WO2020230491A1 - 小流量フロー反応に適した化学反応システム及び装置 - Google Patents

小流量フロー反応に適した化学反応システム及び装置 Download PDF

Info

Publication number
WO2020230491A1
WO2020230491A1 PCT/JP2020/015994 JP2020015994W WO2020230491A1 WO 2020230491 A1 WO2020230491 A1 WO 2020230491A1 JP 2020015994 W JP2020015994 W JP 2020015994W WO 2020230491 A1 WO2020230491 A1 WO 2020230491A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
liquid
circulation
circulation flow
discharge
Prior art date
Application number
PCT/JP2020/015994
Other languages
English (en)
French (fr)
Inventor
理 梶田
Original Assignee
日曹エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日曹エンジニアリング株式会社 filed Critical 日曹エンジニアリング株式会社
Priority to EP20806007.9A priority Critical patent/EP3970848A4/en
Priority to KR1020217038575A priority patent/KR20220009397A/ko
Priority to CN202080036521.6A priority patent/CN113840649A/zh
Priority to JP2021519308A priority patent/JPWO2020230491A1/ja
Publication of WO2020230491A1 publication Critical patent/WO2020230491A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2435Loop-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • B01J2219/00795Spiral-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00954Measured properties
    • B01J2219/00959Flow

Definitions

  • the present invention relates to a method and an apparatus for bringing at least two kinds of liquids into contact, which are suitable for chemical reaction, liquid-liquid extraction, etc. in a flow with a small flow rate.
  • Micro or millichemical process is a chemical process suitable for high-mix low-volume production. In particular, it is used for the production of pharmaceuticals and pharmaceutical intermediates, and the synthesis of organic compounds on a laboratory scale.
  • Micro or millimeter chemical processes include micro or millimeter size reactors, micro or millimeter size separators (micro or millimeter size distillation columns, micro or millimeter size extractors, etc.), micro or millimeter size extractors. It consists of a mixer and a micro-sized or millimeter-sized pump.
  • the characteristics of the equipment used in micro or millichemical processes are as follows: (1) The flow of fluid (gas, liquid) in the channel (inside the thin tube or in the narrow groove formed on the flat plate) is laminar flow ( 2) The surface area per unit volume of the fluid is large. If the flow is a laminar flow, liquid-liquid contact may not be sufficiently performed in an incompatible type 2 liquid or a highly viscous type 2 liquid.
  • Patent Document 1 a liquid reaction medium containing a chlorinated hydrocarbon such as ethane dichloride as a main component is placed in a loop-type liquid circulation reactor, and ethylene and chlorine are introduced into the liquid reaction medium to react the liquid.
  • a method for producing ethane dichloride while circulating a reaction medium ethane dichloride is characterized in that a liquid amount control valve for a liquid circulation flow path is provided and the liquid circulation flow rate is controlled in the range of 50 to 150 cm / sec. The manufacturing method is disclosed.
  • Patent Document 2 describes a fixed bed reaction device filled with an immobilized enzyme and a two-phase separation tank for separating the reaction product obtained by the fixed bed reaction device into two phases, a low specific gravity product and a high specific gravity product.
  • the formula two-phase immobilized enzyme reactor is disclosed.
  • Patent Document 3 is a method for catalytically condensing at least one aldehyde in a two-phase liquid reaction mixture in a loop reactor, wherein the reactor is present in the reaction zone and immediately above it.
  • an aldehyde-containing phase dispersed in a continuous aqueous phase containing a catalyst is generated, and the flow of the two-phase reaction mixture from the reaction zone is transferred to the quiescent zone.
  • the method is disclosed in which a continuous organic phase is formed in the upper region of the quiescent zone by raising and integrating.
  • Patent Document 4 a flow tube equipped with a mixing means or a loop reactor provided with a high-speed rotary pump for mixing is suitable for the continuous method, and the extraction process can also be performed by the same device. I teach you that you can.
  • One of the objects of the present invention is to provide a method and an apparatus for bringing at least two kinds of liquids into contact with each other, which are suitable for chemical reaction, liquid-liquid extraction, etc. in a flow with a small flow rate.
  • a homogeneous or non-uniform liquid consisting of at least two kinds of liquids is continuously supplied to a loop tube type container having a circulation flow path having a micro size or a millimeter size inside diameter via a supply flow path.
  • the supplied liquid is circulated and circulated in the circulation flow path at a flow rate that becomes turbulent in the range from the connection part between the supply flow path and the circulation flow path to the connection part between the discharge flow path and the circulation flow path.
  • the liquid is continuously withdrawn from the loop tube type container through the discharge flow path at a flow rate that satisfies the mass balance.
  • a homogeneous or non-uniform liquid consisting of at least two kinds of liquids is passed through a supply flow path and placed in a loop tube type container having a circulation flow path having a micro-sized or millimeter-sized inner diameter at 0.01 to 500 cm.
  • Continuously supplied at a flow rate of 3 / min The supplied liquid, be in the range up to the connecting portion between the discharge channel and the circulation passage from the connection portion between the supply channel and the circulation passage is calculated by R e ⁇ ⁇ ⁇ A / D H rate (m 3 / Second), circulate the circulation flow path, This includes continuously withdrawing the circulated liquid from the loop tube type container through the discharge flow path at a flow rate that satisfies the mass balance.
  • Re is 1000 or more
  • ⁇ (m 2 / sec) is the kinematic viscosity coefficient of the circulating liquid.
  • a (m 2 ) is the area of the cross section of the circulation flow path from the connection portion between the supply flow path and the circulation flow path to the connection portion between the discharge flow path and the circulation flow path.
  • DH (m) is the length calculated by 4 ⁇ A / P
  • P (m) is the connection between the discharge flow path and the circulation flow path from the connection portion between the supply flow path and the circulation flow path. Perimeter of the cross section of the circulation flow path up to the part, A method of contacting at least two liquids.
  • a loop tube type container having a circulation flow path having a micro-sized or millimeter-sized inner diameter. Connected to a circulation flow path for continuously supplying a homogeneous or non-uniform liquid consisting of at least two kinds of liquid to a loop tube reactor at a flow rate of 0.01 to 500 cm 3 / min.
  • Discharge channel The supplied liquid, in the connecting portion between the supply channel and the circulation passage to the connecting portion between the discharge channel and the circulation passage, the flow rate calculated by R e ⁇ ⁇ ⁇ A / D H (m 3 / In seconds), it is connected to a positive displacement pump for flowing and circulating in the circulation flow path, and a circulation flow path for continuously extracting the circulated liquid from the loop tube type container at a flow rate that satisfies the mass balance.
  • Discharge channel Equipped with Re is 1000 or more, ⁇ (m 2 / sec) is the kinematic viscosity coefficient of the circulating liquid.
  • a (m 2 ) is the area of the cross section of the circulation flow path from the connection portion between the supply flow path and the circulation flow path to the connection portion between the discharge flow path and the circulation flow path.
  • DH (m) is calculated as 4 ⁇ A / P
  • P (m) is the circulating flow from the connection between the supply flow path and the circulation flow path to the connection part between the discharge flow path and the circulation flow path.
  • liquid-liquid contact can be efficiently performed even in a flow with a small flow rate, so that it is suitable for chemical reactions and liquid-liquid extraction.
  • the residence time can be arbitrarily set, a high reaction rate can be realized even in a chemical reaction having a slow reaction rate.
  • the device of the present invention is compact and has excellent safety.
  • the homogeneous liquid is a mixed liquid of at least two kinds of liquids having high compatibility with each other, such as water and methanol, water and acetone, and the like.
  • the heterogeneous liquid is a liquid-liquid mixed phase liquid or emulsion (emulsion) of at least two liquids having high incompatibility with each other, such as water and oil, water and toluene, and the like. ..
  • a heterogeneous liquid one liquid often forms a continuous phase and the other liquid often forms a dispersed phase.
  • the micro size or the millimeter size refers to a size generally called by a person having ordinary knowledge in the art, for example, a size of 1 ⁇ m or more and less than 1000 mm, preferably a size of 10 ⁇ m or more and 100 mm or less. It is more preferably 100 ⁇ m or more and 50 mm or less, further preferably 0.3 mm or more and 10 mm or less, and further preferably 0.5 mm or more and 5 mm or less.
  • the device of the present invention has a supply flow path 1, a loop tube type container, and a discharge flow path 5.
  • the supply flow path 1 is a portion from a container for storing at least two kinds of liquids to a loop tube type container (hereinafter, may be referred to as a loop tube type reactor).
  • the inner diameter of the supply flow path 1 is not particularly limited, but is preferably micro size or millimeter size.
  • the supply flow path 1 is provided with a pump, an adsorption device, a dehydrator, a deaerator, a filter (filter cloth, etc.), a stirrer, a liquid conditioner, a temperature controller, a cooler, a heater, etc., as necessary. You may.
  • a static mixing device also referred to as a static mixer
  • the first liquid is supplied from the first reservoir (not shown) at a flow rate Q 1
  • the second liquid is supplied from the second reservoir at a flow rate Q 2 (not shown)
  • both solutions are mating at the merging portion 10, and flows into the circulation flow passage 3 out, 3 ret at a connection portion 2 at a flow rate Q F.
  • a commercially available stirrer for example, Soda Engineering "Millireactor” or the like
  • Soda Engineering "Millireactor” or the like may be used for the merging part 10 and the connecting part 2 in order to promote the mixing of the two liquids, or a device such as an ejector may be used. It may be provided.
  • the ejector is a device that can suck in a low-pressure fluid (liquid or gas) by using the force of a high-pressure fluid and discharge it at a medium pressure. If the volume does not change with mixing, the flow rate Q F is the sum of the flow rate Q 1 and the flow rate Q 2 .
  • the liquid dispenser is for combining at least two kinds of raw material liquids to obtain a homogeneous liquid or a non-uniform liquid consisting of at least two kinds of liquids.
  • the liquid conditioner for combining at least two kinds of raw material liquids to obtain a homogeneous or non-uniform system liquid consisting of at least two kinds of liquids may be a simple confluence 10 formed by cheese or the like. It may be a mixer such as a microreactor or a millireactor, or it may be an emulsifier, a disperser or the like provided with a container and a stirring mechanism.
  • the loop tube type reactor has a circulation flow path.
  • the circulation flow path starts from the connection part 2 which is the part connected to the supply flow path 1, passes through the connection part 4 which is the part connected to the discharge flow path 5, and returns to the connection part 2 again, which is a loop type flow. It's a road.
  • the range from the connection part 2 to the connection part 4 is referred to as the outward flow path 3 out
  • the range from the connection part 4 to the connection part 2 is referred to as the return flow path 3 ret .
  • the entire loop-type flow path is called a circulation flow path.
  • the circulation flow path preferably has an inner diameter of at least the outward flow path 3 out of micro size or millimeter size, and the inner diameter of both the forward flow path 3 out and the return flow path 3 ret is micro size or millimeter size. More preferred.
  • a pump, a filter (filter cloth, etc.), a stirrer, a cooler, a heater, a temperature controller, and the like may be provided in the circulation flow path, if necessary.
  • the pump is preferably provided in the return channel 3 ret .
  • the pump P is preferably a positive displacement pump because it can flow a liquid at an accurate flow rate.
  • positive displacement pumps include reciprocating pumps such as piston pumps, plunger pumps and diaphragm pumps, and rotary pumps such as gear pumps, vane pumps and screw pumps. Of these, the plunger pump is preferable because it can handle a minute flow rate.
  • a static mixing device is preferably used as the stirring device.
  • a device such as an ejector 8 may be provided in the connection portion 2 in order to promote mixing of the liquid from the supply flow path 1 and the liquid from the return flow path 3 ret .
  • a commercially available mixer for example, "Millireactor” manufactured by Nippon Soda Engineering Co., Ltd.
  • Millireactor manufactured by Nippon Soda Engineering Co., Ltd.
  • the filling material 9 can be packed in the circulation flow path, preferably in the outbound flow path 3 out (see FIG. 4).
  • the filling can facilitate mixing.
  • the filling may not contribute to the chemical reaction or may contribute to the chemical reaction. Examples of those that contribute to the chemical reaction include catalysts and adsorbents.
  • the shape of the filling material is not particularly limited, and examples thereof include a granular shape, a needle shape, and a plate shape.
  • the liquid's flow rate Q R of the outward passage 3 out if there is a change in volume ⁇ V by chemical reaction, and the flow rate Q F of the liquid from the supply channel 1, a return passage 3 ret and the flow rate Q c of the liquid from, which is the sum of the ⁇ V.
  • the discharge flow path 5 is a flow path starting from the connection portion 4 and extending to the outside of the system of the apparatus of the present invention. If necessary, the discharge flow path 5 includes a pump, a gas-liquid separator, a liquid-liquid separator, an emulsifier, a filter (filter cloth), a stirrer, a temperature controller, a cooler, a heater, a damper, and a back. A pressure regulator or the like may be provided.
  • the inner diameter of the discharge flow path 5 is not particularly limited, but is preferably micro size or millimeter size.
  • the damper 12 can be appropriately used in order to suppress the pulsation generated by the reciprocating pump.
  • the circulation flow path, the supply flow path 1, and the discharge flow path 5 are generally straight flow paths, but may be coil-shaped or zigzag-shaped flow paths.
  • a homogeneous or non-uniform liquid consisting of at least two kinds of liquids is continuously passed through a supply flow path 1 into a loop tube type container having a circulation flow path having a micro-sized or millimeter-sized inner diameter.
  • a circulation flow path having a micro-sized or millimeter-sized inner diameter.
  • It includes circulating the circulation flow path at a turbulent flow rate and continuously extracting the circulated liquid from the loop tube type container through the discharge flow path 5 at a flow rate that satisfies the mass balance. ..
  • the flow rate Q F of the liquid in the supply flow path 1 is determined by the supply amount of at least two liquid supplied from the reservoir, the flow conditions is a laminar flow It may be a turbulent flow.
  • the laminar flow means a flow in which the fluid moves regularly, and in a straight pipe having a circular cross section, the flow line of the fluid is always parallel to the pipe axis.
  • the flow rate Q R of the liquid in the outward passage 3 out is in the range of liquid flow in the outward passage 3 out becomes turbulent. Turbulence refers to a flow in which the velocity and pressure of a fluid fluctuate irregularly. Liquid-liquid contact is promoted by setting the flow rate to be turbulent.
  • the flow rate Q F of the liquid in the supply flow path usually, 0.01 ⁇ 500 cm 3 / min, more preferably 0.1 ⁇ 100 cm 3 / min, more preferably 1 ⁇ 50 cm 3 / Set to minutes.
  • the flow rate Q R of the liquid in the outward passage 3 out is set to a flow rate calculated by R e ⁇ ⁇ ⁇ A / D H (m 3 / sec). Re is 1000 or more, preferably 1300 or more, and more preferably 1800 or more.
  • ⁇ (m 2 / sec) is the kinematic viscosity coefficient of the circulating liquid.
  • a (m 2 ) is the area of the cross section of the circulation flow path from the connection portion 2 between the supply flow path 1 and the circulation flow path 3 to the connection portion 4 between the discharge flow path 5 and the circulation flow path 3.
  • DH (m) is a length calculated by 4 ⁇ A / P, and P (m) is from the connection portion 2 between the supply flow path 1 and the circulation flow path 3 to the discharge flow path 5 and the circulation flow. It is the peripheral length of the cross section of the circulation flow path up to the connection portion 4 with the road 3.
  • the liquid flow rate Q E in the exhaust passage 5 is a flow satisfying mass balance.
  • the average residence time in the loop tube reactor is a value obtained by dividing the capacity of the circulation flow path by the flow rate Q F or Q E.
  • Example 1 An experiment of liquid-liquid contact was carried out using the experimental apparatus shown in FIG. A spiral-shaped outward flow path 3 out consisting of a 1/8 inch tube (outer diameter 3.18 mm, inner diameter 2.17 mm) and a spiral diameter of 200 mm, and a return flow path 3 ret consisting of a 1/8 inch tube. A constructed circulation flow path having a capacity of 20 ml was prepared.
  • Circulation pump 3B double plunger pump manufactured by Nippon Seimitsu Kagaku Co., Ltd., NP-HX-200, maximum discharge pressure 10 MPa
  • pulsation damping damper 12 1/2 inch-PFA tube
  • the supply flow path 1 was connected to the connection portion 2 between the inlet of the forward flow path 3 out and the outlet of the return flow path 3 ret .
  • the discharge flow path 5 was connected to the connection portion 4 between the outlet of the forward flow path 3 out and the inlet of the return flow path 3 ret .
  • a back pressure regulator nitrogen gas pressurization, inert gas seal pressure control automatic valve
  • reaction rate (Q b + Q a ) / (Q 1B ) ⁇ 100.
  • Q b Mass flow rate of 4-methoxyphenol in the discharged aqueous phase
  • Q a Mass flow rate of 4-methoxyphenol in the discharged toluene phase
  • Q 1B Mass flow rate of 4-methoxyphenol in the supplied aqueous solution 1B Flow rate
  • Example 2 Except for changing the flow rate of the fluid supplied to the inlet of the outward passage 3 out through the return passage 3 ret from the outlet of the outward passage 3 out using a circulation pump to 50.0 ml / min to 100.0 ml / min , Liquid-liquid contact was carried out in the same manner as in Example 1.
  • the Reynolds number in the outward flow path 3 out was 1240, and the average residence time in the circulation flow path was about 2 minutes.
  • the reaction rate was 75.9% and the extraction rate was 53.2%.
  • Example 3 Except for changing the flow rate of the fluid supplied to the inlet of the outward passage 3 out through the return passage 3 ret from the outlet of the outward passage 3 out using a circulation pump to 50.0 ml / min to 150.0 ml / min Liquid-liquid contact was performed in the same manner as in Example 1.
  • the Reynolds number in the outward flow path 3 out was 1800, and the average residence time in the circulation flow path was about 2 minutes.
  • the reaction rate was 100.0% and the extraction rate was 69.5%.
  • Example 4 The experimental apparatus shown in FIG. 6 was used.
  • a one-pass flow path 3 pr consisting of a 1/8 inch tube (outer diameter 3.18 mm, inner diameter 2.17 mm) having a spiral diameter of 200 mm and a spiral capacity of 20 ml was prepared.
  • One-pass flow path 3 The supply flow path 1 was connected to the entrance of pr .
  • the discharge flow path 5 was connected to the outlet of the flow path 3 pr .
  • a back pressure regulator nitrogen gas pressurization, inert gas seal pressure control automatic valve
  • Toluene solution 1A of 92ppm benzoic acid and aqueous solution 1B of 80ppm 4-methoxyphenol sodium salt were added at 5.0ml / min, respectively, to a pulseless flow plunger pump (NP-KX-500, manufactured by Nippon Seimitsu Kagaku Co., Ltd.).
  • NP-KX-500 pulseless flow plunger pump
  • the solution was continuously supplied to the one-pass flow path 3 pr via the supply flow path 1.
  • the liquid that passed through the one-pass flow path 3 pr was continuously discharged through the discharge flow path 5 at 10 ml / min. Reynolds number in a single pass flow path 3 pr 110, the average residence time in the one-pass passage 3 pr was about 2 minutes.
  • the reaction rate was 73.9% and the extraction rate was 50.0%.
  • Example 5 In a separating funnel, 75 ml of a toluene solution of 92 ppm benzoic acid and 75 ml of an aqueous solution of 80 ppm of 4-methoxyphenol sodium salt were placed and shaken for about 2 to 3 minutes. Then, the separatory funnel was allowed to stand. The reaction rate was 78.3% and the extraction rate was 57.4%.
  • the apparatus of the present invention is not limited to the embodiment shown in the drawings, and the shape, size, color, and material of each part constituting the apparatus of the present invention are changed, or the apparatus of the present invention is provided with well-known or commonly used parts. The additions are also included in the technical scope of the present invention.
  • Supply flow path 2 Connection part between supply flow path and circulation flow path 3 out : Outward flow path 3 ret : Return flow path 4: Connection part between discharge flow path and circulation flow path 5: Discharge flow path 6, 7: In-line mixer 8: Ejector 9: Filling 10: Confluence P: Positive displacement pump 12: Pulsation damping damper 3B: Circulation pump 3 pr : One-pass flow path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路を経て、内径がマイクロサイズまたはミリサイズの循環流路を有する管型容器に、連続的に供給し、供給された液を、循環流路に流して循環させ、循環させた液を、管型容器から、排出流路を経て、連続的に抜き出すことを含み、管型容器に供給する液の流量(cm/分)が0.01~500であり、循環流路にて循環させる液の流量(m/秒)が、R×ν×A/Dで算出され、Rが、1000以上であり、νが、循環させる液の動粘性係数(m/秒)であり、Aが、循環流路の断面の面積(m)であり、Dが、水力直径であり且つ式:4×A/Pで算出され、且つPが、循環流路の断面の周長(m)である、少なくとも2種の液を接触させる方法。

Description

小流量フロー反応に適した化学反応システム及び装置
 本発明は、小流量のフローにおける、化学反応、液液抽出などに適した、少なくとも2種の液を接触させるための方法および装置に関する。
 マイクロ若しくはミリ化学プロセスは、多品種少量生産に適した化学プロセスである。特に、医薬品や医薬品中間体の製造や、研究室規模での有機化合物の合成等に用いられる。マイクロ若しくはミリ化学プロセスは、マイクロサイズ若しくはミリサイズのリアクター、マイクロサイズ若しくはミリサイズの分離装置(マイクロサイズ若しくはミリサイズの蒸留塔、マイクロサイズ若しくはミリサイズの抽出装置等)、マイクロサイズ若しくはミリサイズのミキサーやマイクロサイズ若しくはミリサイズのポンプ等から構成される。マイクロ若しくはミリ化学プロセスに用いられる装置の特徴としては、(1)チャンネル内(細管内や平板上に作った細い溝部分内)の流体(気体、液体)の流れが層流であること、(2)流体の単位体積あたりの表面積が大きいこと、が挙げられる。流れが層流であると、非相溶性の2種液体や高粘度の2種液体などにおいて、液液接触が十分に行われないことがある。
 一方で、ループ式反応器が種々知られている。例えば、特許文献1は、ループ式の液循環型反応器に二塩化エタン等の塩素化炭化水素を主成分とする液体反応媒質を入れ、その中にエチレンと塩素を導入して反応させ、液体反応媒質を循環させながら二塩化エタンを製造する方法において、液循環流路の液量調節弁を設け、液循環流速を50~150cm/秒の範囲において制御することを特徴とする二塩化エタンの製造方法を開示している。
 特許文献2は、固定化酵素を充填した固定床反応装置と、該固定床反応装置で得られた反応生産物を低比重生産物と高比重生産物の二相に分離する二相分離槽と、該二相分離槽の低比重生産物相の一部を該固定床反応装置に返送する配管と、該固定床反応装置で得られた反応生産物を二相分離槽に供給する配管と、該二相分離槽に低比重基質及び高比重基質を供給する各配管と、該二相分離槽から低比重生産物及び高比重生産物を排出する各配管を備えていることを特徴とするループ式二相系固定化酵素リアクターを開示している。
 特許文献3は、ループ式反応器内で二相の液状反応混合物において少なくとも1種のアルデヒドを触媒によりアルドール縮合するための方法であって、前記反応器は、反応帯域と、そのすぐ上方に存在する沈静帯域とを有し、前記反応帯域において、触媒を含有する連続的な水相に分散されたアルデヒド含有相が生じ、前記反応帯域からの二相の反応混合物の流れを、前記沈静帯域に上昇させ、かつ一体化し、前記沈静帯域の上部領域において、連続的な有機相が形成される、前記方法を開示している。
 特許文献4は、連続的方法の為には混合手段を備えた流動用管または混合の為の高速回転ポンプを備えたループ型反応器が適しており、抽出処理も同じ装置で実施することができると教えている。
特開昭61-27号公報 特開平8-24624号公報 特表2016-503432号公報 特開平6-128189号公報
 本発明の目的の一つは、小流量のフローにおける、化学反応、液液抽出などに適した、少なくとも2種の液を接触させるための方法および装置を提供することである。
 上記の目的を達成するために検討した結果、以下の態様を包含する本発明を見出した。
〔1〕 少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路を経て、内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器に、連続的に供給し、
 供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までの範囲において乱流となる流量にて、循環流路を循環させ、且つ
 循環させた液を、ループ管型容器から、排出流路を経て、マスバランスを満たす流量にて、連続的に抜き出すことを含む、
少なくとも2種の液を接触させる方法。
〔2〕 少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路を経て、内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器に、0.01~500cm/分の流量にて、連続的に供給し、
 供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までの範囲においてR×ν×A/Dで算出される流量(m/秒)にて、循環流路を循環させ、
 循環させた液を、ループ管型容器から、排出流路を経て、マスバランスを満たす流量にて、連続的に抜き出すことを含み、
 Rが、1000以上であり、
 ν(m/秒)が、循環させる液の動粘性係数であり、
 A(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の面積であり、
 D(m)が、4×A/Pで算出される長さであり、且つ
 P(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の周長である、
少なくとも2種の液を接触させる方法。
〔3〕 供給流路および排出流路は、内径がマイクロサイズまたはミリサイズである、〔1〕または〔2〕に記載の方法。
〔4〕 少なくとも2種の液を合わせて、均一系若しくは不均一系の液を得ることをさらに含む、〔1〕、〔2〕または〔3〕に記載の方法。
〔5〕 内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器、
 少なくとも2種の液からなる均一系若しくは不均一系の液を、ループ管型反応器に、0.01~500cm/分の流量にて、連続的に供給するための、循環流路に接続された供給流路、
 供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおいて、R×ν×A/Dで算出される流量(m/秒)にて、循環流路に流して循環させるための容積式ポンプ、および
 循環させた液をループ管型容器からマスバランスを満たす流量にて連続的に抜き出すための、循環流路に接続された排出流路、
を具備し、
 Rが、1000以上であり、
 ν(m/秒)が、循環させる液の動粘性係数であり、
 A(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の面積であり、
 D(m)が、4×A/Pで算出され、且つ
 P(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の周長である、
少なくとも2種の液を接触させるための装置。
〔6〕 供給流路および排出流路は、内径がマイクロサイズまたはミリサイズである、〔5〕に記載の装置。
〔7〕 少なくとも2種の原料液を合わせて、少なくとも2種の液からなる均一系若しくは不均一系の液を得るための調液器をさらに具備する、〔5〕または〔6〕に記載の装置。
〔8〕 供給流路は、液を撹拌する機構を有する、〔5〕~〔7〕のいずれかひとつに記載の装置。
〔9〕 循環流路は、液を撹拌する機構を有する、〔5〕~〔8〕のいずれかひとつに記載の装置。
 本発明によると、小流量のフローにおいても液液接触を効率的に行うことができるので、化学反応や液液抽出などに適する。本発明によると、滞留時間を任意に設定できるので、反応速度が遅い化学反応等においても、高い反応率を実現できる。本発明の装置は、コンパクト、安全性に優れる。
 本願において、均一系の液は、水とメタノール、水とアセトンなどのように、相溶性が相互に高い、少なくとも2種の液体の混合液である。本願において、不均一系の液は、水と油、水とトルエンなどのように、非相溶性が相互に高い、少なくとも2種の液体の液液混相の液またはエマルジョン(乳濁液)である。不均一系の液は、一方の液体が連続相を成し、他方の液体が分散相を成すことが多い。
 内径がマイクロサイズまたはミリサイズの流路において、分散相のサイズが大きい不均一系の液は、二つの液相が交互に流れることがある。このような流れをスラグフローまたはプラグフロー(栓流)と呼ぶ。スラグフローの状態になると、二つの液相の相互接触頻度が低くなることがある。本発明の方法および装置は、均一系の液はもちろん、不均一系の液にも適用できる。本願においてマイクロサイズまたはミリサイズとは、当技術分野において通常の知識を有する者において一般に呼ばれているサイズのことを言い、例えば、1μm以上1000mm未満のサイズ、好ましくは10μm以上100mm以下のサイズ、より好ましくは100μm以上50mm以下のサイズ、さらに好ましくは0.3mm以上10mm以下のサイズ、よりさらに好ましくは0.5mm以上5mm以下のことをいう。
本発明の装置の一例を示す概念図である。 本発明の装置の別の一例を示す概念図である。 本発明の装置の別の一例を示す概念図である。 本発明の装置の別の一例を示す概念図である。 例1~3で使用した実験装置を示す概念図である。 例4で使用した実験装置を示す概念図である。
 図面を参照しながら、本発明を説明する。
 本発明の装置は、供給流路1と、ループ管型容器と、排出流路5とを有する。
 供給流路1は、少なくとも2種の液をそれぞれ貯留する容器からループ管型容器(以下、ループ管型反応器ということがある)までの部分である。供給流路1の内径は、特に制限されないが、マイクロサイズまたはミリサイズであることが好ましい。
 供給流路1には、必要に応じて、ポンプ、吸着装置、脱水装置、脱気装置、フィルタ(濾布など)、撹拌装置、調液器、温度調節器、冷却器、加熱器などを設けてもよい。撹拌装置としては、静止型混合装置(スタティックミキサとも呼ばれる。)が好ましく用いられる。
 図1に示す装置においては、第一液が流量Qで第一貯留容器(図示せず)から供給され、第二液が流量Qで第二貯留容器(図示せず)から供給され、両液が合流部10で合わさり、流量Qで接続部2にて循環流路3out,3retに流入している。合流部10および接続部2には、2液の混合を促進するために、市販の攪拌装置(例えば日曹エンジニアリング「ミリリアクター」等が挙げられる)を用いてもよいし、エジェクタ等の装置を設けてもよい。なお、エジェクタとは、高圧流体の力を利用し低圧の流体(液体や気体)を吸込んで、中圧にて排出することができる装置のことを言う。混合に伴って体積変化が生じない場合には、流量Qは流量Qと流量Qとの合計である。調液器は、少なくとも2種の原料液を合わせて、少なくとも2種の液からなる均一系若しくは不均一系の液を得るためのものである。少なくとも2種の原料液を合わせて、少なくとも2種の液からなる均一系若しくは不均一系の液を得るための調液器は、チーズなどによって形成できる単なる合流部10であっても良いし、マイクロリアクター又はミリリアクターの様な混合器であっても良いし、容器と撹拌機構を具備する乳化器、分散器などであってもよい。
 ループ管型反応器は循環流路を有するものである。循環流路は、供給流路1と接続される部位である接続部2から始まり、排出流路5と接続される部位である接続部4を経て、再び接続部2に戻る、ループ型の流路である。なお、本願においては、説明を簡略にするために、接続部2から接続部4までの範囲を往流路3outと呼び、接続部4から接続部2までの範囲を復流路3retと呼び、ループ型の流路全体を循環流路と呼ぶ。循環流路は、少なくとも往流路3outの内径がマイクロサイズまたはミリサイズであることが好ましく、往流路3outおよび復流路3retの内径がいずれもマイクロサイズまたはミリサイズであることがより好ましい。
 循環流路には、必要に応じて、ポンプ、フィルタ(濾布など)、撹拌装置、冷却器、加熱器、温度調節器などを設けてもよい。ポンプは、復流路3retに設けることが好ましい。ポンプPは、正確な流量で液を流すことができる点で容積式ポンプが好ましい。容積式ポンプとしては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプなどの往復ポンプ、歯車ポンプ、ベーンポンプ、ねじポンプなどの回転ポンプを挙げることができる。これらのうち、微少流量にも対応できる点でプランジャーポンプが好ましい。図3に示すように、撹拌装置としてインラインミキサ6を往流路3outに設けることが好ましい。撹拌装置としては、静止型混合装置が好ましく用いられる。接続部2には、供給流路1からの液と復流路3retからの液との混合を促進するために、図2に示すように、エジェクタ8などの装置を設けてもよいし、市販の混合器(例えば日曹エンジニアリング社製「ミリリアクター」等が挙げられる)を設けてもよい。
 また、充填物9を、循環流路内に、好ましくは往流路3out内に、詰めることができる(図4参照)。充填物によって、混合を促進することができる。充填物は、化学反応に寄与しないものであってもよいし、化学反応に寄与するものであってもよい。化学反応に寄与するものとしては、触媒、吸着剤などを挙げることができる。充填物の形状は、特に限定されず、例えば、粒状、針状、板状などを挙げることができる。図1に示す装置においては、往流路3outにおける液の流量Qは、化学反応などによる体積変化ΔVがある場合、供給流路1からの液の流量Qと、復流路3retからの液の流量Qと、ΔVとの合計である。
 排出流路5は、接続部4から始まり、本発明装置の系外までの流路である。排出流路5には、必要に応じて、ポンプ、気液分離器、液液分離器、解乳化器、フィルタ(濾布)、撹拌装置、温度調節器、冷却器、加熱器、ダンパ、背圧調整器などを設けてもよい。排出流路5の内径は、特に制限されないが、マイクロサイズまたはミリサイズであることが好ましい。図1に示す装置においては、排出流路5における液の流量Qは、往流路3outにおける液の流量Qから、復流路3retにおける液の流量Qを差し引いたものである。ダンパ12は、往復ポンプによって発生する脈動を抑えるために、適宜、用いることができる。
 図1に示す装置においては、循環流路、供給流路1および排出流路5は、おおむね真直ぐな流路であるが、コイル状、ジグザグ状の流路であってもよい。
 本発明の方法は、少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路1を経て、内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器に、連続的に供給し、供給された液を、供給流路1と循環流路との接続部2から排出流路5と循環流路3との接続部4までの範囲(往流路3out)において乱流となる流量にて、循環流路を循環させ、且つ循環させた液を、ループ管型容器から、排出流路5を経て、マスバランスを満たす流量にて、連続的に抜き出すことを含む。
 本発明の一つの実施態様において、供給流路1における液の流量Qは、貯留容器から供給される少なくとも2種の液の供給量によって決まるが、その流れの状態は、層流であってもよいし、乱流であってもよい。なお、層流とは、流体が規則正しく運動している流れを言い、断面円形の直管においては、流体の流線が常に管軸と平行となる流れを言う。
 本発明の一つの実施態様において、往流路3outにおける液の流量Qは、往流路3outにおける液の流れが乱流となる範囲である。乱流とは、流体の速度や圧力などが不規則に変動する流れをいう。乱流となる流量とすることによって、液液接触が促される。
 本発明の好ましい実施態様において、供給流路における液の流量Qは、通常、0.01~500cm/分、より好ましくは0.1~100cm/分、さらに好ましくは1~50cm/分に設定する。また、本発明の好ましい実施態様において、往流路3outにおける液の流量Qは、R×ν×A/Dで算出される流量(m/秒)に設定する。
 なお、Rは、1000以上、好ましくは1300以上、より好ましくは1800以上であり、
 ν(m/秒)は、循環させる液の動粘性係数であり、
 A(m)は、供給流路1と循環流路3との接続部2から排出流路5と循環流路3との接続部4までにおける循環流路の断面の面積であり、
 D(m)は、4×A/Pで算出される長さであり、且つ
 P(m)は、供給流路1と循環流路3との接続部2から排出流路5と循環流路3との接続部4までにおける循環流路の断面の周長である。
 なお、排出流路5における液の流量Qは、マスバランスを満たす流量である。また、ループ管型反応器における平均滞留時間は、循環流路の容量を流量QまたはQで除算することによって得られる値である。Rは、化学工学の分野においてレイノルズ数と呼ばれる無次元数であり、R=(D×Q)/(ν×A)で定義される値である。レイノルズ数が大きいほど、流れが乱流になる傾向がある。
 次に、本発明の効果を実験例によって示す。
(例1)
 図5に示す実験装置を用いて液液接触の実験を行った。
 1/8インチチューブ(外径3.18mm、内径2.17mm)からなる螺旋径が200mmである螺旋形状の往流路3outと、1/8インチチューブからなる復流路3retとで、構成された、容量20mlの循環流路を用意した。
 復流路3retには、循環用ポンプ3B(日本精密科学(株)製ダブルプランジャーポンプ、NP-HX-200、最大吐出圧力10MPa)、および脈動減衰ダンパ12(1/2インチ-PFAチューブ(内径9mm))を取り付けた。往流路3outの入口と復流路3retの出口との接続部2に供給流路1を接続した。往流路3outの出口と復流路3retの入口との接続部4に排出流路5を接続した。排出流路5には、図示しないが、背圧調整器(窒素ガス加圧、不活性ガスシール圧制御自動弁)を取り付けた。
 92ppmの安息香酸のトルエン溶液1Aおよび80ppmの4-メトキシフェノールナトリウム塩の水溶液1Bを、それぞれ、5.0ml/分にて、無脈流プランジャーポンプ(日本精密科学(株)製、NP-KX-500、最大吐出圧力35MPa)を用いて、供給流路1を経て、循環流路に、連続的に供給した。往流路3outを通過した液の一部を10ml/分にて、排出流路5を経て、連続的に排出した。循環流路における平均滞留時間は約2分であった。循環用ポンプを用いて、往流路3outを通過した液の残部を50.0ml/分にて復流路3retを経て往流路3outの入口に連続的に供給した。往流路3outにおけるレイノルズ数は670であった。なお、レイノルズ数は、式:R=ρ×u×D÷μで算出した。ここで、ρは流体密度、uは管内の流体線速度、Dは配管内径、μは流体粘度である。
 トルエンは水に約0.5g/L(25℃)溶解するようである。水はトルエンに対して僅かに溶解するようである。安息香酸は、トルエン溶液中において、大部分が2分子会合体として存在し、わずかに非会合安息香酸分子を含むようである。安息香酸は水に3.4g/L溶解し、水溶液中において、大部分が非会合安息香酸分子として存在し、わずかにイオン解離するものを含むようである。4-メトキシフェノールは水に約40g/L(25℃)で溶解するようである。
 水溶液中の4-メトキシフェノールナトリウム塩とトルエン溶液中の安息香酸とが接触すると、以下のような化学反応を生じ、4-メトキシフェノールと安息香酸ナトリウム塩が生成する。

 NaOC6H4OCH3  + C6H5COOH → HOC6H4OCH3 + C6H5COONa

 4-メトキシフェノールはトルエンに溶解しやすく、安息香酸ナトリウムは水に溶解しやすいので、生成した安息香酸ナトリウムの一部はトルエン相から水相に移動し、生成した4-メトキシフェノールの一部は水相からトルエン相に移動した。
 液液接触の開始から15分間経過したときに、排出流路を経て排出された水相およびトルエン相中の4-メトキシフェノールをガスクロマトグラムの内部標準法でそれぞれ定量した。反応率は74.5%、抽出率は48.9%であった。
 なお、
 反応率は、式:反応率=(Qb+Qa)/(Q1B)×100 で算出した値である。
 抽出率は、式:抽出率=(Qa)/(Q1B)×100 で算出した値である。

b=排出された水相中の4-メトキシフェノールの質量流量
a=排出されたトルエン相中の4-メトキシフェノールの質量流量
1B=供給した水溶液1B中の4-メトキシフェノール換算の質量流量
(例2)
 循環用ポンプを用いて往流路3outの出口から復流路3retを経て往流路3outの入口に供給する液の流量を50.0ml/分から100.0ml/分に変えた以外は、例1と同じ方法で液液接触を行った。往流路3outにおけるレイノルズ数は1240、循環流路における平均滞留時間は約2分であった。反応率は75.9%、抽出率は53.2%であった。
(例3)
 循環用ポンプを用いて往流路3outの出口から復流路3retを経て往流路3outの入口に供給する液の流量を50.0ml/分から150.0ml/分に変えた以外は例1と同じ方法で液液接触を行った。往流路3outにおけるレイノルズ数は1800、循環流路における平均滞留時間は約2分であった。反応率は100.0%、抽出率は69.5%であった。
(例4)
 図6に示す実験装置を用いた。
 1/8インチチューブ(外径3.18mm、内径2.17mm)からなる螺旋径が200mmである螺旋形状の容量20mlのワンパス流路3prを用意した。
 ワンパス流路3prの入口に供給流路1を接続した。流路3prの出口に排出流路5を接続した。排出流路には、図示しないが背圧調整器(窒素ガス加圧、不活性ガスシール圧制御自動弁)を取り付けた。
 92ppm安息香酸のトルエン溶液1Aおよび80ppm4-メトキシフェノールナトリウム塩の水溶液1Bを、それぞれ、5.0ml/分にて、無脈流プランジャーポンプ(日本精密科学(株)製、NP-KX-500、最大吐出圧力35MPa)を用いて、供給流路1を経て、ワンパス流路3prに、連続的に供給した。ワンパス流路3prを通過した液を10ml/分にて、排出流路5を経て、連続的に排出した。ワンパス流路3prにおけるレイノルズ数は110、ワンパス流路3prにおける平均滞留時間は約2分であった。反応率は73.9%、抽出率は50.0%であった。
(例5)
 分液漏斗に、92ppmの安息香酸のトルエン溶液75mlと80ppmの4-メトキシフェノールナトリウム塩の水溶液75mlとを入れ、約2~3分間、振騰させた。その後、分液漏斗を静置した。反応率は78.3%、抽出率は57.4%であった。
 本発明の装置は、図面に示す実施形態に限られず、本発明の装置を構成する各部の形状、大きさ、色、材質を変更したもの、または本発明の装置に、周知または慣用の部品を追加したものも本発明の技術的範囲に包含される。
 1:供給流路
 2:供給流路と循環流路との接続部
 3out:往流路
 3ret:復流路
 4:排出流路と循環流路との接続部
 5:排出流路
 6,7:インラインミキサ
 8:エジェクタ
 9:充填物
 10:合流部
 P:容積式ポンプ
 12:脈動減衰ダンパ
 3B:循環用ポンプ
 3pr:ワンパス流路

Claims (9)

  1.  少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路を経て、内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器に、連続的に供給し、
     供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までの範囲において乱流となる流量にて、循環流路を循環させ、且つ
     循環させた液を、ループ管型容器から、排出流路を経て、マスバランスを満たす流量にて、連続的に抜き出すことを含む、
    少なくとも2種の液を接触させる方法。
  2.  少なくとも2種の液からなる均一系若しくは不均一系の液を、供給流路を経て、内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器に、0.01~500cm/分の流量にて、連続的に供給し、
     供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までの範囲においてR×ν×A/Dで算出される流量(m/秒)にて、循環流路を循環させ、
     循環させた液を、ループ管型容器から、排出流路を経て、マスバランスを満たす流量にて、連続的に抜き出すことを含み、
     Rが、1000以上であり、
     ν(m/秒)が、循環させる液の動粘性係数であり、
     A(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の面積であり、
     D(m)が、4×A/Pで算出される長さであり、且つ
     P(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の周長である、
    少なくとも2種の液を接触させる方法。
  3.  供給流路および排出流路は、内径がマイクロサイズまたはミリサイズである、請求項1または2に記載の方法。
  4.  少なくとも2種の液を合わせて、均一系若しくは不均一系の液を得ることをさらに含む、請求項1、2または3に記載の方法。
  5.  内径がマイクロサイズまたはミリサイズの循環流路を有するループ管型容器、
     少なくとも2種の液からなる均一系若しくは不均一系の液を、ループ管型反応器に、0.01~500cm/分の流量にて、連続的に供給するための、循環流路に接続された供給流路、
     供給された液を、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおいて、R×ν×A/Dで算出される流量(m/秒)にて、循環流路に流して循環させるための容積式ポンプ、および
     循環させた液をループ管型容器からマスバランスを満たす流量にて連続的に抜き出すための、循環流路に接続された排出流路、
    を具備し、
     Rが、1000以上であり、
     ν(m/秒)が、循環させる液の動粘性係数であり、
     A(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の面積であり、
     D(m)が、4×A/Pで算出され、且つ
     P(m)が、供給流路と循環流路との接続部から排出流路と循環流路との接続部までにおける循環流路の断面の周長である、
    少なくとも2種の液を接触させるための装置。
  6.  供給流路および排出流路は、内径がマイクロサイズまたはミリサイズである、請求項5に記載の装置。
  7.  少なくとも2種の原料液を合わせて、少なくとも2種の液からなる均一系若しくは不均一系の液を得るための調液器をさらに具備する、請求項5または6に記載の装置。
  8.  供給流路は、液を撹拌する装置を有する、請求項5~7のいずれかひとつに記載の装置。
  9.  循環流路は、液を撹拌する装置を有する、請求項5~8のいずれかひとつに記載の装置。
PCT/JP2020/015994 2019-05-16 2020-04-09 小流量フロー反応に適した化学反応システム及び装置 WO2020230491A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20806007.9A EP3970848A4 (en) 2019-05-16 2020-04-09 CHEMICAL REACTION SYSTEM AND DEVICE SUITABLE FOR LOW-FLOW REACTIONS
KR1020217038575A KR20220009397A (ko) 2019-05-16 2020-04-09 소유량 플로 반응에 적합한 화학 반응 시스템 및 장치
CN202080036521.6A CN113840649A (zh) 2019-05-16 2020-04-09 适于小流量流动反应的化学反应系统及装置
JP2021519308A JPWO2020230491A1 (ja) 2019-05-16 2020-04-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-092518 2019-05-16
JP2019092518 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230491A1 true WO2020230491A1 (ja) 2020-11-19

Family

ID=73289395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015994 WO2020230491A1 (ja) 2019-05-16 2020-04-09 小流量フロー反応に適した化学反応システム及び装置

Country Status (5)

Country Link
EP (1) EP3970848A4 (ja)
JP (1) JPWO2020230491A1 (ja)
KR (1) KR20220009397A (ja)
CN (1) CN113840649A (ja)
WO (1) WO2020230491A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508859A (ja) * 1994-11-17 1998-09-02 バイエル・アクチエンゲゼルシヤフト イソシアネートの製造方法
JP2003509544A (ja) * 1999-09-16 2003-03-11 テキサス ペトロケミカルズ リミティド パートナーシップ ポリオレフィン製品の製造方法
JP2003511526A (ja) * 1999-10-11 2003-03-25 ビーエーエスエフ アクチェンゲゼルシャフト ポリイソブテンの連続的製造方法
WO2007105620A1 (ja) * 2006-03-10 2007-09-20 Kyoto University ジアリールエテン化合物の製造方法、及び新規ジアリールエテン化合物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510596A3 (en) * 1991-04-26 1993-01-20 Hoechst Aktiengesellschaft Process for preparing perfluoroether carboxylic acids
JPH0824624A (ja) 1994-07-12 1996-01-30 Ube Ind Ltd 気泡塔型ループリアクターにおける反応制御方法
US20050272144A1 (en) * 2004-06-08 2005-12-08 Konica Minolta Medical & Graphic, Inc. Micro-reactor for improving efficiency of liquid mixing and reaction
WO2006089429A1 (en) * 2005-02-28 2006-08-31 University Of Ottawa Apparatus and method for bio-fuel production
US8648209B1 (en) * 2005-12-31 2014-02-11 Joseph P. Lastella Loop reactor for making biodiesel fuel
KR20120031156A (ko) * 2009-04-17 2012-03-30 닛소 엔지니아링 가부시키가이샤 관형 유통식 반응 장치
JP2011001501A (ja) * 2009-06-19 2011-01-06 Fujifilm Corp 顔料微粒子の製造方法及びこれに用いられるリアクター
EP2925714B1 (de) 2012-11-30 2016-11-16 Basf Se Verfahren zur katalytischen aldolkondensation von aldehyden
CN106414422B (zh) * 2014-05-30 2019-01-08 丸善石油化学株式会社 环状碳酸酯的制造装置及制造方法
TWI663158B (zh) * 2015-06-10 2019-06-21 日商丸善石油化學股份有限公司 環狀碳酸酯之製造裝置及製造方法
KR101817772B1 (ko) * 2016-07-08 2018-01-11 시엔시피이엘 주식회사 메탈로센 촉매 기반 폴리올레핀 계열의 용액중합 공정의 반응기
CN113840641B (zh) * 2019-05-16 2023-03-14 日曹工程股份有限公司 适于小流量流动的基于膜的连续相分离系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508859A (ja) * 1994-11-17 1998-09-02 バイエル・アクチエンゲゼルシヤフト イソシアネートの製造方法
JP2003509544A (ja) * 1999-09-16 2003-03-11 テキサス ペトロケミカルズ リミティド パートナーシップ ポリオレフィン製品の製造方法
JP2003511526A (ja) * 1999-10-11 2003-03-25 ビーエーエスエフ アクチェンゲゼルシャフト ポリイソブテンの連続的製造方法
WO2007105620A1 (ja) * 2006-03-10 2007-09-20 Kyoto University ジアリールエテン化合物の製造方法、及び新規ジアリールエテン化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3970848A4 *

Also Published As

Publication number Publication date
KR20220009397A (ko) 2022-01-24
EP3970848A4 (en) 2023-01-25
EP3970848A1 (en) 2022-03-23
JPWO2020230491A1 (ja) 2020-11-19
CN113840649A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
TWI417136B (zh) 平行互聯之噴射環流反應器
EP1259316B1 (en) Capillary reactor distribution device and method
Vanoye et al. A safe and efficient flow oxidation of aldehydes with O2
Jovanović et al. Phase-transfer catalysis in segmented flow in a microchannel: fluidic control of selectivity and productivity
Jensen et al. Tools for chemical synthesis in microsystems
US10449509B2 (en) Synthesis of organic peroxydes using an oscillatory flow mixing reactor
Liu et al. Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes
EP2260937A1 (en) Device for processing and conditioning of material transported through the device
JP2010089086A (ja) 連続多相反応及び分離のためのシステム、並びに方法
Vanoye et al. Continuous, fast, and safe aerobic oxidation of 2-ethylhexanal: pushing the limits of the simple tube reactor for a gas/liquid reaction
Hohmann et al. Separation units and equipment for lab-scale process development
CN102241558A (zh) 一种苯选择性加氢制备环己烯反应装置及工艺
Wood et al. Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment
CN106397106A (zh) 一种利用微通道反应器进行烯烃加成反应的方法
WO2020230491A1 (ja) 小流量フロー反応に適した化学反応システム及び装置
Laporte et al. Multiphasic Continuous‐Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes
Guan et al. High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs
RU2315061C1 (ru) Способ производства полимерных монодисперсных частиц суспензионной полимеризацией и установка для его осуществления
CN106334469B (zh) 静态管道三相混合器及其应用
CA2995646C (en) System for contacting gases and liquids
JP2022183588A (ja) スラグ流の生成デバイス、前記生成デバイスを備えた化学物質の処理装置、スラグ流の生成方法、及びスラグ流を用いた化学物質の処理方法
US9550731B2 (en) Method for phase transfer synthesis of organic peroxides
KR101874776B1 (ko) N-부틸 나이트라이트의 제조 방법
CN202047018U (zh) 一种苯选择性加氢制备环己烯反应装置
Reina et al. Hydrogenation reactions catalyzed by colloidal palladium nanoparticles under flow regime

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038575

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020806007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020806007

Country of ref document: EP

Effective date: 20211216