WO2020228697A1 - 碱金属硅酸盐涂层及其制备方法 - Google Patents

碱金属硅酸盐涂层及其制备方法 Download PDF

Info

Publication number
WO2020228697A1
WO2020228697A1 PCT/CN2020/089777 CN2020089777W WO2020228697A1 WO 2020228697 A1 WO2020228697 A1 WO 2020228697A1 CN 2020089777 W CN2020089777 W CN 2020089777W WO 2020228697 A1 WO2020228697 A1 WO 2020228697A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
alkali metal
silicate
metal silicate
nsio
Prior art date
Application number
PCT/CN2020/089777
Other languages
English (en)
French (fr)
Inventor
李洪国
高潮
Original Assignee
高化学株式会社
李洪国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学株式会社, 李洪国 filed Critical 高化学株式会社
Priority to US17/610,981 priority Critical patent/US20220259438A1/en
Publication of WO2020228697A1 publication Critical patent/WO2020228697A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/021Aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • C09J1/02Adhesives based on inorganic constituents containing water-soluble alkali silicates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)

Definitions

  • the invention relates to an alkali metal silicate coating and a preparation method thereof, and a product with the alkali metal silicate coating.
  • the invention also relates to a method of measuring the thickness of the silicate coating.
  • Sodium silicate or potassium silicate are inorganic materials. When they are used in coatings, it can be expected that the resulting coating will have good heat resistance, hardness and hydrophilicity. But the biggest disadvantage of this coating is insufficient water resistance.
  • Patent Document Japanese Patent Application Publication No. 07-018202 discloses a coating material, which is represented by an alkali metal silicon represented by the formula M 2 O ⁇ nSiO 2 (where M represents sodium and/potassium, and n represents a number from 2.0 to 4.1)
  • M represents sodium and/potassium
  • n represents a number from 2.0 to 4.1
  • a mixture of an aqueous acid salt solution and an aqueous solution of lithium silicate represented by Li 2 O ⁇ mSiO 2 (where m is a number of 4-5) is formed, and the moles of M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 The ratio is 1-3.
  • silicate coatings that are free from stain adhesion, heat-resistant discoloration, damage resistance, heat resistance, and hot water resistance, especially silicate coatings that can be used for metal products.
  • the inventors of the present invention have conducted extensive and in-depth research on alkali metal silicate coatings in order to find an alkali metal silicate coating with excellent properties.
  • the alkali metal silicate coating of the present invention has excellent heat resistance, hot water resistance, and antifouling properties, as well as excellent damage resistance.
  • the coating of the present invention is simple to manufacture and can be completed by coating and baking only once, thereby achieving cost reduction.
  • An alkali silicate coating is formed by the chemical formula M 2 O ⁇ nSiO alkali metal silicate and Chemical Formula 2 Li 2 O ⁇ mSiO 2 of lithium silicate, where M is selected from sodium, potassium, or their A mixture, n is 2.9-3.7, m is 4.2-4.8, and the molar ratio of M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 is 2.2-4.8;
  • the thickness of SiO 2 measured by a fluorescent X-ray analysis of the alkali silicate coating is 630-1450mg / m 2, preferably 700-1400mg / m 2.
  • a method of preparing an alkali metal silicate coating comprising:
  • step (i) The mixed aqueous solution of step (i) is coated on the surface of the substrate, and then baked at a temperature of 200-550°C.
  • step (i) in an aqueous solution by the chemical formula M 2 O ⁇ nSiO 2 alkali metal silicate and the chemical formula Li 2 O ⁇ mSiO 2 of The aqueous solution of lithium silicate is mixed and prepared.
  • step (ii) is 200-500°C, preferably 200-300°C.
  • the alkali metal silicate coating has a thickness of 630-1450 mg/m 2 in terms of SiO 2 by fluorescent X-ray analysis, preferably 700-1400 mg/m 2 m 2 .
  • step (ii) is 15 minutes to 2 hours, preferably 20 minutes to 1 hour.
  • the substrate is a metal, preferably iron, aluminum, iron alloys such as stainless steel, aluminum alloy and copper, preferably iron alloys such as stainless steel and aluminum.
  • a method of measuring the thickness of a silicate coating using fluorescent X-ray analysis 17.
  • silicate coating has a thickness in terms of SiO 2 50-10000mg / m 2, preferably 100-5000mg / m 2, more preferably 200-3000mg / m 2.
  • silicate coating is a coating according to any one of items 1-4 or a coating obtained by a method according to any one of items 5-13 .
  • alkali metal silicate coating which is formed by the chemical formula M 2 O ⁇ nSiO alkali metal silicate and Chemical Formula 2 Li 2 O ⁇ mSiO 2 of lithium silicate, where M is selected from sodium, Potassium or their mixture, n is 2.9-3.7, m is 4.2-4.8, and the molar ratio of M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 is 2.2-4.8;
  • the thickness of SiO 2 measured by a fluorescent X-ray analysis of the alkali silicate coating is 630-1450mg / m 2, preferably 700-1400mg / m 2.
  • the molar ratio of M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 is 2.3-4.5, preferably 2.4-4.4, such as 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 , 3.8, 4.0, 4.2 and 4.4.
  • M in the alkali metal silicate of the chemical formula M 2 O ⁇ nSiO 2 is preferably sodium or potassium.
  • n in the alkali metal silicate of the chemical formula M 2 O ⁇ nSiO 2 is 3.0-3.7, such as 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 or 3.7. If n is less than 2.9, even if the water resistance at room temperature is obtained, the hot water resistance at 60°C or higher will decrease. In addition, if n is greater than 3.7, the surface of the coating after the baking treatment becomes rough, and the surface tends to become white and foam when heated at a high temperature at 400°C.
  • m in the lithium silicate of the chemical formula Li 2 O ⁇ mSiO 2 is 4.3-4.7, such as 4.3, 4.4, 4.5, 4.6 or 4.7. If m is less than 4.2, the hot water resistance will decrease, and if it is greater than 4.8, the coating surface will be rough, and foaming and whitening will occur.
  • the thickness of the alkali metal silicate coating measured by fluorescent X-ray analysis in terms of SiO 2 is 630-1450 mg/m 2 , preferably 700-1400 mg/m 2 , such as 700, 800, 900, 1000 , 1100, 1200 or 1300 or 1400mg/m 2 .
  • the intensity of characteristic X-ray K ⁇ line of SiO 2 standard sample of known thickness can be measured in advance to prepare a standard curve of thickness in SiO 2 , And then measure the K ⁇ line intensity of the prepared unknown thickness sample, and then calculate the thickness in SiO 2 according to the standard curve.
  • the fluorescent X-ray analysis the X-MET8000 fluorescent X-ray analyzer manufactured by Hitachi High-Technologies Corporation can be used.
  • the thickness in terms of SiO 2 is less than 630 mg/m 2 , the hardness of the coating and the prevention of discoloration of the metal at high temperature are insufficient.
  • the thickness in terms of SiO 2 is greater than 1450 mg/m 2 , defects such as foaming and whitening of the coating will occur during heating.
  • the present invention relates to a method of preparing an alkali metal silicate coating, the method comprising:
  • step (i) The mixed aqueous solution of step (i) is coated on the surface of the substrate, and then baked at a temperature of 200-550°C.
  • the molar ratio of M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 may be 2.3-4.5, preferably 2.4-4.4, such as 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2 and 4.4.
  • M in the alkali metal silicate of the chemical formula M 2 O ⁇ nSiO 2 is preferably sodium or potassium.
  • n in the alkali metal silicate of the chemical formula M 2 O ⁇ nSiO 2 is 3.0-3.7, such as 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 or 3.7.
  • m in the lithium silicate of the chemical formula Li 2 O ⁇ mSiO 2 is 4.3-4.7, such as 4.3, 4.4, 4.5, 4.6 or 4.7.
  • the solid content of the mixed aqueous solution in step (i) may be 10-33% by weight, preferably 15-25% by weight.
  • the mixed aqueous solution of step (i) in an aqueous solution by mixing an aqueous solution of lithium of the formula M 2 O ⁇ nSiO 2 alkali metal silicate and chemical formula Li 2 O ⁇ mSiO 2 silicic acid And preparation.
  • the concentration of the aqueous solution of alkali metal silicate of the chemical formula M 2 O ⁇ nSiO 2 may be about 10-40% by weight.
  • the concentration of the aqueous solution of lithium silicate of the chemical formula Li 2 O ⁇ mSiO 2 may be about 10-25% by weight.
  • the coating method is not particularly limited, and methods such as spraying, roll coating, dipping, and brushing can be used.
  • the thickness of the alkali metal silicate coating is 630-1450 mg/m 2 in terms of SiO 2 by fluorescent X-ray analysis, preferably 700-1400 mg/m 2 , such as 700, 800, 900, 1000, 1100, 1200 or 1300 or 1400 mg/m 2 .
  • the thickness can be measured as described above.
  • the baking temperature in step (ii) is 200-500°C, such as 200°C, 300°C, 400°C or 500°C, preferably 200-300°C, such as 250°C. If it is less than 200°C, the hot water resistance tends to decrease, and if it is higher than 550°C, the coating film tends to become white.
  • the coated substrate before the baking in step (ii) is performed, the coated substrate is naturally dried. Drying time can be 5-30 minutes, preferably 8-20 minutes
  • the baking time in step (ii) may be 15 minutes to 2 hours, preferably 20 minutes to 1 hour, such as 30 minutes or 45 minutes.
  • the substrate is a metal, preferably iron, aluminum, iron alloys such as stainless steel, aluminum alloy and copper, and more preferably iron alloys such as stainless steel and aluminum.
  • the present invention also relates to an article having an alkali metal silicate coating of the present invention or an article having an alkali metal silicate coating obtainable by the method of the present invention.
  • the product is a metal product, preferably iron, aluminum, iron alloy such as stainless steel, aluminum alloy, and copper, and more preferably iron alloy such as stainless steel and aluminum.
  • the present invention also relates to products made from the metal products of the present invention, such as kitchen products, home appliances, and vehicle-related products.
  • the present invention also relates to a method for measuring the thickness of a silicate coating using fluorescent X-ray analysis.
  • the thickness measurement is usually carried out by measuring the thickness of the coating.
  • the thickness of the coating is very thin, so it is very difficult to measure the thickness.
  • the surface of the substrate, such as metal is not necessarily flat, this makes the measurement of thickness more difficult.
  • the inventors of the present invention unexpectedly discovered that the thickness of the silicate coating of the present invention can be measured by fluorescent X-ray analysis.
  • the measurement method is not only simple and rapid, but more importantly, it has a very high applicability for thin coatings.
  • an analytical assay silicate coated with a fluorescent X-ray thickness preferred embodiment, said silicate coating has a thickness in terms of SiO 2 50-10000mg / m 2, preferably 100-5000mg / m 2, more preferably 200-3000mg / m 2, for example 630-1450mg / m 2 or 700-1400mg / m 2.
  • the silicate is an alkali metal silicate, preferably the alkali metal is selected from lithium, sodium and potassium.
  • the silicate coating is an alkali metal silicate coating according to the present invention or can be obtained by the method of the present invention The alkali metal silicate coating.
  • a standard curve of the thickness in terms of SiO 2 (mg/m 2 ) can be prepared in advance, and then the thickness of the coating can be calculated according to the standard curve.
  • the alkali metal silicate coating of the present invention has excellent heat resistance, hot water resistance, and antifouling properties, as well as excellent damage resistance.
  • the coating is transparent, without foaming and whitening, as qualified.
  • Evaluation method After taking out the test piece, wipe off the excess water on the surface, and visually check whether the coating is discolored, and then use an oil-based pen (black pen from Zebura Co., Ltd., Japan) on the surface of the test piece (with coating) The surface of the layer) draw a curve, and after drying for 1 minute, wipe it with a sponge block moistened with water to confirm whether it still has antifouling properties. If the ink curve can be erased, it is judged as qualified, and if it cannot be erased, it is considered as unqualified.
  • oil-based pen black pen from Zebura Co., Ltd., Japan
  • Comparative example 1 The spray amounts in Example 1, Example 2, Example 3 and Comparative Example 2 are about 0.5g, 0.7g, 1.0g, 1.3g and 1.5g respectively (the sprayed mixture will not all adhere to the stainless steel surface , The actual coating thickness still needs to be quantified by fluorescent X-ray measurement). It was then dried naturally for 10 minutes, and then heated in an oven at 250°C for 30 minutes. After natural cooling, the test piece was evaluated by the above-mentioned evaluation method. The results are shown in Table 1.
  • Example 2 Repeat the procedure in Example 2 except that the baking temperature shown in Table 2 is used. The evaluation results are shown in Table 2.
  • Table 2 Evaluation results of changing the baking temperature of the stainless steel sheet (thickness as measured by a fluorescent X-ray analysis in terms of SiO 2 to 1050mg / m 2)
  • Example 2 The procedure in Example 2 was repeated, except that the M 2 O ⁇ nSiO 2 /Li 2 O ⁇ mSiO 2 molar ratio shown in Table 3 was used to prepare the mixed aqueous solution.
  • the weight ratio of J sodium silicate No. 3 and lithium silicate 45 was 6:4, and the molar ratio was 2.8.
  • the weight ratio of J sodium silicate No. 3 and lithium silicate 45 was 7:3, and the molar ratio was 4.4.
  • the weight ratio of J sodium silicate No. 3 and lithium silicate 45 in Comparative Example 5 is 5:5, and the molar ratio is 1.9.
  • the weight ratio of J sodium silicate No. 3 and lithium silicate 45 in Comparative Example 6 It is 7.5:2.5, and the molar ratio is 5.7.
  • Example 2 The procedure of Example 2 was repeated, except that sodium silicate with n value as shown in Table 4 was used instead of sodium silicate in Example 2, and lithium silicate with m value as shown in Table 4 was used instead of Example 2 in the lithium silicate.
  • the evaluation results are shown in Table 5.
  • Sodium Silicate No. 2 is 45° Sodium Silicate No. 2 manufactured by Japan Chemical Industry Co., Ltd.
  • Sodium Silicate No. 3 is J Sodium Silicate No. 3 manufactured by Japan Chemical Industry Co., Ltd.
  • Sodium Silicate No. 4 is Nippon Chemical Industry Co., Ltd.
  • Lithium silicate No. 35 in Table 4 is lithium silicate No. 35 manufactured by Nippon Chemical Industry Co., Ltd.
  • lithium silicate No. 45 is lithium silicate No. 45 manufactured by Nippon Chemical Industry Co., Ltd.
  • lithium silicate No. 75 is silicon manufactured by Nippon Chemical Industry Co., Ltd. Lithium acid No. 75.
  • This mixed aqueous solution was applied to a SUS 430 No. 4 finished stainless steel plate as a substrate by dip coating treatment.
  • the thickness is set to 1050 mg/m 2 in terms of SiO 2 (the lifting speed of the stainless steel plate after immersion is set to 1 mm/min).
  • heat treatment was performed in an oven at 250°C for 30 minutes. After natural cooling, the test piece was evaluated by the above-mentioned evaluation method. The evaluation results are shown in Table 6.
  • Example 8 The procedure of Example 8 was repeated, except that only potassium silicate was used instead of lithium silicate. The evaluation results are shown in Table 6.
  • Example 8 The procedure of Example 8 was repeated, except that an aluminum sheet was used as the substrate. The evaluation results are shown in Table 6.
  • the aluminum sheet without coating was used as it was, and the test piece was evaluated by the above-mentioned evaluation method.
  • the evaluation results are shown in Table 6.
  • Example 8 The procedure of Example 8 was repeated, except that an aluminum sheet was used as the substrate, and only potassium silicate was used instead of lithium silicate. The evaluation results are shown in Table 6.
  • the coated stainless steel does not have tempering yellowing even if heated at 400°C, and ink pen stains can be wiped off with water, and it is not easy to be damaged.
  • blackening does not occur when immersed in hot water, stains are removed like stainless steel, and it is not easily damaged.
  • potassium silicate alone although whitening does not occur and heat resistance is shown, the hot water resistance is insufficient.
  • the alkali metal silicate coating of the present invention has excellent heat resistance.
  • products with the alkali metal silicate coating of the present invention such as stainless steel products and aluminum products, can not be heated at 400°C for 2 hours. Discoloration occurs.
  • the alkali metal silicate coating of the present invention has excellent hot water resistance.
  • products with the alkali metal silicate coating of the present invention such as stainless steel products and aluminum products, can withstand hot water at about 100°C for 2 hours; °C hot water can withstand 24 hours.
  • the alkali metal silicate coating of the present invention has excellent antifouling properties.
  • products with the alkali metal silicate coating of the present invention such as stainless steel products and aluminum products, can remove oily pen and ink stains on them with water without using Any organic solvent.
  • the alkali metal silicate coating of the present invention has excellent damage resistance. For example, when a 9H pencil is used for scratching, the alkali metal silicate coating of the present invention also has no damage.
  • the present invention provides an alkali metal silicate coating that does not cause foaming/whitening at a high temperature of 200° C. or more, has excellent water resistance and hot water resistance, and exhibits excellent antifouling performance and damage resistance. According to past knowledge, these various properties have not yet been provided. With this characteristic, for example, stainless steel or aluminum with this coating can be used for various appliances related to kitchens, general household appliances, and vehicle-related products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

本发明涉及一种由化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂形成的碱金属硅酸盐涂层,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;其中所述碱金属硅酸盐涂层的通过荧光X射线分析法测定的以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2。本发明还涉及制备该涂层的方法。本发明的涂层具有优异耐热性、耐热水性和防污性,以及优异的耐损伤性。

Description

碱金属硅酸盐涂层及其制备方法 技术领域
本发明涉及一种碱金属硅酸盐涂层及其制备方法,以及具有碱金属硅酸盐涂层的制品。本发明还涉及一种测量硅酸盐涂层的厚度的方法。
背景技术
硅酸钠或硅酸钾是无机材料,将它们用于涂层时,能够预期所得涂层会具有良好的耐热性、硬度和亲水性。但是该涂层的最大缺点是是耐水性不足。
为了改善耐水性,可以添加多价金属离子、酸、有机物等固化剂。但一旦添加了固化剂,固化就开始进行,所以需要尽快将该涂料用完,所以存在涂料保存性的问题。此外,还考虑了将硅酸钠或硅酸钾涂料和固化剂分开进行涂覆的方法,但这需要多次进行涂覆,存在操作复杂的缺点。因此希望涂料的保存性好且能够一次完成涂覆处理的方法。
专利文献日本特开平07-018202中公开了一种涂料,其由“式M 2O·nSiO 2(式中,M表示钠和/钾,n表示2.0-4.1的数)所表示的碱金属硅酸盐的水溶液和Li 2O·mSiO 2(式中,m表示4-5的数)所表示的硅酸锂的水溶液的混合物形成,M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为1-3。
通过日本特开平07-018202的技术,即使硅酸钠和硅酸钾与硅酸锂混合,也不会发生混合固化剂时那样的固化反应,能够长期间保存。此外,由于可以通过1次涂覆完成涂层处理,所以认为操作不会复杂。而且能够通过110-150℃温度下的处理来确保耐水性。
然而由日本特开平07-018202的技术得到的涂层,虽然相对于常温水的耐水性得到改善,但仍然存在相对于60℃以上的热水的耐久性不足的缺陷。并且该文献中明确公开了,如果将其在170℃以上加热,所得涂层就会发泡、存在在水中崩溃的问题。这说明所得涂层在170℃以上的温度和暴露在热水中的环境中不能使用,因而意味着所述所得涂层应用范围窄。
因此在本领域仍然存在具有对免受污渍附着、耐热变色、耐损伤、耐热性和耐热水性的硅酸盐涂层,特别是可用于的金属制品的硅酸盐涂层的需求。
发明内容
鉴于现有技术的上述状况,本发明的发明人在碱金属硅酸盐涂层方面进行了广泛而深入的研究,以期发现一种具有优异性能的碱金属硅酸盐涂层。结果发现本发明的碱金属硅酸盐涂层具有优异耐热性、耐热水性和防污性,以及优异的耐损伤性。此外,本发明的涂层制作简单可以仅一次涂覆并进行烘烤就完成,实现了成本降低。
实现本发明目的的技术方案可以概括如下:
1.一种由化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂形成的碱金属硅酸盐涂层,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;
其中所述碱金属硅酸盐涂层的通过荧光X射线分析法测定的以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2
2.根据第1项的碱金属硅酸盐涂层,其中M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.3-4.5,优选2.4-4.4。
3.根据第1或2项的碱金属硅酸盐涂层,其中M为钠或钾。
4.根据第1-3项中任一项的碱金属硅酸盐涂层,其中n为3.0-3.7和/或m为4.3-4.7。
5.一种制备碱金属硅酸盐涂层的方法,所述方法包括:
(i)提供包含化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂的混合水溶液,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;和
(ii)将步骤(i)的混合水溶液涂覆在基材表面上,然后在200-550℃ 的温度下烘烤。
6.根据第5项的方法,其中M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.3-4.5,优选2.4-4.4。
7.根据第5或6项的方法,其中M为钠或钾。
8.根据第5-7项中任一项的方法,其中n为3.0-3.7和/或m为4.3-4.7。
9.根据第5-8项中任一项的方法,其中步骤(i)中的混合水溶液通过将化学式M 2O·nSiO 2的碱金属硅酸盐的水溶液和化学式Li 2O·mSiO 2的硅酸锂的水溶液混合而制备。
10.根据第5-9项中任一项的方法,其中步骤(ii)中的烘烤温度为200-500℃,优选200-300℃。
11.根据第5-10项中任一项的方法,其中所述碱金属硅酸盐涂层通过荧光X射线分析法以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2
12.根据第5-11项中任一项的方法,其中步骤(ii)中的烘烤时间15分钟-2小时,优选20分钟-1小时。
13.根据第5-12项中任一项的方法,其中所述基材为金属,优选铁、铝、铁合金如不锈钢、铝合金和铜,优选铁合金如不锈钢和铝。
14.具有根据第1-4项中任一项的碱金属硅酸盐涂层的制品或具有通过第5-13项中任一项的方法得到的碱金属硅酸盐涂层的制品。
15.根据第14项的制品,其中所述制品为金属制品,优选铁、铝、铁合金如不锈钢、铝合金和铜的制品,更优选铁合金如不锈钢和铝的制品。
16.由第14或15项的金属制品制成的产品,如厨房产品、家电产品和车辆相关产品。
17.一种使用荧光X射线分析法测定硅酸盐涂层的厚度的方法。
18.根据第17项的方法,其中所述硅酸盐涂层的厚度以SiO 2计为50-10000mg/m 2,优选100-5000mg/m 2,更优选200-3000mg/m 2
19.根据第17或18项的方法,其中所述硅酸盐涂层为根据第1-4项中任一项的涂层或通过第5-13项中任一项的方法得到的涂层。
具体实施方式
本发明的一个方面涉及一种由化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂形成的碱金属硅酸盐涂层,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;
其中所述碱金属硅酸盐涂层的通过荧光X射线分析法测定的以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2
在本发明的一个优选实施方案中,M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.3-4.5,优选2.4-4.4,例如2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0,4.2和4.4。
化学式M 2O·nSiO 2的碱金属硅酸盐中的M优选为钠或钾。
在本发明的一个优选实施方案中,化学式M 2O·nSiO 2的碱金属硅酸盐中的n为3.0-3.7,例如3.0,3.1,3.2,3.3,3.4,3.5,3.6或3.7。如果n小于2.9,则即使得到常温下的耐水性,60℃以上的耐热水性也降低。此外,如果n大于3.7,则烘烤处理后的涂层表面变粗糙,进而在400℃下的高温加热时有表面变白、发泡的倾向。
在本发明的一个优选实施方案中,化学式Li 2O·mSiO 2的硅酸锂中的m为4.3-4.7,例如4.3,4.4,4.5,4.6或4.7。如果m低于4.2,则耐热水性降低,如果大于4.8,则涂层表面粗糙,进而发泡、白化。
根据本发明,碱金属硅酸盐涂层的通过荧光X射线分析法测定的以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2,例如700、800、900、1000、1100、1200或1300或1400mg/m 2。对于通过荧光X射线分析法测定涂层厚度,可以预先测定已知厚度(mg/m 2)的SiO 2标准样的特征X射线Kα线的强度,从而制备出以SiO 2计的厚度的标准曲线,然后测定所制备未知厚度试样的Kα线强度,从而根据标准曲线换算出以SiO 2计的厚度。关于荧光X射线分析,可以使用Hitachi High-Technologies Corporation 制X-MET8000型荧光X射线分析装置。
根据本发明,如果以SiO 2计的厚度低于630mg/m 2时,涂层的硬度、防止高温下金属的变色性不充分。另一方面,如果以SiO 2计的厚度大于1450mg/m 2,则加热时涂层发生发泡、白化等不良情况。
根据本发明的另一方面,本发明涉及一种制备碱金属硅酸盐涂层的方法,所述方法包括:
(i)提供包含化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂的混合水溶液,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;
(ii)将步骤(i)的混合水溶液涂覆在基材表面上,然后在200-550℃的温度下烘烤。
在本发明的一个优选实施方案中,M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比可以为2.3-4.5,优选2.4-4.4,例如2.4,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0,4.2和4.4。
化学式M 2O·nSiO 2的碱金属硅酸盐中的M优选为钠或钾。
在本发明的一个优选实施方案中,化学式M 2O·nSiO 2的碱金属硅酸盐中的n为3.0-3.7,例如3.0,3.1,3.2,3.3,3.4,3.5,3.6或3.7。
在本发明的一个优选实施方案中,化学式Li 2O·mSiO 2的硅酸锂中的m为4.3-4.7,例如4.3,4.4,4.5,4.6或4.7。
在一个实施方案中,步骤(i)中的混合水溶液的固含量可以为10-33重量%,优选15-25重量%。
在本发明的一个优选实施方案中,步骤(i)中的混合水溶液通过将化学式M 2O·nSiO 2的碱金属硅酸盐的水溶液和化学式Li 2O·mSiO 2的硅酸锂的水溶液混合而制备。
在制备化学式M 2O·nSiO 2的碱金属硅酸盐的水溶液和化学式Li 2O·mSiO 2的硅酸锂的水溶液的混合水溶液时,还可以加入额外的水。通过加入水,可以降低混合水溶液的粘度,从而有利于涂覆。
在一个实施方案中,化学式M 2O·nSiO 2的碱金属硅酸盐的水溶液的 浓度可以为约10-40重量%。
在一个实施方案中,化学式Li 2O·mSiO 2的硅酸锂的水溶液的浓度可以为约10-25重量%。
作为涂覆方法,没有特殊限定,可以采用喷雾、辊涂、浸渍、刷涂等方法。
在本发明的一个优选实施方案中,碱金属硅酸盐涂层的厚度通过荧光X射线分析法以SiO 2计为630-1450mg/m 2,优选700-1400mg/m 2,例如700、800、900、1000、1100、1200或1300或1400mg/m 2。厚度的测定可以如上所述进行。
在本发明的一个优选实施方案中,步骤(ii)中的烘烤温度为200-500℃,例如200℃、300℃、400℃或500℃,优选200-300℃,例如250℃。如果小于200℃,则有耐热水性降低的倾向,如果高于550℃,则有涂膜变白的倾向。
在本发明的一个实施方案中,在进行步骤(ii)中的烘烤之前,将涂覆的基材自然干燥。干燥时间可以为5-30分钟,优选8-20分钟
在本发明的一个实施方案中,步骤(ii)中的烘烤时间可以为15分钟-2小时,优选20分钟-1小时,例如30分钟或45分钟。
根据本发明的一个优选实施方案,所述基材为金属,优选铁、铝、铁合金如不锈钢、铝合金和铜,更优选铁合金如不锈钢和铝。
本发明还涉及具有本发明碱金属硅酸盐涂层的制品或具有可通过本发明方法得到的碱金属硅酸盐涂层的制品。
在本发明的一个优选实施方案中,所述制品为金属制品,优选铁、铝、铁合金如不锈钢、铝合金和铜的制品,更优选铁合金如不锈钢和铝的制品。
本发明还涉及由本发明金属制品制成的产品,如厨房产品、家电产品和车辆相关产品。
在本发明的一个方面中,本发明还涉及一种使用荧光X射线分析法测定硅酸盐涂层的厚度的方法。厚度的测量通常通过涂层的厚度测定进行。但是在本发明中,涂层的厚度非常薄,所以厚度的测定非常困难。此外,由于基材,例如金属的表面未必平坦,这使得厚度的测定更加 困难。
在现有技术中,还有使用重量计的方法,但是由于在本发明中,涂层的厚度非常薄,因此存在测定误差大的问题。
本发明的发明人出乎意料的发现,可以用荧光X射线分析法测定本发明的硅酸盐涂层的厚度。所述测定方法不仅简便而且迅速,更加重要的是对于厚度薄的涂层具有非常高的适用性。
在本发明的一个用荧光X射线分析法测定硅酸盐涂层的厚度优选实施方案中,所述硅酸盐涂层的厚度以SiO 2计为50-10000mg/m 2,优选100-5000mg/m 2,更优选200-3000mg/m 2,例如630-1450mg/m 2或700-1400mg/m 2
在一个优选实施方案中,所述硅酸盐为碱金属硅酸盐,优选所述碱金属选自锂、钠和钾。
在本发明的一个用荧光X射线分析法测定硅酸盐涂层的厚度优选实施方案中,所述硅酸盐涂层为根据本发明的碱金属硅酸盐涂层或可通过本发明方法得到的碱金属硅酸盐涂层。
如上所述,为了测定厚度,可以预先制备出以SiO 2计(mg/m 2)的厚度的标准曲线,然后根据标准曲线计算出涂层的厚度。
本发明的碱金属硅酸盐涂层具有优异的耐热性、耐热水性和防污性,以及优异的耐损伤性。
以下结合本发明中的具体实施例,对本发明中的技术方案进一步描述,但不应将其理解为对本发明保护范围的限制。以下所描述的实施例仅是本发明一部分实施例,并非全部的实施例。基于本发明中所列举的实施例,本领域其他技术人员在没有采用创造性劳动的前提下所提出的其他实施例,均属于本发明保护的范围。
实施例
下文给出的实施例和比较例对本发明进行具体说明,但本发明不受实施例限定。
在实施本发明时,采用的评价方法如下:
1)关于荧光X射线分析,使用Hitachi High-Technologies Corporation制X-MET8000型荧光X射线分析装置。预先测定已知厚度(mg/m 2)的SiO 2标准样的特征X线Kα线的强度,从而制备出SiO 2量的标准曲线。然后测定所制备的未知厚度试样的Kα线强度,从而根据标准曲线换算出试样的以SiO 2计的厚度。
2)关于外观,将涂层透明,没有发生发泡和白化的视为合格。
3)关于耐热变色性,将制备的试样在加热到400℃的电炉中放置2小时,肉眼观察涂层的白化(包括发泡)、基材金属的变色(特别是在基板使用不锈钢的情况被称作回火色的黄色变色)。将没有发生变色的视为合格。
4)关于耐热水性,使用电热水壶(象印牌)将水温设定为60℃,将涂覆好的试验片浸置其中24小时后,取出进行评价(评价方法见下);再将水温设定为98℃,将同一块试验片浸置其中2小时后,取出进行评价。
评价方法:取出试验片后先擦去表面多余的水分,并肉眼目视确认涂层有无变色,之后用油性笔(日本产Zebura株式会社「ハイマッキ―」黑色笔)在试验片表面(有涂层的面)描绘出曲线,干燥1分钟后用沾水的海绵块擦拭确认是否仍具有防污性。如油墨曲线能擦去则判断为合格,不能擦去则为不合格。
5)关于防污性,在表面用日本产Zebura株式会社「ハイマッキ―」黑色油性笔描绘出曲线,目测在干燥后能否通过水擦掉。将没有油膜残存的视为合格。
6)关于防损伤,依照JIS K 5600刮擦硬度(铅笔法),使用9H铅笔进行刮擦,目视确认有无损伤发生。将没有损伤发生的情况视为合格。
实施例1-3和比较例1-2
在100ml聚丙烯容器中加入40g日本化学工业社制J硅酸钠3号(SiO 2:29.1%、Na 2O:9.3%、SiO 2/Na 2O摩尔比(n值):3.2、剩余为水分)、26.7g日本化学工业社制硅酸锂45(SiO 2:21.2%、Li 2O:2.4%、SiO 2/Li 2O摩尔比(m值):4.4、剩余是水分)和33.3g水,并搅拌,得到硅酸钠(M 2O·nSiO 2)/硅酸锂(Li 2O·mSiO 2)摩尔比为2.8的混合水溶液。将该混合水溶液 对着作为基材的SUS 304 No.4精加工不锈钢板片(20x30cm)进行喷雾涂覆处理,所用喷雾装置为阿耐斯特岩田公司W100-082P喷涂枪,其中比较例1、实施例1、实施例2、实施例3和比较例2中的喷雾量分别为约0.5g、0.7g、1.0g、1.3g和1.5g(所喷涂的混合液并不会全部附着于不锈钢表面,实际的涂层厚度仍需通过荧光X线测定进行定量)。然后自然干燥10分钟,然后在250℃烘箱中加热处理30分钟。自然冷却后、通过上述评价方法评价试片。结果如表1所示。
表1.不锈钢试片的评价结果(250℃烘烤)
Figure PCTCN2020089777-appb-000001
表1的结果显示,荧光X射线分析法可以用于测定硅酸盐涂层的厚度。
实施例4-6和比较例3-4
重复实施例2中的程序,区别在于使用表2中的所示的烘烤温度。评价结果如表2所示。
表2:改变烘烤温度的不锈钢片的评价结果(通过荧光X射线分析测得的厚度以SiO 2计为1050mg/m 2)
Figure PCTCN2020089777-appb-000002
Figure PCTCN2020089777-appb-000003
表2中的结果显示,当使用180℃的烘烤温度时,所得碱金属硅酸盐涂层的耐热水性不足;当使用600℃的烘烤温度时,所得碱金属硅酸盐涂层外观发生白化。
实施例7和比较例5-6
重复实施例2中的程序,区别在于以表3中所示的M 2O·nSiO 2/Li 2O·mSiO 2摩尔比来制备混合水溶液。具体就操作而言,在实施例2中,J硅酸钠3号和硅酸锂45的重量比为6:4,所述摩尔比为2.8。在实施例7中J硅酸钠3号和硅酸锂45的重量比为7:3,所述摩尔比为4.4。此外,比较例5中J硅酸钠3号和硅酸锂45的重量比为5:5,所述摩尔比为1.9,比较例6中J硅酸钠3号和硅酸锂45的重量比为7.5:2.5,所述摩尔比为5.7。
此外为了方便涂覆,还在混合水溶液中添加了33重量%的水。评价结果如表3所示。
表3:改变摩尔比时的评价结果(烘烤温度250℃、厚度以SiO 2计约为1050mg/m 2)
Figure PCTCN2020089777-appb-000004
由表3可知,当M 2O·nSiO 2/Li 2O·mSiO 2摩尔比为1.9时,碱金属硅酸盐的涂层显示不足的耐热性;当两者的摩尔比为5.7时,所得涂层显示不足的耐热水性能。
比较例7-10
重复实施例2的程序,不同之处在于使用n值如表4中所示的硅酸钠代替实施例2中的硅酸钠,使用m值如表4中所示的硅酸锂代替实施例2中的硅酸锂。评价结果如表5所示。
表4中的硅酸钠2号为日本化学工业社制45°硅酸钠2号,硅酸钠3号为日本化学工业社制J硅酸钠3号,硅酸钠4号为日本化学工业社制硅酸钠4号。表4中的硅酸锂35号为日本化学工业社制硅酸锂35号,硅酸锂45号为日本化学工业社制硅酸锂45号,硅酸锂75号为日本化学工业社制硅酸锂75号。
表4:改变n值、m值
  硅酸钠 硅酸锂 n m 摩尔比
实施例2 3号 45 3.2 4.4 2.8
比较例7 2号 45 2.7 4.4 3.5
比较例8 4号 45 3.8 4.4 2.0
比较例9 3号 35 3.2 3.5 2.1
比较例10 3号 75 3.2 7.5 4.5
表5:改变n值、m值时的评价结果
Figure PCTCN2020089777-appb-000005
实施例8
在200ml聚丙烯容器中加入67g日本化学工业社制2K硅酸钾(SiO 2:21.0%、K 2O:9.0%、SiO 2/K 2O摩尔比(n值):3.7、剩余是水分)、33g日 本化学工业社制硅酸锂45(SiO 2:21.2%、Li 2O:2.4%、SiO 2/Li 2O摩尔比(m值):4.4、剩余是水分)和100g水并搅拌,得到M 2O·nSiO 2/Li 2O·mSiO 2摩尔比为2.4的混合水溶液。将该混合水溶液对着作为基材的SUS 430 No.4精加工不锈钢板片进行浸渍涂覆处理。厚度以SiO 2计设定为1050mg/m 2(不锈钢板片浸渍后上提速度设定为1mm/min)。在自然干燥10分钟后,在250℃的烘箱中加热处理30分钟。自然冷却后、通过上述评价方法评价试片。评价结果见表6。
比较例11
直接使用不具有涂层的SUS 430 No.4精加工不锈钢板片,通过上述评价方法评价试片。评价结果见表6
比较例12
重复实施例8的程序,区别在于仅使用硅酸钾,而没有使用硅酸锂。评价结果见表6。
实施例9
重复实施例8的程序,区别在于使用铝片作为基材。评价结果见表6。
比较例13
直接使用不具有涂层的铝片,通过上述评价方法评价试片。评价结果见表6。
比较例14
重复实施例8的程序,区别在于使用铝片作为基材,且仅使用硅酸钾,而没有使用硅酸锂。评价结果见表6。
表6:使用硅酸钾的涂层的评价结果
Figure PCTCN2020089777-appb-000006
Figure PCTCN2020089777-appb-000007
如表6的结果所示,涂层处理后的不锈钢,即使在400℃加热也不发生回火色黄变,还可以用水擦去油墨笔污渍,也不容易受到损伤。此外,在铝的情况,在浸渍在热水中时不发生黑变,与不锈钢同样地污渍被除去,不容易受到损伤。此外,在仅是硅酸钾的情况,虽然不发生白化,显示出耐热性,但耐热水性不充分。
上述结果显示,本发明碱金属硅酸盐涂层具有优异的耐热性,例如具有本发明碱金属硅酸盐涂层的制品,例如不锈钢制品和铝制品,在400℃下加热2小时也不发生变色。
本发明碱金属硅酸盐涂层具有优异的耐热水性,例如具有本发明碱金属硅酸盐涂层的制品,例如不锈钢制品和铝制品,可以经受约100℃的热水2小时;对于60℃的热水可以经受24小时。
本发明碱金属硅酸盐涂层具有优异的防污性,例如具有本发明碱金属硅酸盐涂层的制品,例如不锈钢制品和铝制品,可以用水除去其上的油性笔墨污渍,而无需使用任何有机溶剂。
本发明碱金属硅酸盐涂层具有优异的耐损伤性,例如当使用9H铅笔进行刮擦时,本发明的碱金属硅酸盐涂层也无损伤发生。
工业实用性
本发明提供了在200℃以上的高温下也不发生发泡/白化,耐水性和耐热水性都优异、显示出优异防污性能和耐损伤性的碱金属硅酸盐涂层。根据过去的认识,还没有提供过这些各种性能。通过该特性,例如具有该涂层的不锈钢或铝能够用于和厨房有关的各种器具、普通家电产品、车辆相关产品。

Claims (19)

  1. 一种由化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂形成的碱金属硅酸盐涂层,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;
    其中所述碱金属硅酸盐涂层的通过荧光X射线分析法测定的以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2
  2. 根据权利要求1的碱金属硅酸盐涂层,其中M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.3-4.5,优选2.4-4.4。
  3. 根据权利要求1或2的碱金属硅酸盐涂层,其中M为钠或钾。
  4. 根据权利要求1-3中任一项的碱金属硅酸盐涂层,其中n为3.0-3.7和/或m为4.3-4.7。
  5. 一种制备碱金属硅酸盐涂层的方法,所述方法包括:
    (i)提供包含化学式M 2O·nSiO 2的碱金属硅酸盐和化学式Li 2O·mSiO 2的硅酸锂的混合水溶液,其中M选自钠、钾或它们的混合物,n为2.9-3.7,m为4.2-4.8,且M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.2-4.8;和
    (ii)将步骤(i)的混合水溶液涂覆在基材表面上,然后在200-550℃的温度下烘烤。
  6. 根据权利要求5的方法,其中M 2O·nSiO 2/Li 2O·mSiO 2的摩尔比为2.3-4.5,优选2.4-4.4。
  7. 根据权利要求5或6的方法,其中M为钠或钾。
  8. 根据权利要求5-7中任一项的方法,其中n为3.0-3.7和/或m为4.3-4.7。
  9. 根据权利要求5-8中任一项的方法,其中步骤(i)中的混合水溶液通过将化学式M 2O·nSiO 2的碱金属硅酸盐的水溶液和化学式Li 2O·mSiO 2的硅酸锂的水溶液混合而制备。
  10. 根据权利要求5-9中任一项的方法,其中步骤(ii)中的烘烤温度为200-500℃,优选200-300℃。
  11. 根据权利要求5-10中任一项的方法,其中所述碱金属硅酸盐涂层通过荧光X射线分析法以SiO 2计的厚度为630-1450mg/m 2,优选700-1400mg/m 2
  12. 根据权利要求5-11中任一项的方法,其中步骤(ii)中的烘烤时间15分钟-2小时,优选20分钟-1小时。
  13. 根据权利要求5-12中任一项的方法,其中所述基材为金属,优选铁、铝、铁合金如不锈钢、铝合金和铜,优选铁合金如不锈钢和铝。
  14. 具有根据权利要求1-4中任一项的碱金属硅酸盐涂层的制品或具有通过权利要求5-13中任一项的方法得到的碱金属硅酸盐涂层的制品。
  15. 根据权利要求14的制品,其中所述制品为金属制品,优选铁、铝、铁合金如不锈钢、铝合金和铜的制品,更优选铁合金如不锈钢和铝的制品。
  16. 由权利要求14或15的金属制品制成的产品,如厨房产品、家电产品和车辆相关产品。
  17. 一种使用荧光X射线分析法测定硅酸盐涂层的厚度的方法。
  18. 根据权利要求17的方法,其中所述硅酸盐涂层的厚度以SiO 2计为50-10000mg/m 2,优选100-5000mg/m 2,更优选200-3000mg/m 2
  19. 根据权利要求17或18的方法,其中所述硅酸盐涂层为根据权利要求1-4中任一项的涂层或通过权利要求5-13中任一项的方法得到的涂层。
PCT/CN2020/089777 2019-05-16 2020-05-12 碱金属硅酸盐涂层及其制备方法 WO2020228697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/610,981 US20220259438A1 (en) 2019-05-16 2020-05-12 Alkali metal silicate coating and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910406558.2A CN111944338B (zh) 2019-05-16 2019-05-16 碱金属硅酸盐涂层及其制备方法
CN201910406558.2 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020228697A1 true WO2020228697A1 (zh) 2020-11-19

Family

ID=73290084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089777 WO2020228697A1 (zh) 2019-05-16 2020-05-12 碱金属硅酸盐涂层及其制备方法

Country Status (3)

Country Link
US (1) US20220259438A1 (zh)
CN (1) CN111944338B (zh)
WO (1) WO2020228697A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718202A (ja) * 1993-07-05 1995-01-20 Agency Of Ind Science & Technol アルカリ金属ケイ酸塩水溶液を主剤とするコーティング材料及びバインダー
JP2003170522A (ja) * 2001-12-10 2003-06-17 Oji Paper Co Ltd ガスバリアー性積層体
CN1646729A (zh) * 2002-04-05 2005-07-27 东洋钢钣株式会社 用于轴承密封的表面处理薄钢板以及使用所述薄钢板的轴承密封
JP2007297705A (ja) * 2006-04-06 2007-11-15 Nippon Steel Corp 表面処理金属部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718202A (ja) * 1993-07-05 1995-01-20 Agency Of Ind Science & Technol アルカリ金属ケイ酸塩水溶液を主剤とするコーティング材料及びバインダー
JP2003170522A (ja) * 2001-12-10 2003-06-17 Oji Paper Co Ltd ガスバリアー性積層体
CN1646729A (zh) * 2002-04-05 2005-07-27 东洋钢钣株式会社 用于轴承密封的表面处理薄钢板以及使用所述薄钢板的轴承密封
JP2007297705A (ja) * 2006-04-06 2007-11-15 Nippon Steel Corp 表面処理金属部材

Also Published As

Publication number Publication date
US20220259438A1 (en) 2022-08-18
CN111944338B (zh) 2022-04-12
CN111944338A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
US8173221B2 (en) Protective coatings for metals
RU2434972C2 (ru) Улучшенная, содержащая трехвалентный хром композиция для применения в коррозионно-стойких покрытиях на металлических поверхностях
US8088216B2 (en) Water-borne complete inorganic alkali metal silicate composition and its aqueous solution, and water-borne coat agent, its aqueous solution, complete inorganic colored coating material and binder for high temperature and heat resistance coating material of the same composition, as well as method of using water-borne complete inorganic alkali metal silicate compound
US20070044704A1 (en) Colored coating and formulation
JPH09502924A (ja) アルミニウム表面の非磨耗性で、耐食性の親水性被覆、その被覆方法並びに被覆物
KR101787535B1 (ko) 피씨엠용 투명 유색코팅 스테인리스재 도장강판의 도료 조성물 및 이에 의해 제조된 도장강판
WO2020228697A1 (zh) 碱金属硅酸盐涂层及其制备方法
DK163825B (da) Fremgangsmaade til overfladebehandling af aluminium eller aluminiumlegeringer
CN111040486B (zh) 亲水型易清洁涂料及其制备方法和应用
CN108299913B (zh) 一种疏水涂层材料及疏水涂层
CN110857365A (zh) 复合涂料及其制备方法和用途
JPWO2018179579A1 (ja) 銀鏡膜、加飾品並びに銀鏡膜形成液及びその還元液の作製方法
JP2006307124A (ja) 常温硬化型無機質コーティング膜及びコーティング剤
CN111270230A (zh) 热镀铝锌板环保表面处理液及热镀铝锌钝化板的制备方法
JP2011526649A (ja) 金属表面をハイブリッド層で被覆するための方法
JP2022191969A (ja) ポリシラザン系表面改質剤
JP5880800B1 (ja) 塗装鋼板
JP2001341229A (ja) 加工性、スポット溶接性に優れた耐熱プレコート鋼鈑
WO2024029537A1 (ja) シリカ膜付き基板
WO2022059353A1 (ja) シリカ膜付き基板
JPH05319868A (ja) ガラス基板用撥水処理剤およびその撥水処理法
TWI828529B (zh) 無鉻防蝕塗料組成物、材料表面防蝕處理方法、及包含防蝕塗膜的扣件
RU2391302C1 (ru) Способ двухстадийного упрочнения движущейся ленты флоат-стекла
JP2002162186A (ja) ノンクロメート反応型下地層を有する熱交換器用フィン材およびそれを備えた熱交換器
JPH02277782A (ja) 熱交換器の親水性皮膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20804987

Country of ref document: EP

Kind code of ref document: A1