WO2020230574A1 - 流量制御装置、流量制御方法、流量制御装置の制御プログラム - Google Patents

流量制御装置、流量制御方法、流量制御装置の制御プログラム Download PDF

Info

Publication number
WO2020230574A1
WO2020230574A1 PCT/JP2020/017480 JP2020017480W WO2020230574A1 WO 2020230574 A1 WO2020230574 A1 WO 2020230574A1 JP 2020017480 W JP2020017480 W JP 2020017480W WO 2020230574 A1 WO2020230574 A1 WO 2020230574A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
sensor
flow
control device
filter
Prior art date
Application number
PCT/JP2020/017480
Other languages
English (en)
French (fr)
Inventor
野澤 崇浩
中村 剛
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to JP2021519340A priority Critical patent/JPWO2020230574A1/ja
Priority to KR1020217028217A priority patent/KR102608260B1/ko
Priority to CN202080018374.XA priority patent/CN113544620A/zh
Priority to US17/610,759 priority patent/US20220307882A1/en
Publication of WO2020230574A1 publication Critical patent/WO2020230574A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral or differential electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0623Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the set value given to the control element

Definitions

  • the present invention relates to a flow rate control device, a flow rate control method, and a control program of the flow rate control device.
  • MFC mass flow controller
  • Patent Document 1 in a flow rate control device including a flow sensor coupled to a fluid flow path having an inlet side and an outlet side, the flow sensor provides a sensor output signal indicating a sensed fluid flow through the flow path.
  • a method of controlling a fluid flow rate comprises measuring at least one pressure in the flow path and adjusting the sensor output signal based on measuring at least one pressure.
  • Patent Document 2 a plurality of flow rate set values and control constants corresponding to a plurality of fluid pressure values are stored in advance in the control unit, and the control constants are selected based on the flow rate set values and the detection values of the pressure sensor.
  • a flow rate control device for controlling the flow rate is disclosed.
  • the response characteristics of the sensor that gives the control input is one of the important factors in order to realize feedback control with a fast response speed.
  • the sensor is, for example, a thermal flow sensor.
  • the response characteristics of the thermal MFC are lower than the theoretical value predicted from the response characteristics of the thermal flow sensor in actual measurement, and only a slow response with a time constant of about 10 seconds can be obtained. This is because the heat transport rate by the fluid such as gas flowing through the flow path is small with respect to the heat capacity of the sensor tube and the heat generating resistor.
  • the pressure type MFC is disclosed in each of the flow control devices described in Patent Documents 1 and 2. Neither device realizes fast response speed feedback control in MFC.
  • one of the purposes of the present invention is to obtain a flow rate control device with high response accuracy.
  • the flow rate control device includes a flow rate sensor that measures the flow rate of the fluid, a control unit that adjusts the flow rate so that the flow rate of the fluid becomes a flow rate set value, and the like.
  • the control unit includes a control valve that changes the flow rate, a drive circuit that drives the control valve, a sensor response adjustment circuit that corrects the frequency characteristics of the measured values of the flow rate sensor, and the sensor response adjustment circuit.
  • a feedback loop including at least the drive circuit, the flow rate sensor, the sensor response adjusting circuit, and the first filter is provided with a first filter that attenuates a predetermined frequency band of the output of the above, and the flow rate set value. And the output value of the first filter, the deviation is input to the drive circuit.
  • control unit may further include a second filter that amplifies a predetermined frequency band in the output of the sensor response adjustment circuit and does not change the gain of a frequency different from the frequency band. Good.
  • the sensor response adjustment circuit and the first filter may be analog filters that process analog signals.
  • the flow rate sensor may be a thermal flow rate sensor.
  • the flow rate control method includes a flow rate sensor for measuring the flow rate of the fluid, a control unit for adjusting the flow rate so that the flow rate of the fluid becomes a flow rate set value, and a control unit.
  • the drive step, the measurement step, the sensor response adjustment step, and the attenuation step include a sensor response adjustment step for correcting the characteristics and an attenuation step for attenuating a predetermined frequency band of the output of the sensor response adjustment step.
  • a feedback loop including at least the above is configured, and the deviation between the flow rate set value and the acquired value of the damping step becomes the input of the driving step.
  • control program of the flow control device adjusts the flow rate so that the flow rate of the fluid becomes the flow rate set value and the flow rate sensor for measuring the flow rate of the fluid.
  • a control program of a flow control device including a control unit and a control valve for changing the flow rate, the drive command for driving the control valve, the measurement command for measuring the flow rate, and the measurement value of the flow rate sensor.
  • a computer is made to execute a sensor response adjustment command for correcting the frequency characteristics of the above and an attenuation command for attenuating a predetermined frequency band of the output of the sensor response adjustment command, and the drive command, the measurement command, and the sensor response adjustment are executed.
  • a feedback loop including at least the instruction and the attenuation instruction is configured, and the deviation between the flow rate set value and the acquisition value of the attenuation instruction is the input of the drive instruction.
  • the computer program can be provided by downloading via a network such as the Internet, or can be recorded and provided on various computer-readable recording media such as a CD-ROM.
  • a flow rate control device with high response accuracy can be obtained.
  • the flow rate control device 1 includes a valve body 101, a flow rate sensor 102, a conversion unit 103, a control unit 104, and a control valve 105.
  • the flow rate control device 1 is a device also called a mass flow controller (also referred to as “MFC”).
  • the valve body 101 is a substantially tubular member that defines the upstream flow path 101a and the downstream flow path 101b.
  • the upstream side of the upstream flow path 101a and the downstream side of the downstream flow path 101b are connected to a pipe or a flow path block through which the fluid to be controlled flows, respectively.
  • the upstream flow path 101a is a flow path that flows in from the fluid from the upstream side. On the way, the upstream flow path 101a branches into a flow path passing through the flow rate sensor 102 and a bypass flow path 101c, then merges and flows out to the control valve 105.
  • the control valve 105 has a diaphragm 110 and a valve seat 112 facing the diaphragm 110.
  • the space between the diaphragm 110 and the valve seat 112 is a space that communicates between the upstream flow path 101a and the downstream flow path 101b.
  • control valve 105 is, for example, a piezo element drive type control valve that opens and closes a metal diaphragm by using a piezo element (piezo actuator) inside the actuator 111. ..
  • the downstream flow path 101b is configured such that the fluid whose flow rate is controlled by the control valve 105 flows in from the upstream side and flows out to the downstream side of the flow rate control device 1.
  • the bypass flow path 101c is a flow path having a laminar flow element having a structure in which a large number of thin flow paths are arranged in parallel so that the fluid becomes a laminar flow.
  • the laminar flow element is configured by stacking a plurality of plates (bypass sheets) having grooves dug by etching.
  • the flow rate sensor 102 is a sensor that measures the flow rate of the fluid flowing through the sensor tube 102a.
  • the flow rate sensor 102 has heat generating resistors 102b and 102c upstream and downstream of the sensor tube 102a, for example, and measures the flow rate of the fluid flowing through the sensor tube 102a based on the difference in temperature between the heat generating resistors 102b and 102c. Convert to. Since the ratio of the flow rate flowing through the bypass flow path 101c to the flow rate flowing through the sensor tube 102a is known, the flow rate of the upstream flow path 101a can be calculated by measuring the flow rate flowing through the sensor tube 102a.
  • the flow rate of the upstream flow rate 101a that is, The range of the flow rate that can be measured by the flow rate control device 1 can be adjusted.
  • the conversion unit 103 is a functional unit that converts the flow rate set value into a state that can be compared with the output value of the flow rate sensor 102, and then outputs the output value of the flow rate sensor 102 to the control unit 104.
  • the conversion unit 103 may rectify and amplify the output value of the flow rate sensor 102, or apply a low-pass filter to the output value for noise removal.
  • the conversion unit 103 outputs the sensor output target value to the control unit 104 after correcting the measurement error caused by the difference according to the type of fluid and the individual difference of the flow rate control device 1 with respect to the flow rate set value. ..
  • the control unit 104 is a functional unit that compares the output value of the flow rate sensor 102 with the sensor output target value and controls the control valve 105 based on the comparison result.
  • the control unit 104 controls the opening degree of the control valve 105 by performing feedback control so that the flow rate discharged from the downstream flow path 101b becomes the flow rate set value.
  • the control unit 104 has a built-in CPU, memory M, A / D converter, and the like.
  • the control unit 104 may include a computer program configured to perform an operation described below, and may be realized by a combination of hardware and software.
  • Control block of flow control device of related technology has a drive circuit 141, a flow sensor 102, and a sensor response adjustment circuit 143 as control blocks.
  • the drive circuit 141 is a circuit that applies a drive current to the control valve 105.
  • the drive circuit 141 opens and closes the control valve 105 based on the input flow rate set value, and changes the actual flow rate Q.
  • the actual flow rate Q is the flow rate of the fluid physically flowing through the flow rate control device 1.
  • the flow rate sensor 102 measures the actual flow rate Q and inputs the voltage value corresponding to the actual flow rate Q into the sensor response adjustment circuit 143.
  • the sensor response adjustment circuit 143 is a circuit that corrects the frequency characteristics of the measured values of the flow rate sensor 102.
  • the sensor response adjustment circuit 143 is, for example, a band amplification filter having a large gain in a predetermined band and a gain in direct current of 0 dB.
  • the drive circuit 141, the flow rate sensor 102, and the sensor response adjustment circuit 143 are connected in this order to form a feedback loop.
  • the deviation between the flow rate set value and the output value of the sensor response adjustment circuit 143 is input to the drive circuit 141.
  • the drive circuit 141 drives the control valve 105 based on the deviation between the flow rate set value and the output value of the sensor response adjustment circuit 143.
  • the output of the sensor response adjustment circuit 143 is input to a display unit (not shown) and displayed as a flow rate display value indicating the current flow rate.
  • the guaranteed response speed in the flow control device of the related technology is, for example, about 1 second.
  • the flow rate control device 1 has a drive circuit 41, a flow rate sensor 102, a sensor response adjustment circuit 43, and a first filter 44 as control blocks. And has a second filter 45.
  • the drive circuit 41, the flow rate sensor 102, the sensor response adjustment circuit 43, and the first filter 44 form a feedback loop in which the flow rate set value is input and the actual flow rate Q is output. The deviation between the flow rate set value and the output value of the first filter 44 is input to the drive circuit 41.
  • the drive circuit 41 is a circuit that applies a drive current to the control valve 105.
  • the drive circuit 41 opens and closes the control valve 105 based on the input flow rate set value to change the actual flow rate Q.
  • the actual flow rate Q is the flow rate of the fluid physically flowing through the flow rate control device 1.
  • the flow rate sensor 102 measures the actual flow rate Q and inputs the voltage value corresponding to the actual flow rate Q into the sensor response adjustment circuit 43.
  • the sensor response adjustment circuit 43 is a circuit that corrects the frequency characteristics of the measured values of the flow rate sensor 102.
  • the thermal flow sensor 102 when the heat transport rate by the fluid such as gas flowing through the flow path is small with respect to the heat capacity of the sensor tube 102a or the heat generating resistor, the heat transport rate by the fluid is lower than the theoretical value. Then, the measured value becomes broad. That is, the measured value of the flow rate sensor 102 is a value obtained by applying a powerful low-pass filter (hereinafter, also referred to as “LPF”) to the actual flow rate Q. Therefore, as shown in FIG.
  • LPF powerful low-pass filter
  • the sensor response adjustment circuit 43 is a band amplification filter having a gain in the cutoff band of the LPF so as to cancel the attenuation of the LPF caused by the flow sensor 102. Further, the sensor response adjustment circuit 43 may further have the property of a low-pass / high-cut filter that attenuates the high frequency side of the amplified frequency band.
  • the first filter 44 shown in FIG. 2 is a frequency filter to which the output of the sensor response adjustment circuit 43 is input. As shown in FIG. 3, the first filter 44 attenuates a predetermined frequency band of the output of the sensor response adjustment circuit 43. The first filter 44 does not change the gain of a frequency different from the frequency band to be attenuated. That is, the gain of a frequency band other than the frequency band is approximately 1. The center frequency of the attenuation band in the first filter 44 is higher than the center frequency of the pass band in the sensor response adjustment circuit 43.
  • the first filter 44 Since the first filter 44 attenuates a predetermined frequency band and passes a signal in the low frequency band, the input signal behaves as if it is output with a delay in a situation where the signal is monotonically changing. Therefore, in this feedback loop, the deviation between the signal delayed from the actual flow rate Q and the flow rate set value is taken. When considering the transient response in which the actual flow rate Q gradually approaches the flow rate set value, the delayed signal has a larger deviation from the flow rate set value than the actual flow rate Q, so the first filter 44 is used.
  • the drive of the control valve 105 can be increased as compared with the case where the control valve 105 is not used. Therefore, the feedback control can be accelerated and the response speed can be increased.
  • the response speed of the flow rate control device 1 is, for example, about 0.5 seconds, and a response speed of about twice that of the flow rate control device of the related technology without the first filter 44 can be realized. According to this configuration, it is possible to respond at high speed even to a transient response when the flow rate set value is significantly changed.
  • the second filter 45 is a frequency filter to which the output of the sensor response adjustment circuit 43 is input, and is arranged outside the feedback loop.
  • the output of the second filter 45 is input to a display unit (not shown).
  • the display unit displays the current flow rate calculated based on the output of the second filter 45 as a flow rate display value.
  • the display unit may have a configuration included in the flow rate control device 1, or may be provided in an external device connected to the flow rate control device 1.
  • the second filter 45 amplifies a predetermined frequency band in the output of the sensor response adjustment circuit 143, and does not change the gain of a frequency different from the frequency band.
  • the center frequencies of the first filter 44 and the second filter 45 are substantially the same.
  • the second filter 45 Since the second filter 45 amplifies the frequency in a predetermined band, the change in the signal is emphasized in the time domain, and in the situation where the input value is monotonically changing, the value is corrected with respect to the changing direction. Therefore, it can be expressed that the signal is accelerated by passing through this filter.
  • the flow rate display value is a value that more accurately reflects the actual flow rate Q by accelerating the output signal of the sensor response adjustment circuit 43. It can be displayed.
  • the sensor response adjustment circuit 43, the first filter 44, and the second filter 45 may be analog filters that process analog signals. According to this configuration, it can be configured at a low cost and can be processed at high speed with low power consumption as compared with the case where it is configured by a digital circuit such as a microcomputer.
  • the sensor response adjustment circuit 43 and the second filter 45 are both BPFs that amplify a predetermined band.
  • the frequency characteristic obtained by synthesizing the characteristics of the sensor response adjusting circuit 43 and the second filter 45 is realized by one circuit, the frequency characteristic becomes steep and noise may occur. According to the configuration in which the output value of the flow rate sensor 102 is used for calculating the flow rate display value via the sensor response adjustment circuit 43 and the second filter 45, the SN ratio can be guaranteed.
  • the first filter 44 and the second filter 45 are filters having opposite frequency characteristics in the sense that the positive and negative gains are different. Further, the sensor response adjustment circuit 43 and the first filter 44 also have frequency characteristics that are substantially opposite to each other, although they have different center frequencies. If filters having opposite frequency characteristics are applied to the same signal, the signal once amplified will be attenuated, which is not desirable in maintaining the SN ratio. According to the configuration in which the output from the sensor response adjustment circuit 43 is branched and the first filter 44 and the second filter 45 are arranged on the respective paths, the use of filters having opposite frequency characteristics is minimized, and the SN The ratio can be guaranteed.
  • the sensor response adjustment circuit 43, the first filter 44 and the second filter 45 are separate control blocks
  • the sensor response adjustment circuit 43, the first filter 44 and the second filter 45 are composed of analog circuits. Even in this case, the signal can be controlled by the voltage width applied to each analog element.
  • the flow rate control device by calculating the flow rate display value based on the output value of the second filter, a value that more accurately reflects the actual flow rate can be displayed as the flow rate display value. ..
  • each frequency filter by configuring each frequency filter with an analog filter, it can be configured at a lower cost than when it is configured with a digital circuit such as a microcomputer, and it can be configured at low speed with low power consumption. Can be processed.
  • the flow rate control device according to the present invention, high response accuracy can be realized even when the flow rate sensor is a thermal flow rate sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)

Abstract

【課題】 応答精度の高い流量制御装置を得る。 【解決手段】 流体の流量を計測する流量センサ102と、流体の流量が流量設定値になるように流量を調整する制御部104と、を備え、制御部は、流量を変化させる制御弁105と、制御弁を駆動する駆動回路41と、流量センサの測定値の周波数特性を補正するセンサレスポンス調整回路43と、センサレスポンス調整回路の出力の、所定の周波数帯域を減衰させる第1フィルタ44と、を備え、駆動回路、流量センサ、センサレスポンス調整回路および第1フィルタを含むフィードバックループが構成され、流量設定値と、第1フィルタの出力値と、の偏差が駆動回路に入力される、流量制御装置1。

Description

流量制御装置、流量制御方法、流量制御装置の制御プログラム
 本発明は、流量制御装置、流量制御方法および流量制御装置の制御プログラムに関する。
 流量センサで測定した流量に基づいて制御弁を調整することで、下流へ流れ出る流体の流量を設定値に調整する流量制御装置およびマスフローコントローラ(以下、「MFC」ともいう。)が知られている。
 特許文献1には、入口側と出口側とを有する流体流路に結合されるフローセンサを含む流量制御装置において、フローセンサは流路を通る感知された流体流れを示すセンサ出力信号を提供するよう適合され、流路の少なくとも1つの圧力を測定することと、少なくとも1つの圧力を測定することに基づきセンサ出力信号を調整することとを含む、流体の流量制御方法が開示されている。
 特許文献2には、制御部に予め複数の流量設定値と複数の流体圧力値に応じた制御定数を記憶しておき、流量設定値と圧力センサの検出値に基づいて制御定数を選択して流量制御する、流量制御装置が開示されている。
特表2005-534110号公報 特開2011-090405号公報
 MFCにおいて、応答速度の速いフィードバック制御を実現するためには、制御の入力を与えるセンサの応答特性が重要なファクターの1つである。センサは、熱式MFCにおいては、例えば熱式流量センサである。しかしながら、熱式MFCの応答特性は、実測定上、熱式流量センサの応答特性から予測される理論値よりも低くなり、時定数が10秒程度の遅い応答しか得ることができない。これは、流路を流れるガス等の流体による熱の輸送速度が、センサチューブや発熱抵抗体の熱容量に対して小さいためである。
 特許文献1および2に記載の流量制御装置は、いずれも圧力式MFCが開示されている。いずれの装置も、MFCにおいて速い応答速度のフィードバック制御を実現するものではない。
 そこで、本発明は、応答精度の高い流量制御装置を得ることを目的の1つとする。
 上記目的を達成するため、本発明の一の観点に係る流量制御装置は、流体の流量を計測する流量センサと、前記流体の流量が流量設定値になるように流量を調整する制御部と、を備え、前記制御部は、前記流量を変化させる制御弁と、前記制御弁を駆動する駆動回路と、前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整回路と、前記センサレスポンス調整回路の出力の、所定の周波数帯域を減衰させる第1フィルタと、を備え、前記駆動回路、前記流量センサ、前記センサレスポンス調整回路および前記第1フィルタを少なくとも含むフィードバックループが構成され、前記流量設定値と、前記第1フィルタの出力値と、の偏差が前記駆動回路に入力される。
 前記制御部は、前記フィードバックループの外に、前記センサレスポンス調整回路の出力のうち所定の周波数帯域を増幅させ、前記周波数帯域とは異なる周波数のゲインは変化させない第2フィルタをさらに備えるものとしてもよい。
 前記センサレスポンス調整回路と前記第1フィルタは、アナログ信号を処理するアナログフィルタであるものとしてもよい。
前記流量センサは、熱式流量センサであるものとしてもよい。
 上記目的を達成するため、本発明の別の観点に係る流量制御方法は、流体の流量を計測する流量センサと、前記流体の流量が流量設定値になるように流量を調整する制御部と、前記流量を変化させる制御弁と、を備える流量制御装置を用いる流量制御方法であって、前記制御弁を駆動する駆動ステップと、前記流量を計測する計測ステップと、前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整ステップと、前記センサレスポンス調整ステップの出力の、所定の周波数帯域を減衰させる減衰ステップと、を含み、前記駆動ステップ、前記計測ステップ、前記センサレスポンス調整ステップおよび前記減衰ステップを少なくとも含むフィードバックループが構成され、前記流量設定値と、前記減衰ステップの取得値と、の偏差が前記駆動ステップの入力となる。
 上記目的を達成するため、本発明のさらに別の観点に係る流量制御装置の制御プログラムは、流体の流量を計測する流量センサと、前記流体の流量が流量設定値になるように流量を調整する制御部と、前記流量を変化させる制御弁と、を備える流量制御装置の制御プログラムであって、前記制御弁を駆動する駆動命令と、前記流量を計測する計測命令と、前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整命令と、前記センサレスポンス調整命令の出力の、所定の周波数帯域を減衰させる減衰命令と、をコンピュータに実行させ、前記駆動命令、前記計測命令、前記センサレスポンス調整命令および前記減衰命令を少なくとも含むフィードバックループが構成され、前記流量設定値と、前記減衰命令の取得値と、の偏差が前記駆動命令の入力となる。
 なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータが読取可能な各種の記録媒体に記録して提供したりすることができる。
 本発明によれば、応答精度の高い流量制御装置を得ることができる。
本発明にかかる流量制御装置の実施の形態を示す全体概略図である。 上記流量制御装置の制御ブロック図である。 上記流量制御装置が有する、第1フィルタ、第2フィルタおよびセンサレスポンス調整回路のボード線図の例である。 関連技術の流量制御装置が有する制御ブロック図である。
 以下、本発明にかかる流量制御装置ならびにその制御方法および制御プログラムの実施の形態について、図面を参照しながら説明する。
●流量制御装置の概要
 図1に示すように、流量制御装置1は、バルブボディ101、流量センサ102、変換部103、制御部104、および制御弁105を備える。流量制御装置1は、マスフローコントローラ(「MFC」ともいう。)とも呼ばれる装置である。
 バルブボディ101は、上流流路101aおよび下流流路101bを画定する略筒状の部材である。上流流路101aの上流側および下流流路101bの下流側は、制御対象の流体が流れる管や流路ブロックにそれぞれ接続されている。
 上流流路101aは、上流側から流体から流入する流路である。上流流路101aは途中で、流量センサ102を通る流路とバイパス流路101cとに分岐した後に合流し、制御弁105へと流出する。制御弁105は、ダイヤフラム110と、ダイヤフラム110に対向する弁座112を有する。ダイヤフラム110と弁座112の間の空間は上流流路101aと下流流路101bとの間を連通する空間となっている。ダイヤフラム110をアクチュエータ111により変形させることで、ダイヤフラム110が弁座112に対して開閉することにより流体の流量が調整可能である。図1においてアクチュエータ111の内部構造は図示省略しているが、制御弁105は、例えば金属製ダイヤフラムを、アクチュエータ111内部のピエゾ素子(ピエゾアクチュエータ)を用いて開閉するピエゾ素子駆動型制御弁である。
 下流流路101bは、上流側から制御弁105により流量制御された流体が流入し、流量制御装置1の下流側に流出するように構成されている。
 バイパス流路101cは、流体が層流になる程度に細い流路が多数並列になった構造の層流素子を有する流路である。本実施例では、エッチング加工により溝が掘られた板(バイパスシート)を複数枚積み重ねることによって層流素子が構成されている。
 流量センサ102は、センサチューブ102aに流れる流体の流量を計測するセンサである。流量センサ102は、例えばセンサチューブ102aの上流および下流に発熱抵抗体102b、102cを有していて、発熱抵抗体102b、102cの温度の違いに基づいて、センサチューブ102aに流れる流体の流量を電圧に変換する。バイパス流路101cに流れる流量とセンサチューブ102aに流れる流量の割合は既知であるので、センサチューブ102aに流れる流量を計測することにより、上流流路101aの流量を算出することができる。流量センサ102は、流量が増加してくると出力値が飽和するため、計測可能な流量の範囲は限られているが、バイパス流路101cを調整することで、上流流路101aの流量、つまり流量制御装置1として計測可能な流量の範囲を調節する事ができる。
 変換部103は、流量設定値を流量センサ102の出力値と比較可能な状態に変換した上で、流量センサ102の出力値と共に制御部104に出力する機能部である。変換部103は、流量センサ102の出力値を整流および増幅したり、ノイズ除去のために出力値にローパスフィルタをかけたりしてもよい。変換部103は、流量設定値に対して、流体の種類に応じた差異、および流量制御装置1の個体差等により生じる測定誤差を補正した上で、センサ出力目標値として制御部104に出力する。
 制御部104は、流量センサ102の出力値と、センサ出力目標値とを比較し、比較の結果に基づいて制御弁105を制御する機能部である。
 制御部104は、フィードバック制御を行うことにより、下流流路101bから排出される流量が流量設定値となるように、制御弁105の開度を制御する。制御部104は、CPU、メモリM、A/Dコンバータ等を内蔵している。制御部104は、後述する動作を実行するように構成されたコンピュータプログラムを含んでいてよく、ハードウェアおよびソフトウェアの組み合わせによって実現され得る。
●関連技術の流量制御装置の制御ブロック図
 図4に示すように、関連技術の流量制御装置は、制御ブロックとして、駆動回路141、流量センサ102およびセンサレスポンス調整回路143を有する。
 駆動回路141は、駆動電流を制御弁105に印加する回路である。駆動回路141は、入力される流量設定値に基づいて制御弁105を開閉させ、実流量Qを変化させる。実流量Qは、流量制御装置1に物理的に流れている流体の流量である。 
 流量センサ102は、実流量Qを計測し、実流量Qに対応する電圧値をセンサレスポンス調整回路143に入力する。
 センサレスポンス調整回路143は、流量センサ102の測定値の周波数特性を補正する回路である。センサレスポンス調整回路143は、例えば所定帯域に大きなゲインを有し、直流におけるゲインが0dBである、帯域増幅フィルタである。
 駆動回路141、流量センサ102およびセンサレスポンス調整回路143は、この順に接続されて、フィードバックループを形成している。流量設定値とセンサレスポンス調整回路143の出力値との偏差が、駆動回路141に入力される。駆動回路141は、流量設定値とセンサレスポンス調整回路143の出力値との偏差に基づいて、制御弁105を駆動させる。また、センサレスポンス調整回路143の出力は、不図示の表示部に入力され、現在の流量を示す流量表示値として表示される。
 関連技術の流量制御装置における応答速度保証値は、例えば1秒程度である。
●流量制御装置1の制御ブロック図および各フィルタの周波数特性
 図2に示すように、流量制御装置1は、制御ブロックとして、駆動回路41、流量センサ102、センサレスポンス調整回路43、第1フィルタ44および第2フィルタ45を有する。駆動回路41、流量センサ102、センサレスポンス調整回路43および第1フィルタ44は、流量設定値を入力とし、実流量Qを出力とするフィードバックループを構成する。流量設定値と、第1フィルタ44の出力値との偏差が駆動回路41に入力される。
 駆動回路41は、制御弁105に駆動電流を印加する回路である。駆動回路41は、入力される流量設定値に基づいて制御弁105を開閉させ、実流量Qを変化させる。実流量Qは、流量制御装置1に物理的に流れている流体の流量である。
 流量センサ102は、実流量Qを計測し、実流量Qに対応する電圧値をセンサレスポンス調整回路43に入力する。
 センサレスポンス調整回路43は、流量センサ102の測定値の周波数特性を補正する回路である。熱式流量センサ102においては、流路を流れるガス等の流体による熱の輸送速度が、センサチューブ102aや発熱抵抗体の熱容量に対して小さい場合、流体による熱の輸送速度が理論値よりも低くなり、計測値がブロードになる。すなわち、流量センサ102の計測値は、実流量Qに強力なローパスフィルタ(以下、「LPF」ともいう。)がかかった値となる。そこで、図3に示すように、センサレスポンス調整回路43は、この流量センサ102に起因するLPFの減衰を打ち消すように、LPFの遮断帯域にゲインを有する帯域増幅フィルタである。また、センサレスポンス調整回路43は、増幅される周波数帯よりも高域側を減衰させる、ローパス・ハイカットフィルタの性質をさらに有していてもよい。
 図2に示す第1フィルタ44は、センサレスポンス調整回路43の出力が入力される周波数フィルタである。図3に示すように、第1フィルタ44は、センサレスポンス調整回路43の出力の、所定の周波数帯域を減衰させる。第1フィルタ44は、減衰させる周波数帯域とは異なる周波数のゲインは変化させない。すなわち、当該周波数帯域以外の周波数帯のゲインは、おおむね1である。第1フィルタ44における減衰帯域の中心周波数は、センサレスポンス調整回路43における通過帯域の中心周波数よりも高い。
 第1フィルタ44は、所定の周波数帯域を減衰させ、低周波帯域の信号は通過させるため、信号が単調に変化している状況では入力される信号が遅れて出力されるような挙動を示す。したがって、このフィードバックループにおいては、実流量Qよりも遅れた信号と流量設定値との偏差をとることになる。実流量Qが流量設定値に対して徐々に近付いていく過渡応答を考えた際に、当該遅れた信号は、実流量Qよりも流量設定値との偏差が大きくなるため、第1フィルタ44を介さない場合と比較して、制御弁105の駆動を大きくすることができる。そのため、フィードバック制御を早めることができ、応答速度を高速化することができる。流量制御装置1の応答速度は、例えば0.5秒程度であり、第1フィルタ44が無い関連技術の流量制御装置に比べて、2倍程度の応答速度を実現できる。この構成によれば、特に、流量設定値が大きく変更されるときの過渡応答に対しても、高速に応答することができる。
 第2フィルタ45は、センサレスポンス調整回路43の出力が入力される周波数フィルタであり、フィードバックループの外に配置されている。第2フィルタ45の出力は、不図示の表示部に入力される。表示部は、第2フィルタ45の出力に基づいて算出される現在の流量を、流量表示値として表示する。なお、表示部は、流量制御装置1が有する構成であってもよいし、流量制御装置1に接続される外部機器に設けられていてもよい。
 図3に示すように、第2フィルタ45は、センサレスポンス調整回路143の出力のうち、所定の周波数帯域を増幅させ、前記周波数帯域とは異なる周波数のゲインは変化させない。第1フィルタ44および第2フィルタ45の中心周波数は、ほぼ同等である。
 第2フィルタ45は、所定帯域の周波数を増幅するため、時間領域においては信号の変化を強調することになり、入力値が単調に変化している状況ではその変化する方向に対して値が補正を受けるため、このフィルタを通すことにより信号が加速された、と表現することもできる。第2フィルタ45の出力値に基づいて流量表示値を算出する構成によれば、センサレスポンス調整回路43の出力信号を加速させることで、実流量Qをより正確に反映した値を流量表示値として表示させることができる。
 センサレスポンス調整回路43、第1フィルタ44および第2フィルタ45は、アナログ信号を処理するアナログフィルタであってもよい。本構成によれば、例えばマイコンなどのデジタル回路で構成する場合と比較して、安価で構成でき、小さい消費電力で高速に処理を行うことができる。
 センサレスポンス調整回路43と第2フィルタ45は、いずれも所定帯域を増幅させるBPFである。ここで、センサレスポンス調整回路43と第2フィルタ45の特性を合成して得られる周波数特性を1個の回路により実現するものとすると、周波数特性が急峻となり、ノイズが発生するおそれがある。流量センサ102の出力値を、センサレスポンス調整回路43および第2フィルタ45を介した上で流量表示値の算出に用いる構成によれば、SN比を担保することができる。
 第1フィルタ44および第2フィルタ45は、ゲインの正負が異なるという意味で、互いに逆の周波数特性を有するフィルタである。また、センサレスポンス調整回路43および第1フィルタ44も、中心周波数は異なるが、互いに略逆の周波数特性を有する。互いに逆の周波数特性を有するフィルタを同一の信号にかけるものとすると、一度増幅される信号を減衰させることになるため、SN比を保つ上で望ましくない。センサレスポンス調整回路43からの出力を分岐させ、第1フィルタ44および第2フィルタ45をそれぞれの経路上に配置する構成によれば、逆の周波数特性を有するフィルタの使用を最小限に留め、SN比を担保することができる。
 また、センサレスポンス調整回路43、第1フィルタ44および第2フィルタ45を別個の制御ブロックとする構成によれば、センサレスポンス調整回路43、第1フィルタ44および第2フィルタ45をアナログ回路で構成した場合であっても、各アナログ素子に印加される電圧幅で信号を制御することができる。
 このように、本発明にかかる流量制御装置によれば、応答精度の高い流量制御装置を得ることができる。
 また、本発明にかかる流量制御装置によれば、第2フィルタの出力値に基づいて流量表示値を算出することで、実流量をより正確に反映した値を流量表示値として表示させることができる。
 さらに、本発明にかかる流量制御装置によれば、各周波数フィルタをアナログフィルタで構成することで、例えばマイコンなどのデジタル回路で構成する場合と比較して、安価で構成でき、小さい消費電力で高速に処理を行うことができる。
 さらに、本発明にかかる流量制御装置によれば、流量センサが熱式流量センサである場合にも、高い応答精度を実現できる。
1     流量制御装置
41   駆動回路
43   センサレスポンス調整回路
44   第1フィルタ
45   第2フィルタ
102  流量センサ
104  制御部
105  制御弁

Claims (6)

  1.  流体の流量を計測する流量センサと、
     前記流体の流量が流量設定値になるように流量を調整する制御部と、
    を備え、
     前記制御部は、
      前記流量を変化させる制御弁と、
      前記制御弁を駆動する駆動回路と、
      前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整回路と、
      前記センサレスポンス調整回路の出力の、所定の周波数帯域を減衰させる第1フィルタと、
    を備え、
     前記駆動回路、前記流量センサ、前記センサレスポンス調整回路および前記第1フィルタを含むフィードバックループが構成され、
     前記流量設定値と、前記第1フィルタの出力値と、の偏差が前記駆動回路に入力される、
    流量制御装置。
     
  2.  前記制御部は、前記フィードバックループの外に、前記センサレスポンス調整回路の出力のうち所定の周波数帯域を増幅させ、前記周波数帯域とは異なる周波数のゲインは変化させない第2フィルタをさらに備える、
    請求項1記載の流量制御装置。
     
  3.  前記センサレスポンス調整回路と前記第1フィルタは、アナログ信号を処理するアナログフィルタである、
    請求項1又は2記載の流量制御装置。
     
  4.  前記流量センサは、熱式流量センサである、
    請求項1乃至3のいずれかに記載の流量制御装置。
     
  5.  流体の流量を計測する流量センサと、
     前記流体の流量が流量設定値になるように流量を調整する制御部と、
     前記流量を変化させる制御弁と、
    を備える流量制御装置を用いる流量制御方法であって、
     前記制御弁を駆動する駆動ステップと、
     前記流量を計測する計測ステップと、
     前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整ステップと、
     前記センサレスポンス調整ステップの出力の、所定の周波数帯域を減衰させる減衰ステップと、
    を含み、
     前記駆動ステップ、前記計測ステップ、前記センサレスポンス調整ステップおよび前記減衰ステップを含むフィードバックループが構成され、
     前記流量設定値と、前記減衰ステップの取得値と、の偏差が前記駆動ステップの入力となる、
    流量制御方法。
     
  6.  流体の流量を計測する流量センサと、
     前記流体の流量が流量設定値になるように流量を調整する制御部と、
     前記流量を変化させる制御弁と、
    を備える流量制御装置の制御プログラムであって、
     前記制御弁を駆動する駆動命令と、
     前記流量を計測する計測命令と、
     前記流量センサの測定値の周波数特性を補正するセンサレスポンス調整命令と、
     前記センサレスポンス調整命令の出力の、所定の周波数帯域を減衰させる減衰命令と、
    をコンピュータに実行させ、
     前記駆動命令、前記計測命令、前記センサレスポンス調整命令および前記減衰命令を含むフィードバックループが構成され、
     前記流量設定値と、前記減衰命令の取得値と、の偏差が前記駆動命令の入力となる、
    流量制御装置の制御プログラム。
PCT/JP2020/017480 2019-05-14 2020-04-23 流量制御装置、流量制御方法、流量制御装置の制御プログラム WO2020230574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021519340A JPWO2020230574A1 (ja) 2019-05-14 2020-04-23
KR1020217028217A KR102608260B1 (ko) 2019-05-14 2020-04-23 유량 제어 장치, 유량 제어 방법, 기록 매체
CN202080018374.XA CN113544620A (zh) 2019-05-14 2020-04-23 流量控制装置、流量控制方法、流量控制装置的控制程序
US17/610,759 US20220307882A1 (en) 2019-05-14 2020-04-23 Flow rate control device, flow rate control method, control program for flow rate control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019091491 2019-05-14
JP2019-091491 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020230574A1 true WO2020230574A1 (ja) 2020-11-19

Family

ID=73290189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017480 WO2020230574A1 (ja) 2019-05-14 2020-04-23 流量制御装置、流量制御方法、流量制御装置の制御プログラム

Country Status (6)

Country Link
US (1) US20220307882A1 (ja)
JP (1) JPWO2020230574A1 (ja)
KR (1) KR102608260B1 (ja)
CN (1) CN113544620A (ja)
TW (1) TWI755704B (ja)
WO (1) WO2020230574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239447A1 (ja) * 2021-05-13 2022-11-17 株式会社堀場エステック 流体制御装置、流体制御システム、流体制御装置用プログラム、及び流体制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916268A (ja) * 1995-06-29 1997-01-17 Hisashi Takahashi 遅れ補償機能付流量制御弁
JP2003157114A (ja) * 2001-11-19 2003-05-30 Toshiba Mach Co Ltd ロストモーション補正方法およびロストモーション補正装置
JP2006500683A (ja) * 2002-09-26 2006-01-05 スリーエム イノベイティブ プロパティズ カンパニー 適応型空間ノッチフィルタ
JP2009535715A (ja) * 2006-04-28 2009-10-01 メドトロニック ミニメド インコーポレイテッド ネットワーク化された液体注入システムのためのモニタデバイスおよびデータ変換デバイス、ならびにモニタ方法およびデータ変換方法
WO2013115298A1 (ja) * 2012-02-03 2013-08-08 日立金属株式会社 流量制御装置及びプログラム
JP2018156557A (ja) * 2017-03-21 2018-10-04 株式会社日立産機システム 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR051140A1 (es) * 2004-10-20 2006-12-20 Fisher Controls Int Disposicion de filtro de entrada de avance - retardo para bucles de control electroneumaticos
US7603186B2 (en) * 2006-04-28 2009-10-13 Advanced Energy Industries, Inc. Adaptive response time closed loop control algorithm
JP5499381B2 (ja) 2009-10-20 2014-05-21 日立金属株式会社 流量制御装置
JP5395193B2 (ja) * 2009-12-01 2014-01-22 株式会社フジキン 圧力式流量制御装置
JP5727596B2 (ja) * 2011-05-10 2015-06-03 株式会社フジキン 流量モニタ付圧力式流量制御装置の実ガスモニタ流量初期値のメモリ方法及び実ガスモニタ流量の出力確認方法
JP5847106B2 (ja) * 2013-03-25 2016-01-20 株式会社フジキン 流量モニタ付圧力式流量制御装置。
CN110431508A (zh) * 2017-03-28 2019-11-08 株式会社富士金 压力式流量控制裝置以及流量控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916268A (ja) * 1995-06-29 1997-01-17 Hisashi Takahashi 遅れ補償機能付流量制御弁
JP2003157114A (ja) * 2001-11-19 2003-05-30 Toshiba Mach Co Ltd ロストモーション補正方法およびロストモーション補正装置
JP2006500683A (ja) * 2002-09-26 2006-01-05 スリーエム イノベイティブ プロパティズ カンパニー 適応型空間ノッチフィルタ
JP2009535715A (ja) * 2006-04-28 2009-10-01 メドトロニック ミニメド インコーポレイテッド ネットワーク化された液体注入システムのためのモニタデバイスおよびデータ変換デバイス、ならびにモニタ方法およびデータ変換方法
WO2013115298A1 (ja) * 2012-02-03 2013-08-08 日立金属株式会社 流量制御装置及びプログラム
JP2018156557A (ja) * 2017-03-21 2018-10-04 株式会社日立産機システム 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239447A1 (ja) * 2021-05-13 2022-11-17 株式会社堀場エステック 流体制御装置、流体制御システム、流体制御装置用プログラム、及び流体制御方法

Also Published As

Publication number Publication date
KR102608260B1 (ko) 2023-11-30
JPWO2020230574A1 (ja) 2020-11-19
TW202045847A (zh) 2020-12-16
KR20210124364A (ko) 2021-10-14
CN113544620A (zh) 2021-10-22
US20220307882A1 (en) 2022-09-29
TWI755704B (zh) 2022-02-21

Similar Documents

Publication Publication Date Title
EP1196833B1 (en) System and method for a variable gain proportional-integral (pi) controller
JP4528617B2 (ja) マスフローコントローラにおける圧力補償のための方法および装置
KR101722304B1 (ko) 매스 플로우 컨트롤러
US8195312B2 (en) Multi-mode control loop with improved performance for mass flow controller
CN101454735A (zh) 自适应响应时间闭环控制算法
KR20130086519A (ko) 일관된 응답을 제공하는 온-툴(on-tool) 및 온-사이트(on-site) 질량 유량계 최적화를 위한 방법 및 시스템
US20120209436A1 (en) Fluid control device and pressure control device
JPS646481B2 (ja)
WO2020230574A1 (ja) 流量制御装置、流量制御方法、流量制御装置の制御プログラム
CN114063658A (zh) 流量控制装置、流量控制方法和程序存储介质
JP3893115B2 (ja) マスフローコントローラ
JP3972495B2 (ja) ボイラドラムの水位制御装置
WO2004090652A1 (ja) 高速気体圧力制御装置
KR20170113632A (ko) 압력 제어 장치
JP2020107061A (ja) マスフローコントローラ
JP6799862B2 (ja) 流量信号補正方法およびこれを用いた流量制御装置
CN108254147B (zh) 振动台反馈信号分频段调幅系统
JP5170053B2 (ja) 内燃機関の制御システム
JP2023080611A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JP2004013249A (ja) ガス供給システム
JPH0731554B2 (ja) 流量制御装置
CN108233922B (zh) 振动台反馈信号分频段移相系统
JP2001141107A (ja) バルブポジショナ
JP2001306153A (ja) 質量流量制御装置
JPH10198435A (ja) 流体圧力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519340

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028217

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806010

Country of ref document: EP

Kind code of ref document: A1