WO2020227861A1 - 发光驱动基板及其制作方法、发光基板和显示装置 - Google Patents

发光驱动基板及其制作方法、发光基板和显示装置 Download PDF

Info

Publication number
WO2020227861A1
WO2020227861A1 PCT/CN2019/086452 CN2019086452W WO2020227861A1 WO 2020227861 A1 WO2020227861 A1 WO 2020227861A1 CN 2019086452 W CN2019086452 W CN 2019086452W WO 2020227861 A1 WO2020227861 A1 WO 2020227861A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
trace
emitting
power
common electrode
Prior art date
Application number
PCT/CN2019/086452
Other languages
English (en)
French (fr)
Inventor
班圣光
曹占锋
王珂
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000617.4A priority Critical patent/CN110972495A/zh
Priority to PCT/CN2019/086452 priority patent/WO2020227861A1/zh
Priority to US16/766,197 priority patent/US11588085B2/en
Publication of WO2020227861A1 publication Critical patent/WO2020227861A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the embodiments of the present disclosure relate to a light-emitting drive substrate and a manufacturing method thereof, a light-emitting substrate, and a display device.
  • the liquid crystal display device includes a backlight module and a liquid crystal panel.
  • the backlight module is arranged on the non-display side of the liquid crystal panel to provide a light source for the display operation of the display panel.
  • the liquid crystal panel includes a polarizer, an array substrate, an opposite substrate, and a layer of liquid crystal molecules filled between the two substrates.
  • the liquid crystal display device deflects the liquid crystal molecules in the liquid crystal molecule layer by forming an electric field between the array substrate and the opposite substrate, and the deflected liquid crystal molecules cooperate with the polarizer to form a liquid crystal light valve. Since the liquid crystal molecular layer itself does not emit light, a backlight module is needed to realize the display function.
  • the contrast, brightness uniformity, and screen-to-body ratio of the liquid crystal display device are related to the structure and performance of the backlight module.
  • At least one embodiment of the present disclosure provides a light-emitting drive substrate, which includes a first light-emitting partition, a second light-emitting partition, a peripheral area, a first power trace, and a second power trace.
  • the first light-emitting subarea includes a first common electrode
  • the second light-emitting subarea includes a second common electrode
  • the first power trace includes a first end electrically connected to the first common electrode and extends to the
  • the peripheral area is configured as a second terminal for electrical connection to receive a first power supply voltage
  • the second power trace includes a first terminal electrically connected to the second common electrode and extends to the peripheral area and is configured Is the second terminal for electrical connection to receive the first power supply voltage
  • the resistance between the first terminal and the second terminal of the first power trace is equal to the first terminal and the second terminal of the second power trace
  • the resistance between the second end, and the length of the trace between the first end and the second end of the first power trace is not equal to the length between the first end
  • the length of the trace between the first end and the second end of the first power trace is different from the first end and the second end of the second power trace.
  • the ratio of the length of the trace between the ends is equal to the ratio of the trace width of the first power trace to the trace width of the second power trace.
  • the light-emitting drive substrate further includes a third light-emitting subarea and a third power trace.
  • the third light-emitting area includes a third common electrode;
  • the third power trace includes a first end electrically connected to the third common electrode and extends to the peripheral area and is configured for electrical connection to receive The second terminal of the first power supply voltage;
  • the resistance between the first terminal and the second terminal of the third power trace is equal to the resistance between the first terminal and the second terminal of the first power trace;
  • the length of the trace between the first end and the second end of the first power trace, the length of the trace between the first end and the second end of the second power trace, and the third power trace The length of the trace between the first end and the second end of the trace is different from each other.
  • the trace width of the first power trace, the trace width of the second power trace, and the trace width of the third power trace gradually Decrease.
  • the trace width of the first power trace, the trace width of the second power trace, and the trace width of the third power trace are The arithmetic sequence decreases.
  • the light-emitting drive substrate further includes a first opposed power supply trace and a second opposed power supply trace
  • the first light-emitting partition further includes a first opposed common Electrode
  • the second light-emitting area further includes a second opposed common electrode
  • the first opposed power trace includes a first end electrically connected to the first opposed common electrode and extends to the peripheral area and A second end configured to be electrically connected to receive a second power supply voltage
  • the second opposite power trace includes a first end electrically connected to the second opposite common electrode and extends to the peripheral area And configured to be electrically connected to the second end of the second power supply voltage
  • the resistance between the first end and the second end of the first opposite power supply line is equal to the second opposite power supply line
  • the resistance between the first end and the second end of the wire, and the length of the trace between the first end and the second end of the first opposite power trace is not equal to that of the second opposite power trace The length of the trace between the first end and the second end,
  • the first light-emitting subarea includes a plurality of first electrical contact portions and a plurality of first opposed electrical contact portions, and at least one of the multiple first electrical contact portions Partly connected to the first common electrode, at least part of the plurality of first opposed electrical contact portions are connected to the first opposed common electrode; and the second light-emitting area includes a plurality of second electrical contact portions And a plurality of second opposed electrical contact portions, at least part of the plurality of second electrical contact portions is connected to the second common electrode, and at least part of the multiple second opposed electrical contact portions is connected to the first Two opposite common electrodes are connected.
  • the plurality of first electrical contacts, the plurality of first opposed electrical contacts, the plurality of second electrical contacts, the plurality of The second opposite electrical contact portion, the first common electrode, the first opposite common electrode, the second common electrode, and the second opposite common electrode are arranged in the same layer.
  • the first light-emitting subarea and the second light-emitting subarea are arranged side by side in a first direction; and the first power supply line and the second power supply line , The first opposite power supply traces and the second opposite power traces are arranged side by side along a second direction crossing the first direction.
  • the first light-emitting subarea includes a first electrical contact portion and a first opposite electrical contact portion, and the first electrical contact portion is connected to the first electrical contact portion.
  • a common electrode connection, the one first opposed electrical contact portion is connected to the first opposed common electrode; and the second light-emitting subarea includes a second electrical contact portion and a second opposed electrical contact portion, The one second electrical contact portion is connected to the second common electrode, and the one second opposite electrical contact portion is connected to the second opposite common electrode.
  • the light-emitting drive substrate further includes a base substrate, a first insulating layer, a first electrode layer, and a second electrode layer.
  • the first electrode layer is located on a side of the second electrode layer away from the base substrate; the first electrode layer includes the first common electrode, the second common electrode, and the first pair A common electrode and the second opposite common electrode; the second electrode layer includes the first power trace, the second power trace, the first opposite power trace, and the second Opposite power traces;
  • the first insulating layer is disposed between the first electrode layer and the second electrode layer, and includes the first via, the second via, the third via and the first Four vias; and the first power trace and the first common electrode are electrically connected through the first via, and the second power trace and the second common electrode are electrically connected through the second via Electrically connected, the first opposite power trace and the first opposite common electrode are electrically connected through the third via hole, and the second opposite power trace and the second opposite common electrode are electrically connected through
  • the first electrode layer is formed using a first conductive layer, the first conductive layer includes a first metal layer; and the first conductive layer further includes A first transparent conductive oxide layer laminated with the first metal, and the first transparent conductive oxide layer is located on a side of the first metal layer away from the second electrode layer.
  • the second electrode layer is formed by using a second conductive layer, and the second conductive layer includes a second metal layer; the thickness of the second metal layer is greater than The thickness of the first metal layer.
  • the second conductive layer further includes a first auxiliary electrode layer disposed on the second metal layer close to the first electrode layer and disposed on the The second auxiliary electrode layer of the second metal layer away from the first electrode layer.
  • the second metal layer and the first metal layer are both made of copper-containing metal; the first auxiliary electrode layer and the second auxiliary electrode layer All are made of molybdenum-niobium alloy.
  • the light-emitting drive substrate further includes a reflective layer and a second insulating layer.
  • the reflective layer is provided on a side of the first electrode layer away from the second electrode layer; the second insulating layer is provided between the first electrode layer and the reflective layer.
  • the reflective layer includes a third insulating layer, a second transparent conductive oxide layer, a third metal layer, and a third transparent conductive oxide layer that are sequentially disposed; and Compared with the third insulating layer, the third transparent conductive oxide layer is closer to the first electrode layer.
  • the light-emitting drive substrate further includes a stress buffer layer and a protective layer.
  • the stress buffer layer is arranged between the base substrate and the second electrode layer; the protective layer is arranged between the second electrode layer and the first insulating layer.
  • At least one embodiment of the present disclosure further provides a light-emitting substrate, which includes the light-emitting drive substrate provided in any embodiment of the present disclosure, and at least one first light-emitting element arranged in the first light-emitting subarea and At least one second light-emitting element in the second light-emitting subarea.
  • the at least one first light-emitting element is configured to receive the first power supply voltage of the first power line to emit light
  • the at least one second light-emitting element is configured to receive the first power supply voltage of the second power line to emit light Glow.
  • At least one embodiment of the present disclosure further provides a display device, which includes the light-emitting substrate provided in any embodiment of the present disclosure.
  • At least one embodiment of the present disclosure also provides a method for manufacturing a light-emitting drive substrate, the light-emitting drive substrate includes a peripheral area, and the method includes: forming a first light-emitting partition, a second light-emitting partition, a first power trace, and The second power supply line.
  • the first light-emitting area includes a first common electrode, and the second light-emitting area includes a second common electrode;
  • the first power trace includes a first end electrically connected to the first common electrode, and extends to The peripheral area is used for electrical connection to receive the second end of the first power supply voltage;
  • the second power trace includes a first end electrically connected to the second common electrode, and extends to the peripheral area for electrical The second terminal connected to receive the first power supply voltage;
  • the resistance between the first terminal and the second terminal of the first power trace is equal to the difference between the first terminal and the second terminal of the second power trace
  • the length of the trace between the first end and the second end of the first power trace is not equal to the length of the trace between the first end and the second end of the second power trace.
  • Fig. 1A is a schematic plan view of a backlight module
  • FIG. 1B shows an example of an image displayed by the backlight module shown in FIG. 1A;
  • Figure 2A is a light-emitting drive substrate
  • FIG. 2B is an enlarged view of a partial area of the light-emitting drive substrate shown in FIG. 2A;
  • FIG. 3 is a schematic plan view of a light-emitting drive substrate provided by at least one embodiment of the present disclosure
  • FIG. 4 is an enlarged view of a partial area of the light-emitting drive substrate shown in FIG. 3;
  • FIG. 5A shows an enlarged view of a partial area of a light-emitting substrate provided by at least one embodiment of the present disclosure
  • FIG. 5B shows an enlarged view of another partial area of the light-emitting substrate provided by at least one embodiment of the present disclosure
  • FIG. 6 is an enlarged view of the first trace of the light-emitting drive substrate shown in FIG. 3;
  • FIG. 7 is a cross-sectional view of the light-emitting drive substrate shown in FIG. 4 along the line AA';
  • Fig. 8 is a cross-sectional view of the light-emitting drive substrate shown in Fig. 4 along line BB';
  • Fig. 9 is a cross-sectional view of the light-emitting drive substrate shown in Fig. 4 along line CC';
  • FIG. 10 is a schematic cross-sectional view of a second conductive layer provided by at least one embodiment of the present disclosure
  • FIG. 11 is a schematic cross-sectional view of a first conductive layer provided by at least one embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view of a reflective layer provided by at least one embodiment of the present disclosure.
  • FIG. 13 is a schematic plan view of another light-emitting drive substrate provided by at least one embodiment of the present disclosure.
  • FIG. 14 is a schematic block diagram of a light-emitting substrate provided by at least one embodiment of the present disclosure.
  • FIG. 15 is a schematic block diagram of a display device provided by at least one embodiment of the present disclosure.
  • the backlight module includes multiple (for example, dozens of) large-size light-emitting diodes (LEDs) arranged in an array, and the above-mentioned light-emitting diodes cannot be independently controlled, for example, all light-emitting diodes
  • the diodes are turned on at the same time or turned off at the same time, which does not help improve the contrast of the display device including these backlight modules.
  • FIG. 1A shows a schematic plan view of a backlight module
  • FIG. 1B shows an example of an image displayed by the backlight module shown in FIG. 1A.
  • the backlight module of the liquid crystal display device can be divided into multiple zones 550 (see FIG. 1A).
  • the backlight module can be made to correspond to the black area of the image to be displayed (That is, the non-information area) of the subarea 550 does not emit light, so that the brightness of the partial area of the image displayed by the display device (the area corresponding to the non-emissive subarea 550) is zero (that is, absolute black can be achieved), As a result, the contrast of the liquid crystal display device including the backlight module can be improved. For example, by performing zone control on the backlight module, a high-dynamic range (HDR) display can be realized.
  • HDR high-dynamic range
  • the driving traces of the backlight module are arranged on a printed circuit board (PCB), and then the LEDs are mounted on the PCB.
  • PCB printed circuit board
  • the driving traces of the backlight module can also be arranged on the glass substrate, and then the LED is mounted on the glass substrate.
  • this solution may cause problems such as a complicated structure of the driving circuit of the backlight module, a low screen occupancy of the display device, and poor brightness uniformity and display quality of the display device. The above problem will be exemplified below in conjunction with FIG. 2A and FIG. 2B.
  • FIG. 2A shows a light-emitting drive substrate, which can be used as a component of a backlight module in a display device.
  • the light-emitting drive substrate has a light-emitting area 501 and a peripheral area 502 located outside the light-emitting area 501.
  • the light emitting area 501 is provided with a plurality of light emitting subregions 510 arranged in an array, and the plurality of light emitting subregions 510 are arranged in multiple rows and multiple columns along the first direction D1 and the second direction D2.
  • each light-emitting partition 510 includes a common electrode 511 (for example, anodes are wired in parallel) and an opposite common electrode 512 (for example, cathodes are wired in parallel), and each light-emitting partition 510 corresponds to a power source A trace 515 (for example, an anode power trace) and an opposite power trace 516 (for example, a cathode voltage trace).
  • a common electrode 511 for example, anodes are wired in parallel
  • an opposite common electrode 512 for example, cathodes are wired in parallel
  • each light-emitting partition 510 corresponds to a power source A trace 515 (for example, an anode power trace) and an opposite power trace 516 (for example, a cathode voltage trace).
  • the power line 515 includes a first end electrically connected to the common electrode 511 and a second end that extends to the peripheral area 502 and is configured to be electrically connected to receive the first power voltage; the opposite power line 516 includes a common electrode The first end of the electrode 512 is electrically connected and the second end that extends to the peripheral area 502 and is configured to be electrically connected to receive the second power voltage.
  • the second ends of all power traces 515 and the second ends of all opposing power traces 516 of the light-emitting drive substrate can be both disposed on one side of the light-emitting area 501 (for example, the lower side of the light-emitting area 501 in FIG. 2A). ).
  • FIG. 2B is an enlarged view of a partial area (dotted frame area) of the light-emitting drive substrate shown in FIG. 2A.
  • FIG. 2B also shows a plurality of light-emitting elements 518 (for example, inorganic or organic Light-emitting diodes), the light-emitting drive substrate is used to control multiple light-emitting elements 518 to emit light.
  • light-emitting elements 518 for example, inorganic or organic Light-emitting diodes
  • each light-emitting area 510 further includes a plurality of pads 513 (for example, four pads 513) and a plurality of opposed pads 514 (for example, four opposed pads 514). At least part of the pad 513 is electrically connected to the common electrode 511, and at least part of the plurality of opposed pads 514 is electrically connected to the opposed common electrode 512. Adjacent pads 513 and opposing pads 514 are used as a pad group to drive one light emitting element 518 to emit light.
  • the pad 513 in the pad group is connected to the first end (for example, the anode end) of the light emitting element 518
  • the opposite pad 514 in the pad group is connected to the second end (for example, the cathode end) of the light emitting element 518.
  • adjacent pad groups in the same row are connected to each other (in series), so that all the pads 513 can be electrically connected to the common electrode 511, and all the opposing pads 514 can be connected to each other.
  • the opposite common electrode 512 is electrically connected.
  • the opposing pad 514 of the pad group located at the upper left corner of the light-emitting partition 510 and the pad 513 of the pad group located at the upper right corner of the light-emitting partition 510 are connected to each other by a connecting wire 517.
  • the voltage difference ⁇ V between the common electrode 511 and the opposed common electrode 512 is allocated (for example, evenly allocated to) the light emitting elements 518 arranged on the pad groups in the same row,
  • the voltage difference between the first terminal and the second terminal of each light-emitting element 518 in FIG. 2B is about ⁇ V/2.
  • the pads 513 located in different rows are connected to the same common electrode 511, and the opposed pads 514 located in different rows are connected to the same opposed common electrode 512, the pads 513 located in the same light-emitting area 510 are connected to the same common electrode 512.
  • the voltage difference (the voltage difference between the first terminal and the second terminal) received by the light-emitting elements 518 on the pad group of the row is, for example, equal.
  • the light-emitting drive substrate can provide the common electrode 511 and the opposing common electrode 512 of each light-emitting subarea 510 with the required first power voltage and second power voltage, respectively, according to the information of the image to be displayed.
  • the power supply voltage and the second power supply voltage are transmitted to the plurality of pads 513 and the plurality of opposing pads 514 via the connecting wires 517 to drive the plurality of light emitting elements 518 to emit light.
  • the difference between the first power supply voltage and the second power supply voltage received by the corresponding light-emitting partition 510 can be made zero, so that the corresponding The light emitting element 518 in the light emitting zone 510 does not emit light.
  • the widths (widths in the second direction D2) of the plurality of power traces 515 of the light-emitting drive substrate shown in FIGS. 2A and 2B are equal to each other, that is, FIGS. 2A and 2B show
  • the developed light-emitting drive substrate adopts a power supply wiring design scheme of equal line width. Since the lengths between the first end and the second end of the plurality of power traces 515 are not equal, the resistance between the first end and the second end of the plurality of power traces 515 is not equal, thereby making the multiple The voltage drop caused by the power trace 515 is not equal.
  • the near-end resistance of the light-emitting drive substrate of the backlight module (that is, the first power trace 515 connected to the lowermost light-emitting zone 510 shown in FIG. 2A)
  • the resistance between the terminal and the second terminal is about 0.84 ohms
  • the remote resistance of the light-emitting drive substrate (that is, the first terminal of the power trace 515 connected to the uppermost light-emitting zone 510 shown in FIG. 2A)
  • the resistance between the second terminals is about 3.16 ohms, that is, the ratio of the far-end resistance to the near-end resistance is about 4, which makes the difference in voltage drop caused by multiple power traces 515 larger.
  • the voltage drops caused by the multiple power traces 515 are not equal, so the voltage received by the multiple common electrodes 511 and the voltages set in different light-emitting regions 510
  • the first pole of the light-emitting element 518 receives different voltages, and makes the brightness (intensity of emitted light) of the light-emitting elements 518 arranged in different light-emitting regions 510 unequal (the brightness gradually increases from the top to the bottom of FIG. 2A), As a result, the light-emitting brightness of the backlight module including the light-emitting drive substrate is uneven.
  • the display quality of the display device including the light-emitting drive substrate is reduced, and may even cause display abnormality.
  • the difference in the length of the traces of the multiple power traces of the light-emitting drive substrate is greater, and the difference in voltage drop caused by the equal-line-width trace design is further increased.
  • the uneven brightness of the backlight module including the light-emitting drive substrate further increases, and the display quality of the display device including the light-emitting drive substrate further decreases.
  • the display voltage Vdata and compensation can be applied to the multiple power traces 515.
  • the intensity of the emitted light of the light-emitting element 518 in the light-emitting zone 510 is matched, and the compensation voltage Vcomp applied to each power line 515 is matched with the voltage drop caused by the power line 515.
  • the driving circuit of the backlight module needs to apply different compensation voltages Vcomp to different power traces 515, thereby increasing the size and structure of the driving circuit of the backlight module
  • the complexity increases the cost of the backlight module and the frame size of the display device including the backlight module, and reduces the screen-to-body ratio of the display device including the backlight module.
  • Some embodiments of the present disclosure provide a light-emitting driving substrate, a manufacturing method of the light-emitting driving substrate, a light-emitting substrate, and a display device.
  • the light-emitting drive substrate includes a first light-emitting subarea, a second light-emitting subarea, a peripheral area, a first power line and a second power line.
  • the first light-emitting area includes a first common electrode
  • the second light-emitting area includes a second common electrode
  • the first power trace includes a first end electrically connected to the first common electrode and extends to the peripheral area and is configured for electrical connection.
  • the second power trace includes a first terminal that is electrically connected to the second common electrode and a second terminal that extends to the peripheral area and is configured to be electrically connected to receive the first power supply voltage;
  • the resistance between the first terminal and the second terminal of the first power trace is equal to the resistance between the first terminal and the second terminal of the second power trace, and the first terminal and the second terminal of the first power trace
  • the length of the trace is not equal to the length of the trace between the first end and the second end of the second power trace.
  • the resistance between the first end and the second end of the first power trace equal to the resistance between the first end and the second end of the second power trace, it is possible to eliminate the need for different power sources.
  • different compensation voltages are applied to the wires, the light emission uniformity of the light-emitting substrate including the light-emitting drive substrate is improved. Therefore, the structure of the drive circuit of the light-emitting drive substrate is simple, and the size of the peripheral area of the light-emitting drive substrate is small, thereby reducing the cost and frame size of the light-emitting substrate including the light-emitting drive substrate.
  • the power trace and The line loss, load and area of the opposing power supply traces can improve the efficiency of the light-emitting drive substrate, and more traces and light-emitting partitions can be arranged on the light-emitting drive substrate to further improve the display including the light-emitting drive substrate The display quality of the device.
  • FIG. 3 is a schematic plan view of a light-emitting drive substrate 100 provided by at least one embodiment of the present disclosure.
  • the light-emitting drive substrate 100 has a light-emitting area 101 and a peripheral area 102 located outside the light-emitting area 101, a plurality of power supply wires and a plurality of opposed power supply wires.
  • the light-emitting area 101 includes a plurality of light-emitting regions, for example, a first light-emitting region 110, a second light-emitting region 120, a third light-emitting region 130, and so on.
  • Multiple power traces include first power trace 115, second power trace 125, third power trace 135, etc.; multiple opposing power traces include first opposing power trace 116, and second opposing power traces. The trace 126 and the third opposite power trace 136 and so on.
  • a plurality of light-emitting areas such as the first light-emitting area 110, the second light-emitting area 120, and the third light-emitting area 130 are arranged in the light-emitting area 101 in a predetermined manner (for example, a matrix).
  • the power traces such as the first power trace 115, the second power trace 125, and the third power trace 135 are anode power traces
  • the opposite power traces such as the third opposite power trace 136 are cathode power traces.
  • the first light-emitting area 110, the second light-emitting area 120, and the third light-emitting area 130 are arranged side by side along the first direction D1, and the first power line 115, the second power line 125, the third power line 135, and the first The opposing power trace 116, the second opposing power trace 126, and the third opposing power trace 136 are arranged in parallel along a second direction D2 crossing (for example, perpendicular to) the first direction D1.
  • FIG. 4 shows an enlarged view of a partial area of the light-emitting drive substrate 100 shown in FIG. 3. 4 shows the first light-emitting area 110, the second light-emitting area 120, the third light-emitting area 130, the first power line 115, the second power line 125, the third power line 135, and the third light-emitting area shown in FIG. An enlarged view of the pair of power supply traces 116, the second power trace 126, and the third power trace 136.
  • the first light-emitting area 110 includes a first common electrode 111, a first opposed common electrode 112, a plurality of first pads 113, a plurality of first opposed pads 114, and a first connection trace 117 .
  • the first common electrode 111 may be implemented as a trace extending in the first direction D1 (for example, anode parallel wiring)
  • the first opposite common electrode 112 may be implemented as a trace extending in the first direction D1 (for example, ,
  • the cathodes are routed in parallel
  • the first connecting route 117 is realized as a route extending in the second direction D2 (for example, a series route).
  • the anode parallel wiring is configured to transfer the first power supply voltage on the anode power wiring to the pads connected to the anode parallel wiring (for example, all the pads directly connected to the anode parallel wiring and all the pads connected in parallel with the anode Pads that are electrically connected to the cathode), the cathode parallel wiring is configured to transmit the second power supply voltage on the cathode power wiring to the opposite pad connected to the cathode parallel wiring (for example, all parallel wiring directly connected to the cathode The opposing pads and all opposing pads that are indirectly electrically connected to the cathode parallel wiring).
  • the plurality of first pads 113 may be electrically connected to the first common electrode 111, and the plurality of first opposed pads 114 may be electrically connected to the first opposed common electrode 112.
  • the plurality of first pads 113 located at the far left of the first light-emitting area 110 are directly electrically connected to the first common electrode 111, and the plurality of first pads 113 located at the far right of the first light-emitting area 110
  • the opposite pad 114 is directly electrically connected to the first opposite common electrode 112.
  • the plurality of first pads 113 and the plurality of first opposing pads 114 may respectively form a plurality of first pad groups, and each first pad group may include one first pad. 113 and a first opposing pad 114.
  • the first pad 113 and the first opposing pad 114 in each first pad group are spaced apart from each other and electrically insulated.
  • adjacent first pad groups located in the same row are connected to each other (for example, in series) through the first connection traces 117, so that all the pads can be electrically connected to the common electrode, And all the opposite pads can be electrically connected with the opposite common electrode.
  • the arrangement of multiple first pad groups shown in FIG. 4 (that is, 12 first pad groups in a 4 ⁇ 3 array are arranged, and four first pad groups in each row (Connected in series with each other) is only an example.
  • the arrangement of the first pad groups of each first light-emitting partition can also be a 4 ⁇ 1 array, that is, four first pad groups are connected in parallel with each other, or It is a 1 ⁇ 4 array, that is, the four first pad groups are connected in series with each other.
  • the arrangement of the first pad groups of each first light-emitting area can also be 5 ⁇ 4, 4 ⁇ 4, 3 ⁇ 3 , 2 ⁇ 2 and 1 ⁇ 1.
  • the second light-emitting area 120 includes a second common electrode 121, a second opposite common electrode 122, a plurality of second pads 123, a plurality of second opposite pads 124, and a second connection trace 127.
  • the plurality of second pads 123 may be electrically connected to the second common electrode 121
  • the plurality of second opposing pads 124 may be electrically connected to the second opposing common electrode 122.
  • the plurality of second pads 123 and the plurality of second opposite pads 124 may respectively form a plurality of second pad groups.
  • the third light-emitting area 130 includes a third common electrode 131, a third opposed common electrode 132, a plurality of third pads 133, a plurality of third opposed pads 134, and a third connection trace 137 ,
  • the plurality of third pads 133 are electrically connected to the third common electrode 131
  • the plurality of third opposing pads 134 are electrically connected to the third opposing common electrode 132.
  • the plurality of third pads 133 and the plurality of third opposing pads 134 may respectively form a plurality of third pad groups.
  • the second light-emitting partition 120 and the third light-emitting partition 130 can be configured with reference to the first light-emitting partition 110, and will not be repeated here.
  • FIG. 5A shows a schematic diagram of a partial area of the light-emitting substrate including the light-emitting drive substrate.
  • FIG. 5A shows the first light-emitting zone 110 and a plurality of first light-emitting elements 118 arranged on the first light-emitting zone 110.
  • the first pad 113 in the first pad group of the first light-emitting subarea 110 is connected to the first end (for example, the anode terminal) of the first light-emitting element 118, and the first pad group
  • the first opposing pad 114 is connected to the second end (for example, the cathode end) of the first light-emitting element 118. Therefore, the first terminal of the first light-emitting element 118 can receive the first power supply voltage transmitted via the first power trace 115 and the first common electrode 111, and the second terminal of the first light-emitting element 118 can receive the first power supply via the first opposite power supply.
  • the first power supply voltage and the second power supply voltage are configured to drive the light-emitting elements arranged in the light-emitting partitions (for example, the first light-emitting partition and the second light-emitting partition) to emit light during operation.
  • FIG. 5B shows a schematic diagram of another partial area of the light-emitting substrate including the light-emitting drive substrate.
  • FIG. 5B shows the second light-emitting area 120 and a plurality of second light-emitting elements 128 arranged on the second light-emitting area 120.
  • the second pad 123 in the second pad group of the second light-emitting partition 120 is connected to the first end (for example, the anode terminal) of the second light-emitting element 128, and the second pad group
  • the second opposing pad 124 is connected to the second end (for example, the cathode end) of the second light-emitting element 128.
  • each light-emitting element is mounted on the corresponding pad group by soldering, bonding (using conductive glue), or the like. Therefore, the first end of the second light-emitting element 128 can receive the first power voltage transmitted via the second power trace 125 (see FIG.
  • the second common electrode 121, and the second end of the second light-emitting element 128 can receive the The second power supply voltage transmitted by the second opposite power trace 126 (see FIG. 4) and the second opposite common electrode 122, so that the second light-emitting element 128 can emit light according to the values of the first power voltage and the second power voltage Corresponding intensity of light.
  • the third light-emitting area 130 and the fourth light-emitting area 181 may be provided with a third light-emitting element and a fourth light-emitting element, which will not be repeated here.
  • the light-emitting elements may be organic light-emitting diodes or inorganic light-emitting diodes, for example, may emit white light (for example, in the case of a backlight module), or may be Emit red light (R), green light (G), blue light (B), etc. (for example, in the case of a display device).
  • the light-emitting element when the light-emitting element is implemented as an inorganic light-emitting diode, the light-emitting element can be a sub-millimeter light-emitting diode (Mini LED) or a micro LED (Mirco LED).
  • the sub-millimeter light-emitting diode refers to a size medium.
  • micro LEDs refer to light emitting diodes with a size less than 100 microns.
  • the embodiment of the present disclosure does not limit the type and size of the light-emitting element.
  • each light-emitting area may be provided with only one electrical contact portion and one opposite electrical contact portion.
  • each light-emitting area is provided with only one light-emitting element, which will not be repeated here.
  • the light-emitting substrate including the light-emitting drive substrate 100 can also have a larger size, so that the display device including the light-emitting drive substrate 100 has a larger size and contrast.
  • the voltage difference ⁇ V between the common electrode and the opposed common electrode is allocated (for example, evenly distributed to) the light emitting elements arranged on the pad groups in the same row, for example,
  • the voltage difference between the first terminal and the second terminal of each light-emitting element in FIG. 5A is about ⁇ V/4.
  • pads located in different rows are connected to the same common electrode, and opposing pads located in different rows are connected to the same opposing common electrode, pads in different rows of the same light-emitting area are connected to the same common electrode.
  • the voltage difference (the voltage difference between the first terminal and the second terminal) received by the light-emitting elements on the group is, for example, equal.
  • the first power trace 115 includes a first end 1151 electrically connected to the first common electrode 111, and a first end 1151 that extends to the peripheral area 102 and is configured to be electrically connected to receive the first power voltage.
  • Two terminals 1152; the second power trace 125 includes a first terminal 1251 electrically connected to the second common electrode 121 and a second terminal 1252 extending to the peripheral area 102 and configured to be electrically connected to receive the first power voltage;
  • the three-power trace 135 includes a first terminal 1351 electrically connected to the third common electrode 131 and a second terminal 1352 extending to the peripheral area 102 and configured to be electrically connected to receive the first power voltage.
  • the first opposed power trace 116 includes a first end 1161 electrically connected to the first opposed common electrode 112, and extends to the peripheral area 102 and is configured to be electrically connected to receive the second The second terminal 1162 of the power supply voltage;
  • the second opposite power trace 126 includes a first terminal 1261 electrically connected to the second opposite common electrode 122 and extends to the peripheral area 102 and is configured for electrical connection to receive the second power The second terminal 1262 of the voltage;
  • the third opposite power trace 136 includes a first terminal 1361 electrically connected to the third opposite common electrode 132 and extends to the peripheral area 102 and is configured for electrical connection to receive the third power voltage The second end 1362.
  • the second end 1152 of the first power trace 115, the second end 1252 of the second power trace 125, the second end 1352 of the third power trace 135, and the first opposite power trace are all disposed on one side of the light-emitting area 101 (for example, in FIG. 3 The lower side of the light-emitting area 101).
  • the light-emitting area 101 for example, in FIG. 3 The lower side of the light-emitting area 101.
  • the light-emitting drive substrate 100 further includes a drive circuit 190, for example, the drive circuit 190 is connected to a system power supply of an electronic device (e.g., a display device) for applying a light-emitting drive voltage (e.g., a A power supply voltage, a second power supply voltage).
  • a light-emitting drive voltage e.g., a A power supply voltage, a second power supply voltage.
  • the driving circuit 190 and the second ends of the multiple power traces are arranged on the same side of the light-emitting area 101 (for example, the lower side of the light-emitting area 101 in FIG. 3).
  • the driving circuit 190 includes a plurality of first power supply voltage terminals 191 and a plurality of second power supply voltage terminals 192.
  • the plurality of first power supply voltage terminals 191 are respectively connected to a plurality of power supply traces (for example, the first power supply trace 115, the second power supply trace 125, and the third power supply trace 135), and are configured to route to the plurality of power supplies Apply a corresponding first power supply voltage;
  • a plurality of second power supply voltage terminals 192 are respectively connected to a plurality of opposed power traces (for example, the first opposed power trace 116, the second opposed power trace 126, and the third opposed power trace
  • the power traces 136) are connected to each other and are configured to apply the corresponding second power voltage to the plurality of opposite power traces.
  • the second power supply voltage is lower than the first power supply voltage.
  • the second power voltage applied to the first opposite power trace 116 is lower than the first power voltage applied to the first power trace 115.
  • the first power supply voltage may be a positive voltage.
  • the second power supply voltage terminal 192 may be grounded, that is, the second power supply voltage applied by the second power supply voltage terminal 192 to the opposite power supply trace may be zero volts.
  • the second power supply voltage applied by the set power trace 116, the second opposite power trace 126, and the third opposite power trace 136 can be determined by the light-emitting brightness of the first light-emitting partition 110, the light-emitting brightness of the second light-emitting partition 120, and The light-emitting brightness of the third light-emitting subarea 130 is determined.
  • the first power supply voltages applied by the plurality of first power supply voltage terminals 191 to the first power supply trace 115, the second power supply trace 125 and the third power supply trace 135 may be the same or different, and the plurality of second power supply voltage terminals 192
  • the second power voltage applied to the first opposite power trace 116, the second opposite power trace 126, and the third opposite power trace 136 may be the same or different, and will not be repeated here.
  • the resistance between the first terminal 1151 and the second terminal 1152 of the first power trace 115, the resistance between the first terminal 1251 and the second terminal 1252 of the second power trace 125, and the third power trace The resistances between the first end 1353 and the second end 1352 of 135 are equal to each other. That is, the light-emitting drive substrate shown in FIG. 3 and FIG. 4 adopts an equal resistance power supply wiring design solution. In the case that the light-emitting drive substrate adopts an equal-resistance power trace design, the voltage drop caused by the first power trace 115, the voltage drop caused by the second power trace 125, and the voltage drop caused by the third power trace 135 are the same as each other .
  • the first power voltage received by the first power trace 115, the first power voltage received by the second power trace 125, and the first power voltage received by the third power trace 135 are the same as each other, because the first power trace The resistance between the first end 1151 and the second end 1152 of the line 115, the resistance between the first end 1251 and the second end 1252 of the second power trace 125 are equal to each other, the voltage received by the first common electrode 111, the first The voltage received by the two common electrodes 121 and the voltage received by the third common electrode 131 are the same as each other.
  • the luminous intensity of the first light-emitting element 118 arranged in the first light-emitting subarea 110 is set at The difference between the luminous intensity of the second light-emitting element 128 of the second light-emitting section 120 and the luminous intensity of the third light-emitting element disposed in the third light-emitting section 130 is reduced (for example, the difference in luminous intensity is reduced to zero), and therefore Without applying different compensation voltages to different power supply lines, the light emission uniformity of the light-emitting substrate including the light-emitting drive substrate 100 shown in FIG. 3 is improved.
  • the structure of the drive circuit 190 of the light-emitting drive substrate 100 shown in FIG. 3 is simple, and the size of the peripheral area 102 of the light-emitting drive substrate 100 is small, thereby reducing the size of the light-emitting substrate including the light-emitting drive substrate 100 shown in FIG. Cost and frame size.
  • the inventor of the present disclosure has also noticed in research that, compared with the power trace design of equal line width, the power trace design of equal resistance can also reduce the area of the power trace and the line loss of the power trace (for example, , Power loss caused by wiring) and load.
  • the power trace design of equal resistance can also reduce the area of the power trace and the line loss of the power trace (for example, , Power loss caused by wiring) and load.
  • an exemplary description will be made with reference to the light-emitting drive substrate 100 and the backlight module of a 65-inch display device (with 4K resolution).
  • the 65-inch display device has a resolution of 3840 ⁇ 2160, a color gamut of 80% (BT2020 standard), a contrast ratio of 2 million:1, an optical distance (for example, a working distance) of 5 meters, and a nominal brightness of 800 nits, the maximum brightness (that is, over-driving brightness) is 2000 nits; the number of light-emitting partitions of the light-emitting drive substrate is 1536 (48 ⁇ 32), and 12 first light-emitting elements 118 can be set in each light-emitting partition.
  • the center pitch (Pitch) of the upwardly adjacent first light emitting elements 118 is about 7.44 mm, and the center pitch (Pitch) of the first light emitting elements 118 adjacent in the column direction is about 8.37 mm.
  • 12 first light-emitting elements 118 form a 4 ⁇ 3 first light-emitting element array, the first light-emitting elements 118 located in the same row are connected in series, and the first light-emitting elements 118 located in different rows are connected in parallel with each other.
  • the near-end resistance and the far-end resistance of multiple power traces are about 0.4 ohms and 4.24 ohms, respectively.
  • the maximum value of the resistance difference between multiple power traces is about 3.84 ohms. This results in a maximum voltage drop difference of approximately 1 volt caused by multiple power traces.
  • the resistance of the power trace and the overall trace loss of the multiple opposing power traces are about 19.5 watts, and the efficiency of the backlight module is about 91%.
  • the average line width of multiple power traces is about 729 microns.
  • the efficiency of the backlight module refers to the part of the power provided by the driving circuit 190 that is not lost by the power wiring and the opposite power wiring but is transferred to the common electrode and the opposite common electrode for driving the light emitting element.
  • the resistance of the multiple power wirings and The resistance of multiple opposing power traces is about 1.03 ohm.
  • the resistance of multiple power traces and the total trace loss of multiple opposing power traces are about 9.62 watts.
  • the efficiency of the backlight module is 98.2%. It can be seen that the equal resistance wiring design solution can reduce the line loss and load of the power wiring and the opposite power wiring, and thus can improve the efficiency of the light-emitting drive substrate 100.
  • the light-emitting driving substrate 100 includes 16 driving circuits (drivers), and each driving circuit provides a driving voltage to part of the power supply wiring and the opposite power wiring, and the driving voltage provided by each driving circuit is approximately 11.64 volts.
  • the thickness of the power trace is approximately 38.97 microns.
  • the minimum and maximum widths of multiple power traces are 12.5 microns and 400.6 microns, respectively. It can be seen that the equal-resistance trace design can reduce the area of multiple power traces and multiple opposing power traces ( For example, the sum of the area of the orthographic projection of the multiple power traces and the multiple opposing power traces on the plane parallel to the first direction D1 and the second direction D2).
  • the light-emitting drive substrate 100 More wiring and light-emitting partitions are provided on the upper surface, thereby reducing the number of light-emitting elements driven by each light-emitting partition and the size of the light-emitting partition, and thus further improving the display quality of the display device including the light-emitting drive substrate 100 .
  • FIG. 6 is an enlarged view of the first power trace 115 of the light-emitting drive substrate 100 shown in FIG. 3.
  • the first power trace 115 includes a first portion 1153 extending along the first direction D1 and a second portion 1154 extending along the second direction D2.
  • the first portion 1153 of the first power trace 115 has a uniform width (width in the second direction D2) and thickness (thickness in a direction perpendicular to the first direction D1 and the second direction D2).
  • the second portion 1154 of the first power trace 115 also has a uniform width (width in the first direction D1) and thickness (thickness in a direction perpendicular to the first direction D1 and the second direction D2).
  • the width of the first portion 1153 of the first power trace 115 is equal to the width of the second portion 1154 of the first power trace 115
  • the thickness of the first portion 1153 of the first power trace 115 is equal to the thickness of the first power trace 115. The thickness of the two parts 1154.
  • the first part 1153 of the first power trace 115 has a central axis 1155 (the central axis 1155 extends along the first direction D1), and the second part 1154 of the first power trace 115 has a central axis 1156 (the central axis 1156 extends in the second direction D2).
  • the central axis 1155 of the first part 1153 and the central axis 1156 of the second part 1154 intersect at the intersection point 1157.
  • the first end 1151 and the second end 1152 of the first power trace 115 have a first trace length
  • the central axis 1155 has a first trace between the first end 1151 and the intersection point 1157 of the first power trace 115.
  • the central axis 1156 has a third trace length between the second end 1152 of the first power trace 115 and the intersection point 1157, where the first trace length is the second trace length and the third trace
  • the sum of lengths may be the first power trace 115 in the case where the first power trace 115 also includes other parts or the first power trace 115 has other shapes, the first power trace 115 may be the central axis of the first power trace 115 from the first power trace
  • the first end 1151 of the 115 extends to the extension length of the second end 1152 of the first power trace 115.
  • other power traces of the light-emitting drive substrate 100 eg, the second power trace 125, the third power trace 135, the first opposite power trace 116, the second opposite power trace 126, and the third power trace
  • the length of the trace of the (placement trace) has a similar definition, and will not be repeated.
  • the length of the trace between the first end 1151 and the second end 1152 of the first power trace 115, and the length of the trace between the first end 1251 and the second end 1252 of the second power trace 125 are different from each other (for example, gradually decrease).
  • the length of the trace between the first end 1151 and the second end 1152 of the first power trace 115, the length of the trace between the first end 1251 and the second end 1252 of the second power trace 125, and the first The length of the wiring between the first end 1353 and the second end 1352 of the three power wiring 135 decreases in an arithmetic series.
  • the trace width of the first power trace 115, the trace width of the second power trace 125, and the trace width of the third power trace 135 are different from each other (for example, gradually decrease) .
  • the trace width of the first power trace 115, the trace width of the second power trace 125, and the trace width of the third power trace 135 decrease in an arithmetic series. That is, the difference between the trace width of the first power trace 115 and the trace width of the second power trace 125 is equal to the trace width of the second power trace 125 and the trace width of the third power trace 135. The difference between the line widths.
  • the first power trace 115 and the second power trace 125 and the third power trace 135 change more uniformly, thereby further improving the performance of the light-emitting driving substrate 100.
  • the resistance R between the first end and the second end of the power traces (for example, the first to third power traces 115-135, the first to third opposed power traces 116-136) is expressed as follows:
  • L is the trace length between the first end and the second end of the power trace
  • W is the trace width of the power trace
  • H is the thickness of the power trace
  • R0 is a constant.
  • the first part of the multiple power traces (the first power trace 115, the second power trace 125, and the third power trace 135) and the multiple opposite power traces (the first opposite power trace
  • the first part of the trace 116, the second opposite power trace 126, and the third opposite power trace 136) are arranged side by side along the second direction D2; multiple power traces (the first power trace 115, the second power trace Line 125 and third power trace 135) and a plurality of opposite power traces (first opposite power trace 116, second opposite power trace 126, and third opposite power trace 136)
  • the second parts of the are arranged side by side along the first direction D2.
  • the thickness of the first power trace 115, the thickness of the second power trace 125, and the thickness of the third power trace 135 are equal to each other
  • the first end 1151 of the first power trace 115 is The ratio of the length of the trace between the terminals 1152 to the length of the trace between the first end 1251 and the second end 1252 of the second power trace 125 is equal to the first end 1151 and the second end of the first power trace 115
  • the first end 1151 and the second end 1152 of the first power trace 115 The resistance between is equal to the resistance between the first end 1251 and the second end 1252 of the second power trace 125; when the length of the trace between the first end 1353 and the second end 1352 of the third power trace 135 is equal to The ratio of the length of the trace between the first end 1251 and the second end 1252 of the second power trace 125 is equal to the width of the trace
  • the resistance between the first end and the second end of the first opposing power trace 116, the resistance between the first end and the second end of the second opposing power trace 126, and the third opposing power trace may also be equal to each other.
  • the luminous intensity of the first light-emitting element 118 in the first light-emitting zone 110 is set between the luminous intensity of the second light-emitting element 128 of the second light-emitting zone 120 and the luminous intensity of the third light-emitting element arranged in the third light-emitting zone 130
  • the difference in luminescence is further reduced (for example, the luminous intensity difference is reduced to zero), and the luminescence uniformity of the light-emitting substrate including the light-emitting driving substrate 100 shown in FIG. 3 can be further improved.
  • the length of the trace between the first end and the second end of the first opposite power trace 116, and the length between the first end and the second end of the second opposite power trace 126 are different from each other (for example, gradually decrease).
  • the length of the trace between the first end and the second end of the first opposite power trace 116, the length of the trace between the first end and the second end of the second opposite power trace 126, and the first The length of the trace between the first end and the second end of the three pairs of power traces 136 decreases in an arithmetic series.
  • the trace width of the first opposite power trace 116, the trace width of the second opposite power trace 126, and the trace width of the third opposite power trace 136 are different from each other (For example, gradually decrease).
  • the trace width of the first opposite power trace 116, the trace width of the second opposite power trace 126, and the trace width of the third opposite power trace 136 decrease in arithmetic series.
  • the first pair of power supply traces 116, the second pair of power traces 126, and the third pair of power traces 136 vary more uniformly, so that the performance of the light-emitting drive substrate 100 can be further improved.
  • the first opposite power trace 116 when the thickness of the first opposite power trace 116, the thickness of the second opposite power trace 126, and the thickness of the third opposite power trace 136 are equal to each other, when the first opposite power trace 116 The ratio of the length of the trace between the first end and the second end of the second opposite power trace 126 to the length of the trace between the first end and the second end of the second opposite power trace 126 is equal to that of the first opposite power trace 116 When the ratio of the width of the trace between the first end and the second end to the width of the trace between the first end and the second end of the second opposite power trace 126, the first opposite power trace 116 The resistance between one end and the second end is equal to the resistance between the first end and the second end of the second opposite power trace 126; when the third opposite power trace 136 is between the first end and the second end The ratio of the length of the trace between the first and second ends of the second opposite power trace 126 is equal to the ratio between the third and second ends of the first opposite power trace 116 When the ratio of the
  • the light-emitting drive substrate 100 may further include more light-emitting regions (for example, the fourth light-emitting region 181), more power supply lines (for example, the fourth power supply line 182), and more opposing regions. Power trace (for example, the fourth opposite power trace 183).
  • the specific arrangement of these other light-emitting partitions, other power traces, and other opposite power traces can be found in the first light-emitting partition 110, the first power trace 115, and the first opposite power trace 116, which will not be repeated here. It should be noted that, for clarity, the light-emitting drive substrate 100 shown in FIG. 3 only shows a column of light-emitting partitions, but the embodiments of the present disclosure are not limited to this.
  • the light-emitting drive substrate 100 may include an array arrangement
  • the multiple light-emitting partitions are arranged in multiple rows and multiple columns along the first direction D1 and the second direction D2.
  • the arrangement of the multiple light-emitting partitions is similar to the multiple light-emitting partitions shown in FIG. 2A. The arrangement of the partitions will not be repeated here.
  • the light-emitting drive substrate 100 has a multi-layer structure, for example, realized by a multi-layer printed circuit board and other methods.
  • this multilayer structure for example, a plurality of first pads 113, a plurality of first opposing pads 114, a plurality of second pads 123, a plurality of second opposing pads 124, and a plurality of third pads
  • the common electrode 132 is arranged in the same layer.
  • the first power trace 115, the second power trace 125, the third power trace 135, the first opposite power trace 116, the second opposite power trace 126, and the third opposite power trace 136 are the same. Layer settings.
  • FIGS. 7, 8 and 9 respectively show cross-sectional views of the exemplary light emitting driving substrate 100 shown in FIG. 4 along the AA' line, the BB' line, and the CC' line.
  • the light-emitting drive substrate 100 includes a base substrate 141, a stress buffer layer 142, a second electrode layer 150, a first insulating layer 143, and a first electrode layer sequentially arranged in the third direction D3. 160, a second insulating layer 144 and a reflective layer 170.
  • the third direction D3 crosses (for example, perpendicular to) the first direction D1 and the second direction D2.
  • the base substrate 141 may be a glass substrate, a quartz substrate, a plastic substrate (for example, a polyethylene terephthalate (PET) substrate) or a substrate made of other suitable materials, which can be made lighter and thinner.
  • PET polyethylene terephthalate
  • the thickness and manufacturing cost of the light-emitting drive substrate 100 can be reduced.
  • the first electrode layer 160 includes a plurality of first pads 113, a plurality of first opposing pads 114, a plurality of second pads 123, and a plurality of second opposing pads 124. , A plurality of third pads 133, a plurality of third opposing pads 134, a first common electrode 111, a first opposing common electrode 112, a second common electrode 121, a second opposing common electrode 122, a third common The electrode 131 and the third opposite common electrode 132.
  • the second electrode layer 150 includes a first power trace 115, a second power trace 125, a third power trace 135, a first opposite power trace 116, a second opposite power trace 126, and a third opposite power trace Route 136.
  • the material used to form the second insulating layer 144 may be filled in the pad and the corresponding opposite pad. In the gap therebetween, the above-mentioned material filled in the gap between the pad and the corresponding opposite pad for forming the second insulating layer 144 may be used as a part of the second insulating layer 144, for example. In other examples, in the final light-emitting substrate product, the gap between the pad and the corresponding opposite pad may not include the material for forming the second insulating layer 144.
  • the cross-sectional shapes of the first to third power traces 115-135 and the first to third opposed power traces 116-136 shown in FIGS. 7-9 are rectangular.
  • the disclosed embodiments are not limited to this.
  • the cross-sectional shape of the first to third power traces 115-135 and the first to third opposed power traces 116-136 may also be trapezoidal.
  • the first to third power traces 115-135 The trace width of 135 and the first to third opposite power traces 116-136 is the length of the bottom side of the trapezoid (that is, the length of the longer side of the set of parallel sides of the trapezoid).
  • the first insulating layer 143 includes a first via 1431, a second via 1432, a third via 1433, a fourth via 1434, a fifth via 1435, and a sixth via 1436 .
  • the first power trace 115 and the first common electrode 111 are electrically connected through a first via 1431
  • the second power trace 125 and the second common electrode 121 are electrically connected through a second via 1432
  • the third power trace 135 is electrically connected with the
  • the three common electrodes 131 are electrically connected through the fifth via 1435
  • the first opposite power trace 116 and the first opposite common electrode 112 are electrically connected through the third via 1433
  • the second opposite power trace 126 is electrically connected to the second pair
  • the common electrode 122 is electrically connected through the fourth via 1434
  • the third opposing power trace 136 and the third opposing common electrode 132 are electrically connected through the sixth via 1436.
  • the first insulating layer 143 may be resin.
  • the second insulating layer 144 may be formed using inorganic or organic materials.
  • the second insulating layer 144 may be formed using organic resin, silicon oxide (SiOx), silicon oxynitride (SiNxOy), or silicon nitride (SiNx).
  • FIG. 10 shows a schematic cross-sectional view of the second conductive layer 151 provided by at least one embodiment of the present disclosure.
  • FIG. 11 shows a schematic cross-sectional view of the first conductive layer 161 provided by at least one embodiment of the present disclosure.
  • the second electrode layer 150 is formed by using the second conductive layer 151, that is, the first to third power traces 115-135 and the first to third opposing power traces 116-136 can all use the second conductive layer 151 formed.
  • the first electrode layer 160 may be formed using the first conductive layer 161, that is, the first to third pads 113-133, the first to third opposing pads 114-134, and the first to third common electrodes All of the first to third opposed common electrodes 111-131 and 112-132 can be formed using the first conductive layer 161.
  • the second conductive layer 151 includes a second metal layer 152, and the second conductive layer 151 also includes a first auxiliary electrode layer 153 disposed on the second metal layer 152 close to the first electrode layer 160 and disposed The second auxiliary electrode layer 154 on the second metal layer 152 away from the first electrode layer 160.
  • the first conductive layer 161 includes a first metal layer 162, and the first conductive layer 161 further includes a first transparent conductive oxide layer 163 overlapping the first metal layer 162, and a first transparent conductive oxide layer 163 Located on the side of the first metal layer 162 away from the second electrode layer 150.
  • the first transparent conductive oxide layer 163 is used to prevent the first metal layer 162 from being oxidized, thereby improving the performance and robustness of the light-emitting driving substrate 100.
  • the first transparent conductive oxide layer 163 may be made of indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the second metal layer 152 and the first metal layer 162 are both made of copper-containing metal (for example, both are made of copper metal), so that the required electrical conductivity can be obtained while meeting the cost requirements, and therefore Make the power traces (for example, the first to third power traces 115-135) and/or the opposite power traces (for example, the first to third opposite power traces 116-136) can carry a larger drive
  • the current can further improve the application range of the light-emitting drive substrate 100, for example, the light-emitting drive substrate 100 can be used in a larger-sized light-emitting substrate.
  • the thickness of the second metal layer 152 may be greater than the thickness of the first metal layer 162, thereby making the power traces (the first to third power traces 115-135) and the opposite power traces (the first to third power traces)
  • the opposed power traces 116-136) can carry a larger load than the common electrodes (first to third common electrodes 111-131) and opposed common electrodes (first to third opposed common electrodes 112-132) Drive current without increasing the temperature of the power supply wiring and the opposite power wiring significantly greater than the temperature increase of the common electrode and the opposite common electrode.
  • both the first auxiliary electrode layer 153 and the second auxiliary electrode layer 154 are made of molybdenum-niobium alloy (MoNb).
  • MoNb molybdenum-niobium alloy
  • the first auxiliary electrode layer 153 and the second auxiliary electrode layer 154 are used to improve the adhesion of the second metal layer 152 (copper-containing metal layer) with other film layers and prevent the second metal layer 152 (copper-containing metal) from being Oxidation can improve the performance and robustness of the light-emitting drive substrate 100.
  • the material of the stress buffer layer 142 includes a material that generates compressive stress, and the stress buffer layer 142 is used to balance the tensile stress generated by the second metal layer 152 (a copper-containing metal layer).
  • the material of the stress buffer layer 142 may include silicon nitride (SiNx).
  • the stress buffer layer 142 may be made of silicon nitride (SiNx).
  • SiNx silicon nitride
  • the thickness of the copper layer is about
  • the stress buffer layer 142 can adopt a thickness of about Of silicon nitride (SiNx).
  • the thickness is about
  • the stress generated by the copper layer is about 250Mpa, and the stress generated by the stress buffer layer 142 is about -200Mpa. After the stresses of the copper layer and the stress buffer layer 142 are offset, the total stress is only about 50Mpa.
  • FIG. 12 shows a schematic cross-sectional view of the reflective layer 170 provided by at least one embodiment of the present disclosure.
  • the reflective layer 170 may include a third insulating layer 171, a second transparent conductive oxide layer 172, a third metal layer 173, and a third transparent conductive oxide layer 174 sequentially disposed in the third direction D3. And compared to the third insulating layer 171, the third transparent conductive oxide layer 174 is closer to the first electrode layer 160.
  • the light-emitting drive substrate 100 includes a light-emitting side (for example, the upper side in FIG.
  • the reflective layer 170 can be used to reflect light transmitted from the first light-emitting element 118 in a direction away from the light-emitting side, and make the reflected light toward the light-emitting side Transmission, thereby improving the light extraction efficiency of the light emitting substrate including the light emitting drive substrate 100.
  • the third metal layer 173 may be made of a silver (Ag)-containing metal layer (for example, made of an Ag metal layer).
  • the second transparent conductive oxide layer 172 and the third transparent conductive oxide layer 174 can be used to prevent the third metal layer 173 from being oxidized, for example, to prevent the third metal layer 173 from being formed on the first end and the second end of the first light emitting element 118.
  • the two ends are respectively oxidized during the soldering process with the pad and the opposite pad, thereby improving the performance and robustness of the light-emitting driving substrate 100.
  • the second transparent conductive oxide layer 172 and the third transparent conductive oxide layer 174 may be made of indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the inventors of the present disclosure have noticed in research that the third insulating layer 171 disposed on the side of the third metal layer 173 away from the second metal layer 152 can increase the reflectivity of the reflective layer 170, and therefore can improve the inclusion of the light-emitting drive.
  • the third insulating layer 171 may be made of silicon nitride (SiNx).
  • the light-emitting drive substrate 100 may further include a protective layer (not shown in the figure), and the protective layer is disposed on the second electrode layer 150 and the second electrode layer 150. Between an insulating layer 143.
  • the above-mentioned protective layer is used to prevent the power trace and the opposite power trace from being contaminated by resin.
  • the protective layer may be made of silicon nitride (SiNx).
  • the light-emitting driving substrate 100 may further include a base substrate 141, a second electrode layer 150, a first insulating layer 143, a first electrode layer 160, and a second insulating layer 144 sequentially arranged in the third direction D3.
  • the reflective layer 170, the second electrode layer 150 and the first electrode layer 160 respectively only include a copper metal layer, and no other film layer is provided between the adjacent film layers, so the adjacent film layers are in contact with each other.
  • the two sides of the second electrode layer 150 in the third direction are in direct contact with the base substrate 141 and the first insulating layer 143.
  • FIG. 13 shows another light-emitting driving substrate provided by some embodiments of the present disclosure.
  • the light-emitting driving substrate shown in FIG. 13 is similar to the light-emitting driving substrate shown in FIG. 3, and only the differences between the two are explained here. I won't repeat it here.
  • the difference between the light-emitting drive substrate shown in FIG. 13 and the light-emitting drive substrate shown in FIG. 3 includes the following three points.
  • the exemplary light-emitting drive substrate shown in FIG. 13 only includes four opposed power supply lines, that is, the first opposed power supply lines 116 connected to the first light-emitting subarea 110 to the 4N+1th light-emitting subarea 211, and The second opposing power trace 126 connected to the second light-emitting region 120 to the 4N+2th light-emitting region 212, the third opposing power trace 136 connected to the third light-emitting region 130 to the 4N+3th light-emitting region 213, and The fourth opposite power trace 182 connected to the fourth light-emitting subarea to the 4N+4th light-emitting subarea 214, where N is a positive integer.
  • the light-emitting drive substrate further includes a first power connection trace 201, a second power connection trace 202, a third power connection trace 203, and a fourth power connection 204 trace.
  • the partition 211 is connected to the first opposite power line 116 via the first power connection line 201
  • the second light-emitting partition 120 and the 4N+2 light-emitting partition 212 are connected to the second opposite power line via the second power connection line 202.
  • the power connection wire 204 is connected to the fourth opposite power wire 183.
  • first power connection trace 201, the second power connection trace 202, the third power connection trace 203, and the fourth power connection trace 204 have the same width.
  • the first opposite power trace 116 and the second pair The power supply wiring 126, the third power wiring 136, and the fourth power wiring 183 are respectively connected to the N light-emitting partitions; in this case, the number of the power wiring can be reduced, and More power lines and light-emitting partitions are provided on the light-emitting drive substrate 100, so that the number of light-emitting elements driven by each light-emitting partition and the size of the light-emitting partition can be reduced, and the display device including the light-emitting drive substrate 100 can be further improved. Display quality.
  • the light-emitting drive substrate shown in FIG. 13 is not limited to four opposing power traces, and each opposing power trace is not limited to be connected to N light-emitting partitions. According to actual application requirements, the light-emitting drive substrate Other numbers (for example, 5 or 3) of opposite power traces can also be provided, and the number of light-emitting partitions connected to different opposite power traces can be equal or unequal.
  • the opposing power trace of the light-emitting drive substrate shown in FIG. 3 may also adopt a design of equal line width.
  • At least one embodiment of the present disclosure further provides a light-emitting substrate, which includes the light-emitting drive substrate provided by any embodiment of the present disclosure, and a plurality of first light-emitting elements arranged in the first light-emitting subarea and the second light-emitting element.
  • a plurality of second light emitting elements in a partition can be implemented as a backlight module or a display panel of a display device, and the backlight module can be used in, for example, a liquid crystal display device.
  • FIG. 14 shows a light-emitting substrate provided by at least one embodiment of the present disclosure.
  • the light-emitting substrate includes the light-emitting driving substrate 100 provided by any embodiment of the present disclosure.
  • the light-emitting substrate further includes a plurality of light-emitting elements arranged on a plurality of light-emitting partitions.
  • the light-emitting substrate further includes a plurality of first light-emitting elements in the first light-emitting zone and a plurality of second light-emitting elements arranged in the second light-emitting zone.
  • the first pole of the first light emitting element is connected to the first electrical contact portion
  • the second pole of the first light emitting element is connected to the first opposed electrical contact portion
  • the second pole of the second light emitting element is connected to the first opposite electrical contact portion.
  • One pole is connected to the second electrical contact portion
  • the second pole of the second light-emitting element is connected to the second opposite electrical contact portion.
  • At least one embodiment of the present disclosure also provides a display device. As shown in FIG. 15, the display device includes the light-emitting substrate 10 provided in any embodiment of the present disclosure.
  • the display device is a liquid crystal display device, which includes a liquid crystal panel and a backlight module arranged on the non-display side of the liquid crystal panel, and the liquid crystal panel includes an array substrate and a counter substrate, which are opposed to each other.
  • the liquid crystal cell is filled with liquid crystal material.
  • the counter substrate is, for example, a color filter substrate.
  • the backlight module includes the aforementioned light-emitting substrate, which can be used to implement HDR dimming for display operations, for example.
  • the liquid crystal display device can have more uniform backlight brightness and better display contrast.
  • the display device is an LED display device, including the aforementioned light-emitting substrate, each pixel unit includes a plurality of sub-pixels, and each sub-pixel includes, for example, a light-emitting element, which can be used to emit red light (R), Green light (G) and blue light (B).
  • R red light
  • G Green light
  • B blue light
  • At least one embodiment of the present disclosure also provides a method for manufacturing a light-emitting drive substrate, the light-emitting drive substrate includes a peripheral area, and the method includes: forming a first light-emitting partition, a second light-emitting partition, a first power trace, and The second power supply line.
  • the first light-emitting area includes a first common electrode, and the second light-emitting area includes a second common electrode;
  • the first power trace includes a first end electrically connected to the first common electrode, and extends to The peripheral area is used for electrical connection to receive the second end of the first power supply voltage;
  • the second power trace includes a first end electrically connected to the second common electrode, and extends to the peripheral area for electrical The second terminal connected to receive the first power supply voltage;
  • the resistance between the first terminal and the second terminal of the first power trace is equal to the difference between the first terminal and the second terminal of the second power trace
  • the length of the trace between the first end and the second end of the first power trace is not equal to the length of the trace between the first end and the second end of the second power trace.
  • the specific arrangement of the first light-emitting subarea, the second light-emitting subarea, the first power line and the second power line can refer to the light-emitting drive substrate, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光驱动基板(100)、发光驱动基板的制作方法、发光基板(10)以及显示装置。该发光驱动基板(100)包括第一发光分区(110)、第二发光分区(120)、周边区域(102)、第一电源走线(115)和第二电源走线(125)。第一发光分区(110)包括第一公共电极(111),第二发光分区(120)包括第二公共电极(121);第一电源走线(115)包括与第一公共电极(111)电连接的第一端(1151)以及延伸至周边区域(102)且配置为用于电连接以接收第一电源电压的第二端(1152);第二电源走线(125)包括与第二公共电极(121)电连接的第一端(1251)以及延伸至周边区域(102)且配置为用于电连接以接收第一电源电压的第二端(1252);第一电源走线(115)的第一端(1151)和第二端(1152)之间的电阻等于第二电源走线(125)的第一端(1251)和第二端(1252)之间的电阻,且第一电源走线(115)的第一端(1151)和第二端(1152)之间的走线长度不等于第二电源走线(125)的第一端(1251)和第二端(1252)之间的走线长度。

Description

发光驱动基板及其制作方法、发光基板和显示装置 技术领域
本公开的实施例涉及一种发光驱动基板及其制作方法、发光基板和显示装置。
背景技术
随着显示技术的不断发展,用户对显示装置的对比度、亮度均匀性以及屏占比提出了越来越高的要求。
液晶显示装置包括背光模组和液晶面板,背光模组设置在液晶面板的非显示侧以为显示面板的显示操作提供光源。液晶面板包括偏光片、阵列基板、对置基板以及填充在由这两个基板之间的液晶分子层。液晶显示装置通过在阵列基板和对置基板之间的形成电场使液晶分子层中液晶分子偏转,偏转后的液晶分子配合偏光片可形成液晶光阀。由于液晶分子层本身并不发光,因此需要借助背光模组来实现显示功能。液晶显示装置的对比度、亮度均匀性以及屏占比与背光模组的结构和性能相关。
发明内容
本公开的至少一个实施例提供了一种发光驱动基板,其包括第一发光分区、第二发光分区、周边区域、第一电源走线和第二电源走线。所述第一发光分区包括第一公共电极,所述第二发光分区包括第二公共电极;所述第一电源走线包括与所述第一公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收第一电源电压的第二端;所述第二电源走线包括与所述第二公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第一电源电压的第二端;所述第一电源走线的第一端和第二端之间的电阻等于所述第二电源走线的第一端和第二端之间的电阻,且所述第一电源走线的第一端和第二端之间的走线长度不等于所述第二电源走线的第一端和第二端之间的走线长度。
例如,在所述发光驱动基板的至少一个示例中,所述第一电源走线的第一端和第二端之间的走线长度与所述第二电源走线的第一端和第二端之间的 走线长度的比值,等于所述第一电源走线的走线宽度与所述第二电源走线的走线宽度的比值。
例如,在所述发光驱动基板的至少一个示例中,所述发光驱动基板还包括第三发光分区和第三电源走线。所述第三发光分区包括第三公共电极;所述第三电源走线包括与所述第三公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第一电源电压的第二端;所述第三电源走线的第一端和第二端之间的电阻等于所述第一电源走线的第一端和第二端之间的电阻;以及所述第一电源走线的第一端和第二端之间的走线长度、所述第二电源走线的第一端和第二端之间的走线长度以及所述第三电源走线的第一端和第二端之间的走线长度彼此不同。
例如,在所述发光驱动基板的至少一个示例中,所述第一电源走线的走线宽度、所述第二电源走线的走线宽度以及所述第三电源走线的走线宽度逐渐减小。
例如,在所述发光驱动基板的至少一个示例中,所述第一电源走线的走线宽度、所述第二电源走线的走线宽度以及所述第三电源走线的走线宽度呈等差数列减小。
例如,在所述发光驱动基板的至少一个示例中,所述发光驱动基板还包括第一对置电源走线和第二对置电源走线,所述第一发光分区还包括第一对置公共电极,所述第二发光分区还包括第二对置公共电极;所述第一对置电源走线包括与所述第一对置公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收第二电源电压的第二端;以及所述第二对置电源走线包括与所述第二对置公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第二电源电压的第二端;所述第一对置电源走线的第一端和第二端之间的电阻等于所述第二对置电源走线的第一端和第二端之间的电阻,且所述第一对置电源走线的第一端和第二端之间的走线长度不等于所述第二对置电源走线的第一端和第二端之间的走线长度,所述第二电源电压低于所述第一电源电压。
例如,在所述发光驱动基板的至少一个示例中,所述第一发光分区包括多个第一电接触部以及多个第一对置电接触部,所述多个第一电接触部的至少部分与所述第一公共电极连接,所述多个第一对置电接触部的至少部分与所述第一对置公共电极连接;以及所述第二发光分区包括多个第二电接触部 以及多个第二对置电接触部,所述多个第二电接触部的至少部分与所述第二公共电极连接,所述多个第二对置电接触部的至少部分与所述第二对置公共电极连接。
例如,在所述发光驱动基板的至少一个示例中,所述多个第一电接触部、所述多个第一对置电接触部、所述多个第二电接触部、所述多个第二对置电接触部、所述第一公共电极、所述第一对置公共电极、所述第二公共电极以及所述第二对置公共电极同层设置。
例如,在所述发光驱动基板的至少一个示例中,所述第一发光分区和所述第二发光分区在第一方向并列布置;以及所述第一电源走线、所述第二电源走线、所述第一对置电源走线以及所述第二对置电源走线沿与所述第一方向交叉的第二方向并列布置。
例如,在所述发光驱动基板的至少一个示例中,所述第一发光分区包括一个第一电接触部以及一个第一对置电接触部,所述一个第一电接触部的与所述第一公共电极连接,所述一个第一对置电接触部与所述第一对置公共电极连接;以及所述第二发光分区包括一个第二电接触部以及一个第二对置电接触部,所述一个第二电接触部与所述第二公共电极连接,所述一个第二对置电接触部与所述第二对置公共电极连接。
例如,在所述发光驱动基板的至少一个示例中,所述发光驱动基板还包括衬底基板、第一绝缘层、第一电极层和第二电极层。所述第一电极层位于所述第二电极层的远离所述衬底基板的一侧;所述第一电极层包括所述第一公共电极、所述第二公共电极、所述第一对置公共电极以及所述第二对置公共电极;所述第二电极层包括所述第一电源走线、所述第二电源走线、所述第一对置电源走线和所述第二对置电源走线;所述第一绝缘层设置在所述第一电极层和所述第二电极层之间,且包括所述第一过孔、第二过孔、第三过孔和第四过孔;以及所述第一电源走线与所述第一公共电极经由所述第一过孔电连接,所述第二电源走线与所述第二公共电极经由所述第二过孔电连接,所述第一对置电源走线与所述第一对置公共电极经由所述第三过孔电连接,所述第二对置电源走线与所述第二对置公共电极经由所述第四过孔电连接。
例如,在所述发光驱动基板的至少一个示例中,所述第一电极层是采用第一导电层形成的,所述第一导电层包括第一金属层;以及所述第一导电层还包括与所述第一金属层叠置的第一透明导电氧化层,所述第一透明导电氧 化层位于所述第一金属层的远离所述第二电极层的一侧。
例如,在所述发光驱动基板的至少一个示例中,所述第二电极层是采用第二导电层形成的,所述第二导电层包括第二金属层;所述第二金属层的厚度大于所述第一金属层的厚度。
例如,在所述发光驱动基板的至少一个示例中,所述第二导电层还包括在设置在所述第二金属层的靠近所述第一电极层的第一辅助电极层以及设置在所述第二金属层的远离所述第一电极层的第二辅助电极层。
例如,在所述发光驱动基板的至少一个示例中,所述第二金属层与所述第一金属层均采用含铜金属制成;所述第一辅助电极层和所述第二辅助电极层均采用钼铌合金制成。
例如,在所述发光驱动基板的至少一个示例中,所述发光驱动基板还包括反射层和第二绝缘层。所述反射层设置在所述第一电极层的远离所述第二电极层一侧;所述第二绝缘层设置在所述第一电极层和所述反射层之间。
例如,在所述发光驱动基板的至少一个示例中,所述反射层包括顺次设置的第三绝缘层、第二透明导电氧化物层、第三金属层和第三透明导电氧化物层;以及相比于所述第三绝缘层,所述第三透明导电氧化物层更靠近所述第一电极层。
例如,在所述发光驱动基板的至少一个示例中,所述发光驱动基板还包括应力缓冲层和防护层。所述应力缓冲层设置在所述衬底基板和所述第二电极层之间;所述防护层设置在所述第二电极层和所述第一绝缘层之间。
本公开的至少一个实施例还提供了一种发光基板,其包括本公开任一实施例提供的发光驱动基板以及设置在所述第一发光分区中的至少一个第一发光元件和设置在所述第二发光分区中的至少一个第二发光元件。所述至少一个第一发光元件配置为接收所述第一电源走线的第一电源电压以发光,所述至少一个第二发光元件配置为接收所述第二电源走线的第一电源电压以发光。
本公开的至少一个实施例还提供了一种显示装置,其包括本公开任一实施例提供的发光基板。
本公开的至少一个实施例还提供了一种发光驱动基板的制作方法,所述发光驱动基板包括周边区域,所述方法包括:形成第一发光分区、第二发光分区、第一电源走线和第二电源走线。所述第一发光分区包括第一公共电极, 所述第二发光分区包括第二公共电极;所述第一电源走线包括与所述第一公共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收第一电源电压的第二端;所述第二电源走线包括与所述第二公共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收所述第一电源电压的第二端;所述第一电源走线的第一端和第二端之间的电阻等于所述第二电源走线的第一端和第二端之间的电阻,且所述第一电源走线的第一端和第二端之间的走线长度不等于所述第二电源走线的第一端和第二端之间的走线长度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A是一种背光模组的平面示意图;
图1B示出了图1A所示的背光模组显示的图像的一个示例;
图2A是一种发光驱动基板;
图2B是图2A所示的发光驱动基板的局部区域的放大图;
图3是本公开的至少一个实施例提供的发光驱动基板的平面示意图;
图4是图3所示的发光驱动基板的局部区域的放大图;
图5A示出了本公开的至少一个实施例提供的发光基板的一个局部区域的放大图;
图5B示出了本公开的至少一个实施例提供的发光基板的另一个局部区域的放大图;
图6是图3所示的发光驱动基板的第一走线的放大图;
图7是图4所示的发光驱动基板的沿AA’线的截面图;
图8是图4所示的发光驱动基板的沿BB’线的截面图;
图9是图4所示的发光驱动基板的沿CC’线的截面图;
图10是本公开的至少一个实施例提供的第二导电层的截面示意图;
图11是本公开的至少一个实施例提供的第一导电层的截面示意图;
图12是本公开的至少一个实施例提供的反射层的截面示意图;
图13是本公开的至少一个实施例提供的另一种发光驱动基板的平面示意图;
图14是本公开的至少一个实施例提供的发光基板的示意性框图;以及
图15是本公开的至少一个实施例提供的显示装置的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在一些背光模组中,背光模组包括多个(例如,几十颗)阵列排布的大尺寸发光二级管(LED),并且上述发光二级管不能被独立控制,例如,所有的发光二级管同时开启或同时关闭,由此无助于提高包括这些背光模组的显示装置的对比度。
本公开的发明人在研究中注意到,可以通过对液晶显示装置的背光模组进行分区控制来提高液晶显示装置的对比度。图1A示出了一种背光模组的平面示意图,图1B示出了图1A所示的背光模组显示的图像的一个示例。例如,如图1A所示,可以将液晶显示装置的背光模组划分为多个分区550(参见图1A),并且,可以在显示过程中,使得背光模组的对应于待显示图像的黑色区域(也即,非信息区)的分区550不发光,以使得显示装置显示的图像的部分区域(对应于不发光的分区550的区域)的亮度为零(也即,可以实现绝对的黑色),由此可以提高包括该背光模组的该液晶显示装置的对比 度。例如,通过对背光模组进行分区控制,可以实现高动态范围(High-Dynamic Range,HDR)显示。
在一些背光模组中,背光模组的驱动走线设置在印刷电路板(PCB)上,然后再将LED安装到该PCB上,然而,该方案可能导致背光模组的厚度和成本较高。
在一些背光模组中,背光模组的驱动走线还可以设置在玻璃基板上,然后再将LED安装到该玻璃基板上。然而,本公开的发明人在研究中注意到,该方案可能会导致背光模组的驱动电路结构复杂,显示装置的屏占比较低、显示装置的亮度均匀性和显示质量较差等问题。下面结合图2A和图2B对上述问题进行示例性说明。
图2A示出了一种发光驱动基板,该发光驱动基板可作为背光模组的部件用于显示装置中。如图2A所示,该发光驱动基板具有发光区域501以及位于发光区域501之外的周边区域502。发光区域501中设置有阵列排布的多个发光分区510,且多个发光分区510沿第一方向D1和第二方向D2排列成多行和多列。
如图2A所示,每个发光分区510包括公共电极511(例如,阳极并联走线)和对置公共电极512(例如,阴极并联走线),并且,每个发光分区510对应于一根电源走线515(例如,阳极电源走线)和一根对置电源走线516(例如,阴极电压走线)。电源走线515包括与公共电极511电连接的第一端以及延伸至周边区域502且配置为用于电连接以接收第一电源电压的第二端;对置电源走线516包括与对置公共电极512电连接的第一端以及延伸至周边区域502且配置为用于电连接以接收第二电源电压的第二端。例如,发光驱动基板的所有电源走线515的第二端和所有对置电源走线516的第二端可以均设置在发光区域501的一侧(例如,图2A中的发光区域501的下侧)。
图2B是图2A所示的发光驱动基板的局部区域(虚线框区域)的放大图,为清楚起见,图2B还示出了设置在发光驱动基板的多个发光元件518(例如,无机或有机发光二级管),发光驱动基板用于控制多个发光元件518发光。
如图2B所示,每个发光分区510还包括多个焊盘513(例如,四个焊盘513)和多个对置焊盘514(例如,四个对置焊盘514),多个焊盘513的至少部分与公共电极511电连接,多个对置焊盘514的至少部分与对置公共电 极512电连接。相邻的焊盘513用和对置焊盘514作为一个焊盘组驱动一个发光元件518发光,例如,焊盘组中的焊盘513与发光元件518的第一端(例如,阳极端)相连,焊盘组中的对置焊盘514与发光元件518的第二端(例如,阴极端)相连。如图2B所示,位于同一行的相邻的焊盘组彼此相连(串联),以使得所有的焊盘513均可以与公共电极511电连接,且使得所有的对置焊盘514均可以与对置公共电极512电连接。例如,位于发光分区510左上角的焊盘组的对置焊盘514与位于发光分区510右上角的焊盘组的焊盘513通过连接走线517彼此连接。在同一行的焊盘组彼此串联情况下,公共电极511与对置公共电极512之间的电压差ΔV分配给(例如,平均分配给)设置在同一行的焊盘组上的发光元件518,例如,图2B中每个发光元件518的第一端和第二端之间的电压差约为ΔV/2。同一发光分区510中,由于位于不同行的焊盘513连接至同一公共电极511,且位于不同行的对置焊盘514连接至同一对置公共电极512,因此,设置在同一发光分区510的不同行的焊盘组上的发光元件518接收的电压差(第一端和第二端之间的电压差)例如相等。
在显示过程中,发光驱动基板可以根据待显示图像的信息,向每个发光分区510的公共电极511和对置公共电极512分别提供所需的第一电源电压和第二电源电压,上述第一电源电压和第二电源电压经由连接走线517传递到多个焊盘513和多个对置焊盘514上,以用于驱动多个发光元件518发光。例如,在待显示图像包括黑色区域(也即,非信息区)的情况下,可以使得对应的发光分区510接收的第一电源电压和第二电源电压的差值为零,以使得上述对应的发光分区510中的发光元件518不发光。
本公开的发明人注意到,图2A和图2B示出的发光驱动基板的多个电源走线515的宽度(在第二方向D2上的宽度)彼此相等,也即,图2A和图2B示出的发光驱动基板采用了等线宽的电源走线设计方案。由于多个电源走线515的第一端和第二端之间的长度不相等,因此,多个电源走线515的第一端和第二端之间的电阻不相等,由此使得多个电源走线515引起的电压降也不相等。
例如,在一种12.3英寸的背光模组中,背光模组的发光驱动基板的近端电阻(也即,与位于图2A所示的最下方的发光分区510相连的电源走线515 的第一端和第二端之间的电阻)约为0.84欧姆,发光驱动基板的远端电阻(也即,与位于图2A所示的最上方的发光分区510相连的电源走线515的第一端和第二端之间的电阻)约为3.16欧姆,也即,远端电阻与近端电阻的比值约为4,由此使得多个电源走线515引起的电压降的差异较大。
例如,如果向多个电源走线515施加相同的第一电源电压,由于多个电源走线515引起的电压降不相等,因此使得多个公共电极511接收的电压以及设置在不同发光分区510的发光元件518的第一极接收的电压不相同,并使得设置在不同发光分区510中的发光元件518的亮度(发射光线的强度)不相等(从图2A的上方至下方,亮度逐渐增加),由此使得包括该发光驱动基板的背光模组的出光亮度不均匀。又例如,在显示过程中,由于多个电源走线515引起的电压降不相等,因此,设置在不同发光分区510中的发光元件518的发光强度相比于预定发光强度的偏离的程度彼此不同,由此降低了包括该发光驱动基板的显示装置的显示质量,甚至可能会导致显示异常。
例如,在尺寸更大的背光模组中,发光驱动基板的多个电源走线的走线长度的差异更大,等线宽走线设计方案导致的电压降的差异进一步增大,并因此使得包括该发光驱动基板的背光模组的出光亮度不均匀进一步增加,包括该发光驱动基板的显示装置的显示质量进一步降低。
本公开的发明人注意到,为抑制多个电源走线515引起的电压降不相等导致的背光模组的出光亮度不均匀的问题,可以在向多个电源走线515施加显示电压Vdata与补偿电压Vcomp的叠加值Vf(Vf=Vdata+Vcomp);此处,向每个电源走线515施加显示电压Vdata和与该电源走线515相连的发光分区510的亮度(与该电源走线515相连的发光分区510中的发光元件518的发射光线的强度)相匹配,向每个电源走线515施加的补偿电压Vcomp和与该电源走线515导致的电压降相匹配。由于多个电源走线515导致的电压降不同,因此,背光模组的驱动电路需要向不同的电源走线515施加不同的补偿电压Vcomp,由此增加了背光模组的驱动电路的尺寸以及结构复杂度,增加背光模组的成本以及包括该背光模组的显示装置的边框尺寸,降低包括该背光模组的显示装置的屏占比。
本公开的一些实施例提供了一种发光驱动基板、发光驱动基板的制作方法、发光基板以及显示装置。该发光驱动基板包括第一发光分区、第二发光 分区、周边区域、第一电源走线和第二电源走线。第一发光分区包括第一公共电极,第二发光分区包括第二公共电极;第一电源走线包括与第一公共电极电连接的第一端以及延伸至周边区域且配置为用于电连接以接收第一电源电压的第二端;第二电源走线包括与第二公共电极电连接的第一端以及延伸至周边区域且配置为用于电连接以接收第一电源电压的第二端;第一电源走线的第一端和第二端之间的电阻等于第二电源走线的第一端和第二端之间的电阻,且第一电源走线的第一端和第二端之间的走线长度不等于第二电源走线的第一端和第二端之间的走线长度。
在一些示例中,通过使得第一电源走线的第一端和第二端之间的电阻等于第二电源走线的第一端和第二端之间的电阻,可以在无需向不同的电源走线施加不同的补偿电压情况下,提升包括发光驱动基板的发光基板的发光均匀度。因此,发光驱动基板的驱动电路的结构简单,发光驱动基板的周边区域的尺寸较小,由此降低了包括发光驱动基板的发光基板的成本和边框尺寸。
在一些示例中,通过使得第一电源走线的第一端和第二端之间的电阻等于第二电源走线的第一端和第二端之间的电阻,还可以降低电源走线和对置电源走线的线损、负载和面积,由此可以提升发光驱动基板的效率,并且可以在发光驱动基板上设置更多的走线和发光分区,进一步地提升包括该发光驱动基板的显示装置的显示质量。
下面通过几个示例对本公开的实施例提供的发光驱动基板进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体示例中不同特征可以相互组合,从而得到新的示例,这些新的示例也都属于本公开保护的范围。
图3是本公开的至少一个实施例提供的发光驱动基板100的平面示意图。如图3所示,该发光驱动基板100具有发光区域101以及位于发光区域101之外的周边区域102、多条电源走线和多条对置电源走线。发光区域101包括多个发光分区,例如,第一发光分区110、第二发光分区120、第三发光分区130等。多条电源走线包括第一电源走线115、第二电源走线125、第三电源走线135等;多条对置电源走线包括第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136等。
如图3所示,第一发光分区110、第二发光分区120和第三发光分区130等多个发光分区按照预定方式(例如矩阵)布置于发光区域101中。例如, 第一电源走线115、第二电源走线125和第三电源走线135等电源走线为阳极电源走线,第一对置电源走线116、第二对置电源走线126和第三对置电源走线136等对置电源走线为阴极电源走线。
例如,第一发光分区110、第二发光分区120和第三发光分区130沿第一方向D1并列布置,第一电源走线115、第二电源走线125、第三电源走线135、第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136沿与第一方向D1交叉(例如,垂直)的第二方向D2并列布置。
图4示出了图3所示的发光驱动基板100的局部区域的放大图。图4示出了图3所示的第一发光分区110、第二发光分区120、第三发光分区130、第一电源走线115、第二电源走线125、第三电源走线135、第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136的放大图。
如图4所示,第一发光分区110包括第一公共电极111、第一对置公共电极112、多个第一焊盘113、多个第一对置焊盘114以及第一连接走线117。例如,第一公共电极111可以实现为沿第一方向D1延伸的走线(例如,阳极并联走线),第一对置公共电极112可以为实现为沿第一方向D1延伸的走线(例如,阴极并联走线),第一连接走线117以为实现为沿第二方向D2延伸的走线(例如,串联走线)。例如,阳极并联走线配置为将阳极电源走线上的第一电源电压传递给与阳极并联走线连接的焊盘(例如,所有与阳极并联走线直接连接的焊盘以及所有与阳极并联走线间接电连接的焊盘),阴极并联走线配置为将阴极电源走线上的第二电源电压传递给与阴极并联走线连接的对置焊盘(例如,所有与阴极并联走线直接连接的对置焊盘以及所有与阴极并联走线间接电连接的对置焊盘)。
如图4所示,多个第一焊盘113可与第一公共电极111电连接,多个第一对置焊盘114可与第一对置公共电极112电连接。例如,如图4所示,位于第一发光分区110最左侧的多个第一焊盘113与第一公共电极111直接电性连接,位于第一发光分区110最右侧的多个第一对置焊盘114与第一对置公共电极112直接电性连接。
例如,如图4所示,多个第一焊盘113和多个第一对置焊盘114可以分别形成多个第一焊盘组,每个第一焊盘组可以包括一个第一焊盘113和一个第一对置焊盘114,每个第一焊盘组中的第一焊盘113和第一对置焊盘114彼此间隔设置且电绝缘。在图4A所示的示例中,位于同一行的相邻的第一焊盘 组通过第一连接走线117彼此相连(例如,串联),以使得所有的焊盘均可以与公共电极电连接,且使得所有的对置焊盘均可以与对置公共电极电连接。
需要说明的是,图4示出的多个第一焊盘组的排布方式(也即,排列4×3阵列的12个第一焊盘组,且每行的四个第一焊盘组彼此串联)仅为示例,根据实际应用需求,每个第一发光分区的第一焊盘组的排布方式也可以为4×1的阵列,即四个第一焊盘组彼此并联,也可以为1×4的阵列,即四个第一焊盘组彼此串联,当然,每个第一发光分区的第一焊盘组的排布方式还可以为5×4、4×4、3×3、2×2和1×1。
如图4所示,第二发光分区120包括第二公共电极121、第二对置公共电极122、多个第二焊盘123、多个第二对置焊盘124以及第二连接走线127,多个第二焊盘123可与第二公共电极121电连接,多个第二对置焊盘124可与第二对置公共电极122电连接。例如,如图4所示,多个第二焊盘123和多个第二对置焊盘124可以分别形成多个第二焊盘组。
如图4所示,第三发光分区130包括第三公共电极131、第三对置公共电极132、多个第三焊盘133、多个第三对置焊盘134以及第三连接走线137,多个第三焊盘133与第三公共电极131电连接,多个第三对置焊盘134与第三对置公共电极132电连接。例如,如图4所示,多个第三焊盘133和多个第三对置焊盘134可以分别形成多个第三焊盘组。
例如,第二发光分区120和第三发光分区130可参照第一发光分区110进行设置,在此不再赘述。
需要说明的是,上述的焊盘还可以采用其它使用的具有电连接功能的电接触部替代,此处不再赘述。
图5A示出了包括该发光驱动基板的发光基板的一个局部区域的示意图。图5A示出了第一发光分区110以及设置在第一发光分区110上的多个第一发光元件118。
如图5A和图4所示,第一发光分区110的第一焊盘组中的第一焊盘113与第一发光元件118的第一端(例如,阳极端)相连,第一焊盘组中的第一对置焊盘114与第一发光元件118的第二端(例如,阴极端)相连。因此,第一发光元件118的第一端可接收经由第一电源走线115和第一公共电极111传输的第一电源电压,第一发光元件118的第二端可接收经由第一对置电源走线116和第一对置公共电极112传输的第二电源电压,由此第一发光元件 118可以根据第一电源电压和第二电源电压的取值发射对应强度的光线。
例如,第一电源电压和第二电源电压配置为在工作时驱动设置在发光分区(例如,第一发光分区和第二发光分区)的发光元件发光。
图5B示出了包括该发光驱动基板的发光基板的另一个局部区域的示意图。图5B示出了第二发光分区120以及设置在第二发光分区120上的多个第二发光元件128。
如图5B和图4所示,第二发光分区120的第二焊盘组中的第二焊盘123与第二发光元件128的第一端(例如,阳极端)相连,第二焊盘组中的第二对置焊盘124与第二发光元件128的第二端(例如,阴极端)相连。例如,各发光元件例如通过焊接、粘结(使用导电胶)等方式安装在对应的焊盘组上。因此,第二发光元件128的第一端可接收经由第二电源走线125(参见图4)和第二公共电极121传输的第一电源电压,第二发光元件128的第二端可接收经由第二对置电源走线126(参见图4)和第二对置公共电极122传输的第二电源电压,由此第二发光元件128可以根据第一电源电压和第二电源电压的取值发射对应强度的光线。
例如,第三发光分区130和第四发光分区181中可分别设置第三发光元件和第四发光元件,在此不再赘述。
例如,发光元件(第一发光元件118和第二发光元件128等)可以为有机发光二级管或无机发光二级管,例如可以发白光(例如用于背光模组的情形),或者例如可以发红光(R)、绿光(G)、蓝光(B)等(例如用于显示装置的情形)。例如,在发光元件实现为无机发光二级管情况下,发光元件可以为次毫米发光二级管(Mini LED)或微LED(Mirco LED),此处,次毫米发光二级管是指尺寸介于100微米-1000微米之间的发光二级管,微LED是指的尺寸小于100微米的发光二级管。本公开的实施例对于发光元件的类型和尺寸不作限制。
在一些示例,根据实际应用需求,每个发光分区可以仅设置一个电接触部和一个对置电接触部,对应地,每个发光分区仅设置一个发光元件,在此不再赘述。
例如,通过设置公共电极(例如,第一公共电极111和第二公共电极121)、对置公共电极(例如,第一对置公共电极112和第二对置公共电极122)、连接走线(例如,第一连接走线117和第二连接走线127),可以使得每个发光 分区可用于驱动多个发光元件。由此,可以在发光基板的尺寸和亮度不变的情况下,降低电源走线和对置电源走线的数目,提升不同的发光分区之间的亮度差异的最大值(例如,每个发光元件的最大亮度与每个发光分区中发光元件的数目的乘积)。因此,还可以使得包括该发光驱动基板100的发光基板具有更大的尺寸,使得包括该发光驱动基板100的显示装置具有更大的尺寸和对比度。
例如,在同一行焊盘组彼此串联情况下,公共电极与对置公共电极之间的电压差ΔV分配给(例如,平均分配给)设置在同一行的焊盘组上的发光元件,例如,图5A中每个发光元件的第一端和第二端之间的电压差约为ΔV/4。例如,同一发光分区中,由于位于不同行的焊盘连接至同一公共电极,且位于不同行的对置焊盘连接至同一对置公共电极,因此,设置在同一发光分区的不同行的焊盘组上的发光元件接收的电压差(第一端和第二端之间的电压差)例如相等。
如图3和图4所示,第一电源走线115包括与第一公共电极111电连接的第一端1151以及延伸至周边区域102且配置为用于电连接以接收第一电源电压的第二端1152;第二电源走线125包括与第二公共电极121电连接的第一端1251以及延伸至周边区域102且配置为用于电连接以接收第一电源电压的第二端1252;第三电源走线135包括与第三公共电极131电连接的第一端1351以及延伸至周边区域102且配置为用于电连接以接收第一电源电压的第二端1352。
如图3和图4所示,第一对置电源走线116包括与第一对置公共电极112电连接的第一端1161以及延伸至周边区域102且配置为用于电连接以接收第二电源电压的第二端1162;第二对置电源走线126包括与第二对置公共电极122电连接的第一端1261以及延伸至周边区域102且配置为用于电连接以接收第二电源电压的第二端1262;第三对置电源走线136包括与第三对置公共电极132电连接的第一端1361以及延伸至周边区域102且配置为用于电连接以接收第三电源电压的第二端1362。
例如,如图3所示,第一电源走线115的第二端1152、第二电源走线125的第二端1252、第三电源走线135的第二端1352、第一对置电源走线116的第二端1162、第二对置电源走线126的第二端1262以及第三对置电源走线136的第二端1362均设置在发光区域101的一侧(例如,图3中发光区域101 的下侧)。例如,如图3所示,发光驱动基板100还包括驱动电路190,该驱动电路190例如与电子装置(例如,显示装置)的系统电源连接,用于为发光区域施加发光驱动电压(例如,第一电源电压、第二电源电压)。驱动电路190以及多个电源走线的第二端设置在发光区域101的同一侧(例如,图3中发光区域101的下侧)。
例如,如图3所示,驱动电路190包括多个第一电源电压端191和多个第二电源电压端192。多个第一电源电压端191分别与多个电源走线(例如,第一电源走线115、第二电源走线125和第三电源走线135)相连,并配置为向多个电源走线施加对应的第一电源电压;多个第二电源电压端192分别与多个对置电源走线(例如,第一对置电源走线116、第二对置电源走线126和第三对置电源走线136)相连,并配置为向多个对置电源走线施加对应的第二电源电压。例如,第二电源电压低于第一电源电压。例如,向第一对置电源走线116施加的第二电源电压低于向第一电源走线115施加的第一电源电压。例如,第一电源电压可以为正电压。例如,第二电源电压端192可以接地,也即,第二电源电压端192向对置电源走线施加的第二电源电压可以为零伏。
例如,多个第一电源电压端191向第一电源走线115、第二电源走线125和第三电源走线135施加的第一电源电压以及多个第二电源电压端192向第一对置电源走线116、第二对置电源走线126和第三对置电源走线136施加的第二电源电压可以分别由第一发光分区110的发光亮度、第二发光分区120的发光亮度以及第三发光分区130的发光亮度确定。例如,多个第一电源电压端191向第一电源走线115、第二电源走线125和第三电源走线135施加的第一电源电压可以相同或不同,多个第二电源电压端192向第一对置电源走线116、第二对置电源走线126和第三对置电源走线136施加的第二电源电压可以相同或不同,在此不再赘述。
例如,第一电源走线115的第一端1151和第二端1152之间的电阻,第二电源走线125的第一端1251和第二端1252之间的电阻,以及第三电源走线135的第一端1353和第二端1352之间的电阻彼此相等。也即,图3和图4示出的发光驱动基板采用等电阻电源走线设计方案。在发光驱动基板采用等电阻电源走线设计方案的情况下,第一电源走线115导致的电压降、第二电源走线125导致的电压降以及第三电源走线135导致的电压降彼此相同。
例如,当第一电源走线115接收的第一电源电压,第二电源走线125接 收的第一电源电压以及第三电源走线135接收的第一电源电压彼此相同时,由于第一电源走线115的第一端1151和第二端1152之间的电阻,第二电源走线125的第一端1251和第二端1252之间的电阻彼此相等,第一公共电极111接收的电压,第二公共电极121接收的电压以及第三公共电极131接收的电压彼此相同。当第一公共电极111接收的电压,第二公共电极121接收的电压以及第三公共电极131接收的电压彼此相同时,设置在第一发光分区110的第一发光元件118的发光强度,设置在第二发光分区120的第二发光元件128的发光强度以及设置在第三发光分区130的第三发光元件的发光强度之间的差异降低(例如,发光强度的差异降低至零),并因此可以在无需向不同的电源走线施加不同的补偿电压情况下,提升包括图3示出的发光驱动基板100的发光基板的发光均匀度。因此,图3示出的发光驱动基板100的驱动电路190的结构简单,发光驱动基板100的周边区域102的尺寸较小,由此降低了包括图3示出的发光驱动基板100的发光基板的成本和边框尺寸。
例如,本公开的发明人在研究中还注意到,相比于等线宽的电源走线设计,等电阻的电源走线设计还可以降低电源走线的面积以及电源走线的线损(例如,走线导致的功率损耗)和负载。下面结合65英寸的显示装置(具备4K分辨率)的发光驱动基板100和背光模组做示例性说明。
例如,该65英寸的显示装置的分辨率为3840×2160,色域为80%(BT2020标准),对比度为2百万:1,光学距离(例如,工作距离)为5米,标称亮度为800尼特,最大亮度(也即,过驱动亮度)为2000尼特;发光驱动基板的发光分区数目为1536(48×32),每个发光分区中可设置12个第一发光元件118,行方向上相邻的第一发光元件118的中心间距(Pitch)约为7.44毫米,列方向上相邻的第一发光元件118的中心间距(Pitch)约为8.37毫米。例如,12个第一发光元件118形成4×3的第一发光元件阵列,位于同一行的第一发光元件118顺次串联,位于不同行的第一发光元件118彼此并联。
例如,对于上述65英寸的显示装置,在显示装置的发光驱动基板100采用等线宽走线设计方案的情况下,多个电源走线(含铜金属走线)的近端电阻和远端电阻分别约为0.4欧姆和4.24欧姆,多个电源走线的电阻差值的最大值约为3.84欧姆,这因此导致多个电源走线导致的电压降差值的最大值约为1伏,多个电源走线的电阻和多个对置电源走线的总体走线损耗约约为19.5 瓦特,背光模组的效率约为91%。例如,多个电源走线的平均线宽约为729微米。此处,背光模组的效率是指驱动电路190提供的功率中未被电源走线和对置电源走线损耗而传递到公共电极和对置公共电极上用于驱动发光元件的部分。
例如,对于上述65英寸的显示装置,在显示装置的发光驱动基板100采用等电阻走线设计方案且多个电源走线的宽度呈等差数列变化的情况下,多个电源走线的电阻和多个对置电源走线的电阻均约为1.03欧姆,多个电源走线的电阻和多个对置电源走线的总体走线损耗约为9.62瓦特,背光模组的效率为98.2%,由此可见等电阻走线设计方案可以降低电源走线和对置电源走线的线损和负载,并以此可以提升发光驱动基板100的效率。例如,发光驱动基板100包括16个驱动电路(驱动器),且每个驱动电路向部分电源走线和对置电源走线提供驱动电压,每个驱动电路提供的驱动电压约为11.64伏。例如,电源走线的厚度约为38.97微米。例如,多个电源走线的最小宽度和最大宽度分别为12.5微米和400.6微米,由此可以见,等电阻走线设计方案可以降低多个电源走线和多个对置电源走线的面积(例如,多个电源走线和多个对置电源走线在平行于第一方向D1和第二方向D2的平面上的正投影的面积之和),此种情况下,可以在发光驱动基板100上设置更多的走线和发光分区,由此可以减小每个发光分区驱动的发光元件的数目以及发光分区的尺寸,并因此可以进一步地提升包括该发光驱动基板100的显示装置的显示质量。
例如,图6是图3所示的发光驱动基板100的第一电源走线115的放大图。如图6所示,第一电源走线115包括沿第一方向D1延伸的第一部分1153以及沿第二方向D2延伸的第二部分1154。例如,第一电源走线115的第一部分1153具有均一的宽度(在第二方向D2上的宽度)和厚度(在垂直于第一方向D1和第二方向D2的方向上的厚度)。第一电源走线115的第二部分1154也具有均一的宽度(在第一方向D1上的宽度)和厚度(在垂直于第一方向D1和第二方向D2的方向上的厚度)。并且,第一电源走线115的第一部分1153的宽度等于第一电源走线115的第二部分1154的宽度,第一电源走线115的第一部分1153的厚度等于第一电源走线115的第二部分1154的厚度。
如图6所示,第一电源走线115的第一部分1153具有中轴线1155(中轴线1155沿第一方向D1延伸),第一电源走线115的第二部分1154具有中轴 线1156(中轴线1156沿第二方向D2延伸)。第一部分1153的中轴线1155和第二部分1154的中轴线1156在相交点1157相交。例如,第一电源走线115的第一端1151和第二端1152之间具有第一走线长度,中轴线1155在第一电源走线115的第一端1151与相交点1157之间具有第二走线长度,中轴线1156在第一电源走线115的第二端1152与相交点1157之间具有第三走线长度,这里第一走线长度为第二走线长度和第三走线长度之和。例如,在第一电源走线115还包括其它部分或者第一电源走线115为其它形状的情况下,第一电源走线115可以为第一电源走线115的中轴线从第一电源走线115的第一端1151延伸至第一电源走线115的第二端1152的延伸长度。例如,发光驱动基板100的其它电源走线(例如,第二电源走线125、第三电源走线135、第一对置电源走线116、第二对置电源走线126和第三电源对置走线)的走线长度具有类似的定义,不再赘述。
如图3和图4所示,第一电源走线115的第一端1151和第二端1152之间的走线长度,第二电源走线125的第一端1251和第二端1252之间的走线长度,以及第三电源走线135的第一端1353和第二端1352之间的走线长度彼此不同(例如,逐渐减小)。例如,第一电源走线115的第一端1151和第二端1152之间的走线长度,第二电源走线125的第一端1251和第二端1252之间的走线长度,以及第三电源走线135的第一端1353和第二端1352之间的走线长度呈等差数列减小。也即,第一电源走线115的第一端1151和第二端1152之间的走线长度与第二电源走线125的第一端1251和第二端1252之间的走线长度之间的差值,等于第二电源走线125的第一端1251和第二端1252之间的走线长度与第三电源走线135的第一端1353和第二端1352之间的走线长度之间的差值。
如图3和图4所示,第一电源走线115的走线宽度、第二电源走线125的走线宽度,以及第三电源走线135的走线宽度彼此不同(例如,逐渐降低)。例如,第一电源走线115的走线宽度、第二电源走线125的走线宽度以及第三电源走线135的走线宽度呈等差数列减小。也即,第一电源走线115的走线宽度和第二电源走线125的走线宽度之间的差值,等于第二电源走线125的走线宽度和第三电源走线135的走线宽度之间的差值。例如,通过使得第一电源走线115、第二电源走线125和第三电源走线135的走线长度以及走线宽度分别呈等差数列减小,可以使得第一电源走线115、第二电源走线125和 第三电源走线135的走线长度和宽度的变化更为均匀,由此可以进一步地提升发光驱动基板100的性能。
例如,电源走线(例如,第一至第三电源走线115-135、第一至第三对置电源走线116-136)的第一端和第二端之间的电阻R表达如下:
R=R0×L/(W×H)。
此处,L为电源走线的第一端和第二端之间的走线长度,W为电源走线的走线宽度,H为电源走线的厚度,R0为常数。
如图6所示,多个电源走线(第一电源走线115、第二电源走线125和第三电源走线135)的第一部分以及多个对置电源走线(第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136)的第一部分沿第二方向D2并列布置;多个电源走线(第一电源走线115、第二电源走线125和第三电源走线135)的第二部分以及多个对置电源走线(第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136)的第二部分沿第一方向D2并列布置。
例如,在第一电源走线115的厚度、第二电源走线125的厚度以及第三电源走线135的厚度彼此相等的情况下,当第一电源走线115的第一端1151和第二端1152之间的走线长度与第二电源走线125的第一端1251和第二端1252之间的走线长度的比值,等于第一电源走线115的第一端1151和第二端1152之间的走线宽度与第二电源走线125的第一端1251和第二端1252之间的走线宽度的比值时,第一电源走线115的第一端1151和第二端1152之间的电阻等于第二电源走线125的第一端1251和第二端1252之间的电阻;当第三电源走线135的第一端1353和第二端1352之间的走线长度与第二电源走线125的第一端1251和第二端1252之间的走线长度的比值,等于第一电源走线115的第三端和第二端之间的走线宽度与第二电源走线125的第一端1251和第二端1252之间的走线宽度的比值时,第三电源走线135的第一端1353和第二端1352之间的电阻等于第二电源走线125的第一端1251和第二端1252之间的电阻。
例如,第一对置电源走线116的第一端和第二端之间的电阻,第二对置电源走线126的第一端和第二端之间的电阻,以及第三对置电源走线136的第一端和第二端之间的电阻也可以彼此相等。由此,这使得第一对置电源走线116导致的电压降、第二对置电源走线126导致的电压降以及第三对置电 源走线136导致的电压降彼此相同,并因此使得设置在第一发光分区110的第一发光元件118的发光强度,设置在第二发光分区120的第二发光元件128的发光强度以及设置在第三发光分区130的第三发光元件的发光强度之间的差异进一步降低(例如,发光强度的差异降低至零),并可以进一步地提升包括图3示出的发光驱动基板100的发光基板的发光均匀度。
如图3和图4所示,第一对置电源走线116的第一端和第二端之间的走线长度,第二对置电源走线126的第一端和第二端之间的走线长度,以及第三对置电源走线136的第一端和第二端之间的走线长度彼此不同(例如,逐渐减小)。例如,第一对置电源走线116的第一端和第二端之间的走线长度,第二对置电源走线126的第一端和第二端之间的走线长度,以及第三对置电源走线136的第一端和第二端之间的走线长度呈等差数列减小。
如图3和图4所示,第一对置电源走线116的走线宽度、第二对置电源走线126的走线宽度,以及第三对置电源走线136的走线宽度彼此不同(例如,逐渐降低)。例如,第一对置电源走线116的走线宽度、第二对置电源走线126的走线宽度,以及第三对置电源走线136的走线宽度呈等差数列减小。例如,通过使得第一对置电源走线116、第二对置电源走线126和第三对置电源走线136的走线长度以及走线宽度呈等差数列减小,可以使得第一对置电源走线116、第二对置电源走线126和第三对置电源走线136的走线长度和宽度的变化更为均匀,由此可以进一步提升发光驱动基板100的性能。
例如,在第一对置电源走线116的厚度、第二对置电源走线126的厚度以及第三对置电源走线136的厚度彼此相等的情况下,当第一对置电源走线116的第一端和第二端之间的走线长度与第二对置电源走线126的第一端和第二端之间的走线长度的比值,等于第一对置电源走线116的第一端和第二端之间的走线宽度与第二对置电源走线126的第一端和第二端之间的走线宽度的比值时,第一对置电源走线116的第一端和第二端之间的电阻等于第二对置电源走线126的第一端和第二端之间的电阻;当第三对置电源走线136的第一端和第二端之间的走线长度与第二对置电源走线126的第一端和第二端之间的走线长度的比值,等于第一对置电源走线116的第三端和第二端之间的走线宽度与第二对置电源走线126的第一端和第二端之间的走线宽度的比值时,第三对置电源走线136的第一端和第二端之间的电阻等于第二对置电源走线126的第一端和第二端之间的电阻。
如图3所示,发光驱动基板100还可以包括更多的发光分区(例如,第四发光分区181)、更多的电源走线(例如,第四电源走线182)以及更多的对置电源走线(例如,第四对置电源走线183)。这些其它发光分区、其它电源走线和其它对置电源走线的具体设置方式可以参见第一发光分区110、第一电源走线115和第一对置电源走线116,在此不再赘述。需要说明的是,为了清楚起见,图3所示的发光驱动基板100仅示出了一列发光分区,但本公开的实施例不限于此,根据实际应用需求,发光驱动基板100可以包括阵列排布的多个发光分区,且多个发光分区沿第一方向D1和第二方向D2排列为多行和多列,此时,多个发光分区的排布方式类似于图2A示出的多个发光分区的排布方式,在此不再赘述。
例如,该发光驱动基板100为多层结构,例如通过多层印刷电路板等多种方式实现。在该多层结构中,例如,多个第一焊盘113、多个第一对置焊盘114、多个第二焊盘123、多个第二对置焊盘124、多个第三焊盘133、多个第三对置焊盘134、第一公共电极111、第一对置公共电极112、第二公共电极121、第二对置公共电极122、第三公共电极131以及第三对置公共电极132同层设置。例如,第一电源走线115、第二电源走线125、第三电源走线135、第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136同层设置。
图7、图8和图9分别示出了图4所示的示例性发光驱动基板100的沿AA’线、BB’线和CC’线的截面图。如图7-图9所示,发光驱动基板100包括在第三方向D3上顺次设置的衬底基板141、应力缓冲层142、第二电极层150、第一绝缘层143、第一电极层160、第二绝缘层144和反射层170。第三方向D3与第一方向D1和第二方向D2交叉(例如,垂直)。
例如,衬底基板141可以是玻璃基板、石英基板、塑料基板(例如聚对苯二甲酸乙二醇酯(PET)基板)或者由其它适合的材料制成的基板,可以制备得更加轻薄,因此可降低该发光驱动基板100的厚度和制作成本。
如图7-图9所示,第一电极层160包括多个第一焊盘113、多个第一对置焊盘114、多个第二焊盘123、多个第二对置焊盘124、多个第三焊盘133、多个第三对置焊盘134、第一公共电极111、第一对置公共电极112、第二公共电极121、第二对置公共电极122、第三公共电极131以及第三对置公共电极132。第二电极层150包括第一电源走线115、第二电源走线125、第三电 源走线135、第一对置电源走线116、第二对置电源走线126以及第三对置电源走线136。在一些示例中,如图8所示,在将第二绝缘层144形成在第一电极层160至上时,用于形成第二绝缘层144的材料可以填充在焊盘和对应的对置焊盘之间的间隙内,上述填充在焊盘和对应的对置焊盘之间的间隙内用于形成第二绝缘层144的材料例如可以作为第二绝缘层144的一部分。在另一些示例中,在最终的发光基板产品中,焊盘和对应的对置焊盘之间的间隙内还可以不包括用于形成第二绝缘层144的材料。
需要说明的是,为清楚起见,图7-图9所示的第一至第三电源走线115-135以及第一至第三对置电源走线116-136的截面形状为矩形,但本公开的实施例不限于此。例如,第一至第三电源走线115-135以及第一至第三对置电源走线116-136的截面形状还可以为梯形,此种情况下,第一至第三电源走线115-135以及第一至第三对置电源走线116-136的走线宽度为梯形的下底边的长度(也即,梯形的一组平行的边中的边长较长的边的长度)。
如图7-图9所示,第一绝缘层143包括第一过孔1431、第二过孔1432、第三过孔1433、第四过孔1434、第五过孔1435和第六过孔1436。第一电源走线115与第一公共电极111经由第一过孔1431电连接,第二电源走线125与第二公共电极121经由第二过孔1432电连接,第三电源走线135与第三公共电极131经由第五过孔1435电连接;第一对置电源走线116与第一对置公共电极112经由第三过孔1433电连接,第二对置电源走线126与第二对置公共电极122经由第四过孔1434电连接,第三对置电源走线136与第三对置公共电极132经由第六过孔1436电连接。
例如,第一绝缘层143可以为树脂。例如,第二绝缘层144可以采用无机或有机材料形成。例如,第二绝缘层144可以采用有机树脂、氧化硅(SiOx)、氧氮化硅(SiNxOy)或者氮化硅(SiNx)形成。
图10示出了本公开的至少一个实施例提供的第二导电层151的截面示意图。图11示出了本公开的至少一个实施例提供的第一导电层161的截面示意图。
例如,第二电极层150采用第二导电层151形成,也即,第一至第三电源走线115-135以及第一至第三对置电源走线116-136均可以采用第二导电层151形成。
例如,第一电极层160可以采用第一导电层161形成,也即,第一至第 三焊盘113-133、第一至第三对置焊盘114-134、第一至第三公共电极111-131、第一至第三对置公共电极112-132均可以采用第一导电层161形成。
如图10所示,第二导电层151包括第二金属层152,且第二导电层151还包括在设置在第二金属层152的靠近第一电极层160的第一辅助电极层153以及设置在第二金属层152的远离第一电极层160的第二辅助电极层154。
如图11所示,第一导电层161包括第一金属层162,且第一导电层161还包括与第一金属层162叠置的第一透明导电氧化层163,第一透明导电氧化层163位于第一金属层162的远离第二电极层150的一侧。例如,第一透明导电氧化层163用于防止第一金属层162被氧化,由此可以提升发光驱动基板100的性能以及鲁棒性。例如,第一透明导电氧化层163可以由氧化铟锡(ITO)或氧化铟锌(IZO)制成。
例如,第二金属层152与第一金属层162均采用含铜金属制成(例如,均采用铜金属制成),由此可以在满足成本要求的情况下获得所需的电导率,并因此使得电源走线(例如,第一至第三电源走线115-135)和/或对置电源走线(例如,第一至第三对置电源走线116-136)可以承载更大的驱动电流,进而可以提升发光驱动基板100的应用范围,例如,使得发光驱动基板100可用于更大尺寸的发光基板中。
例如,第二金属层152的厚度可以大于第一金属层162的厚度,由此使得电源走线(第一至第三电源走线115-135)和对置电源走线(第一至第三对置电源走线116-136)相比于公共电极(第一至第三公共电极111-131)和对置公共电极(第一至第三对置公共电极112-132)能够承载更大的驱动电流,而不会使得电源走线和对置电源走线上的温度增加明显大于公共电极和对置公共电极的温度增加。
例如,第一辅助电极层153和第二辅助电极层154均采用钼铌合金(MoNb)制成。例如,第一辅助电极层153和第二辅助电极层154用于提升第二金属层152(含铜金属层)与其他膜层的粘附力以及防止第二金属层152(含铜金属)被氧化,由此可以提升发光驱动基板100的性能以及鲁棒性。
例如,应力缓冲层142的材料包括产生压应力的材料,并且应力缓冲层142用于平衡第二金属层152(含铜金属层)产生的拉应力。例如应力缓冲层142的材料可包括氮化硅(SiNx)。例如,应力缓冲层142可由氮化硅(SiNx)制成。例如,当铜层的厚度为约
Figure PCTCN2019086452-appb-000001
时,应力缓冲层142可采用厚度为 约
Figure PCTCN2019086452-appb-000002
的氮化硅(SiNx)。例如,厚度为约
Figure PCTCN2019086452-appb-000003
的铜层产生的应力为约250Mpa,而应力缓冲层142产生的应力为约-200Mpa,铜层和应力缓冲层142的应力抵消后,总应力只剩下约50Mpa。
图12示出了本公开的至少一个实施例提供的反射层170的截面示意图。如图12所示,反射层170可以包括在第三方向D3上顺次设置的第三绝缘层171、第二透明导电氧化物层172、第三金属层173和第三透明导电氧化物层174,并且相比于第三绝缘层171,第三透明导电氧化物层174更靠近第一电极层160。例如,发光驱动基板100包括出光侧(例如,图7中的上侧),反射层170可用于反射源于第一发光元件118的朝向背离出光侧方向传输的光线,并使得反射光朝向出光侧传输,由此可以提升包含该发光驱动基板100的发光基板的出光效率。
例如,第三金属层173可以由含银(Ag)金属层制成(例如,由Ag金属层制成)。例如,第二透明导电氧化物层172和第三透明导电氧化物层174可用于防止第三金属层173被氧化,例如,防止第三金属层173在第一发光元件118的第一端和第二端分别与焊盘和对置焊盘焊接过程中被氧化,由此可以提升发光驱动基板100的性能以及鲁棒性。例如,第二透明导电氧化物层172和第三透明导电氧化物层174可以由氧化铟锡(ITO)或氧化铟锌(IZO)制成。
本公开的发明人在研究中注意到,设置在第三金属层173的远离第二金属层152一侧的第三绝缘层171可以提升反射层170的反射率,并因此可以提升包含该发光驱动基板100的发光基板的出光效率。例如,第三绝缘层171可以由氮化硅(SiNx)制成。
例如,根据实际应用需求,在第一绝缘层143采用树脂制成的情况下,发光驱动基板100还可以包括防护层(图中未示出),且防护层设置在第二电极层150和第一绝缘层143之间。上述防护层用于防止电源走线和对置电源走线被树脂污染。例如,防护层可由氮化硅(SiNx)制成。
在一些示例中,发光驱动基板100还可以包括在第三方向D3上顺次设置的衬底基板141、第二电极层150、第一绝缘层143、第一电极层160、第二绝缘层144和反射层170,第二电极层150和第一电极层160分别仅包括铜金属层,上述相邻的膜层之间未设置其它膜层,由此相邻的膜层彼此接触。例如,第二电极层150的第三方向上的两侧别与衬底基板141和第一绝缘层143 直接接触。
图13示出了本公开的一些实施例提供的另一种发光驱动基板,图13示出的发光驱动基板与图3示出的发光驱动基板类似,在此仅阐述两者不同之处,相同之处不再赘述。
如图3和图13所示,图13示出的发光驱动基板与图3示出的发光驱动基板的区别包括以下三点。
首先,图13示出的示例性发光驱动基板仅包括四条对置电源走线,也即,与第一发光分区110至第4N+1发光分区211相连的第一对置电源走线116,与第二发光分区120至第4N+2发光分区212相连的第二对置电源走线126,与第三发光分区130至第4N+3发光分区213相连的第三对置电源走线136,以及与第四发光分区至第4N+4发光分区214相连的第四对置电源走线182,此处,N为正整数。
其次,发光驱动基板还包括第一电源连接走线201、第二电源连接走线202、第三电源连接走线203和第四电源连接204走线,第一发光分区110和第4N+1发光分区211经由第一电源连接走线201与第一对置电源走线116相连,第二发光分区120和第4N+2发光分区212经由第二电源连接走线202与第二对置电源走线126相连,第三发光分区130和第4N+3发光分区213经由第三电源连接走线203与第三对置电源走线136相连,第四发光分区和第4N+1发光分区214经由第四电源连接走线204与第四对置电源走线183相连。
此外,第一电源连接走线201、第二电源连接走线202、第三电源连接走线203和第四电源连接走线204具有相同的宽度。
例如,通过设置第一电源连接走线201、第二电源连接走线202、第三电源连接走线203和第四电源连接走线204,可以使得第一对置电源走线116、第二对置电源走线126、第三对置电源走线136和第四对置电源走线183分别与N个发光分区相连;此种情况下,可以减小对置电源走线的设置数目,并可以在发光驱动基板100上设置更多的电源走线和发光分区,因此可以减小每个发光分区驱动的发光元件的数目以及发光分区的尺寸,进一步地提升包括该发光驱动基板100的显示装置的显示质量。
需要说明的是,图13示出的发光驱动基板的不限于设置四根对置电源走线,且每根对置电源走线不限于与N个发光分区相连,根据实际应用需求, 发光驱动基板还可以设置其它数目的(例如,5个或3个)对置电源走线,并且与不同的对置电源走线相连的发光分区数目可以相等或不相等。
需要说明的是,在对置电源走线接收的第二电压较低时(例如,零伏),图3示出的发光驱动基板的对置电源走线也可以采用等线宽设计。
本公开的至少一个实施例还提供了一种发光基板,其包括本公开的任一实施例提供的发光驱动基板以及设置在第一发光分区中的多个第一发光元件和设置在第二发光分区中的多个第二发光元件。该发光基板可以实现为显示装置的背光模组或者显示面板,并且该背光模组可以用于例如液晶显示装置。
图14示出了本公开的至少一个实施例提供的一种发光基板。如图14所示,该发光基板包括本公开的任一实施例提供的发光驱动基板100。例如,该发光基板还包括设置多个发光分区上的多个发光元件。参考如图5A所示,该发光基板还包括在第一发光分区中的多个第一发光元件和设置在第二发光分区中的多个第二发光元件。所述第一发光元件的第一极与所述第一电接触部连接,所述第一发光元件的第二极与所述第一对置电接触部连接,所述第二发光元件的第一极与所述第二电接触部连接,所述第二发光元件的第二极与所述第二对置电接触部连接。
本公开的至少一个实施例还提供了一种显示装置,如图15所示,该显示装置包括本公开的任一实施例提供的发光基板10。
例如,在一些实施例中,该显示装置为液晶显示装置,包括液晶面板和设置在该液晶面板的非显示侧的背光模组,该液晶面板包括阵列基板与对置基板,二者彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。该对置基板例如为彩膜基板。该背光模组包括前述发光基板,例如可以用于实现HDR调光以用于显示操作。该液晶显示装置可以具有更均匀的背光亮度,具有更好的显示对比度。
在另一些实施例中,该显示装置为LED显示装置,包括前述发光基板,每个像素单元包括多个子像素,每个子像素例如包括一个发光元件,其可以例如用于发出红光(R)、绿光(G)和蓝光(B)。
本公开的至少一个实施例还提供了一种发光驱动基板的制作方法,所述发光驱动基板包括周边区域,所述方法包括:形成第一发光分区、第二发光分区、第一电源走线和第二电源走线。所述第一发光分区包括第一公共电极,所述第二发光分区包括第二公共电极;所述第一电源走线包括与所述第一公 共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收第一电源电压的第二端;所述第二电源走线包括与所述第二公共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收所述第一电源电压的第二端;所述第一电源走线的第一端和第二端之间的电阻等于所述第二电源走线的第一端和第二端之间的电阻,且所述第一电源走线的第一端和第二端之间的走线长度不等于所述第二电源走线的第一端和第二端之间的走线长度。
例如,第一发光分区、第二发光分区、第一电源走线和第二电源走线的具体设置方式可以参见发光驱动基板,在此不再赘述。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种发光驱动基板,包括第一发光分区、第二发光分区、周边区域、第一电源走线和第二电源走线,
    其中,所述第一发光分区包括第一公共电极,所述第二发光分区包括第二公共电极;
    所述第一电源走线包括与所述第一公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收第一电源电压的第二端;
    所述第二电源走线包括与所述第二公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第一电源电压的第二端;以及
    所述第一电源走线的第一端和第二端之间的电阻等于所述第二电源走线的第一端和第二端之间的电阻,且所述第一电源走线的第一端和第二端之间的走线长度不等于所述第二电源走线的第一端和第二端之间的走线长度。
  2. 根据权利要求1所述的发光驱动基板,其中,所述第一电源走线的第一端和第二端之间的走线长度与所述第二电源走线的第一端和第二端之间的走线长度的比值,等于所述第一电源走线的走线宽度与所述第二电源走线的走线宽度的比值。
  3. 根据权利要求1或2所述的发光驱动基板,还包括第三发光分区和第三电源走线,
    其中,所述第三发光分区包括第三公共电极;
    所述第三电源走线包括与所述第三公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第一电源电压的第二端;
    所述第三电源走线的第一端和第二端之间的电阻等于所述第一电源走线的第一端和第二端之间的电阻;以及
    所述第一电源走线的第一端和第二端之间的走线长度、所述第二电源走线的第一端和第二端之间的走线长度以及所述第三电源走线的第一端和第二端之间的走线长度彼此不同。
  4. 根据权利要求3所述的发光驱动基板,其中,所述第一电源走线的走线宽度、所述第二电源走线的走线宽度以及所述第三电源走线的走线宽度逐渐减小。
  5. 根据权利要求4所述的发光驱动基板,其中,所述第一电源走线的走 线宽度、所述第二电源走线的走线宽度以及所述第三电源走线的走线宽度呈等差数列减小。
  6. 根据权利要求1-5任一所述的发光驱动基板,还包括第一对置电源走线和第二对置电源走线,
    其中,所述第一发光分区还包括第一对置公共电极,所述第二发光分区还包括第二对置公共电极;
    所述第一对置电源走线包括与所述第一对置公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收第二电源电压的第二端;以及
    所述第二对置电源走线包括与所述第二对置公共电极电连接的第一端以及延伸至所述周边区域且配置为用于电连接以接收所述第二电源电压的第二端;
    所述第一对置电源走线的第一端和第二端之间的电阻等于所述第二对置电源走线的第一端和第二端之间的电阻,且所述第一对置电源走线的第一端和第二端之间的走线长度不等于所述第二对置电源走线的第一端和第二端之间的走线长度,所述第二电源电压低于所述第一电源电压。
  7. 根据权利要求6所述的发光驱动基板,其中,所述第一发光分区包括多个第一电接触部以及多个第一对置电接触部,所述多个第一电接触部的至少部分与所述第一公共电极连接,所述多个第一对置电接触部的至少部分与所述第一对置公共电极连接;以及
    所述第二发光分区包括多个第二电接触部以及多个第二对置电接触部,所述多个第二电接触部的至少部分与所述第二公共电极连接,所述多个第二对置电接触部的至少部分与所述第二对置公共电极连接。
  8. 根据权利要求7所述的发光驱动基板,其中,所述多个第一电接触部、所述多个第一对置电接触部、所述多个第二电接触部、所述多个第二对置电接触部、所述第一公共电极、所述第一对置公共电极、所述第二公共电极以及所述第二对置公共电极同层设置。
  9. 根据权利要求7所述的发光驱动基板,其中,所述第一发光分区和所述第二发光分区在第一方向并列布置;以及
    所述第一电源走线、所述第二电源走线、所述第一对置电源走线以及所述第二对置电源走线沿与所述第一方向交叉的第二方向并列布置。
  10. 根据权利要求6所述的发光驱动基板,其中,所述第一发光分区包括一个第一电接触部以及一个第一对置电接触部,所述一个第一电接触部的与所述第一公共电极连接,所述一个第一对置电接触部与所述第一对置公共电极连接;以及
    所述第二发光分区包括一个第二电接触部以及一个第二对置电接触部,所述一个第二电接触部与所述第二公共电极连接,所述一个第二对置电接触部与所述第二对置公共电极连接。
  11. 根据权利要求6-10任一所述的发光驱动基板,还包括衬底基板、第一绝缘层、第一电极层和第二电极层,
    其中,所述第一电极层位于所述第二电极层的远离所述衬底基板的一侧;
    所述第一电极层包括所述第一公共电极、所述第二公共电极、所述第一对置公共电极以及所述第二对置公共电极;
    所述第二电极层包括所述第一电源走线、所述第二电源走线、所述第一对置电源走线和所述第二对置电源走线;
    所述第一绝缘层设置在所述第一电极层和所述第二电极层之间,且包括所述第一过孔、第二过孔、第三过孔和第四过孔;以及
    所述第一电源走线与所述第一公共电极经由所述第一过孔电连接,所述第二电源走线与所述第二公共电极经由所述第二过孔电连接,所述第一对置电源走线与所述第一对置公共电极经由所述第三过孔电连接,所述第二对置电源走线与所述第二对置公共电极经由所述第四过孔电连接。
  12. 根据权利要求11所述的发光驱动基板,其中,所述第一电极层是采用第一导电层形成的,所述第一导电层包括第一金属层;以及
    所述第一导电层还包括与所述第一金属层叠置的第一透明导电氧化层,所述第一透明导电氧化层位于所述第一金属层的远离所述第二电极层的一侧。
  13. 根据权利要求11或12所述的发光驱动基板,其中,所述第二电极层是采用第二导电层形成的,所述第二导电层包括第二金属层;所述第二金属层的厚度大于所述第一金属层的厚度。
  14. 根据权利要求13所述的发光驱动基板,其中,所述第二导电层还包括在设置在所述第二金属层的靠近所述第一电极层的第一辅助电极层以及设置在所述第二金属层的远离所述第一电极层的第二辅助电极层。
  15. 根据权利要求14所述的发光驱动基板,其中,所述第二金属层与所述第一金属层均采用含铜金属制成;所述第一辅助电极层和所述第二辅助电极层均采用钼铌合金制成。
  16. 根据权利要求11-15任一所述的发光驱动基板,还包括反射层和第二绝缘层,
    其中,所述反射层设置在所述第一电极层的远离所述第二电极层一侧;所述第二绝缘层设置在所述第一电极层和所述反射层之间;
    所述反射层包括顺次设置的第三绝缘层、第二透明导电氧化物层、第三金属层和第三透明导电氧化物层;以及
    相比于所述第三绝缘层,所述第三透明导电氧化物层更靠近所述第一电极层。
  17. 根据权利要求9-16任一所述的发光驱动基板,还包括应力缓冲层和防护层,
    其中,所述应力缓冲层设置在所述衬底基板和所述第二电极层之间;所述防护层设置在所述第二电极层和所述第一绝缘层之间。
  18. 一种发光基板,包括如权利要求1-17任一所述的发光驱动基板以及设置在所述第一发光分区中的至少一个第一发光元件和设置在所述第二发光分区中的至少一个第二发光元件,
    其中,所述至少一个第一发光元件配置为接收所述第一电源走线的第一电源电压以发光,所述至少一个第二发光元件配置为接收所述第二电源走线的第一电源电压以发光。
  19. 一种显示装置,包括如权利要求18所述的发光基板。
  20. 一种发光驱动基板的制作方法,所述发光驱动基板包括周边区域,所述方法包括:
    形成第一发光分区、第二发光分区、第一电源走线和第二电源走线,
    其中,所述第一发光分区包括第一公共电极,所述第二发光分区包括第二公共电极;
    所述第一电源走线包括与所述第一公共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收第一电源电压的第二端;
    所述第二电源走线包括与所述第二公共电极电连接的第一端,以及延伸至所述周边区域用于电连接以接收所述第一电源电压的第二端;以及
    所述第一电源走线的第一端和第二端之间的电阻等于所述第二电源走线的第一端和第二端之间的电阻,且所述第一电源走线的第一端和第二端之间的走线长度不等于所述第二电源走线的第一端和第二端之间的走线长度。
PCT/CN2019/086452 2019-05-10 2019-05-10 发光驱动基板及其制作方法、发光基板和显示装置 WO2020227861A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980000617.4A CN110972495A (zh) 2019-05-10 2019-05-10 发光驱动基板及其制作方法、发光基板和显示装置
PCT/CN2019/086452 WO2020227861A1 (zh) 2019-05-10 2019-05-10 发光驱动基板及其制作方法、发光基板和显示装置
US16/766,197 US11588085B2 (en) 2019-05-10 2019-05-10 Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086452 WO2020227861A1 (zh) 2019-05-10 2019-05-10 发光驱动基板及其制作方法、发光基板和显示装置

Publications (1)

Publication Number Publication Date
WO2020227861A1 true WO2020227861A1 (zh) 2020-11-19

Family

ID=70038295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086452 WO2020227861A1 (zh) 2019-05-10 2019-05-10 发光驱动基板及其制作方法、发光基板和显示装置

Country Status (3)

Country Link
US (1) US11588085B2 (zh)
CN (1) CN110972495A (zh)
WO (1) WO2020227861A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990481B2 (en) 2020-09-18 2024-05-21 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, display panel and backlight module
US20240296781A1 (en) * 2022-05-27 2024-09-05 Boe Technology Group Co., Ltd. Light-emitting substrate and display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485467B2 (ja) * 2020-04-10 2024-05-16 京東方科技集團股▲ふん▼有限公司 駆動基板及びその製作方法並びに表示装置
CN111653600B (zh) * 2020-06-17 2023-08-29 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN113867043B (zh) * 2020-06-30 2023-01-10 京东方科技集团股份有限公司 发光基板及其制备方法、显示装置
CN111812888A (zh) * 2020-07-10 2020-10-23 深圳市华星光电半导体显示技术有限公司 Mini LED背光模组及其制备方法、显示面板
CN111929933B (zh) * 2020-08-18 2024-01-09 上海天马微电子有限公司 一种发光面板及显示装置
CN112505966B (zh) * 2020-12-02 2022-04-26 Tcl华星光电技术有限公司 背光模组及液晶显示面板
WO2022160216A1 (zh) * 2021-01-28 2022-08-04 京东方科技集团股份有限公司 阵列基板和显示装置
TWI790137B (zh) 2022-03-08 2023-01-11 群光電能科技股份有限公司 背光模組及其製造方法
CN117496886A (zh) * 2023-12-29 2024-02-02 元旭半导体科技股份有限公司 一种led显示屏显示性能提升方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079503A1 (en) * 2000-12-21 2002-06-27 Shunpei Yamazaki Light emitting device and method of manufacturing the same
CN1988744A (zh) * 2005-12-22 2007-06-27 Lg电子株式会社 包含具有相同电阻值的扫描线的有机电致发光器件
CN101865380A (zh) * 2010-05-20 2010-10-20 友达光电股份有限公司 电子照明装置
CN107870494A (zh) * 2017-11-30 2018-04-03 武汉天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN108389880A (zh) * 2018-02-23 2018-08-10 武汉华星光电半导体显示技术有限公司 一种oled显示面板及oled显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339880A (ja) 1997-06-09 1998-12-22 Hitachi Ltd 液晶表示装置
CN106531768A (zh) 2016-12-07 2017-03-22 厦门天马微电子有限公司 一种有机电致发光显示面板及其制备方法
CN107515701B (zh) * 2017-08-30 2020-01-24 京东方科技集团股份有限公司 触控显示面板及其驱动方法、制造方法、触控显示装置
CN109116626B (zh) * 2018-09-04 2021-08-10 京东方科技集团股份有限公司 一种背光源及其制作方法、显示装置
CN109585618B (zh) * 2018-11-15 2019-11-08 泉州三安半导体科技有限公司 一种高压发光二极管芯片以及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079503A1 (en) * 2000-12-21 2002-06-27 Shunpei Yamazaki Light emitting device and method of manufacturing the same
CN1988744A (zh) * 2005-12-22 2007-06-27 Lg电子株式会社 包含具有相同电阻值的扫描线的有机电致发光器件
CN101865380A (zh) * 2010-05-20 2010-10-20 友达光电股份有限公司 电子照明装置
CN107870494A (zh) * 2017-11-30 2018-04-03 武汉天马微电子有限公司 一种阵列基板、显示面板和显示装置
CN108389880A (zh) * 2018-02-23 2018-08-10 武汉华星光电半导体显示技术有限公司 一种oled显示面板及oled显示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990481B2 (en) 2020-09-18 2024-05-21 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, display panel and backlight module
US20240296781A1 (en) * 2022-05-27 2024-09-05 Boe Technology Group Co., Ltd. Light-emitting substrate and display device

Also Published As

Publication number Publication date
CN110972495A (zh) 2020-04-07
US20220005989A1 (en) 2022-01-06
US11588085B2 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
WO2020227861A1 (zh) 发光驱动基板及其制作方法、发光基板和显示装置
US10451257B2 (en) Micro-light-emitting diode backlight system
CN109031779B (zh) 发光二极管基板、背光模组和显示装置
WO2018072429A1 (zh) 显示面板及显示设备
US10529701B2 (en) MicroLED display panel
CN113805378B (zh) 发光基板及显示装置
CN103021334A (zh) 一种像素结构、像素单元结构、显示面板及显示装置
CN110632795B (zh) 背光源及其背板、制作方法
TWI711199B (zh) 微發光二極體顯示面板
US20240078960A1 (en) Display device
JP2007025697A (ja) ディスプレイ装置
WO2021190378A1 (zh) 发光基板、背光源和显示装置
CN112447144B (zh) 发光设备和具有其的显示设备
US20230267873A1 (en) Driving circuit and display panel
KR20220006164A (ko) 표시 장치
US20180102097A1 (en) Display device
WO2021098084A1 (zh) 一种显示面板及其制备方法、显示装置
CN111863862A (zh) 发光结构
JP2003295785A (ja) 有機el表示装置およびその駆動装置
US20230307597A1 (en) Display device using micro led
US7737443B2 (en) Light emitting device and method of manufacturing the same
KR20210080117A (ko) 가요성 평판 led 디스플레이에 대한 전극배선구조
KR100370034B1 (ko) 표시소자의 구동회로
CN113571620B (zh) 显示面板及显示装置
CN212967706U (zh) 一种led显示单元及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928707

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19928707

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19928707

Country of ref document: EP

Kind code of ref document: A1