WO2020227886A1 - Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée - Google Patents

Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée Download PDF

Info

Publication number
WO2020227886A1
WO2020227886A1 PCT/CN2019/086618 CN2019086618W WO2020227886A1 WO 2020227886 A1 WO2020227886 A1 WO 2020227886A1 CN 2019086618 W CN2019086618 W CN 2019086618W WO 2020227886 A1 WO2020227886 A1 WO 2020227886A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
molecular sieve
ecr
alkali
aluminum
Prior art date
Application number
PCT/CN2019/086618
Other languages
English (en)
Chinese (zh)
Inventor
王磊
郭鹏
樊栋
田鹏
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2019/086618 priority Critical patent/WO2020227886A1/fr
Publication of WO2020227886A1 publication Critical patent/WO2020227886A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof

Definitions

  • the invention belongs to the technical field of inorganic materials, and specifically relates to a method for preparing ECR-1 molecular sieve.
  • ECR-1 (molecular sieve structure code: EON) molecular sieve is a microporous crystalline silica-alumina molecular sieve. It has a two-dimensional twelve-membered ring and eight-membered ring pore structure. The composition structure can be disassembled into MOR molecular sieve crystal layer and MAZ Molecular sieve crystal layer. At the same time, ECR-1 molecular sieve and molecular sieve have high thermal stability, hydrothermal stability and adjustable acidity.
  • ECR-1 molecular sieve shows high practical value in the shape-selective catalysis of small molecules, carbonylation, dimethyl ether carbonyl, aromatic alkylation, toluene disproportionation and long-chain alkane isomerization.
  • ECR-1 molecular sieve has been reported to be relatively difficult to synthesize.
  • the reported synthetic difficulties are mainly reflected in: 1)
  • the use of expensive organic templates such as dimethyl-diethylammonium (US4657748A), methyl- Triethylammonium (US5206005A) or double-headed quaternary ammonium salt containing adamantane 2) even when using cheap organic template tetramethylammonium hydroxide (Chem Mater, 18, 76, 2006) or template-free synthesis (reaction time It takes 5-13 days to improve the expensive raw materials used and shorten the synthesis time is an effective way to expand the practical use of ECR-1 molecular sieve molecular sieve materials.
  • the template used in this method is cheap And the repeatability is better, the time is shortened from the original 7-15 days to 1-3 days, and the silicon-to-aluminum ratio of the obtained molecular sieve is increased from 3.5 to 5.0.
  • a method for preparing ECR-1 molecular sieve with good repeatability and high efficiency is provided.
  • the preparation method is simple, easy to operate, can quickly synthesize ECR-1 molecular sieve, and is suitable for industrial production.
  • the method for rapidly preparing ECR-1 molecular sieve with high crystallinity is characterized in that it comprises the following steps:
  • the source of the T element is selected from at least one of group IV and A elements;
  • the source of the A element is selected from at least one of group III and A elements;
  • the alkali source OH - is an alkali metal source and/or alkaline earth metal source
  • the organic template R is selected from at least one compound having the chemical structural formula shown in Formula I and Formula II:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H and C 1 to C 10 hydrocarbon groups.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H and C 1 to C 5 hydrocarbon groups.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H, C 1 ⁇ C 10 branched alkyl groups Kind.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from H, C 1 ⁇ C 10 branched alkyl groups At least one of.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H, C 1 ⁇ C 5 branched alkyl groups Kind.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from H, C 1 ⁇ C 5 branched alkyl groups At least one of.
  • the molar ratio of the T element source, A element source, alkali source OH ⁇ , organic template R and H 2 O in the initial mixture is:
  • H 2 O/TO 2 is 3 ⁇ 4000
  • R/TO 2 is 0.05 ⁇ 1.0
  • the source of T element is calculated by the number of moles of TO 2
  • the source of A element is calculated by the number of moles of A 2 O 3
  • the alkali metal source OH - is calculated by the number of moles of OH - element contained
  • the organic template R is calculated by itself H 2 O is calculated by its own moles.
  • the lower limit of the range of the molar ratio of R/TO 2 in the initial mixture is selected from 0.06:1, 0.07:1, 0.08:1, 0.09:1, 0.1:1, or 0.12:1, and the upper limit is selected from 0.15: 1. 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1 or 1.0:1.
  • the molar ratio of R/TO 2 in the initial mixture is 0.08-0.8:1.
  • the initial mixture of OH - / TO 2 molar ratio in the range of the lower limit of 0.01 is selected from: 1,0.02: 0.03,0.04: 1,0.045: 1 or 0.05:
  • the upper limit of 0.5 is selected from: 1, 0.6 :1, 0.65:1, 0.7:1 or 0.8:1.
  • the lower limit of the molar ratio range of TO 2 /A 2 O 3 in the initial mixture is selected from 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 200, 250, 300, 400, 500, 600, 700, 800 or 900;
  • the upper limit is selected from 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 200, 250, 300 , 400, 500, 600, 700, 800, 900, or 999.
  • the lower limit of the molar ratio range of H 2 O/TO 2 in the initial mixture is selected from 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 150 , 200, 500, 800, 1000, 1500, 2000, 3000 or 4000; the upper limit is selected from 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 150, 200, 500, 800, 1000, 1500, 2000 or 3000.
  • the method includes the following steps:
  • step (2) Place the mixture obtained in step (1) for a hydrothermal crystallization reaction at 140-200°C for 24-480 hours to obtain the ECR-1 molecular sieve;
  • the organic template is one or two of R1 or R2;
  • the molar ratio of TO 2 , Y 2 O 3 , R1, R2 and H 2 O in the initial mixture is:
  • H 2 O/TO 2 is 3 ⁇ 4000
  • R1+R2/TO 2 is 0.05 ⁇ 1.0
  • R1 is selected from at least one compound having the chemical structural formula shown in Formula I:
  • R2 is selected from at least one of compounds having the chemical structural formula shown in Formula II and compounds having the chemical structural formula shown in Formula II:
  • n 0-7.
  • the source of T element is selected from at least one of a silicon source, a germanium source, and a tin source;
  • the source of element A is selected from at least one of an aluminum source, a boron source, and a gallium source;
  • the alkali source OH - is selected from at least one of alkali metal hydroxides and alkaline earth metal hydroxides.
  • the silicon source is selected from at least one of ethyl orthosilicate, silica gel, silicic acid, white carbon black, silica sol, water glass, and diatomaceous earth;
  • the germanium source is germanium oxide
  • the tin source is selected from at least one of tin oxide and tin chloride;
  • the aluminum source is selected from at least one of aluminum isopropoxide, sodium aluminate, aluminum foil, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum hydroxide, boehmite, and pseudo-boehmite;
  • the boron source is selected from at least one of boric acid, sodium borate, and boron oxide;
  • the gallium source is selected from at least one of gallium nitrate and gallium trichloride;
  • the alkali source OH - is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.
  • R 1 is selected from at least one of C 1 to C 4 hydrocarbon groups;
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are H .
  • the organic template R is pyrrolidine and/or butylpyrrolidine.
  • the organic template R is pyrrolidine.
  • the organic template R is butylpyrrolidine.
  • the organic template R is a mixture of pyrrolidine and butylpyrrolidine, and the molar ratio of pyrrolidine to butylpyrrolidine is 10-100:0-90.
  • the molar ratio of the pyrrolidine and butylpyrrolidine is 10:90, 20:80, 30:70, 40:60, 50:50, 60:90, 70:90, 80:90, 90 : Any ratio of 90, 100:0 and the range value between any two ratios.
  • step (1) includes: adding a T element source to a mixture of A element source, alkali source OH ⁇ , organic template R and water, and mixing to obtain an initial mixture.
  • the conditions for the hydrothermal crystallization are: hydrothermal crystallization reaction at 100-200°C for 24 to 480 hours.
  • the conditions for the hydrothermal crystallization are: hydrothermal crystallization reaction at 100-200°C for 24 to 72 hours.
  • step (2) includes: placing the initial mixture obtained in step (1) for a hydrothermal crystallization reaction at 100-200°C for 24-480 hours, and the obtained product is separated, washed, and dried to obtain the ECR-1 molecular sieve.
  • Another aspect of the present application provides an ECR-1 molecular sieve, characterized in that it is prepared according to any one of the above methods; the ECR-1 molecular sieve has an atomic ratio of silicon to aluminum of 3.5-8.
  • the lower limit of the silicon to aluminum atomic ratio of the ECR-1 molecular sieve is selected from 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.8, 6, 6.5 , 7 or 7.5; the upper limit is selected from 3.6, 3.7, 3.8, 3.9, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.8, 6, 6.5, 7, 7.5 or 8.
  • the ECR-1 molecular sieve is regular rod-shaped particles with a particle size of 10-15 ⁇ m and a width of 1-3 ⁇ m.
  • the ECR-1 molecular sieve has a molecular sieve molecular sieve structure containing directional distribution.
  • the XRD spectrum of the ECR-1 molecular sieve includes diffraction peaks at the following positions:
  • C 1 to C 10 and the like all refer to the number of carbon atoms contained in the group.
  • alkyl is a group formed by the loss of any hydrogen atom on the molecule of an alkane compound.
  • hydrocarbon group refers to a group formed after a hydrogen atom on a carbon atom is lost in a hydrocarbon molecule.
  • the hydrocarbons are carbohydrates, for example, alkanes, alkenes and alkynes are all hydrocarbons.
  • the ECR-1 molecular sieve provided by this application not only has a regular appearance and has a molecular sieve pore structure with directional distribution, but the extremely high crystallinity and relatively abundant contact area improve the screening utilization efficiency of this type of molecular sieve.
  • Figure 1 shows the XRD spectrum of the sample of Example 1.
  • Figure 2 is a scanning electron micrograph of the sample of Example 1.
  • Figure 3 is a scanning electron microscope photograph of a sample of Comparative Example 1.
  • the product silicon-to-aluminum molar ratio is Si/Al atomic ratio.
  • the prepared sample was subjected to XRD analysis, and the data results were close to Table 2, that is, the peak position and shape were the same, and the relative kurtosis of the peak fluctuated within ⁇ 10% depending on the preparation conditions, indicating that the prepared product had the characteristics of ECR-1 structure.
  • Table 1 Ingredients and crystallization conditions for molecular sieve preparation
  • Comparative Example 1 shows that the synthesis and preparation of EON zeolite by the method publicly reported earlier in the literature takes a long time, the crystallinity is low, and the yield is also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La présente invention concerne un procédé de préparation rapide d'un tamis moléculaire ECR-1 à cristallinité élevée, comprenant les étapes suivantes consistant à : mélanger des matières premières contenant une source d'élément T, une source d'élément A, une source alcaline OH-, un agent structurant organique R, et de l'eau pour obtenir un mélange initial ; et (2) cristalliser hydrothermiquement le mélange initial obtenu à l'étape (1) pour obtenir un tamis moléculaire ECR-1 ; la source d'élément T est au moins l'un des éléments du groupe IV A ; la source d'élément A est au moins l'un des éléments du groupe III A ; la source alcaline OH- est une source de métal alcalin et/ou une source de métal alcalino-terreux ; et l'agent structurant organique R est au moins l'un des composés ayant les structures chimiques représentées par la formule I et la formule II. Le présent procédé de préparation est simple, a un fonctionnement pratique, une bonne répétabilité et un rendement élevé, peut synthétiser rapidement un tamis moléculaire ECR-1, et est approprié pour une production industrielle.
PCT/CN2019/086618 2019-05-13 2019-05-13 Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée WO2020227886A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086618 WO2020227886A1 (fr) 2019-05-13 2019-05-13 Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086618 WO2020227886A1 (fr) 2019-05-13 2019-05-13 Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée

Publications (1)

Publication Number Publication Date
WO2020227886A1 true WO2020227886A1 (fr) 2020-11-19

Family

ID=73289767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086618 WO2020227886A1 (fr) 2019-05-13 2019-05-13 Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée

Country Status (1)

Country Link
WO (1) WO2020227886A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892242A (zh) * 2021-01-29 2021-06-04 江西师范大学 一种高通量丝光沸石分子筛膜及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206005A (en) * 1992-08-19 1993-04-27 Exxon Research & Engineering Company Synthesis of ECR-1 using methyltriethanolammonium cations
US5256391A (en) * 1992-09-11 1993-10-26 Mobil Oil Corporation Method for synthesizing microporous crystalline material
CN108190914A (zh) * 2018-02-08 2018-06-22 西安建筑科技大学 一种固废多级孔块体ecr-1沸石的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206005A (en) * 1992-08-19 1993-04-27 Exxon Research & Engineering Company Synthesis of ECR-1 using methyltriethanolammonium cations
US5256391A (en) * 1992-09-11 1993-10-26 Mobil Oil Corporation Method for synthesizing microporous crystalline material
CN108190914A (zh) * 2018-02-08 2018-06-22 西安建筑科技大学 一种固废多级孔块体ecr-1沸石的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REN, LIMIN: "Fast Crystallization of ECR-1 Zeolite for Organotemplate-free", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 32, no. 3, 10 March 2011 (2011-03-10), pages 662 - 666, XP009524298, ISSN: 0251-0790 *
REN, LIMIN: "Fast Crystallization of ECR-1 Zeolite for Organotemplate-free", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 32, no. 3, 10 March 2011 (2011-03-10), pages 662 - 666, XP009524304, ISSN: 0251-0790 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892242A (zh) * 2021-01-29 2021-06-04 江西师范大学 一种高通量丝光沸石分子筛膜及其制备方法与应用
CN112892242B (zh) * 2021-01-29 2022-08-02 江西师范大学 一种高通量丝光沸石分子筛膜及其制备方法与应用

Similar Documents

Publication Publication Date Title
JP5271266B2 (ja) Uzm−22アルミノシリケートゼオライト、その調製方法およびuzm−22の使用方法
JP6445685B2 (ja) ゼオライトssz−52を調製するための方法
WO2014082587A1 (fr) Procédé de synthèse d'un tamis moléculaire de type zsm-5
WO2015081648A1 (fr) Procédé permettant de synthétiser un tamis moléculaire ssz-13
JP6178847B2 (ja) アルミノシリケートゼオライトssz−56の製造方法
TW201446653A (zh) 分子篩材料及其合成和用途
WO2016086361A1 (fr) Procédé de synthèse de nano-zéolite zsm-5
EP3658278B1 (fr) Métallophosphates cristallins, leur procédé de préparation et leur utilisation
EP2340230A1 (fr) Procédé de préparation de ssz-74
US6241960B1 (en) Method for preparation of small zeotype crystals
US6797248B2 (en) Mesoporous molecular sieve and a process for the preparation of the same
JP6740492B1 (ja) モルホリニウムベースの第4級アンモニウムカチオン、およびそれとともに作製されるaei型ゼオライト
JP2006206433A (ja) アミン化合物の混合物によるzbm−30ゼオライトの新規合成方法
WO2020227886A1 (fr) Procédé de préparation rapide d'un tamis moléculaire ecr-1 à cristallinité élevée
WO2015021611A1 (fr) Tamis moléculaire de type zsm-22 et méthode de synthèse pour me-zsm-22
CN109694086B (zh) 纳米zsm-5沸石分子筛聚集体的制备方法
CN112551543B (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
US20110124934A1 (en) Process for Making Crystalline Metallosilicates
CN111924853B (zh) 一种快速制备高结晶度的ecr-1分子筛的方法
KR100925851B1 (ko) 높은 실리카/알루미늄 비를 갖는 제올라이트의 제조방법
WO2020227888A1 (fr) Zéolite zsm-57 et son procédé de préparation
EP2696977A1 (fr) Procédé pour la production de matériaux de tamis moléculaire
CN102259890A (zh) Zsm-5/ecr-1/丝光沸石三相共生材料及其制备方法
EP4031495A1 (fr) Synthèse et utilisation d'un matériau zéolithique ayant le type de structure d'ossature ith
JP2005219988A (ja) 高シリカモルデナイトの合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928578

Country of ref document: EP

Kind code of ref document: A1