WO2020227886A1 - Method for rapidly preparing high crystallinity ecr-1 molecular sieve - Google Patents

Method for rapidly preparing high crystallinity ecr-1 molecular sieve Download PDF

Info

Publication number
WO2020227886A1
WO2020227886A1 PCT/CN2019/086618 CN2019086618W WO2020227886A1 WO 2020227886 A1 WO2020227886 A1 WO 2020227886A1 CN 2019086618 W CN2019086618 W CN 2019086618W WO 2020227886 A1 WO2020227886 A1 WO 2020227886A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
molecular sieve
ecr
alkali
aluminum
Prior art date
Application number
PCT/CN2019/086618
Other languages
French (fr)
Chinese (zh)
Inventor
王磊
郭鹏
樊栋
田鹏
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2019/086618 priority Critical patent/WO2020227886A1/en
Publication of WO2020227886A1 publication Critical patent/WO2020227886A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof

Abstract

Disclosed in the present application is a method for rapidly preparing a high crystallinity ECR-1 molecular sieve, comprising the following steps: mixing raw materials containing a T element source, an A element source, an alkali source OH-, an organic template agent R, and water to obtain an initial mixture; and (2) hydrothermally crystallising the initial mixture obtained in step (1) to obtain an ECR-1 molecular sieve; the T element source is at least one of IV A group elements; the A element source is at least one of III A group elements; the alkali source OH- is an alkali metal source and/or an alkali earth metal source; and the organic template agent R is at least one of the compounds having the chemical structures represented by formula I and formula II. The present preparation method is simple, has convenient operation, good repeatability, and high efficiency, can rapidly synthesise an ECR-1 molecular sieve, and is suitable for industrial production.

Description

一种快速制备高结晶度的ECR-1分子筛的方法A method for quickly preparing ECR-1 molecular sieve with high crystallinity 技术领域Technical field
本发明属于无机材料技术领域,具体涉及一种制备ECR-1分子筛的方法。The invention belongs to the technical field of inorganic materials, and specifically relates to a method for preparing ECR-1 molecular sieve.
背景技术Background technique
ECR-1(分子筛结构代码:EON)分子筛是一种微孔结晶的硅铝分子筛,它具有二维十二元环及八元环的孔道结构,组成结构可拆解为MOR分子筛晶层及MAZ分子筛晶层。同时ECR-1分子筛还分子筛具有较高的热稳定性,水热稳定性及可调变的酸性。因此,ECR-1分子筛在小分子择形催化,羰基化、二甲醚羰基、芳烃烷基化、甲苯歧化及长链烷烃异构化显示出较高的实用价值。ECR-1 (molecular sieve structure code: EON) molecular sieve is a microporous crystalline silica-alumina molecular sieve. It has a two-dimensional twelve-membered ring and eight-membered ring pore structure. The composition structure can be disassembled into MOR molecular sieve crystal layer and MAZ Molecular sieve crystal layer. At the same time, ECR-1 molecular sieve and molecular sieve have high thermal stability, hydrothermal stability and adjustable acidity. Therefore, ECR-1 molecular sieve shows high practical value in the shape-selective catalysis of small molecules, carbonylation, dimethyl ether carbonyl, aromatic alkylation, toluene disproportionation and long-chain alkane isomerization.
目前已经报道的ECR-1分子筛合成难度较高,已经报道的合成难点主要体现在:1)使用含有且昂贵的有机模板剂:诸如,二甲基-二乙基铵(US4657748A),甲基-三乙基铵(US5206005A)或含金刚烷的双头季铵盐2)即便使用了诸如廉价有机模板四甲基氢氧化铵(Chem Mater,18,76,2006)或是无模板合成(反应时间均在5-13天,改善上述使用原料昂贵及缩短合成时间是扩大ECR-1分子筛分子筛材料实际用途的有效途径。与常规繁杂的ECR-1制备方法相比,本方法采用的模板剂价格低廉且重复性较好,时间由原先的7-15天缩短为1-3天且所得分子筛的硅铝比由原先的3.5提升至5.0。ECR-1 molecular sieve has been reported to be relatively difficult to synthesize. The reported synthetic difficulties are mainly reflected in: 1) The use of expensive organic templates such as dimethyl-diethylammonium (US4657748A), methyl- Triethylammonium (US5206005A) or double-headed quaternary ammonium salt containing adamantane 2) even when using cheap organic template tetramethylammonium hydroxide (Chem Mater, 18, 76, 2006) or template-free synthesis (reaction time It takes 5-13 days to improve the expensive raw materials used and shorten the synthesis time is an effective way to expand the practical use of ECR-1 molecular sieve molecular sieve materials. Compared with the conventional and complicated ECR-1 preparation method, the template used in this method is cheap And the repeatability is better, the time is shortened from the original 7-15 days to 1-3 days, and the silicon-to-aluminum ratio of the obtained molecular sieve is increased from 3.5 to 5.0.
发明内容Summary of the invention
根据本申请的一个方面,提供了一种重复性好,效率高的ECR-1分子筛的制备方法。该制备方法简单,操作方便,能快速合成ECR-1分子筛,适合工业化生产。According to one aspect of the present application, a method for preparing ECR-1 molecular sieve with good repeatability and high efficiency is provided. The preparation method is simple, easy to operate, can quickly synthesize ECR-1 molecular sieve, and is suitable for industrial production.
所述快速制备高结晶度的ECR-1分子筛的方法,其特征在于,包括以下步骤:The method for rapidly preparing ECR-1 molecular sieve with high crystallinity is characterized in that it comprises the following steps:
(1)将含有T元素源、A元素源、碱源OH -、有机模板剂R和 水的原料混合,得到初始混合物; (1) containing the source of element T, A element source, an alkali source of OH - mixing, the organic template R a raw material and water to obtain an initial mixture;
(2)将步骤(1)中所得到的初始混合物水热晶化,得到所述ECR-1分子筛;(2) Hydrothermally crystallize the initial mixture obtained in step (1) to obtain the ECR-1 molecular sieve;
其中,所述T元素源选自IV A族元素中的至少一种;Wherein, the source of the T element is selected from at least one of group IV and A elements;
所述A元素源选自III A族元素中的至少一种;The source of the A element is selected from at least one of group III and A elements;
所述碱源OH -为碱金属源和/或碱土金属源; The alkali source OH - is an alkali metal source and/or alkaline earth metal source;
有机模板剂R选自具有式I、式II所示化学结构式的化合物中的至少一种:The organic template R is selected from at least one compound having the chemical structural formula shown in Formula I and Formula II:
Figure PCTCN2019086618-appb-000001
Figure PCTCN2019086618-appb-000001
式I中,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 10的烃基中的至少一种。 In formula I, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H and C 1 to C 10 hydrocarbon groups.
式I中,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 5的烃基中的至少一种。 In formula I, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H and C 1 to C 5 hydrocarbon groups.
可选地,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 10的支链烷基中的至少一种。 Optionally, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H, C 1 ~C 10 branched alkyl groups Kind.
可选地,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 10的带有支链的烷基中的至少一种。 Optionally, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from H, C 1 ~C 10 branched alkyl groups At least one of.
可选地,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 5的支链烷基中的至少一种。 Optionally, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H, C 1 ~C 5 branched alkyl groups Kind.
可选地,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 5的带有支链的烷基中的至少一种。 Optionally, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from H, C 1 ~C 5 branched alkyl groups At least one of.
可选地,所述初始混合物中的T元素源、A元素源、碱源OH -、有机模板剂R和H 2O的摩尔比为: Optionally, the molar ratio of the T element source, A element source, alkali source OH , organic template R and H 2 O in the initial mixture is:
TO 2/A 2O 3为10~999, TO 2 /A 2 O 3 is 10~999,
OH -/TO 2为0.01~1.0, OH - / TO 2 0.01 to 1.0,
H 2O/TO 2为3~4000, H 2 O/TO 2 is 3~4000,
R/TO 2为0.05~1.0; R/TO 2 is 0.05~1.0;
其中,T元素源以TO 2的摩尔数计,A元素源以A 2O 3的摩尔数计,碱金属源OH -以其含有的OH -元素的摩尔数计,有机模板剂R以其自身的摩尔数计,H 2O以其自身的摩尔数计。 Among them, the source of T element is calculated by the number of moles of TO 2 , the source of A element is calculated by the number of moles of A 2 O 3 , the alkali metal source OH - is calculated by the number of moles of OH - element contained, and the organic template R is calculated by itself H 2 O is calculated by its own moles.
可选地,所述初始混合物中的R/TO 2的摩尔比范围下限选自0.06:1、0.07:1、0.08:1、0.09:1、0.1:1或0.12:1,上限选自0.15:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1或1.0:1。 Optionally, the lower limit of the range of the molar ratio of R/TO 2 in the initial mixture is selected from 0.06:1, 0.07:1, 0.08:1, 0.09:1, 0.1:1, or 0.12:1, and the upper limit is selected from 0.15: 1. 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1 or 1.0:1.
可选地,所述初始混合物中的R/TO 2的摩尔比为:0.08-0.8:1。 Optionally, the molar ratio of R/TO 2 in the initial mixture is 0.08-0.8:1.
可选地,所述初始混合物中的OH -/TO 2的摩尔比范围下限选自0.01:1、0.02:0.03、0.04:1、0.045:1或0.05:1,上限选自0.5:1、0.6:1、0.65:1、0.7:1或0.8:1。 Alternatively, the initial mixture of OH - / TO 2 molar ratio in the range of the lower limit of 0.01 is selected from: 1,0.02: 0.03,0.04: 1,0.045: 1 or 0.05: 1, the upper limit of 0.5 is selected from: 1, 0.6 :1, 0.65:1, 0.7:1 or 0.8:1.
可选地,所述初始混合物中的TO 2/A 2O 3的摩尔比范围下限选自10、20、30、40、50、60、70、80、90、100、120、150、180、200、250、300、400、500、600、700、800或900;上限选自20、30、40、50、60、70、80、90、100、120、150、180、200、250、300、400、500、600、700、800、900或999。 Optionally, the lower limit of the molar ratio range of TO 2 /A 2 O 3 in the initial mixture is selected from 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 200, 250, 300, 400, 500, 600, 700, 800 or 900; the upper limit is selected from 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 200, 250, 300 , 400, 500, 600, 700, 800, 900, or 999.
可选地,所述初始混合物中的H 2O/TO 2的摩尔比范围下限选自3、5、10、20、30、40、50、60、70、80、90、100、110、150、200、500、800、1000、1500、2000、3000或4000;上限选自5、10、20、30、40、50、60、70、80、90、100、110、150、200、500、800、1000、1500、2000或3000。 Optionally, the lower limit of the molar ratio range of H 2 O/TO 2 in the initial mixture is selected from 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 150 , 200, 500, 800, 1000, 1500, 2000, 3000 or 4000; the upper limit is selected from 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 150, 200, 500, 800, 1000, 1500, 2000 or 3000.
具体地,所述方法包括下述步骤:Specifically, the method includes the following steps:
(1)将四价氧化物TO 2、三价氧化物Y 2O 3、碱源OH -、有机模板剂R1,R2和水混合得到初混物; (1) The oxide of tetravalent TO 2, trivalent oxide Y 2 O 3, an alkali source OH -, an organic templating agent R1, R2, and mixed water obtained preliminary mixing thereof;
(2)将步骤(1)中所得到的混合物置于140~200℃下水热晶化反应24~480小时,即得所述ECR-1分子筛;(2) Place the mixture obtained in step (1) for a hydrothermal crystallization reaction at 140-200°C for 24-480 hours to obtain the ECR-1 molecular sieve;
其中,有机模板剂为R1或R2中的一种或两种;Among them, the organic template is one or two of R1 or R2;
其中,所述初混物中的TO 2、Y 2O 3、R1、R2和H 2O的摩尔比为: Wherein, the molar ratio of TO 2 , Y 2 O 3 , R1, R2 and H 2 O in the initial mixture is:
TO 2/Y 2O 3为10~999, TO 2 /Y 2 O 3 is 10~999,
OH -/TO 2为0.01~1.0, OH - / TO 2 0.01 to 1.0,
H 2O/TO 2为3~4000, H 2 O/TO 2 is 3~4000,
R1+R2/TO 2为0.05~1.0; R1+R2/TO 2 is 0.05~1.0;
R1选自具有式I所示化学结构式的化合物中的至少一种:R1 is selected from at least one compound having the chemical structural formula shown in Formula I:
Figure PCTCN2019086618-appb-000002
Figure PCTCN2019086618-appb-000002
R2选自具有式II所示化学结构式的化合物、具有式II所示化学结构式的化合物中的至少一种:R2 is selected from at least one of compounds having the chemical structural formula shown in Formula II and compounds having the chemical structural formula shown in Formula II:
Figure PCTCN2019086618-appb-000003
Figure PCTCN2019086618-appb-000003
其中,n为0-7。Among them, n is 0-7.
可选地,所述T元素源选自硅源、锗源、锡源中的至少一种;Optionally, the source of T element is selected from at least one of a silicon source, a germanium source, and a tin source;
所述A元素源选自铝源、硼源、镓源中的至少一种;The source of element A is selected from at least one of an aluminum source, a boron source, and a gallium source;
所述碱源OH -选自碱金属氢氧化物、碱土金属氢氧化物中的至少一种。 The alkali source OH -is selected from at least one of alkali metal hydroxides and alkaline earth metal hydroxides.
可选地,所述硅源选自正硅酸乙酯、硅胶、硅酸、白炭黑、硅溶胶、水玻璃、硅藻土中的至少一种;Optionally, the silicon source is selected from at least one of ethyl orthosilicate, silica gel, silicic acid, white carbon black, silica sol, water glass, and diatomaceous earth;
所述锗源为氧化锗;The germanium source is germanium oxide;
所述锡源选自氧化锡、氯化锡中的至少一种;The tin source is selected from at least one of tin oxide and tin chloride;
所述铝源选自异丙醇铝、铝酸钠、铝箔、硫酸铝、氯化铝、硝酸铝、氢氧化铝、薄水铝石、拟薄水铝石中的至少一种;The aluminum source is selected from at least one of aluminum isopropoxide, sodium aluminate, aluminum foil, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum hydroxide, boehmite, and pseudo-boehmite;
所述硼源选自硼酸、硼酸钠、氧化硼中的至少一种;The boron source is selected from at least one of boric acid, sodium borate, and boron oxide;
所述镓源选自硝酸镓、三氯化镓中的至少一种;The gallium source is selected from at least one of gallium nitrate and gallium trichloride;
所述碱源OH -选自氢氧化钠、氢氧化钾、氢氧化铯中的至少一种。 The alkali source OH -is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.
可选地,式I中,R 1选自C 1~C 4的烃基中的至少一种;R 2,R 3, R 4,R 5,R 6,R 7,R 8,R 9为H。 Optionally, in formula I, R 1 is selected from at least one of C 1 to C 4 hydrocarbon groups; R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are H .
可选地,所述有机模板剂R为吡咯烷和/或丁基吡咯烷。Optionally, the organic template R is pyrrolidine and/or butylpyrrolidine.
可选地,所述有机模板剂R为吡咯烷。Optionally, the organic template R is pyrrolidine.
可选地,所述有机模板剂R为丁基吡咯烷。Optionally, the organic template R is butylpyrrolidine.
可选地,所述有机模板剂R为吡咯烷和丁基吡咯烷的混合物,吡咯烷和丁基吡咯烷的摩尔比为10~100:0~90。Optionally, the organic template R is a mixture of pyrrolidine and butylpyrrolidine, and the molar ratio of pyrrolidine to butylpyrrolidine is 10-100:0-90.
可选地,所述吡咯烷和丁基吡咯烷的摩尔比为10:90、20:80、30:70、40:60、50:50、60:90、70:90、80:90、90:90、100:0中的任意一个比值以及任意两个比值之间的范围值。Optionally, the molar ratio of the pyrrolidine and butylpyrrolidine is 10:90, 20:80, 30:70, 40:60, 50:50, 60:90, 70:90, 80:90, 90 : Any ratio of 90, 100:0 and the range value between any two ratios.
可选地,步骤(1)包括:向A元素源、碱源OH -、有机模板剂R和水的混合物中加入T元素源,混合,得到初始混合物。 Optionally, step (1) includes: adding a T element source to a mixture of A element source, alkali source OH , organic template R and water, and mixing to obtain an initial mixture.
可选地,所述水热晶化的条件为:100~200℃下水热晶化反应24~480小时。Optionally, the conditions for the hydrothermal crystallization are: hydrothermal crystallization reaction at 100-200°C for 24 to 480 hours.
可选地,所述水热晶化的条件为:100~200℃下水热晶化反应24~72小时。Optionally, the conditions for the hydrothermal crystallization are: hydrothermal crystallization reaction at 100-200°C for 24 to 72 hours.
可选地,步骤(2)包括:将步骤(1)中所得到的初混物置于100~200℃下水热晶化反应24~480小时,得到的产物经分离,洗涤,干燥,得到所述ECR-1分子筛。Optionally, step (2) includes: placing the initial mixture obtained in step (1) for a hydrothermal crystallization reaction at 100-200°C for 24-480 hours, and the obtained product is separated, washed, and dried to obtain the ECR-1 molecular sieve.
本申请的另一个方面,提供一种ECR-1分子筛,其特征在于,根据上述任一项所述的方法制备得到;所述ECR-1分子筛的硅铝原子比为3.5~8。Another aspect of the present application provides an ECR-1 molecular sieve, characterized in that it is prepared according to any one of the above methods; the ECR-1 molecular sieve has an atomic ratio of silicon to aluminum of 3.5-8.
可选地,所述ECR-1分子筛的硅铝原子比的下限选自3.5、3.6、3.7、3.8、3.9、4、4.5、5、5.1、5.2、5.3、5.4、5.5、5.8、6、6.5、7或7.5;上限选自3.6、3.7、3.8、3.9、4、4.5、5、5.1、5.2、5.3、5.4、5.5、5.8、6、6.5、7、7.5或8。Optionally, the lower limit of the silicon to aluminum atomic ratio of the ECR-1 molecular sieve is selected from 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.8, 6, 6.5 , 7 or 7.5; the upper limit is selected from 3.6, 3.7, 3.8, 3.9, 4, 4.5, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.8, 6, 6.5, 7, 7.5 or 8.
可选地,所述ECR-1分子筛为规则的棒状颗粒,粒径为10~15μm,宽度为1~3μm。Optionally, the ECR-1 molecular sieve is regular rod-shaped particles with a particle size of 10-15 μm and a width of 1-3 μm.
可选地,所述ECR-1分子筛有含有向分布的分子筛分子筛孔道结构。Optionally, the ECR-1 molecular sieve has a molecular sieve molecular sieve structure containing directional distribution.
可选地,所述ECR-1分子筛的XRD谱图包含以下位置的衍射峰:Optionally, the XRD spectrum of the ECR-1 molecular sieve includes diffraction peaks at the following positions:
2θ=5.90-5.95,
Figure PCTCN2019086618-appb-000004
2θ=5.90-5.95,
Figure PCTCN2019086618-appb-000004
2θ=6.70-6.80,
Figure PCTCN2019086618-appb-000005
2θ=6.70-6.80,
Figure PCTCN2019086618-appb-000005
2θ=8.3-8.36,
Figure PCTCN2019086618-appb-000006
2θ=8.3-8.36,
Figure PCTCN2019086618-appb-000006
2θ=9.70-9.77,
Figure PCTCN2019086618-appb-000007
2θ=9.70-9.77,
Figure PCTCN2019086618-appb-000007
2θ=10.15-10.30,
Figure PCTCN2019086618-appb-000008
2θ=10.15-10.30,
Figure PCTCN2019086618-appb-000008
2θ=10.30-10.35,
Figure PCTCN2019086618-appb-000009
2θ=10.30-10.35,
Figure PCTCN2019086618-appb-000009
2θ=12.15-12.18,
Figure PCTCN2019086618-appb-000010
2θ=12.15-12.18,
Figure PCTCN2019086618-appb-000010
2θ=13.10-13.13,
Figure PCTCN2019086618-appb-000011
2θ=13.10-13.13,
Figure PCTCN2019086618-appb-000011
2θ=15.04-15.08,
Figure PCTCN2019086618-appb-000012
2θ=15.04-15.08,
Figure PCTCN2019086618-appb-000012
本申请中所有涉及数值范围的条件均可独立地选自所述数值范围内的任意点值。All conditions related to the numerical range in this application can be independently selected from any point value within the numerical range.
本申请中“C 1~C 10”等均指基团所包含的碳原子数。 In this application, "C 1 to C 10 "and the like all refer to the number of carbon atoms contained in the group.
本申请中,“烷基”是由烷烃化合物分子上失去任意一个氢原子所形成的基团。In this application, "alkyl" is a group formed by the loss of any hydrogen atom on the molecule of an alkane compound.
本申请中,“烃基”为烃分子中失去碳原子上的一个氢原子后形成的基团。所述烃为碳水化合物,例如烷烃、烯烃、炔烃均为烃。In this application, "hydrocarbon group" refers to a group formed after a hydrogen atom on a carbon atom is lost in a hydrocarbon molecule. The hydrocarbons are carbohydrates, for example, alkanes, alkenes and alkynes are all hydrocarbons.
本申请能产生的有益效果包括:The beneficial effects that this application can produce include:
1)本申请所提供的ECR-1分子筛的制备方法,该制备方法简单,操作方便,重复性好,效率高能快速合成ECR-1分子筛,适合工业化生产。1) The preparation method of ECR-1 molecular sieve provided by this application is simple, convenient to operate, reproducible, high-efficiency, rapid synthesis of ECR-1 molecular sieve, and suitable for industrial production.
2)本申请所提供的ECR-1分子筛,不仅具有规整的外观且有定向分布的分子筛孔道结构,极高的结晶度和较为充裕的接触面积提高了此类分子筛的筛分利用效率。2) The ECR-1 molecular sieve provided by this application not only has a regular appearance and has a molecular sieve pore structure with directional distribution, but the extremely high crystallinity and relatively abundant contact area improve the screening utilization efficiency of this type of molecular sieve.
附图说明Description of the drawings
图1为实例1样品的XRD谱图。Figure 1 shows the XRD spectrum of the sample of Example 1.
图2为实例1样品的扫描电镜照片。Figure 2 is a scanning electron micrograph of the sample of Example 1.
图3为对比例1样品的扫描电镜照片。Figure 3 is a scanning electron microscope photograph of a sample of Comparative Example 1.
具体实施方式Detailed ways
下面结合实施例详述本申请,但本申请并不局限于这些实施例。The application will be described in detail below with reference to the embodiments, but the application is not limited to these embodiments.
如无特别说明,本申请的实施例中的原料均通过商业途径购买。Unless otherwise specified, the raw materials in the examples of this application are all purchased through commercial channels.
实施例中产物硅铝摩尔比为Si/Al原子比。In the examples, the product silicon-to-aluminum molar ratio is Si/Al atomic ratio.
本本发明的实施例中分析方法如下:The analysis method in the embodiment of the present invention is as follows:
利用荷兰帕纳科(PANalytical)公司的X’Pert PRO X射线衍射仪【Cu靶,Kα辐射源(λ=0.15418nm),电压40KV,电流40mA】进行X射线粉末衍射物相分析(XRD)。X'Pert PRO X-ray diffractometer [Cu target, Kα radiation source (λ=0.15418nm), voltage 40KV, current 40mA] from PANalytical, the Netherlands, was used for X-ray powder diffraction phase analysis (XRD).
利用Hitachi(SU8020)型扫描电子显微镜进行SEM形貌分析。Hitachi (SU8020) scanning electron microscope was used for SEM topography analysis.
实施例1Example 1
按下面的摩尔比例配制初始凝胶:SiO 2/Al 2O 3=30,OH -/SiO 2=0.8,(R1+R2)/SiO 2=0.2,H 2O/SiO 2=30的配比将拟薄水铝石,氢氧化钠,吡咯烷及丁基吡咯烷(吡咯烷及丁基吡咯烷摩尔比为50:50)分别溶于去离子水中,然后在不断搅拌的条件下加入硅溶胶。之后将上述混合物装入100ml晶化釜中于150℃反应72小时。 Molar ratio of the initial gel formulation below: SiO 2 / Al 2 O 3 = 30, OH - / SiO 2 = 0.8, (R1 + R2) / SiO 2 = 0.2, H 2 O / SiO 2 ratio = 30 Pseudo-boehmite, sodium hydroxide, pyrrolidine and butylpyrrolidine (the molar ratio of pyrrolidine to butylpyrrolidine is 50:50) were dissolved in deionized water, and then the silica sol was added under constant stirring . Then, the above mixture was put into a 100ml crystallization kettle and reacted at 150°C for 72 hours.
将冷却后的反应液至于水浴中静置2小时,产生明显的分层后,其中下层米白色色的固体为ECR-1分子筛分子筛,将其分离,洗涤,干燥,焙烧(焙烧温度550℃,焙烧时间8小时)后进行XRD分析和SEM表征,XRD谱图如图1所示,SEM图如图2和3所示。图1至3证实合成的产物为规则棒状的ECR-1分子筛分子筛,硅铝摩尔比例为5.0;经SEM表征,颗粒尺寸为10μm,宽度约为2μm,编号为ECR-1-1,以投料的二氧化硅重量计,ECR-1-1的产率为70%。The cooled reaction solution was allowed to stand in a water bath for 2 hours, and after obvious stratification occurred, the off-white solid in the lower layer was ECR-1 molecular sieve molecular sieve, which was separated, washed, dried, and roasted (calcination temperature 550℃, After calcination time (8 hours), XRD analysis and SEM characterization were carried out. The XRD spectrum is shown in Figure 1, and the SEM images are shown in Figures 2 and 3. Figures 1 to 3 confirm that the synthesized product is a regular rod-shaped ECR-1 molecular sieve with a molar ratio of silicon to aluminum of 5.0; the particle size is 10μm, the width is about 2μm, and the number is ECR-1-1. The yield of ECR-1-1 is 70% based on the weight of silica.
实施例2-9Example 2-9
具体配料比例和晶化条件见表1,具体配料过程同实施例1。The specific ingredient ratio and crystallization conditions are shown in Table 1, and the specific ingredient process is the same as in Example 1.
制备的样品做XRD分析,数据结果与表2接近,即峰位置和形 状相同,依制备条件的变化峰相对峰度在±10%范围内波动,表明制备产物具有ECR-1结构的特征。The prepared sample was subjected to XRD analysis, and the data results were close to Table 2, that is, the peak position and shape were the same, and the relative kurtosis of the peak fluctuated within ±10% depending on the preparation conditions, indicating that the prepared product had the characteristics of ECR-1 structure.
表1分子筛制备的配料及晶化条件表Table 1 Ingredients and crystallization conditions for molecular sieve preparation
Figure PCTCN2019086618-appb-000013
Figure PCTCN2019086618-appb-000013
Figure PCTCN2019086618-appb-000014
Figure PCTCN2019086618-appb-000014
表2实施例1样品的XRD结果Table 2 XRD results of the sample of Example 1
Figure PCTCN2019086618-appb-000015
Figure PCTCN2019086618-appb-000015
Figure PCTCN2019086618-appb-000016
Figure PCTCN2019086618-appb-000016
对比例1Comparative example 1
将氢氧化钠,四甲基氢氧化铵,铝酸钠,水,白炭黑混合,按下述摩尔比例配制:SiO 2/Al 2O 3=20,OH -/SiO 2=0.6,R/SiO 2=0.6,H 2O/SiO 2=40。然后将混合物在50度的水浴中搅拌至均匀的凝胶,在搅拌的同时予以陈化12小时。之后将凝胶转移到水热晶化釜中,升温至160度,水热晶化168小时,然后自然冷却,过滤干燥后得到分子筛分子筛原粉。经XRD测试,确认为ECR-1分子筛分子筛,硅铝摩尔比例为3.5,以低倍SEM观察形貌为棒状小晶粒聚集体(图3),颗粒尺寸为0.1-3μm。以投料二氧化硅重量计,ECR-1分子筛分子筛的产率为50%。 Sodium hydroxide, tetramethylammonium hydroxide, sodium aluminate water, white carbon were mixed, prepared according to the following molar ratio: SiO 2 / Al 2 O 3 = 20, OH - / SiO 2 = 0.6, R / SiO 2 =0.6, H 2 O/SiO 2 =40. Then the mixture was stirred in a 50°C water bath to a uniform gel, and was aged for 12 hours while stirring. Then the gel is transferred to a hydrothermal crystallization kettle, heated to 160 degrees, hydrothermally crystallized for 168 hours, then cooled naturally, filtered and dried to obtain the original molecular sieve molecular sieve powder. XRD test confirmed that it is ECR-1 molecular sieve molecular sieve, the molar ratio of silicon to aluminum is 3.5, and the morphology observed by low magnification SEM is rod-shaped small crystal aggregates (Figure 3), the particle size is 0.1-3μm. Based on the weight of the charged silica, the yield of the ECR-1 molecular sieve is 50%.
对比例1表明采用早前文献公开报道的方法来合成制备EON沸石耗时较长,结晶度低,收率也较低。Comparative Example 1 shows that the synthesis and preparation of EON zeolite by the method publicly reported earlier in the literature takes a long time, the crystallinity is low, and the yield is also low.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the application, and do not limit the application in any form. Although the application is disclosed as above with preferred embodiments, it is not intended to limit the application. Anyone familiar with the profession, Without departing from the scope of the technical solution of the present application, making some changes or modifications using the technical content disclosed above is equivalent to an equivalent implementation case and falls within the scope of the technical solution.

Claims (12)

  1. 一种快速制备高结晶度的ECR-1分子筛的方法,其特征在于,包括以下步骤:A method for quickly preparing ECR-1 molecular sieve with high crystallinity, which is characterized in that it comprises the following steps:
    (1)将含有T元素源、A元素源、碱源OH -、有机模板剂R和水的原料混合,得到初始混合物; (1) containing the source of element T, A element source, an alkali source of OH - mixing, the organic template R a raw material and water to obtain an initial mixture;
    (2)将步骤(1)中所得到的初始混合物水热晶化,得到所述ECR-1分子筛;(2) Hydrothermally crystallize the initial mixture obtained in step (1) to obtain the ECR-1 molecular sieve;
    其中,所述T元素源选自IV A族元素中的至少一种;Wherein, the source of T element is selected from at least one of group IV and A elements;
    所述A元素源选自III A族元素中的至少一种;The source of the A element is selected from at least one of group III and A elements;
    所述碱源OH -为碱金属源和/或碱土金属源; The alkali source OH - is an alkali metal source and/or alkaline earth metal source;
    所述有机模板剂R选自具有式I、式II所示化学结构式的化合物中的至少一种:The organic template R is selected from at least one compound having the chemical structural formula shown in Formula I and Formula II:
    Figure PCTCN2019086618-appb-100001
    Figure PCTCN2019086618-appb-100001
    式I中,R 1,R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9独立地选自H、C 1~C 10的烃基中的至少一种。 In formula I, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are independently selected from at least one of H and C 1 to C 10 hydrocarbon groups.
  2. 根据权利要求1所述的方法,其特征在于,所述初始混合物中的T元素源、A元素源、碱源OH -、有机模板剂R和H 2O的摩尔比为: The method according to claim 1, wherein, T element source of the initial mixture, A element source, an alkali source of OH -, and the organic template R a molar ratio of H 2 O:
    TO 2/A 2O 3为10~999, TO 2 /A 2 O 3 is 10~999,
    OH -/TO 2为0.01~1.0, OH - / TO 2 0.01 to 1.0,
    H 2O/TO 2为3~4000, H 2 O/TO 2 is 3~4000,
    R/TO 2为0.05~1.0; R/TO 2 is 0.05~1.0;
    其中,T元素源以TO 2的摩尔数计,A元素源以A 2O 3的摩尔数计,碱源OH -以其含有的OH -的摩尔数计,有机模板剂R以其自身的 摩尔数计,H 2O以其自身的摩尔数计。 Wherein, T element source to the TO 2 moles, A element source to moles of A 2 O 3, the alkali source OH - OH contained in its - in moles of the organic templating agent in its own molar R Count, H 2 O is counted by its own moles.
  3. 根据权利要求1所述的方法,其特征在于,所述T元素源选自硅源、锗源、锡源中的至少一种;The method according to claim 1, wherein the source of T element is selected from at least one of a silicon source, a germanium source, and a tin source;
    所述A元素源选自铝源、硼源、镓源中的至少一种;The source of element A is selected from at least one of an aluminum source, a boron source, and a gallium source;
    所述碱源OH -选自碱金属氢氧化物、碱土金属氢氧化物中的至少一种。 The alkali source OH -is selected from at least one of alkali metal hydroxides and alkaline earth metal hydroxides.
  4. 根据权利要求3所述的方法,其特征在于,所述硅源选自正硅酸乙酯、硅胶、硅酸、白炭黑、硅溶胶、水玻璃、硅藻土中的至少一种;The method according to claim 3, wherein the silicon source is selected from at least one of tetraethyl orthosilicate, silica gel, silicic acid, white carbon black, silica sol, water glass, and diatomaceous earth;
    所述锗源为氧化锗;The germanium source is germanium oxide;
    所述锡源选自氧化锡、氯化锡中的至少一种;The tin source is selected from at least one of tin oxide and tin chloride;
    所述铝源选自异丙醇铝、铝酸钠、铝箔、硫酸铝、氯化铝、硝酸铝、氢氧化铝、拟薄水铝石中的至少一种;The aluminum source is selected from at least one of aluminum isopropoxide, sodium aluminate, aluminum foil, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum hydroxide, and pseudo-boehmite;
    所述硼源选自硼酸、硼酸钠、氧化硼中的至少一种;The boron source is selected from at least one of boric acid, sodium borate, and boron oxide;
    所述镓源选自硝酸镓、三氯化镓中的至少一种;The gallium source is selected from at least one of gallium nitrate and gallium trichloride;
    所述碱源OH -选自氢氧化钠、氢氧化钾、氢氧化铯中的至少一种。 The alkali source OH -is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.
  5. 根据权利要求1所述的方法,其特征在于,式I中,R 1选自C 1~C 4的烃基中的至少一种;R 2,R 3,R 4,R 5,R 6,R 7,R 8,R 9为H。 The method according to claim 1, wherein in formula I, R 1 is selected from at least one of C 1 to C 4 hydrocarbon groups; R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are H.
  6. 根据权利要求1所述的方法,其特征在于,所述有机模板剂R为吡咯烷和/或丁基吡咯烷。The method according to claim 1, wherein the organic template R is pyrrolidine and/or butylpyrrolidine.
  7. 根据权利要求1所述的方法,其特征在于,所述有机模板剂R为吡咯烷和丁基吡咯烷的混合物,吡咯烷和丁基吡咯烷的摩尔比为10~100:0~90。The method according to claim 1, wherein the organic template R is a mixture of pyrrolidine and butylpyrrolidine, and the molar ratio of pyrrolidine to butylpyrrolidine is 10-100:0-90.
  8. 根据权利要求1所述的方法,其特征在于,步骤(1)包括: 向A元素源、碱源OH -、有机模板剂R和水的混合物中加入T元素源,混合,得到初始混合物。 The method according to claim 1, wherein step (1) comprises: adding a T element source to a mixture of A element source, alkali source OH , organic template R and water, and mixing to obtain an initial mixture.
  9. 根据权利要求1所述的方法,其特征在于,所述水热晶化的条件为:100~200℃下水热晶化24~480小时。The method of claim 1, wherein the hydrothermal crystallization conditions are: hydrothermal crystallization at 100-200°C for 24-480 hours.
  10. 根据权利要求1所述的方法,其特征在于,所述水热晶化的条件为:100~200℃下水热晶化24~72小时。The method according to claim 1, wherein the conditions of the hydrothermal crystallization are: hydrothermal crystallization at 100-200°C for 24-72 hours.
  11. 一种ECR-1分子筛,其特征在于,根据权利要求1至9任一项所述的方法制备得到;An ECR-1 molecular sieve, characterized in that it is prepared according to the method of any one of claims 1 to 9;
    所述ECR-1分子筛的硅铝原子比为3.5~8。The silicon-to-aluminum atomic ratio of the ECR-1 molecular sieve is 3.5-8.
  12. 根据权利要求11所述的ECR-1分子筛,其特征在于,所述ECR-1分子筛为规则的棒状或针状颗粒,粒径为10~15μm,宽度为1~3μm。The ECR-1 molecular sieve according to claim 11, wherein the ECR-1 molecular sieve is regular rod-shaped or needle-shaped particles with a particle size of 10-15 μm and a width of 1-3 μm.
PCT/CN2019/086618 2019-05-13 2019-05-13 Method for rapidly preparing high crystallinity ecr-1 molecular sieve WO2020227886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086618 WO2020227886A1 (en) 2019-05-13 2019-05-13 Method for rapidly preparing high crystallinity ecr-1 molecular sieve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086618 WO2020227886A1 (en) 2019-05-13 2019-05-13 Method for rapidly preparing high crystallinity ecr-1 molecular sieve

Publications (1)

Publication Number Publication Date
WO2020227886A1 true WO2020227886A1 (en) 2020-11-19

Family

ID=73289767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086618 WO2020227886A1 (en) 2019-05-13 2019-05-13 Method for rapidly preparing high crystallinity ecr-1 molecular sieve

Country Status (1)

Country Link
WO (1) WO2020227886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892242A (en) * 2021-01-29 2021-06-04 江西师范大学 High-flux mordenite molecular sieve membrane and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206005A (en) * 1992-08-19 1993-04-27 Exxon Research & Engineering Company Synthesis of ECR-1 using methyltriethanolammonium cations
US5256391A (en) * 1992-09-11 1993-10-26 Mobil Oil Corporation Method for synthesizing microporous crystalline material
CN108190914A (en) * 2018-02-08 2018-06-22 西安建筑科技大学 A kind of synthetic method of solid waste multi-stage porous block ECR-1 zeolites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206005A (en) * 1992-08-19 1993-04-27 Exxon Research & Engineering Company Synthesis of ECR-1 using methyltriethanolammonium cations
US5256391A (en) * 1992-09-11 1993-10-26 Mobil Oil Corporation Method for synthesizing microporous crystalline material
CN108190914A (en) * 2018-02-08 2018-06-22 西安建筑科技大学 A kind of synthetic method of solid waste multi-stage porous block ECR-1 zeolites

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REN, LIMIN: "Fast Crystallization of ECR-1 Zeolite for Organotemplate-free", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 32, no. 3, 10 March 2011 (2011-03-10), pages 662 - 666, XP009524298, ISSN: 0251-0790 *
REN, LIMIN: "Fast Crystallization of ECR-1 Zeolite for Organotemplate-free", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 32, no. 3, 10 March 2011 (2011-03-10), pages 662 - 666, XP009524304, ISSN: 0251-0790 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892242A (en) * 2021-01-29 2021-06-04 江西师范大学 High-flux mordenite molecular sieve membrane and preparation method and application thereof
CN112892242B (en) * 2021-01-29 2022-08-02 江西师范大学 High-flux mordenite molecular sieve membrane and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5271266B2 (en) UZM-22 aluminosilicate zeolite, method for its preparation and method for using UZM-22
JP6445685B2 (en) Process for preparing zeolite SSZ-52
US11260377B2 (en) Method for synthesizing a FER/MOR composite molecular sieve
WO2014082587A1 (en) Zsm-5 type molecular sieve synthesis method
WO2015081648A1 (en) Method for synthesizing molecular sieve ssz-13
JP6178847B2 (en) Method for producing aluminosilicate zeolite SSZ-56
EP3658278B1 (en) Crystalline metallophosphates, their method of preparation, and use
EP2340230A1 (en) Method of preparing ssz-74
US6241960B1 (en) Method for preparation of small zeotype crystals
US6797248B2 (en) Mesoporous molecular sieve and a process for the preparation of the same
WO2016086361A1 (en) Method for synthesizing nano-zsm-5 zeolite
JP6740492B1 (en) Morpholinium-based quaternary ammonium cations and AEI zeolites made therewith
JP2006206433A (en) Novel synthesis method of zeolite zbm-30 from mixture of amine compound
WO2020227886A1 (en) Method for rapidly preparing high crystallinity ecr-1 molecular sieve
WO2015021611A1 (en) Zsm-22 molecular sieve and synthesis method for me-zsm-22
CN109694086B (en) Preparation method of nano ZSM-5 zeolite molecular sieve aggregate
CN112551543B (en) Method for preparing IZM-2 zeolite in the presence of mixture of nitrogen-containing organic structuring agent in hydroxide and bromide form
US20110124934A1 (en) Process for Making Crystalline Metallosilicates
CN111924853B (en) Method for rapidly preparing ECR-1 molecular sieve with high crystallinity
KR100925851B1 (en) Preparation method of zeolites with high silica/alumina ratio
WO2020227888A1 (en) Zsm-57 zeolite and preparation method therefor
WO2012141833A1 (en) Process for producing molecular sieve materials
CN102259890A (en) ZSM-5/ECR-1/mordenite three-phase symbiotic material and preparation method thereof
EP4031495A1 (en) Synthesis and use of zeolitic material having the ith framework structure type
JP2005219988A (en) Synthetic method of high-silica mordenite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928578

Country of ref document: EP

Kind code of ref document: A1