis magnetic sensors.
  • the calculation unit sets the current I to the current I. It is calculated using the formula of.
  • currents flowing in opposite directions can be flexibly arranged with respect to the current paths arranged close to each other, and the current flowing through the current paths can be measured accurately without contact. It has the effect of being able to do it.
  • currents flowing in opposite directions can be flexibly arranged with respect to the current paths arranged close to each other, and the current flowing through the current paths can be measured accurately without contact.
  • both the magnetic field generated by the current flowing in one of the current paths (for example, the outward path) and the magnetic field generated by the current flowing in the other one of the current paths (for example, the return path) are considered.
  • the position and orientation with respect to the current path are not restricted, and accurate current measurement is possible with a flexible arrangement.
  • the zero flux type current measuring device disclosed in Patent Document 1 described above it is necessary to provide a magnetic core having a certain size around the conductor to be measured. Therefore, it is difficult to install the zero flux type current measuring device disclosed in Patent Document 1 in a narrow place. Further, the Rogovski type current measuring device described above detects the voltage induced in the Rogovski coil. Therefore, the Rogovski type current measuring device cannot measure the direct current in principle. Further, in the low frequency region, the output signal is weak and the phase shifts, so that the measurement accuracy is poor. Further, in the current measuring device disclosed in Patent Document 2 described above, it is necessary to match the magnetic sensing direction of the magnetic sensor with the circumferential direction of the conductor to be measured. Therefore, in the current measuring device disclosed in Patent Document 2, the arrangement of the magnetic sensor is limited, and flexible arrangement is difficult.
  • the current path of the current supplied from the power supply includes a path in which the current flows out from the positive electrode of the power supply (outward path) and a path in which the current flows into the negative electrode of the power supply (return path).
  • the former route may be referred to as a return route, and the latter route may be referred to as an outward route. Therefore, for example, when trying to measure the current flowing in the outward path, it is affected by the magnetic field generated by the current flowing in the return path. On the contrary, when trying to measure the current flowing in the return path, it is affected by the magnetic field generated by the current flowing in the outward path. Therefore, the measurement accuracy of the current deteriorates.
  • the position and orientation of the triaxial magnetic sensors that is, four or more triaxial magnetic sensors arranged with a predetermined positional relationship
  • currents flowing in opposite directions can be flexibly arranged with respect to the current paths arranged close to each other, and the current flowing through the current paths can be measured accurately without contact.
  • FIG. 1 is a diagram schematically showing a current measuring device 1 according to an embodiment of the present invention.
  • the current measuring device 1 of the present embodiment includes a sensor head 10 and a circuit unit 20 connected by a cable CB.
  • Such a current measuring device 1 is arranged in parallel in close proximity to each other, and directly measures the current I flowing through the pair of conductors MC1 and MC2 to be measured in which currents flow in opposite directions in a non-contact manner.
  • the fact that the conductors MC1 and MC2 to be measured are close to each other means that the magnetic field generated by the current flowing through any one of the conductors MC1 and MC2 to be measured is a plurality of three-axis magnetic sensors provided in the sensor head 10.
  • the distance between the conductors MC1 and MC2 to be measured is set so narrow that the magnetic field generated by the above current acts non-uniformly on the plurality of triaxial magnetic sensors.
  • the conductors MC1 and MC2 to be measured are arbitrary conductors such as pins and bus bars of power semiconductors. In the following, for the sake of simplicity, the case where the conductors MC1 and MC2 to be measured are cylindrical conductors will be described.
  • the currents I flowing through the conductors MC1 and MC2 to be measured have opposite directions.
  • the current path of the current flowing through the conductor MC1 to be measured may be referred to as an “outward path”, and the current path of the current flowing through the conductor MC2 to be measured may be referred to as a “return path”.
  • the sensor head 10 is a member arranged at an arbitrary position with respect to the conductors MC1 and MC2 to be measured in an arbitrary posture in order to measure the current I flowing through the conductors MC1 and MC2 to be measured in a non-contact manner.
  • the sensor head 10 is made of a material (for example, a resin) that does not block the magnetic field (for example, the magnetic fields H 1 , H 2 , H 3 , H 4 shown in FIG. 1) generated by the current I flowing through the conductors MC1 and MC2 to be measured. Etc.).
  • the sensor head 10 is used as a probe for measuring the current I flowing through the conductors MC1 and MC2 to be measured in a non-contact manner, so to speak.
  • the sensor head 10 is provided with four three-axis magnetic sensors 11, 12, 13, and 14.
  • the three-axis magnetic sensors 11, 12, 13, and 14 are magnetic sensors having magnetic sensitivity directions on three axes orthogonal to each other.
  • the three-axis magnetic sensors 11, 12, 13, and 14 are arranged in a predetermined positional relationship so that their magnetic sensing directions are parallel to each other.
  • the first axes of the three-axis magnetic sensors 11, 12, 13, and 14 are parallel to each other
  • the second axes of the three-axis magnetic sensors 11, 12, 13, and 14 are parallel to each other
  • the triaxial magnetic sensors 11, 12, 13, and 14 are arranged in a predetermined direction at a predetermined interval so that the third axes of the, 12, 13, and 14 are parallel to each other.
  • the triaxial magnetic sensors 13, 11 and 12 are arranged at predetermined intervals in the first axis direction, and the triaxial magnetic sensors 11 and 14 are predetermined in the third axis direction. A case where they are arranged at intervals will be described.
  • the signal indicating the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 may be either an analog signal or a digital signal. However, when the signal indicating the detection result of the triaxial magnetic sensors 11, 12, 13, 14 is a digital signal, the signal indicating the detection result of the triaxial magnetic sensors 11, 12, 13, 14 is an analog signal. Compared with the case, the number of cable CBs connecting the sensor head 10 and the circuit unit 20 can be reduced.
  • the signal indicating the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 is an analog signal
  • the three-axis detection results are output for each of the three-axis magnetic sensors 11, 12, 13, and 14.
  • Each of the three cable CBs is required. Therefore, a total of 12 cable CBs are required.
  • the signal indicating the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 is a digital signal
  • only one cable CB is required.
  • the number of cable CBs is small, the flexibility of the cable CBs is improved, so that handling becomes easy, for example, when the sensor head 10 is arranged in a narrow space.
  • the circuit unit 20 measures the current I flowing through the conductors MC1 and MC2 to be measured based on the detection result (detection result of the triaxial magnetic sensors 11, 12, 13, 14) output from the sensor head 10.
  • the circuit unit 20 displays the measurement result of the current I or outputs it to the outside.
  • Any cable CB can be used to connect the sensor head 10 and the circuit unit 20, but it is desirable that the cable CB has flexibility, is easy to handle, and is unlikely to break.
  • FIG. 2 is a block diagram showing a main configuration of the current measuring device 1 according to the embodiment of the present invention.
  • the same reference numerals are given to the blocks corresponding to the configurations shown in FIG.
  • the details of the internal configuration of the circuit unit 20 will be mainly described with reference to FIG.
  • the circuit unit 20 includes an operation unit 21, a display unit 22, a memory 23, and a calculation unit 25.
  • the operation unit 21 is provided with various buttons such as a power button and a setting button, and outputs signals indicating operation instructions for the various buttons to the calculation unit 25.
  • the display unit 22 includes, for example, a display device such as a 7-segment LED (Light Emitting Diode) display or a liquid crystal display device.
  • the display unit 22 displays various information output from the calculation unit 25 (for example, information indicating the measurement result of the current I flowing through the conductors MC1 and MC2 to be measured).
  • the operation unit 21 and the display unit 22 may be physically separated. Further, the operation unit 21 and the display unit 22 may be physically integrated like a touch panel type liquid crystal display device having both a display function and an operation function.
  • the memory 23 includes, for example, a volatile or non-volatile semiconductor memory.
  • the memory 23 stores the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 output from the sensor head 10, the calculation results of the calculation unit 25 (measurement results of the current I flowing through the conductors MC1 and MC2 to be measured), and the like. To do.
  • the memory 23 may be provided with an auxiliary storage device such as an HDD (hard disk drive) or SSD (solid state drive) in addition to the above-mentioned semiconductor memory (or instead of the above-mentioned semiconductor memory).
  • HDD hard disk drive
  • SSD solid state drive
  • the calculation unit 25 stores the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 output from the sensor head 10 in the memory 23. Further, the calculation unit 25 reads out the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 stored in the memory 23, and performs a calculation to obtain the current I flowing through the conductors MC1 and MC2 to be measured.
  • the calculation unit 25 includes a noise removal unit 25a, a position estimation unit 25b, a background magnetic field estimation unit 25c, and a current calculation unit 25d.
  • the noise removing unit 25a removes noise components included in the detection results of the three-axis magnetic sensors 11, 12, 13, and 14. Specifically, the noise removing unit 25a averages a plurality of detection results obtained from each of the three-axis magnetic sensors 11, 12, 13, and 14 at predetermined fixed periods (for example, 1 second). Chemical processing or sum of squares square root processing is performed individually. As a result, the noise removing unit 25a removes the noise component included in the detection results of the three-axis magnetic sensors 11, 12, 13, and 14. The three-axis magnetic sensors 11, 12, 13, and 14 output the three-axis detection results, respectively. The noise component is removed by the noise removing unit 25a individually for the detection result of each axis. The reason for performing such noise removal is to improve the SN ratio (signal-to-noise ratio) of the triaxial magnetic sensors 11, 12, 13, and 14 to improve the measurement accuracy of the current I.
  • SN ratio signal-to-noise ratio
  • the position estimation unit 25b uses the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 and the positional relationship of the three-axis magnetic sensors 11, 12, 13, and 14 to position the conductors MC1 and MC2 to be measured (that is, that is). , Positions of the conductors MC1 and MC2 to be measured with respect to the three-axis magnetic sensors 11, 12, 13, and 14). Such estimation is performed in consideration of both the magnetic field generated by the current I flowing through the conductor MC1 to be measured and the magnetic field generated by the current I flowing through the conductor MC2 to be measured. This is to measure the current I flowing through the MC2 with high accuracy. The details of the processing performed by the position estimation unit 25b will be described later.
  • the background magnetic field estimation unit 25c is based on the detection results of the triaxial magnetic sensors 11, 12, 13, 14 and the positional relationship of the triaxial magnetic sensors 11, 12, 13, 14 and the triaxial magnetic sensors 11, 12, 13 , 14
  • the background magnetic field for example, geomagnetism
  • the reason for making such an estimation is to eliminate the influence of the background magnetic field (for example, the geomagnetism) and measure the current I flowing through the conductors MC1 and MC2 with high accuracy.
  • the background magnetic field estimation unit 25c can be omitted when it is not necessary to consider the influence of the background magnetic field. The details of the processing performed by the background magnetic field estimation unit 25c will be described later.
  • the current calculation unit 25d obtains the current flowing through the conductors MC1 and MC2 to be measured based on the position estimated by the position estimation unit 25b and the detection results of the three-axis magnetic sensors 11, 12, 13, and 14.
  • the current calculation unit 25d receives the position estimated by the position estimation unit 25b, the detection results of the three-axis magnetic sensors 11, 12, 13, and 14, and the detection results.
  • the current flowing through the conductors MC1 and MC2 to be measured is obtained based on the background magnetic field estimated by the background magnetic field estimation unit 25c. The details of the processing performed by the current calculation unit 25d will be described later.
  • the circuit unit 20 is separated from the sensor head 10 and is connected to the sensor head 10 via the cable CB.
  • the magnetic field detection function triaxial magnetic sensor 11, 12, 13, 14
  • the calculation function calculation unit 25
  • FIG. 3 is a diagram for explaining the principle of measuring the current by the current measuring device 1 according to the embodiment of the present invention.
  • FIG. 3 only the triaxial magnetic sensor 11 provided on the sensor head 10 is shown in consideration of visibility, and the triaxial magnetic sensors 12, 13 and 14 are not shown.
  • a coordinate system XYZ Cartesian coordinate system
  • the XYZ Cartesian coordinate system is a coordinate system defined according to the position and orientation of the sensor head 10.
  • the origin is set at the position of the triaxial magnetic sensor 11.
  • the X-axis is set in the first axis direction of the three-axis magnetic sensors 11, 12, 13, 14 (arrangement direction of the three-axis magnetic sensors 13, 11, 12: see FIG. 1).
  • the Y axis is set in the second axis direction of the three-axis magnetic sensors 11, 12, 13, and 14.
  • the Z axis is set in the third axis direction of the three axis magnetic sensors 11, 12, 13, 14 (arrangement direction of the three axis magnetic sensors 11, 14: see FIG. 1).
  • P m is a vector. That is, the position of the triaxial magnetic sensor 11 is represented by P 1 . Further, representative of the position of the three-axis magnetic sensor 12 at P 2. Further, representative of the position of the three-axis magnetic sensor 13 at P 3. , Also represents the position of the three-axis magnetic sensor 14 at P 4. For example, assuming that the distance between the three-axis magnetic sensors 13, 11 and 12 in the X direction and the distance between the three-axis magnetic sensors 11 and 14 in the Z direction are d [m] (see FIG. 1), the three-axis magnetic sensor 11 The positions of, 12, 13, and 14 are represented as follows.
  • HAm 1, 2, 3, 4
  • HAm is a vector. That represents a magnetic field formed at the position of the three-axis magnetic sensor 11 by a current I flowing through the measured conductor MC1 and H A1. Further, representative of the magnetic field formed at the position of the three-axis magnetic sensor 12 by a current I flowing through the measured conductor MC1 and H A2. Similarly, representing the magnetic field formed at the position of the three-axis magnetic sensor 13 by a current I flowing through the measured conductor MC1 and H A3. Further, representative of the magnetic field formed at the position of the three-axis magnetic sensor 14 by a current I flowing through the measured conductor MC1 and H A4.
  • H Bm is a vector. That is, the magnetic field formed at the position of the triaxial magnetic sensor 11 by the current I flowing through the conductor MC2 to be measured is represented as H B1 .
  • the magnetic field formed at the position of the triaxial magnetic sensor 12 by the current I flowing through the conductor MC2 to be measured is referred to as H B2 .
  • the magnetic field formed at the position of the triaxial magnetic sensor 13 by the current I flowing through the conductor MC2 to be measured is referred to as H B3 .
  • the magnetic field formed at the position of the triaxial magnetic sensor 14 by the current I flowing through the conductor MC2 to be measured is represented by H B4 .
  • the background magnetic field that uniformly acts on the three-axis magnetic sensors 11, 12, 13, and 14 is represented by ⁇ .
  • is a vector.
  • the magnetic field H m formed at the positions of the three-axis magnetic sensors 11, 12, 13, and 14 is expressed by the following equation (2) according to Ampere's law.
  • the first term on the right side of the above equation (2) is a magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, 13, and 14 by the current I flowing through the conductor MC1 to be measured (that is, H in the above equation (1)). Am ) is shown.
  • the second term on the right side of the above equation (2) is a magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, 13, and 14 by the current I flowing through the conductor MC2 to be measured (that is, H in the above equation (1)). Bm ) is shown.
  • the sign of the second term on the right side of the above equations (1) and (2) is negative because the direction of the current I flowing through the conductor MC2 to be measured is the direction of the current I flowing through the conductor MC1 to be measured. Because it is the opposite.
  • R Am in the above equation (2) indicates a vector parallel to the perpendicular line drawn from each of the three-axis magnetic sensors 11, 12, 13, and 14 to the conductor MC1 to be measured.
  • R Bm in the above equation (2) indicates a vector parallel to the perpendicular line drawn from each of the three-axis magnetic sensors 11, 12, 13, and 14 to the conductor MC2 to be measured.
  • j in the above equation (2) is a unit vector in the direction of the current I.
  • Equation (3) E is the identity matrix.
  • the position of the conductor MC1 to be measured is VA .
  • the position of the conductor MC2 to be measured is V B.
  • V A and V B are vectors.
  • the vectors r Am and r Bm in the above equation (2) are represented by the following equation (3).
  • unit vector j in the direction of the current I for example by using a detection result of the three-axis magnetic sensor 11, 12, 13 (magnetic field H 1, H 2, H 3 ), is represented by the following formula (4) To.
  • FIG. 4 is a view of the conductors MC1 and MC2 to be measured and the triaxial magnetic sensors 11, 12, 13, and 14 as viewed from the direction D1 in FIG. Note that j1 and j2 in FIG. 4 are unit vectors orthogonal to each other in the complex plane ⁇ .
  • the direction D1 in FIG. 4 is a view of the conductors MC1 and MC2 to be measured and the triaxial magnetic sensors 11, 12, 13, and 14 as viewed from the direction D1 in FIG. Note that j1 and j2 in FIG. 4 are unit vectors orthogonal to each other in the complex plane ⁇ .
  • FIG. 3 is a direction along the longitudinal direction of the conductors MC1 and MC2 to be measured (that is, a direction opposite to the direction of the current I flowing through the conductor MC1 to be measured, and a direction of the current I flowing through the conductor MC2 to be measured.
  • the conductors MC1 and MC2 to be measured and the triaxial magnetic sensors 11, 12, 13, and 14 are shown by omitting the illustration of the sensor head 10 for easy understanding.
  • the triaxial magnetic sensors 11, 12, 13, 14 are generated by the current I flowing in the direction perpendicular to the paper surface (that is, the direction along the unit vector j or the direction opposite to the unit vector j).
  • the magnetic field formed at the position of is perpendicular to the unit vector j. Therefore, the magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 can be projected onto the complex plane ⁇ orthogonal to the direction in which the current I flows, without changing its magnitude.
  • Magnetic field h m at the position of the three-axis magnetic sensor 11, 12, 13, 14 in the projective the complex plane above ⁇ is expressed by the following equation (6).
  • i in the following equation (6) is an imaginary unit.
  • the magnetic field h m in (7) above is a projection of the detection results (magnetic field H m ) of the three-axis magnetic sensors 11, 12, 13, and 14 onto the complex plane ⁇ .
  • the position p m is obtained by projecting the position P m of the three-axis magnetic sensor 11, 12, 13 and 14 in the complex plane gamma. Therefore, the magnetic field h m and position p m can be obtained by calculation. Therefore, the current I flowing through the conductors MC1 and MC2 to be measured can be obtained by obtaining the positions v A and v B of the conductors MC1 and MC2 to be measured on the complex plane ⁇ and the background magnetic field ⁇ on the complex plane ⁇ . It can be obtained by using the equation 7).
  • the right side of the above equation (8) is a constant that does not depend on the subscript m. Therefore, as shown in the following equation (9), the right side of the above equation (8) is set as the variable k. Further, as shown in the following equation (9), the sum of the positions v A and v B of the conductors MC1 and MC2 to be measured is defined as the variable v.
  • equation (11) a m, b m, c m , d m, by placing the e m, the equation (11) is expressed by the following equation (12).
  • variable v can be expressed by the following equation (15) as a function of the background magnetic field ⁇ * .
  • the equation (18) is a quadratic equation of phi *, it is possible to determine the background field phi * from the following equation (19). Although two background magnetic fields ⁇ * can be obtained by using the unknown variable k, only one background magnetic field ⁇ * that satisfies Eq. (6) is determined. As a result, the background magnetic field ⁇ * on the complex plane ⁇ is estimated.
  • the product of the positions v A and v B of the conductors MC1 and MC2 to be measured on the complex plane ⁇ ( v A v B ) can be obtained.
  • the background magnetic field ⁇ * on the complex plane ⁇ is estimated from the above equation (19). Further, the positions v A and v B of the conductors MC1 and MC2 to be measured on the complex plane ⁇ are estimated from the above equation (10). Therefore, the current I flowing through the conductors MC1 and MC2 to be measured can be obtained by substituting the background magnetic field ⁇ and the positions v A and v B of the conductors MC1 and MC2 to be measured into the above equation (7).
  • the magnetic field H m in the above equation (20) is the detection result of the three-axis magnetic sensors 11, 12, 13, and 14.
  • J in the above equation (20) is a unit vector in the direction of the current I.
  • j is obtained from the above-mentioned equation (4) using the detection results (magnetic fields H 1 , H 2 , H 3 ) of the three-axis magnetic sensors 11, 12, and 13. Therefore, the current I flowing through the conductors MC1 and MC2 to be measured is a vector r parallel to the background magnetic field ⁇ and the perpendicular line drawn from each of the three-axis magnetic sensors 11, 12, 13, and 14 to each of the conductors MC1 and MC2 to be measured. If Am and r Bm are obtained, it can also be obtained by using the above equation (20).
  • the background magnetic field ⁇ is obtained by restoring the background magnetic field ⁇ on the complex plane ⁇ estimated from the above equation (19) to the XYZ Cartesian coordinate system.
  • the vectors r Am and r Bm are obtained by restoring the positions v A and v B of the conductors MC1 and MC2 to be measured on the complex plane ⁇ to the XYZ Cartesian coordinate system so that the positions VA and MC2 of the conductors to be measured MC1 and MC2 It can be obtained by obtaining V B and substituting these into the above-mentioned equation (3).
  • the current I flowing through the conductors MC1 and MC2 to be measured can be measured by using the above-mentioned equation (7) or the above-mentioned equation (20).
  • FIG. 5 is a flowchart showing an outline of the operation of the current measuring device 1 according to the embodiment of the present invention.
  • the flowchart shown in FIG. 5 is started, for example, at a fixed cycle (for example, 1 second).
  • the triaxial magnetic sensors 11, 12, 13, and 14 first detect the magnetic field formed by the current I flowing through the conductors MC1 and MC2 to be measured (step S11).
  • the magnetic field is detected by the three-axis magnetic sensors 11, 12, 13, and 14, for example, about 1000 times per second.
  • the calculation unit 25 of the circuit unit 20 performs a process of accumulating the detection data indicating the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 in the memory 23 (step S12).
  • the noise removing unit 25a performs a process of removing noise from the detected data (step S13). Specifically, the noise removing unit 25a reads out the detection data stored in the memory 23 and performs averaging processing or square sum square root processing on the read detection data to remove the noise component included in the detection data. Perform the process of removing. Since the sign disappears when the sum of square root processing is performed, the sign is added separately.
  • the three-axis magnetic sensors 11, 12, 13, and 14 output three types of detection data that output the detection results of the three axes, respectively. The noise component is removed by the noise removing unit 25a individually for the detection data of each axis.
  • FIG. 6 is a flowchart showing details of the process of step S14 in FIG.
  • the calculation unit 25 performs a process of calculating the direction of the current I flowing through the conductors MC1 and MC2 to be measured (step S21).
  • the calculation unit 25 uses the detection results of the three-axis magnetic sensors 11, 12, and 13 to perform the calculation shown in the above equation (4) in the direction of the current I flowing through the conductors MC1 and MC2 to be measured.
  • the process of calculating the unit vector j is performed.
  • the positions V A and V B of the conductors MC1 and MC2 to be measured are unknown. Therefore, the positions v A and v B of the conductors MC1 and MC2 to be measured projected on the complex plane ⁇ are unknown values.
  • the background magnetic field ⁇ on the complex plane ⁇ is also unknown.
  • the background magnetic field estimation unit 25c performs a process of estimating an unknown background magnetic field ⁇ on the complex plane ⁇ (step S23). Specifically, the background magnetic field estimation unit 25c performs a process of estimating an unknown background magnetic field ⁇ by using the above-mentioned equation (19).
  • the coefficients ⁇ , ⁇ , and ⁇ in the above-mentioned equation (19) are the three axes projected on the complex plane ⁇ with reference to the above-mentioned equations (18), (14), and (12). a position p m of the magnetic sensors 11, 12, 13, and the magnetic field h m which is projected on the complex plane ⁇ element. Therefore, the background magnetic field estimation unit 25c detects the unknown background magnetic field ⁇ on the complex plane ⁇ with the detection results of the triaxial magnetic sensors 11, 12, 13, and 14 and the positions of the triaxial magnetic sensors 11, 12, 13, and 14. Estimate based on the relationship.
  • a mn, B mn, C mn , D mn is set to the position p m of the three-axis magnetic sensor 11, 12, 13 and 14 that are projected on the complex plane gamma, complex plane gamma It is obtained from the magnetic field h m projected above.
  • the background magnetic field ⁇ estimated in the process of step S23 and the above variable v are substituted into the above-mentioned equation (12) to obtain the variable k.
  • the coefficient a m of the formula, b m, c m, d m, e m is set to the position p m of which is projected on the complex plane ⁇ triaxial magnetic sensor 11, 12, It is obtained from the magnetic field h m projected on the complex plane ⁇ .
  • the current calculation unit 25d performs a process of calculating the current I flowing through the conductors MC1 and MC2 to be measured (step S15). Specifically, the current calculating portion 25d, the position p m of which is projected on the complex plane gamma triaxial magnetic sensor 11, 12, 13 and 14, the magnetic field h m which is projected on the complex plane gamma, and step S14 Using the positions v A , v B and the background magnetic field ⁇ of the conductors MC1 and MC2 to be measured on the complex number plane ⁇ estimated by the above processing, the operation shown in the above equation (7) is performed to perform the conductors MC1 and MC1 to be measured. The current I flowing through the MC2 is calculated.
  • step S15 the current calculation unit 25d performs the calculation shown in the above equation (20) instead of the above equation (7) to calculate the current I flowing through the conductors MC1 and MC2 to be measured. Is also good.
  • the current calculation unit 25d first restores the background magnetic field ⁇ on the complex plane ⁇ to the XYZ Cartesian coordinate system to obtain the background magnetic field ⁇ . Perform processing. Further, the current calculation unit 25d restores the positions v A and v B of the conductors MC1 and MC2 to be measured on the complex plane ⁇ to the XYZ Cartesian coordinate system to obtain the positions V A and V B of the conductors to be measured MC1 and MC2. Perform processing.
  • the current calculation unit 25d described the positions V A and V B of the obtained conductors MC1 and MC2 and the positions P m of the triaxial magnetic sensors 11, 12, 13 and 14 as described above (3). Substituting into the equation, the process of obtaining the vectors r Am and r Bm is performed. Then, the current calculation unit 25d adds the background magnetic field ⁇ , the vectors r Am , and r Bm obtained in the above processing, the unit vector j calculated in step S21 of FIG. 6, and the triaxial magnetic sensors 11, 12, Using the magnetic field H m detected in 13 and 14, the calculation shown in the above equation (20) is performed to calculate the current I flowing through the conductors MC1 and MC2 to be measured.
  • the conductors MC1 and MC2 to be measured are used by using the detection results of the triaxial magnetic sensors 11, 12, 13 and 14 and the positional relationship of the triaxial magnetic sensors 11, 12, 13 and 14.
  • the position and orientation of the sensor head 10 with respect to the conductors MC1 and MC2 to be measured may be arbitrary.
  • the detection results of the three-axis magnetic sensors 11, 12, 13, and 14 can be obtained regardless of whether the current I is a direct current or an alternating current.
  • the sensor head 10 provided with the triaxial magnetic sensors 11, 12, 13, and 14 and the circuit unit 20 provided with the calculation unit 25 are separated and connected by a cable CB.
  • the sensor head 10 can be easily handled, and the sensor head 10 can be easily installed in a narrow place, for example, so that the sensor head 10 can be arranged more flexibly.
  • the present invention is not limited to the above embodiment and can be freely changed within the scope of the present invention.
  • the three-axis magnetic sensors 13, 11 and 12 are separated by the interval d [m] in the first axis direction (x-axis direction), and the three-axis magnetic sensors 11 and 14 are separated in the third axis direction (x-axis direction).
  • An example of being separated by an interval d [m] in the z-axis direction) has been described.
  • the triaxial magnetic sensors 11, 12, 13, and 14 have an arbitrary relative positional relationship as long as their magnetic sensing directions are set to be parallel to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

電流測定装置は、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置された4つ以上の三軸磁気センサと、4つ以上の三軸磁気センサの検出結果と4つ以上の三軸磁気センサの位置関係とに基づいて、近接配置され、互いに反対方向に電流が流れる一対の被測定導体に流れる電流を求める演算部と、を備える。

Description

電流測定装置
 本発明の一態様は、電流測定装置に関する。
 本願は、2019年5月14日に、日本に出願された特願2019-091311号に基づき優先権を主張し、その内容をここに援用する。
 従来から、被測定導体に流れる電流を非接触で直接的に測定することが可能な様々な電流測定装置が開発されている。このような電流測定装置の代表的なものとしては、例えば、CT(Current Transformer:変流器)方式の電流測定装置、ゼロフラックス方式の電流測定装置、ロゴスキー方式の電流測定装置、ホール素子方式の電流測定装置等が挙げられる。
 例えば、CT方式及びゼロフラックス方式の電流測定装置は、巻線が巻回された磁気コアを被測定導体の周囲に設け、被測定導体(一次側)に流れる電流によって磁気コアに生ずる磁束を打ち消すように巻線(二次側)に流れる電流を検出する。これにより、CT方式及びゼロフラックス方式の電流測定装置は、被測定導体に流れる電流を測定する。
 また、ロゴスキー方式の電流測定装置は、ロゴスキーコイル(空芯コイル)を被測定導体の周囲に設け、被測定導体に流れる交流電流によって生ずる磁界がロゴスキーコイルと鎖交することでロゴスキーコイルに誘起される電圧を検出する。これにより、ロゴスキー方式の電流測定装置は、被測定導体に流れる電流を測定する。
 以下の特許文献1には、ゼロフラックス方式の電流測定装置の一例が開示されている。また、以下の特許文献2には、複数の磁気センサを用いた電流測定装置が開示されている。具体的に、以下の特許文献2に開示された電流測定装置は、被測定導体に対してそれぞれ異なる距離をとって2つの磁気センサを配置し、これら磁気センサの出力から磁気センサと被測定導体との距離を求め、求めた距離を用いて被測定導体に流れる電流の大きさを求めている。
特開2005-55300号公報 特開2011-164019号公報
 ところで、電流の測定対象である複数の被測定導体が、近接して配置されている場合がある。例えば、互いに反対方向の電流が流れている一対の被測定導体が、近接して平行に配置されている場合がある。このような場合には、一方の被測定導体を流れる電流の電流経路(例えば、往路)と、他方の被測定導体を流れる電流の電流経路(例えば、復路)とが存在する。
 このような場合において、一対の電流経路のうちの何れか一方の電流経路を流れる電流を測定しようとすると、何れか他方の電流経路を流れる電流によって生成される磁界の影響を受け、測定精度が悪化してしまう。具体的には、往路を流れる電流を測定しようとすると、復路を流れる電流によって生成される磁界の影響を受ける。逆に、復路を流れる電流を測定しようとすると、往路を流れる電流によって生成される磁界の影響を受ける。また、このような場合においては、電流経路間が狭く、例えば前述した磁気コアを被測定導体の周囲に設置するのが困難なことが多い。
 本発明の一態様は、上記事情に鑑みてなされたものであり、互いに反対方向の電流が流れ、近接配置される電流経路に対して柔軟な配置が可能であり、該電流経路を流れる電流を非接触で精度良く測定することができる電流測定装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様による電流測定装置(1)は、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置された4つ以上の三軸磁気センサ(11~14)と、前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とに基づいて、近接配置され、互いに反対方向に電流が流れる一対の被測定導体(MC1、MC2)に流れる電流を求める演算部(25)と、を備える。
 また、本発明の一態様による電流測定装置は、前記演算部が、前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とを用いて、前記一対の被測定導体の位置(V、V、又は、v、v)を推定する位置推定部(25b)と、前記位置推定部によって推定された位置と、前記4つ以上の三軸磁気センサの検出結果とに基づいて、前記一対の被測定導体に流れる電流を求める電流算出部(25d)と、を備える。
 また、本発明の一態様による電流測定装置は、前記演算部が、前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とに基づいて、前記4つ以上の三軸磁気センサに均一に作用する背景磁界(Φ又はφ)を推定する背景磁界推定部(25c)を備えており、前記電流算出部が、前記位置推定部によって推定された位置と、前記4つ以上の三軸磁気センサの検出結果と、前記背景磁界推定部で推定された背景磁界とに基づいて、前記一対の被測定導体に流れる電流を求める。
 また、本発明の一態様による電流測定装置は、前記演算部が、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(25a)を更に備えており、前記雑音除去部によって雑音成分が除去された前記4つ以上の三軸磁気センサの検出結果を用いて前記一対の被測定導体に流れる電流を求める。
 また、本発明の一態様による電流測定装置は、前記雑音除去部が、予め規定された一定の期間毎に得られる、前記4つ以上の三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する。
 また、本発明の一態様による電流測定装置は、前記4つ以上の三軸磁気センサを備えるセンサヘッド(10)と、前記演算部を備える回路部(20)と、を備える。
 また、本発明の一態様による電流測定装置は、前記4つ以上の三軸磁気センサの検出結果を示す信号が、ディジタル信号である。
 また、本発明の一態様による電流測定装置は、前記4つ以上の三軸磁気センサの検出結果を複素数平面に射影した磁界をhとし、前記一対の被測定導体を流れる電流をIとし、前記4つ以上の三軸磁気センサの位置を前記複素数平面に射影した位置をpとし、複素数平面上における前記一対の被測定導体の位置をv,vとし、前記複素数平面上における背景磁界をφとした場合に、前記演算部は、前記電流Iを、
Figure JPOXMLDOC01-appb-M000003
の式を用いて求める。
 また、本発明の一態様による電流測定装置は、前記4つ以上の三軸磁気センサの検出結果をである磁界をHとし、前記一対の被測定導体を流れる電流をIとし、前記電流Iが流れる方向の単位ベクトルをjとし、複素数平面上における背景磁界を、XYZ直交座標系に復元することにより得られる背景磁界をΦとし、前記4つ以上の三軸磁気センサの各々から前記一対の被測定導体の各々に下ろした垂線に平行なベクトルをrAm,rBmとした場合に、前記演算部は、前記電流Iを、
Figure JPOXMLDOC01-appb-M000004
の式を用いて求める。
 本発明の一態様によれば、互いに反対方向の電流が流れ、近接配置される電流経路に対して柔軟な配置が可能であり、該電流経路を流れる電流を非接触で精度良く測定することができるという効果がある。
本発明の一実施形態による電流測定装置を模式的に示す図である。 本発明の一実施形態による電流測定装置の要部構成を示すブロック図である。 本発明の一実施形態による電流測定装置による電流の測定原理を説明するための図である。 被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。 本発明の一実施形態による電流測定装置の動作の概要を示すフローチャートである。 図5中のステップS14の処理の詳細を示すフローチャートである。
 以下、図面を参照して本発明の一実施形態による電流測定装置について詳細に説明する。以下では、まず本発明の実施形態の概要について説明し、続いて本発明の各実施形態の詳細について説明する。
〔概要〕
 本発明の実施形態は、互いに反対方向の電流が流れ、近接配置される電流経路に対して柔軟な配置が可能であり、該電流経路を流れる電流を非接触で精度良く測定することを可能とする。具体的には、電流経路の何れか一方(例えば、往路)を流れる電流によって生成される磁界と、電流経路の何れか他方(例えば、復路)を流れる電流によって生成される磁界との双方を考慮して、電流経路を互いに反対方向に流れて大きさが同じ電流を、非接触で精度良く測定することを可能とする。その際、電流経路に対する位置や姿勢が制限されず、柔軟な配置にて精度良い電流の測定を可能とする。
 近年、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)の開発工程において、SiC(シリコンカーバイド)等のパワー半導体のピンに流れる電流や、組み立て後のバスバーに流れる電流を直接的に測定したいという要求がある。パワー半導体はピンのピッチが狭いものが多い。バスバーは周辺のスペースが限られている場所に設置されることがある。このようなパワー半導体やバスバー等に対して、電流測定時の設置を柔軟に行うことが可能な電流測定装置が望まれている。また、ハイブリッド自動車や電気自動車では、例えばバッテリから供給される直流電流やモータに流れる交流電流が取り扱われる。そのため、直流電流及び低周波(例えば、数百[Hz]程度以下)の交流電流を非接触で測定可能な電流測定装置が望まれている。
 しかしながら、上述した特許文献1に開示されたゼロフラックス方式の電流測定装置は、ある程度の大きさを有する磁気コアを被測定導体の周囲に設ける必要がある。そのため、特許文献1に開示されたゼロフラックス方式の電流測定装置は、狭い場所への設置が困難である。また、上述したロゴスキー方式の電流測定装置は、ロゴスキーコイルに誘起される電圧を検出している。そのため、ロゴスキー方式の電流測定装置は、原理的に直流電流の測定を行うことはできない。また低周波領域では、出力信号が微弱であるとともに位相がずれるため、測定精度が悪い。また、上述した特許文献2に開示された電流測定装置は、磁気センサの感磁方向を被測定導体の円周方向に一致させる必要がある。そのため、特許文献2に開示された電流測定装置では、磁気センサの配置が制限されてしまい柔軟な配置が困難である。
 また、電流は、一般的に電源の正極から流出した後に、負荷等を経て電源の負極に流入する。そのため、電源から供給される電流の電流経路には、電流が電源の正極から流出する経路(往路)と、電流が電源の負極に流入する経路(復路)とがある。尚、前者の経路を復路といい、後者の経路を往路という場合もある。このため、例えば、往路を流れる電流を測定しようとすると、復路を流れる電流によって生成される磁界の影響を受ける。逆に、復路を流れる電流を測定しようとすると、往路を流れる電流によって生成される磁界の影響を受ける。よって、電流の測定精度が悪化してしまう。
 本発明の実施形態では、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置された4つ以上の三軸磁気センサと、4つ以上の三軸磁気センサの検出結果と4つ以上の三軸磁気センサの位置関係とに基づいて、近接配置されて互いに反対方向に電流が流れる一対の被測定導体に流れる電流を求める。電流を求める際には、一対の被測定導体に対する三軸磁気センサ(つまり、予め規定された位置関係をもって配置された4つ以上の三軸磁気センサ)の位置や姿勢は任意である。これにより、互いに反対方向の電流が流れ、近接配置される電流経路に対して柔軟な配置が可能であり、該電流経路を流れる電流を非接触で精度良く測定することができる。
〔実施形態〕
 〈電流測定装置の構成〉
 図1は、本発明の一実施形態による電流測定装置1を模式的に示す図である。図1に示す通り、本実施形態の電流測定装置1は、ケーブルCBによって接続されたセンサヘッド10及び回路部20を備える。このような電流測定装置1は、近接して平行に配置され、互いに反対方向に電流が流れる一対の被測定導体MC1,MC2に流れる電流Iを非接触で直接的に測定する。
 ここで、被測定導体MC1,MC2が近接しているとは、被測定導体MC1,MC2の何れか一方に流れる電流によって生成される磁界が、センサヘッド10に設けられた複数の三軸磁気センサ(詳細は後述する)に均一に作用するとみなすことができない程度に、被測定導体MC1,MC2の間隔が狭く設定される場合をいう。言い換えると、上記の電流によって生成される磁界が、上記の複数の三軸磁気センサに不均一に作用する程度に、被測定導体MC1,MC2の間隔が狭く設定される場合をいう。
 尚、被測定導体MC1,MC2は、例えばパワー半導体のピンやバスバー等の任意の導体である。以下では、説明を簡単にするために、被測定導体MC1,MC2は、円柱形状の導電体である場合について説明する。被測定導体MC1,MC2に流れる電流Iは、その流れの方向が互いに反対である。以下、被測定導体MC1を流れる電流の電流経路を「往路」といい、被測定導体MC2を流れる電流の電流経路を「復路」ということがある。
 センサヘッド10は、被測定導体MC1,MC2に流れる電流Iを非接触で測定するために、被測定導体MC1,MC2に対して任意の位置に任意の姿勢で配置される部材である。このセンサヘッド10は、被測定導体MC1,MC2に流れる電流Iによって生成される磁界(例えば、図1中に示す磁界H,H,H,H)を遮らない材質(例えば、樹脂等)によって形成される。このセンサヘッド10は、いわば、被測定導体MC1,MC2に流れる電流Iを非接触で測定するためのプローブとして用いられる。
 センサヘッド10には、4つの三軸磁気センサ11,12,13,14が設けられている。三軸磁気センサ11,12,13,14は、互いに直交する三軸に感磁方向を有する磁気センサである。三軸磁気センサ11,12,13,14は、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置されている。例えば、三軸磁気センサ11,12,13,14の第1軸が互いに平行になり、三軸磁気センサ11,12,13,14の第2軸が互いに平行になり、且つ三軸磁気センサ11,12,13,14の第3軸が互いに平行になるように、三軸磁気センサ11,12,13,14は、所定の方向に所定の間隔をもって配置されている。尚、以下では、図1に示す通り、三軸磁気センサ13,11,12が、第1軸方向に所定の間隔をもって配列され、三軸磁気センサ11,14が、第3軸方向に所定の間隔をもって配列されている場合について説明する。
 三軸磁気センサ11,12,13,14の検出結果を示す信号は、アナログ信号及びディジタル信号の何れでも良い。但し、三軸磁気センサ11,12,13,14の検出結果を示す信号がディジタル信号である場合には、三軸磁気センサ11,12,13,14の検出結果を示す信号がアナログ信号である場合に比べて、センサヘッド10と回路部20とを接続するケーブルCBの本数を少なくすることができる。
 例えば、三軸磁気センサ11,12,13,14の検出結果を示す信号がアナログ信号である場合には、三軸磁気センサ11,12,13,14の各々について三軸の検出結果を出力する3本のケーブルCBがそれぞれ必要になる。そのため、計12本のケーブルCBが必要になる。これに対し、三軸磁気センサ11,12,13,14の検出結果を示す信号がディジタル信号である場合には、1本のケーブルCBのみで良い。ケーブルCBの本数が少ないと、ケーブルCBの屈曲性が向上するため、例えばセンサヘッド10を狭い空間内に配置する際にハンドリングが容易になる。
 回路部20は、センサヘッド10から出力される検出結果(三軸磁気センサ11,12,13,14の検出結果)に基づいて、被測定導体MC1,MC2に流れる電流Iを測定する。回路部20は、電流Iの測定結果を表示し、或いは外部に出力する。センサヘッド10と回路部20とを接続するケーブルCBとしては任意のものを用いることができるが、可撓性を有し、取り回しが用意であり、且つ断線が生じ難いものが望ましい。
 図2は、本発明の一実施形態による電流測定装置1の要部構成を示すブロック図である。尚、図2では、図1に示した構成に対応するブロックについては、同一の符号を付してある。以下では、主に、図2を参照して回路部20の内部構成の詳細について説明する。図2に示す通り、回路部20は、操作部21、表示部22、メモリ23、及び演算部25を備える。
 操作部21は、例えば電源ボタン、設定ボタン等の各種ボタンを備えており、各種ボタンに対する操作指示を示す信号を演算部25に出力する。表示部22は、例えば7セグメントLED(Light Emitting Diode:発光ダイオード)表示器、液晶表示装置等の表示装置を備える。表示部22は、演算部25から出力される各種情報(例えば、被測定導体MC1,MC2に流れる電流Iの測定結果を示す情報)を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良い。また、操作部21及び表示部22は、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。
 メモリ23は、例えば揮発性又は不揮発性の半導体メモリを備える。メモリ23は、センサヘッド10から出力される三軸磁気センサ11,12,13,14の検出結果、演算部25の演算結果(被測定導体MC1,MC2に流れる電流Iの測定結果)等を記憶する。尚、メモリ23は、上記の半導体メモリとともに(或いは、上記の半導体メモリに代えて)、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えていても良い。
 演算部25は、センサヘッド10から出力される三軸磁気センサ11,12,13,14の検出結果をメモリ23に記憶させる。また、演算部25は、メモリ23に記憶された三軸磁気センサ11,12,13,14の検出結果を読み出して、被測定導体MC1,MC2に流れる電流Iを求める演算を行う。この演算部25は、雑音除去部25a、位置推定部25b、背景磁界推定部25c、及び電流算出部25dを備える。
 雑音除去部25aは、三軸磁気センサ11,12,13,14の検出結果に含まれる雑音成分を除去する。具体的に、雑音除去部25aは、予め規定された一定の期間(例えば、1秒)毎に、三軸磁気センサ11,12,13,14の各々から得られる複数の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行う。これにより、雑音除去部25aは、三軸磁気センサ11,12,13,14の検出結果に含まれる雑音成分を除去する。三軸磁気センサ11,12,13,14からは三軸の検出結果がそれぞれ出力される。雑音除去部25aによる雑音成分の除去は、各軸の検出結果に対して個別に行われる。このような雑音除去を行うのは、三軸磁気センサ11,12,13,14のSN比(信号対雑音比)を向上させて、電流Iの測定精度を高めるためである。
 位置推定部25bは、三軸磁気センサ11,12,13,14の検出結果と三軸磁気センサ11,12,13,14の位置関係とを用いて、被測定導体MC1,MC2の位置(つまり、三軸磁気センサ11,12,13,14に対する被測定導体MC1,MC2の位置)を推定する。このような推定を行うのは、被測定導体MC1に流れる電流Iによって生成される磁界と、被測定導体MC2に流れる電流Iによって生成される磁界との双方を考慮して、被測定導体MC1,MC2に流れる電流Iを高い精度で測定するためである。尚、位置推定部25bで行われる処理の詳細については後述する。
 背景磁界推定部25cは、三軸磁気センサ11,12,13,14の検出結果と三軸磁気センサ11,12,13,14の位置関係とに基づいて、三軸磁気センサ11,12,13,14に均一に作用する背景磁界(例えば、地磁気)を推定する。このような推定を行うのは、背景磁界(例えば、地磁気)の影響を排除して、被測定導体MC1,MC2に流れる電流Iを高い精度で測定するためである。背景磁界推定部25cは、背景磁界の影響を考慮する必要が無い場合には、省略することも可能である。尚、背景磁界推定部25cで行われる処理の詳細については後述する。
 電流算出部25dは、位置推定部25bによって推定された位置と、三軸磁気センサ11,12,13,14の検出結果とに基づいて、被測定導体MC1,MC2に流れる電流を求める。ここで、電流算出部25dは、背景磁界の影響を考慮する必要がある場合には、位置推定部25bによって推定された位置と、三軸磁気センサ11,12,13,14の検出結果と、背景磁界推定部25cによって推定された背景磁界とに基づいて、被測定導体MC1,MC2に流れる電流を求める。尚、電流算出部25dで行われる処理の詳細については後述する。
 ここで、図1,図2に示す通り、回路部20は、センサヘッド10と分離されており、ケーブルCBを介してセンサヘッド10に接続されている。このような構成にすることで、磁界検出機能(三軸磁気センサ11,12,13,14)と演算機能(演算部25)とを分離することができる。そのため、演算部25がセンサヘッド10内に設けられている場合に生ずる諸問題(例えば、温度特性、絶縁耐性、狭い場所への設置)等を回避することができる。これにより電流測定装置1の用途を拡げることができる。
 〈電流の測定原理〉
 次に、電流測定装置1による電流の測定原理について説明する。図3は、本発明の一実施形態による電流測定装置1による電流の測定原理を説明するための図である。尚、図3においては、視認性を考慮して、センサヘッド10に設けられた三軸磁気センサ11のみを図示し、三軸磁気センサ12,13,14については図示を省略している。まず、図3に示す通り、センサヘッド10に係る座標系(XYZ直交座標系)を設定する。
 XYZ直交座標系は、センサヘッド10の位置及び姿勢に応じて規定される座標系である。このXYZ直交座標系では、三軸磁気センサ11の位置に原点が設定されている。また、このXYZ直交座標系では、三軸磁気センサ11,12,13,14の第1軸方向(三軸磁気センサ13,11,12の配列方向:図1参照)にX軸が設定されている。また、このXYZ直交座標系では、三軸磁気センサ11,12,13,14の第2軸方向にY軸が設定されている。また、このXYZ直交座標系では、三軸磁気センサ11,12,13,14の第3軸方向(三軸磁気センサ11,14の配列方向:図1参照)にZ軸が設定されている。
 ここで、三軸磁気センサ11,12,13,14の位置をP(m=1,2,3,4)と表す。尚、Pはベクトルである。つまり、三軸磁気センサ11の位置をPで表す。また、三軸磁気センサ12の位置をPで表す。また、三軸磁気センサ13の位置をPで表す。、また、三軸磁気センサ14の位置をPで表す。例えば、三軸磁気センサ13,11,12のX方向の間隔、及び三軸磁気センサ11,14のZ方向の間隔がd[m]であるとすると(図1参照)、三軸磁気センサ11,12,13,14の位置は以下の通りに表される。
  三軸磁気センサ11の位置:P=( 0,0, 0)
  三軸磁気センサ12の位置:P=( d,0, 0)
  三軸磁気センサ13の位置:P=(-d,0, 0)
  三軸磁気センサ14の位置:P=( 0,0,-d)
 ここで、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13,14の位置に形成される磁界をHAm(m=1,2,3,4)と表す。尚、HAmはベクトルである。つまり、被測定導体MC1に流れる電流Iによって三軸磁気センサ11の位置に形成される磁界をHA1と表す。また、被測定導体MC1に流れる電流Iによって三軸磁気センサ12の位置に形成される磁界をHA2と表す。同様に、被測定導体MC1に流れる電流Iによって三軸磁気センサ13の位置に形成される磁界をHA3と表す。また、被測定導体MC1に流れる電流Iによって三軸磁気センサ14の位置に形成される磁界をHA4と表す。
 また、図3に示す通り、被測定導体MC2に流れる電流Iによって三軸磁気センサ11,12,13,14の位置に形成される磁界をHBm(m=1,2,3,4)と表す。尚、HBmはベクトルである。つまり、被測定導体MC2に流れる電流Iによって三軸磁気センサ11の位置に形成される磁界をHB1と表す。また、被測定導体MC2に流れる電流Iによって三軸磁気センサ12の位置に形成される磁界をHB2と表す。また、被測定導体MC2に流れる電流Iによって三軸磁気センサ13の位置に形成される磁界をHB3と表す。また、被測定導体MC2に流れる電流Iによって三軸磁気センサ14の位置に形成される磁界をHB4と表す。
 また、三軸磁気センサ11,12,13,14に均一に作用する背景磁界をΦと表す。尚、Φはベクトルである。被測定導体MC1,MC2に流れる電流Iによって三軸磁気センサ11,12,13,14の位置に形成される磁界H(m=1,2,3,4)は、以下の(1)式で表される。尚、Hはベクトルである。
Figure JPOXMLDOC01-appb-M000005
 また、三軸磁気センサ11,12,13,14の位置に形成される磁界Hは、アンペールの法則により、以下の(2)式で表される。
Figure JPOXMLDOC01-appb-M000006
 上記(2)式の右辺第1項は、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13,14の位置に形成される磁界(つまり、上記(1)式中のHAm)を示している。上記(2)式の右辺第2項は、被測定導体MC2に流れる電流Iによって三軸磁気センサ11,12,13,14の位置に形成される磁界(つまり、上記(1)式中のHBm)を示している。上記(1)式及び(2)式の右辺第2項の符号が負となっているのは、被測定導体MC2に流れる電流Iの方向が、被測定導体MC1に流れる電流Iの方向とは反対だからである。
 上記(2)式中のrAmは、三軸磁気センサ11,12,13,14の各々から被測定導体MC1に下ろした垂線に平行なベクトルを示している。上記(2)式中のrBmは、三軸磁気センサ11,12,13,14の各々から被測定導体MC2に下ろした垂線に平行なベクトルを示している。また、上記(2)式中のjは、電流Iの方向の単位ベクトルである。
 ここで、単位行列をEとする。また、被測定導体MC1の位置をVとする。また、被測定導体MC2の位置をVとする。尚、V,Vはベクトルである。上記(2)式中のベクトルrAm,rBmは、以下の(3)式で表される。
Figure JPOXMLDOC01-appb-M000007
 被測定導体MC1,MC2を流れる電流Iの方向は共に、磁界の方向と直交するため、三軸磁気センサ11,12,13,14の検出結果の差分の外積の方向は、電流Iの方向と一致する。このため、電流Iの方向の単位ベクトルjは、例えば三軸磁気センサ11,12,13の検出結果(磁界H,H,H)を用いて、以下の(4)式で表される。
Figure JPOXMLDOC01-appb-M000008
 次に、上記(4)式で表される単位ベクトルjに垂直な複素数平面Γを考える。このような複素数平面Γを考えるのは、計算を簡略化するためである。
 図4は、被測定導体MC1,MC2及び三軸磁気センサ11,12,13,14を、図3中の方向D1から見た図である。尚、図4中のj1,j2は、複素数平面Γ内において互いに直交する単位ベクトルである。図3中の方向D1は、被測定導体MC1,MC2の長手方向に沿う方向(つまり、被測定導体MC1に流れる電流Iの方向とは反対の方向、被測定導体MC2に流れる電流Iの方向に沿う方向)である。尚、図4においては、理解を容易にするためにセンサヘッド10の図示を省略して、被測定導体MC1,MC2及び三軸磁気センサ11,12,13,14を図示している。
 図4に示す複素数平面Γに対して、被測定導体MC1,MC2、三軸磁気センサ11,12,13,14、及び三軸磁気センサ11,12,13,14の位置に形成される磁界を射影する。図4に示す通り、紙面に対して垂直な方向(つまり、単位ベクトルjに沿う方向、又は単位ベクトルjとは反対の方向)に流れる電流Iによって、三軸磁気センサ11,12,13,14の位置に形成される磁界は、単位ベクトルjに直交するものになる。従って、電流Iが流れる方向と直交する複素数平面Γに、三軸磁気センサ11,12,13の位置に形成される磁界を、その大きさを変えることなく射影することができる。
 ここで、複素数平面Γ上における三軸磁気センサ11,12,13,14の位置をp(m=1,2,3,4)と表す。また、複素数平面Γ上における被測定導体MC1の位置をvとする。また、複素数平面Γ上における被測定導体MC2の位置をvとする。また、複素数平面Γ上に射影された磁界h(i=1,2,3,4)を、以下の(5)式で表す。以下の(5)式中のhAm,hBm,φはそれぞれ、上記(1)式中のHAm,HBm,Φを複素数平面Γに射影したものである。
Figure JPOXMLDOC01-appb-M000009
 射影した複素数平面Γ上における三軸磁気センサ11,12,13,14の位置における磁界hは、以下の(6)式で表される。尚、以下の(6)式中のiは、虚数単位である。
Figure JPOXMLDOC01-appb-M000010
 上記(6)式を変形すると、以下の(7)式が得られる。
Figure JPOXMLDOC01-appb-M000011
 上記(7)中の磁界hは、三軸磁気センサ11,12,13,14の検出結果(磁界H)を複素数平面Γに射影したものである。また、位置pは、三軸磁気センサ11,12,13,14の位置Pを複素数平面Γに射影したものである。そのため、磁界h及び位置pは、演算により求めることができる。よって、被測定導体MC1,MC2を流れる電流Iは、複素数平面Γ上における被測定導体MC1,MC2の位置v,vと、複素数平面Γ上における背景磁界φとが得られれば、上記(7)式を用いて求めることが可能である。
 このため、複素数平面Γ上に射影された磁界から、複素数平面Γ上における被測定導体MC1,MC2の位置v,vと、複素数平面Γ上における背景磁界φとを推定することを考える。上記(6)式の右辺第3項(φ)を左辺に移項し、左辺の複素共役を両辺に掛け、分母を払って整理すると以下の(8)式が得られる。
Figure JPOXMLDOC01-appb-M000012
 ここで、上記(8)式の右辺は、添字mに依らない定数である。このため、以下の(9)式に示す通り、上記(8)式の右辺を変数kとする。また、以下の(9)式に示す通り、被測定導体MC1,MC2の位置v,vの和を変数vとする。
Figure JPOXMLDOC01-appb-M000013
 上記(8)式の両辺をh で除算すると、以下の(10)式となる。
Figure JPOXMLDOC01-appb-M000014
 上記(8)式から、上記(8)式がm=1の場合を減算し、分母をh で払えば、以下の(11)式が得られる。
Figure JPOXMLDOC01-appb-M000015
 上記(11)式を参照すると、背景磁界φ、変数v、及び変数kに関する二次斉次連立方程式となっている。上記(11)式は、m>1の場合に成り立つので、これを解くことで、背景磁界φ、変数v(=v+v)、及び変数kを求めることができる。
 以下、上記(11)式に示される二次斉次連立方程式の解き方の一例を示す。上記(11)式の係数をa,b,c,d,eとおくと、上記(11)式は以下の(12)式で表される。
Figure JPOXMLDOC01-appb-M000016
 添字がmである場合の上記(11)式と、添字がnである場合の上記(11)式とを用いて、変数kを消去すると、以下の(13)式が得られる。
Figure JPOXMLDOC01-appb-M000017
 上記(13)式の係数をAmn,Bmn,Cmn,Dmnとおくと、上記(13)式は以下の(14)式で表される。
Figure JPOXMLDOC01-appb-M000018
 上記(14)式から、変数vは、背景磁界φの関数として、以下の(15)式で表すことができる。
Figure JPOXMLDOC01-appb-M000019
 いま、4つの三軸磁気センサ11,12,13,14がある場合には、上記(15)式は、(m,n)=(1,2)の場合、及び、(m,n)=(2,3)の場合に成り立つから、以下の(16)式が成り立つ。
Figure JPOXMLDOC01-appb-M000020
 上記(16)式の分母を払ってφの式としてまとめると、以下の(17)式となる。
Figure JPOXMLDOC01-appb-M000021
 上記(17)式の係数をα,β,γとおくと、上記(17)式は以下の(18)式で表される。
Figure JPOXMLDOC01-appb-M000022
 上記(18)式はφの二次方程式であるから、以下の(19)式から背景磁界φを求めることができる。尚、未知の変数kを用いたことで2つの背景磁界φが得られるが、(6)式を満たす背景磁界φはただ一つに定まる。これにより、複素数平面Γ上における背景磁界φが推定される。
Figure JPOXMLDOC01-appb-M000023
 上記(19)式から求められた背景磁界φを、上述した(15)式に代入すると、変数v(=v+v)が求められる。更に、求められた背景磁界φ、及び変数vを、前述した(12)式に代入すると、変数kを求めることができる。
 最後に、求められた背景磁界φ、変数v、及び変数kを、前述した(10)式に代入すると、複素数平面Γ上における被測定導体MC1,MC2の位置v,vの積(v)を求めることができる。以上により、複素数平面Γ上における被測定導体MC1,MC2の位置v,vの和(v=v+v)と積(v)とが求まる。よって、複素数平面Γ上における被測定導体MC1の位置vと、複素数平面Γ上における被測定導体MC2の位置vとを推定することができる。
 以上の通り、上記(19)式から複素数平面Γ上における背景磁界φが推定される。また、前述した(10)式から複素数平面Γ上における被測定導体MC1,MC2の位置v,vが推定される。よって、背景磁界φ及び被測定導体MC1,MC2の位置v,vを前述した(7)式に代入することにより、被測定導体MC1,MC2に流れる電流Iを求めることができる。
 尚、前述した(2)式を変形すると、以下の(20)式が得られる。
Figure JPOXMLDOC01-appb-M000024
 上記(20)式中の磁界Hは、三軸磁気センサ11,12,13,14の検出結果である。上記(20)式中のjは、電流Iの方向の単位ベクトルである。jは、三軸磁気センサ11,12,13の検出結果(磁界H,H,H)を用いて前述した(4)式から求められる。よって、被測定導体MC1,MC2を流れる電流Iは、背景磁界Φと、三軸磁気センサ11,12,13,14の各々から被測定導体MC1,MC2の各々に下ろした垂線に平行なベクトルrAm,rBmとが得られれば、上記(20)式を用いても求めることができる。
 背景磁界Φは、上記(19)式から推定された複素数平面Γ上における背景磁界φを、XYZ直交座標系に復元することにより得られる。また、ベクトルrAm,rBmは、複素数平面Γ上における被測定導体MC1,MC2の位置v,vを、XYZ直交座標系に復元することによって被測定導体MC1,MC2の位置V,Vを求め、これらを前述した(3)式に代入することによって得られる。以上の通り、前述した(7)式、又は、上記(20)式を用いて、被測定導体MC1,MC2を流れる電流Iを測定することができる。
 〈電流測定装置の動作〉
 次に、電流測定装置1を用いて被測定導体MC1,MC2に流れる電流Iを測定する際の動作について説明する。まず、電流測定装置1のユーザは、被測定導体MC1,MC2に流れる電流Iを測定するために、センサヘッド10を被測定導体MC1,MC2に近接配置させる。尚、被測定導体MC1に対するセンサヘッド10の位置及び姿勢は任意である。
 図5は、本発明の一実施形態による電流測定装置1の動作の概要を示すフローチャートである。図5に示すフローチャートは、例えば一定周期(例えば、1秒)で開始される。図5に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13,14は、被測定導体MC1,MC2に流れる電流Iによって形成される磁界を検出する(ステップS11)。尚、三軸磁気センサ11,12,13,14による磁界の検出は、例えば1秒間に1000回程度行われる。次に、回路部20の演算部25は、三軸磁気センサ11,12,13,14の検出結果を示す検出データを、メモリ23に蓄積する処理を行う(ステップS12)。
 次いで、雑音除去部25aは、検出データから雑音を除去する処理を行う(ステップS13)。具体的には、雑音除去部25aは、メモリ23に蓄積された検出データを読み出し、読み出した検出データに対して平均化処理又は二乗和平方根処理を行なうことで、検出データに含まれる雑音成分を除去する処理を行なう。尚、二乗和平方根処理を行うと符号が無くなるため、別途、符号の付加を行う。ここで、三軸磁気センサ11,12,13,14は、三軸の検出結果を出力する3種類の検出データをそれぞれ出力する。雑音除去部25aによる雑音成分の除去は、各軸の検出データに対して個別に行われる。
 続いて、位置推定部25b及び背景磁界推定部25cは、被測定導体MC1,MC2の位置及び背景磁界を推定する処理をそれぞれ行なう(ステップS14)。
 図6は、図5中のステップS14の処理の詳細を示すフローチャートである。ステップS14の処理が開始されると、まず、図6に示す通り、演算部25は、被測定導体MC1,MC2を流れる電流Iの方向を算出する処理を行なう(ステップS21)。例えば、演算部25は、三軸磁気センサ11,12,13の検出結果を用いて、前述した(4)式に示される演算を行って、被測定導体MC1,MC2を流れる電流Iの方向の単位ベクトルjを算出する処理を行なう。
 次に、演算部25は、被測定導体MC1,MC2、三軸磁気センサ11,12,13,14、及び三軸磁気センサ11,12,13,14で検出された磁界H(m=1,2,3,4)を電流Iに垂直な複素数平面Γに射影する処理を行なう(ステップS22)。ここで、被測定導体MC1,MC2の位置V,Vは、未知である。このため、複素数平面Γ上に射影された被測定導体MC1,MC2の位置v,vは未知の値となる。尚、複素数平面Γ上における背景磁界φも未知である。
 これに対し、三軸磁気センサ11,12,13,14の位置P(m=1,2,3,4)は既知である。また、三軸磁気センサ11,12,13,14で検出された磁界Hも既知である。このため、複素数平面Γ上に射影された三軸磁気センサ11,12,13,14の位置p(m=1,2,3,4)、及び複素数平面Γ上に射影された磁界h(m=1,2,3,4)は既知の値となる。
 続いて、背景磁界推定部25cは、複素数平面Γ上における未知の背景磁界φを推定する処理を行なう(ステップS23)。具体的には、背景磁界推定部25cは、前述した(19)式を用いて未知の背景磁界φを推定する処理を行なう。ここで、前述した(19)式中の係数α,β,γは、前述した(18)式、(14)式、及び(12)式を参照すると、複素数平面Γ上に射影された三軸磁気センサ11,12,13,14の位置pと、複素数平面Γ上に射影された磁界hとを要素とする。このため、背景磁界推定部25cは、複素数平面Γ上における未知の背景磁界φを、三軸磁気センサ11,12,13,14の検出結果と三軸磁気センサ11,12,13,14の位置関係とに基づいて推定する。
 続いて、位置推定部25bは、未知の値である被測定導体MC1,MC2の位置v,vを推定する処理を行なう(ステップS24)。具体的には、位置推定部25bは、まず、ステップS23の処理で推定された背景磁界φを、前述した(15)式に代入して変数v(=v+v)を求める処理を行なう。尚、(15)式中の係数Amn,Bmn,Cmn,Dmnは、複素数平面Γ上に射影された三軸磁気センサ11,12,13,14の位置pと、複素数平面Γ上に射影された磁界hとから求められる。
 次に、ステップS23の処理で推定された背景磁界φと、上記の変数vとを、前述した(12)式に代入して変数kを求める処理が行われる。尚、(12)式中の係数a,b,c,d,eは、複素数平面Γ上に射影された三軸磁気センサ11,12,13,14の位置pと、複素数平面Γ上に射影された磁界hとから求められる。
 そして、推定された背景磁界φと、求められた変数v及び変数kを、前述した(10)式に代入して、複素数平面Γ上における被測定導体MC1,MC2の位置v,vの積(v)を求める処理が行われる。最後に、前述した(15)式から求められた位置v,vの和(v=v+v)と、前述した(10)式から求められた位置v,vの積(v)とから、複素数平面Γ上における被測定導体MC1,MC2の位置v,vが算出される。このようにして、被測定導体MC1,MC2の位置v,vが推定される。
 以上の処理が終了すると、電流算出部25dは、被測定導体MC1,MC2に流れる電流Iを算出する処理を行なう(ステップS15)。具体的には、電流算出部25dは、複素数平面Γ上に射影された三軸磁気センサ11,12,13,14の位置p、複素数平面Γ上に射影された磁界h、並びにステップS14の処理で推定された複素数平面Γ上における被測定導体MC1,MC2の位置v,v及び背景磁界φを用い、前述した(7)式に示される演算を行って、被測定導体MC1,MC2に流れる電流Iを算出する。
 尚、電流算出部25dは、ステップS15において、前述した(7)式に代えて、前述した(20)式に示される演算を行って、被測定導体MC1,MC2に流れる電流Iを算出しても良い。(20)式に示される演算を行って電流Iを算出する場合には、電流算出部25dは、まず、複素数平面Γ上における背景磁界φをXYZ直交座標系に復元して背景磁界Φを得る処理を行なう。また、電流算出部25dは、複素数平面Γ上における被測定導体MC1,MC2の位置v,vをXYZ直交座標系に復元して被測定導体MC1,MC2の位置V,Vを得る処理を行なう。
 次に、電流算出部25dは、得られた被測定導体MC1,MC2の位置V,Vと、三軸磁気センサ11,12,13,14の位置Pとを、前述した(3)式に代入して、ベクトルrAm,rBmを求める処理を行なう。そして、電流算出部25dは、以上の処理で得られた背景磁界Φ、ベクトルrAm,rBmに加えて、図6のステップS21で算出された単位ベクトルj、三軸磁気センサ11,12,13,14で検出された磁界Hを用い、前述した(20)式に示される演算を行って、被測定導体MC1,MC2に流れる電流Iを算出する。
 以上の通り、本実施形態では、三軸磁気センサ11,12,13,14の検出結果と、三軸磁気センサ11,12,13,14の位置関係とを用いて、被測定導体MC1,MC2に流れる電流Iを測定する。ここで、本実施形態では、被測定導体MC1,MC2に対するセンサヘッド10の位置及び姿勢は任意で良い。また、三軸磁気センサ11,12,13,14の検出結果は、電流Iが直流電流であるか交流電流であるかに拘わらず得られる。このため、本実施形態では、柔軟な配置が可能であり、互いに反対方向の電流が流れ、近接配置される電流経路(被測定導体MC1,MC2)を流れる直流電流及び低周波(例えば、数百[Hz]程度以下)の交流電流を非接触で精度良く測定することができる。
 また、本実施形態では、三軸磁気センサ11,12,13,14が設けられたセンサヘッド10と、演算部25が設けられた回路部20とが分離されてケーブルCBによって接続されている。これにより、センサヘッド10の取り回しが容易になり、例えば狭い場所へのセンサヘッド10の設置も容易に行うことができるため、より柔軟な配置が可能である。
 以上、本発明の一実施形態による電流測定装置について説明したが、本発明は上記実施形態に制限されることなく本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、三軸磁気センサ13,11,12が第1軸方向(x軸方向)に間隔d[m]だけ離間し、三軸磁気センサ11,14が第3軸方向(z軸方向)に間隔d[m]だけ離間している例について説明した。しかしながら、三軸磁気センサ11,12,13,14は、各々の感磁方向が互いに平行になるように設定されていれば、相対的な位置関係は任意である。
 1      電流測定装置
 10     センサヘッド
 11~14  三軸磁気センサ
 20     回路部
 25     演算部
 25a    雑音除去部
 25b    位置推定部
 25c    背景磁界推定部
 25d    電流算出部
 I      電流
 MC1    被測定導体
 MC2    被測定導体
 V,v   被測定導体の位置
 V,v   被測定導体の位置
 φ,Φ    背景磁界

Claims (20)

  1.  各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置された4つ以上の三軸磁気センサと、
     前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とに基づいて、近接配置され、互いに反対方向に電流が流れる一対の被測定導体に流れる電流を求める演算部と、
     を備える電流測定装置。
  2.  前記演算部は、前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とを用いて、前記一対の被測定導体の位置を推定する位置推定部と、
     前記位置推定部によって推定された位置と、前記4つ以上の三軸磁気センサの検出結果とに基づいて、前記一対の被測定導体に流れる電流を求める電流算出部と、
     を備える請求項1記載の電流測定装置。
  3.  前記演算部は、前記4つ以上の三軸磁気センサの検出結果と前記4つ以上の三軸磁気センサの位置関係とに基づいて、前記4つ以上の三軸磁気センサに均一に作用する背景磁界を推定する背景磁界推定部を備えており、
     前記電流算出部は、前記位置推定部によって推定された位置と、前記4つ以上の三軸磁気センサの検出結果と、前記背景磁界推定部で推定された背景磁界とに基づいて、前記一対の被測定導体に流れる電流を求める、
     請求項2記載の電流測定装置。
  4.  前記演算部は、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部を更に備えており、
     前記雑音除去部によって雑音成分が除去された前記4つ以上の三軸磁気センサの検出結果を用いて前記一対の被測定導体に流れる電流を求める、
     請求項1に記載の電流測定装置。
  5.  前記演算部は、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部を更に備えており、
     前記雑音除去部によって雑音成分が除去された前記4つ以上の三軸磁気センサの検出結果を用いて前記一対の被測定導体に流れる電流を求める、
     請求項2に記載の電流測定装置。
  6.  前記演算部は、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部を更に備えており、
     前記雑音除去部によって雑音成分が除去された前記4つ以上の三軸磁気センサの検出結果を用いて前記一対の被測定導体に流れる電流を求める、
     請求項3に記載の電流測定装置。
  7.  前記雑音除去部は、予め規定された一定の期間毎に得られる、前記4つ以上の三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記4つ以上の三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する、請求項4記載の電流測定装置。
  8.  前記4つ以上の三軸磁気センサを備えるセンサヘッドと、
     前記演算部を備える回路部と、
     を備える請求項1に記載の電流測定装置。
  9.  前記4つ以上の三軸磁気センサを備えるセンサヘッドと、
     前記演算部を備える回路部と、
     を備える請求項2に記載の電流測定装置。
  10.  前記4つ以上の三軸磁気センサを備えるセンサヘッドと、
     前記演算部を備える回路部と、
     を備える請求項3に記載の電流測定装置。
  11.  前記4つ以上の三軸磁気センサを備えるセンサヘッドと、
     前記演算部を備える回路部と、
     を備える請求項4に記載の電流測定装置。
  12.  前記4つ以上の三軸磁気センサを備えるセンサヘッドと、
     前記演算部を備える回路部と、
     を備える請求項7に記載の電流測定装置。
  13.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項1に記載の電流測定装置。
  14.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項2に記載の電流測定装置。
  15.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項3に記載の電流測定装置。
  16.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項4に記載の電流測定装置。
  17.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項7に記載の電流測定装置。
  18.  前記4つ以上の三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項8に記載の電流測定装置。
  19.  前記4つ以上の三軸磁気センサの検出結果を複素数平面に射影した磁界をhとし、
     前記一対の被測定導体を流れる電流をIとし、
     前記4つ以上の三軸磁気センサの位置を前記複素数平面に射影した位置をpとし、
     複素数平面上における前記一対の被測定導体の位置をv,vとし、
     前記複素数平面上における背景磁界をφとした場合に、
     前記演算部は、前記電流Iを、
    Figure JPOXMLDOC01-appb-M000001
    の式を用いて求める請求項1に記載の電流測定装置。
  20.  前記4つ以上の三軸磁気センサの検出結果をである磁界をHとし、
     前記一対の被測定導体を流れる電流をIとし、
     前記電流Iが流れる方向の単位ベクトルをjとし、
     複素数平面上における背景磁界を、XYZ直交座標系に復元することにより得られる背景磁界をΦとし、
     前記4つ以上の三軸磁気センサの各々から前記一対の被測定導体の各々に下ろした垂線に平行なベクトルをrAm,rBmとした場合に、
     前記演算部は、前記電流Iを、
    Figure JPOXMLDOC01-appb-M000002
    の式を用いて求める請求項1に記載の電流測定装置。
PCT/JP2020/018802 2019-05-14 2020-05-11 電流測定装置 WO2020230753A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/609,984 US20220214383A1 (en) 2019-05-14 2020-05-11 Current measurement device
EP20806018.6A EP3971587A4 (en) 2019-05-14 2020-05-11 CURRENT MEASUREMENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-091311 2019-05-14
JP2019091311A JP7001079B2 (ja) 2019-05-14 2019-05-14 電流測定装置

Publications (1)

Publication Number Publication Date
WO2020230753A1 true WO2020230753A1 (ja) 2020-11-19

Family

ID=73221601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018802 WO2020230753A1 (ja) 2019-05-14 2020-05-11 電流測定装置

Country Status (4)

Country Link
US (1) US20220214383A1 (ja)
EP (1) EP3971587A4 (ja)
JP (1) JP7001079B2 (ja)
WO (1) WO2020230753A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430989B2 (ja) * 2019-06-20 2024-02-14 横河電機株式会社 電流測定装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049118A (ja) * 2003-07-30 2005-02-24 Fuji Electric Systems Co Ltd 電流センサ
JP2005055300A (ja) 2003-08-05 2005-03-03 Hioki Ee Corp 電流センサ
US20100264905A1 (en) * 2007-12-22 2010-10-21 Sensitec Gmbh Arrangement for the potential-free measurement of currents
US20110006802A1 (en) * 2009-07-09 2011-01-13 General Electric Company High sensitivity differential current transformer for insulation health monitoring
JP2011164019A (ja) 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
WO2011155527A1 (ja) * 2010-06-09 2011-12-15 株式会社フジクラ フラックスゲートセンサおよびそれを利用した電子方位計ならびに電流計
JP2014085248A (ja) * 2012-10-24 2014-05-12 Asahi Kasei Electronics Co Ltd 電流センサおよび電流検出方法
US20150323585A1 (en) * 2014-05-07 2015-11-12 Texas Instruments Deutschland Gmbh Fault current detection with an integrated magnetic sensor array
JP2019091311A (ja) 2017-11-15 2019-06-13 富士通フロンテック株式会社 画像処理装置、画像処理方法および画像処理プログラム
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483760B2 (ja) * 2005-10-12 2010-06-16 株式会社デンソー 電流センサ
US7714567B2 (en) * 2008-06-22 2010-05-11 Heger Research Llc Power cable magnetic field sensor
WO2013051567A1 (ja) * 2011-10-03 2013-04-11 アルプス・グリーンデバイス株式会社 電流センサ
JP6116061B2 (ja) * 2013-07-16 2017-04-19 横河電機株式会社 電流センサ
JP2015219058A (ja) * 2014-05-15 2015-12-07 旭化成エレクトロニクス株式会社 電流センサ
US10775420B2 (en) * 2016-09-29 2020-09-15 The United States Of America As Represented By The Secretary Of The Army Non-contact multi-phase cable sensor
US10473701B2 (en) * 2016-12-09 2019-11-12 Schweitzer Engineering Laboratories, Inc. Systems and methods for magnetometer-based current measurement
JP6721722B2 (ja) * 2017-02-10 2020-07-15 アルプスアルパイン株式会社 電流センサ
US10712369B2 (en) * 2018-03-23 2020-07-14 Analog Devices Global Unlimted Company Current measurement using magnetic sensors and contour intervals
CN108459192B (zh) * 2018-03-26 2019-11-12 福州大学 一种用于直流输电线路的非接触电流检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049118A (ja) * 2003-07-30 2005-02-24 Fuji Electric Systems Co Ltd 電流センサ
JP2005055300A (ja) 2003-08-05 2005-03-03 Hioki Ee Corp 電流センサ
US20100264905A1 (en) * 2007-12-22 2010-10-21 Sensitec Gmbh Arrangement for the potential-free measurement of currents
US20110006802A1 (en) * 2009-07-09 2011-01-13 General Electric Company High sensitivity differential current transformer for insulation health monitoring
JP2011164019A (ja) 2010-02-12 2011-08-25 Alps Green Devices Co Ltd 電流測定装置
WO2011155527A1 (ja) * 2010-06-09 2011-12-15 株式会社フジクラ フラックスゲートセンサおよびそれを利用した電子方位計ならびに電流計
JP2014085248A (ja) * 2012-10-24 2014-05-12 Asahi Kasei Electronics Co Ltd 電流センサおよび電流検出方法
US20150323585A1 (en) * 2014-05-07 2015-11-12 Texas Instruments Deutschland Gmbh Fault current detection with an integrated magnetic sensor array
JP2019091311A (ja) 2017-11-15 2019-06-13 富士通フロンテック株式会社 画像処理装置、画像処理方法および画像処理プログラム
WO2019167565A1 (ja) * 2018-03-01 2019-09-06 横河電機株式会社 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971587A4

Also Published As

Publication number Publication date
EP3971587A1 (en) 2022-03-23
US20220214383A1 (en) 2022-07-07
EP3971587A4 (en) 2023-01-25
JP2020186991A (ja) 2020-11-19
JP7001079B2 (ja) 2022-01-19

Similar Documents

Publication Publication Date Title
CN111771128B (zh) 电流测量装置、电流测量方法以及计算机可读取的非暂时性记录介质
JP5648246B2 (ja) 電流センサ
CN109283379B (zh) 一种导线电流测量方法、装置、设备及可读存储介质
CN109283380B (zh) 电力系统中线路电流的测量方法、装置、设备及存储介质
JP7430989B2 (ja) 電流測定装置
WO2006090769A1 (ja) 電流測定装置
CN103091539B (zh) 供在测量通过导体的电流中使用的系统和方法
US20140103918A1 (en) Current sensor
JP7155541B2 (ja) 電流測定装置
WO2021039755A1 (ja) 電流測定装置、電流測定方法、及びコンピュータ読み取り可能な非一時的記録媒体
WO2020230753A1 (ja) 電流測定装置
JP6566188B2 (ja) 電流センサ
JP7114943B2 (ja) 電流測定装置
JP2015190781A (ja) 基板
US20170307663A1 (en) Current detection method, current detection device, signal correction method for current detection device, and signal correction device for current detection device
JP2007155399A (ja) 電流センサ、及び、それを有する電流値算出システム
JP5487403B2 (ja) 電流センサ
KR20190099201A (ko) 차량 배터리 전류 감지 시스템
JP4060518B2 (ja) 電流検出装置及び電流検出方法
JP2020193876A (ja) 電流値の検出方法及び電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806018

Country of ref document: EP

Effective date: 20211214