WO2020221183A1 - 制冷电器和使噪声冲击最小化的方法 - Google Patents

制冷电器和使噪声冲击最小化的方法 Download PDF

Info

Publication number
WO2020221183A1
WO2020221183A1 PCT/CN2020/087127 CN2020087127W WO2020221183A1 WO 2020221183 A1 WO2020221183 A1 WO 2020221183A1 CN 2020087127 W CN2020087127 W CN 2020087127W WO 2020221183 A1 WO2020221183 A1 WO 2020221183A1
Authority
WO
WIPO (PCT)
Prior art keywords
fmu
speed gear
refrigeration appliance
fluid flow
predetermined
Prior art date
Application number
PCT/CN2020/087127
Other languages
English (en)
French (fr)
Inventor
布鲁克·理查德·达纳
Original Assignee
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202080032314.3A priority Critical patent/CN113767257B/zh
Priority to EP20798863.5A priority patent/EP3964778A4/en
Publication of WO2020221183A1 publication Critical patent/WO2020221183A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/30Insulation with respect to sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/04Controlling heat transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This subject generally relates to refrigeration appliances such as air-conditioning appliances and refrigerator appliances, and more specifically to features and methods for minimizing the impact of noise generated by such appliances.
  • refrigeration appliances include multiple fluid propelling units, such as pumps, compressors, or fans, that operate according to different speeds and schedules, these concerns may be exacerbated. Although such appliances can be more efficient than previous appliances because they can respond to different conditions (for example, ambient temperature, use load, etc.) and change their operation in response to these conditions, the noise generated may even be more easily affected. Perception. As an example, it may be more significant for the user to switch the speed of the fan instantaneously between multiple gears (for example, a low gear and a high gear), and then maintain the fan at a single speed gear.
  • multiple gears for example, a low gear and a high gear
  • variable noise level As another example, compared to when the fan and compressor are started at the same time, it may be more noticeable for the user to start the fan and the compressor separately, because multiple sudden increases in noise may attract the user's attention.
  • the obvious and instantaneous changes in noise generated by the appliance ie, variable noise level
  • the continuous noise level is in the order of magnitude (for example, as in decibels dB) The measured) is greater than the variable noise level. Therefore, the variable noise level will often bother the user and reduce the user's overall enjoyment of a given appliance.
  • a consumer appliance configured to solve one or more of the above-mentioned problems.
  • a refrigerating appliance with features for minimizing detectable shocks (e.g., auditory shocks perceived by the user) caused by one or more fluid pushing units in the refrigerating appliance
  • a method of operating a refrigeration appliance may include the following steps: activating a first fluid pushing unit (FMU) to generate a first fluid flow.
  • the method may further include the step of gradually increasing the speed gear of the first FMU to the first operating speed gear within the first predetermined ramp-up period at the first predetermined ramp-up rate.
  • the method may further include the step of starting the second FMU after starting the first FMU to generate a second fluid flow.
  • the method may further include the step of gradually increasing the speed gear of the second FMU to the second operating speed gear within a second predetermined ramp-up period at a second predetermined ramp-up rate.
  • a refrigerator appliance may include a housing, a first fluid pushing unit (FMU), a second FMU, and a controller.
  • the housing may define a refrigerating compartment.
  • the first FMU may be installed to the housing to generate the first fluid flow on the refrigeration appliance.
  • the second FMU may be installed to the housing separately from the first FMU to generate a second fluid flow on the refrigeration appliance.
  • the controller may operatively communicate with the first FMU and the second FMU.
  • the controller can be configured to initiate a cooling operation.
  • the cooling operation may include: activating the first FMU to generate the first fluid flow; gradually increasing the speed gear of the first FMU to the first operating speed gear within the first predetermined ramp period at the first predetermined ramp rate; After the first FMU is activated, the second FMU is activated to generate a second fluid flow; and the speed gear of the second FMU is gradually increased to the second operating speed gear within the second predetermined ramp period at a second predetermined ramp rate Bit.
  • Fig. 1 provides a perspective view of a refrigerator appliance according to an exemplary embodiment of the present disclosure.
  • Fig. 2 provides a front view of the exemplary refrigerator appliance of Fig. 1, wherein the refrigerator door and freezer door are shown in an open position.
  • Figure 3 provides a front schematic view of the exemplary refrigerator appliance of Figure 1 with the refrigerator door and freezer door removed for clarity.
  • Fig. 4 provides a rear schematic view of the exemplary refrigerator appliance of Fig. 1.
  • Figure 5 provides a schematic diagram of a sealed cooling system for an exemplary refrigerator appliance.
  • FIG. 6 provides a flowchart illustrating a method of operating a refrigeration appliance according to an exemplary embodiment of the present disclosure.
  • FIG. 7 provides a diagram illustrating the operation according to the exemplary embodiment of the present disclosure.
  • FIG. 1 provides a perspective view of a refrigeration appliance.
  • FIG. 1 provides a refrigerator appliance 100 according to an exemplary embodiment of the present disclosure.
  • Figure 2 provides a front view of the refrigerator appliance 100, in which the refrigerator door 128 and the freezer door 130 are shown in an open position.
  • the refrigerator appliance 100 includes a box or housing 102 that extends along the vertical direction V between the top 104 and the bottom 106, and extends along the lateral direction L between the first side 108 and the second side 110 , And extend along the transverse direction T between the front side 112 and the rear side 114.
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T are perpendicular to each other.
  • the housing 102 defines a refrigerating compartment for receiving food for storage.
  • the housing 102 defines a fresh food compartment 122 provided at or adjacent to the top 104 of the housing 102 and a freezing compartment 124 provided at or adjacent to the bottom 106 of the housing 102.
  • the refrigerator appliance 100 is generally called a bottom-mounted refrigerator.
  • the benefits of the present disclosure are applicable to other types and styles of refrigeration appliances (for example, top-mounted refrigerator appliances, side-by-side refrigerator appliances, integrated terminal air-conditioning appliances, integrated central air-conditioning appliances, split air-conditioning systems, etc.) . Therefore, the description set forth herein is for illustrative purposes only, and is not intended to be limited in any respect to any specific refrigeration appliance configuration.
  • the freezer compartment 124 generally extends between the left and right walls along the lateral direction L, extends between the bottom wall and the top wall along the vertical direction V, and opens in the compartment along the transverse direction T. Extending between and the back wall.
  • the refrigerator appliance 100 further includes a middle beam, which is disposed in the freezer compartment 124 to divide the freezer compartment 124 into a first freezer compartment and a second freezer compartment.
  • the center beam may generally extend between the chamber opening and the rear wall along the transverse direction T, and between the bottom wall and the top wall along the vertical direction V. In this way, the center beam may generally be oriented vertically and divide the freezer compartment 124 into two (e.g., equal-sized) compartments 180, 182 ( Figure 3).
  • the refrigerator door 128 is rotatably hinged to the edge of the housing 102 to selectively access the fresh food compartment 122.
  • the freezing door 130 is rotatably hinged to the edge of the housing 102 to selectively access the freezing compartment 124.
  • the refrigerator door 128, the freezer door 130, or the housing 102 may define one or more sealing mechanisms (for example, rubber gaskets) at the interface where the door 128, 130 meets the housing 102.
  • the refrigerator door 128 and the freezer door 130 are shown in the closed position in FIG. 1 and shown in the open position in FIG. 2.
  • the refrigerator appliance 100 further includes a dispensing assembly 132 for dispensing liquid water or ice.
  • the dispensing assembly 132 includes a dispenser 134 which is provided on the exterior of the refrigerator appliance 100 or mounted to the exterior (for example, on one of the refrigerator door bodies 128).
  • the dispenser 134 includes a drain 136 for obtaining ice and liquid water.
  • An actuation mechanism 138 shown as a paddle is installed under the discharge port 136 in order to operate the dispenser 134.
  • any suitable actuation mechanism may be used to operate the dispenser 134.
  • the dispenser 134 may include sensors (eg, ultrasonic sensors) or buttons instead of paddles.
  • the control panel 140 is provided to control the operation mode.
  • control panel 140 includes a plurality of user inputs (not labeled), such as a water dispensing button and an ice dispensing button, which are used to select a desired operation mode, such as crushed ice or non-crushed ice.
  • a desired operation mode such as crushed ice or non-crushed ice.
  • the discharge port 136 and the actuation mechanism 138 are external parts of the dispenser 134 and are installed in the dispenser recess 142.
  • the dispenser recess 142 is provided at a predetermined height, which is convenient for the user to take ice or water, and enables the user to take ice without bending over and without opening the refrigerator door 128.
  • the dispenser recess 142 is provided at a level close to the level of the user's chest.
  • the dispensing assembly 132 may receive ice from the ice maker 152, which is provided in a sub-chamber of the refrigerating chamber (for example, the fresh food chamber 122).
  • the ice maker 152 may include one or more water valves for selectively supplying liquid water for freezing. Additionally or alternatively, one or more heating elements 159 may be provided in the ice maker 152 or elsewhere in the refrigerator appliance 100 (for example, to selectively heat a part of the mold main body of the ice maker or the refrigerator appliance 100). Defrost various parts).
  • the refrigerator appliance 100 may further include a heating element 159 arranged in the fresh food compartment 122 or the freezing compartment 124.
  • the heating element 159 is generally configured to increase the temperature of the corresponding fresh food compartment 122 (for example, its evaporator) or the freezing compartment 124 (for example, its evaporator).
  • the heating element 159 may be provided to help prevent undesirable freezing of the evaporator 198 or promote its thawing (e.g., via conduction or by heating air circulating through the evaporator 198).
  • the heating element 159 may include one or more heating elements, such as a band resistance heater, a heating coil, or any other suitable heating element.
  • the refrigerator appliance 100 further includes a controller 144.
  • the operation of the refrigerator appliance 100 can generally be adjusted by the controller 144, which is operatively coupled to the control panel 140.
  • the control panel 140 represents a general purpose I/O ("GPIO") device or functional block.
  • the control panel 140 includes input components, such as one or more of various electrical, mechanical, or electromechanical input devices including rotary dials, buttons, touch pads, and touch screens.
  • the control panel 140 may communicate with the controller 144 via one or more signal lines or a shared communication bus.
  • the control panel 140 provides a selection for the user to manipulate the operation of the refrigerator appliance 100.
  • the controller 144 operates various components of the refrigerator appliance 100.
  • the controller 144 is operatively coupled or in communication with various components of the sealed cooling system 190 (FIGS. 3 and 4).
  • the controller 144 may also communicate with various sensors, such as, for example, a room temperature sensor 156 or an ambient temperature sensor 158.
  • the controller 144 may receive signals from these temperature sensors 156, 158, which correspond to the temperature of the atmosphere or air in the respective locations of the sensors.
  • the controller 144 may initiate one or more operations (eg, cooling operations) based on signals received from the control panel 140, the sensors 156, 158, or another suitable part of the refrigerator appliance 100.
  • the controller 144 includes a memory and one or more processing devices, such as a microprocessor, a CPU, etc., such as a general-purpose or special-purpose microprocessor, which is operable to execute programming instructions or micro-controls associated with the operation of the refrigerator appliance 100 Code.
  • the memory may mean random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes permanent programming instructions stored in memory.
  • the instructions include a software package that is used to run the refrigerator appliance 100 and, for example, execute a running routine including the example method 600 described below with reference to FIG. 6.
  • the memory may be a separate component from the processor, or may be included in the processor onboard.
  • the controller 144 can be constructed without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) To perform control functions instead of relying on software.
  • a microprocessor for example, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • various storage components are installed in the fresh food compartment 122 and the freezing compartment 124 to facilitate the storage of food therein.
  • the storage components include a box 146 installed in the fresh food compartment 122 or the freezing compartment 124, a drawer 148, and a shelf 150.
  • the box 146, the drawer 148, and the shelf 150 are used to receive food (for example, beverages or solid food), and can help organize these food categories.
  • the drawer 148 may receive fresh food (eg, vegetables, fruits, or cheese) and increase the service life of such fresh food.
  • FIGS. 3 to 5 a number of schematic diagrams of the refrigerator appliance 100 are provided, as examples of various parts of the sealed cooling system 190.
  • FIG. 3 provides a front schematic view illustrating the portion of the sealed cooling system 190 in or in thermal communication with the refrigerating compartment 122, the freezing compartment 124, or the like.
  • FIG. 4 provides a rear schematic diagram illustrating the sealing cooling system 190 on or in the rear of the refrigerator appliance 100 (for example, the machine room 200), which is separated from the refrigerator compartment 122 and the freezer compartment 124 (FIG. 3) section.
  • the sealed cooling system 190 is generally configured to perform a vapor compression cycle for cooling air in the refrigerator appliance 100 (for example, the fresh food compartment 122 and the freezing compartment 124).
  • One or more fluid pushing units (FMU) (for example, compressors, fans, blowers, pumps, etc.) are provided to push corresponding fluids (such as refrigerant fluid or air) through the sealed cooling system 190 (for example, as in the compression In the case of a fan) or through a part of the sealed cooling system 190 (e.g., as in the case of a fan).
  • FMU fluid pushing units
  • one or more FMUs are provided with multiple operating speed gear positions (for example, a low speed gear position, a middle speed gear position, and a high speed gear position).
  • Each operating speed gear may be a predetermined speed gear, which generally corresponds to a desired volumetric flow of fluid through or through the FMU.
  • the low-speed gear of the FMU can correspond to a relatively slow volume flow;
  • the medium-speed gear of the FMU can correspond to a medium volume flow, which is greater than the volume flow of the low-speed gear;
  • the high-speed gear of the FMU can correspond to a relatively low volume flow.
  • Fast volume flow which is greater than the volume flow in the low-speed gear or the middle gear.
  • one or more FMUs may be variable speed FMUs (eg, variable speed compressors, variable speed fans, variable speed blowers, variable speed pumps, etc.).
  • the sealed cooling system 190 includes at least one FMU (for example, the first FMU or compressor 192), a condenser 194, an expansion device 196, and an evaporator 198, which are connected in series and filled with refrigerant.
  • FMU for example, the first FMU or compressor 192
  • condenser 194 for example, the first FMU or compressor 192
  • expansion device 196 for example, the first FMU or compressor 192
  • evaporator 198 which are connected in series and filled with refrigerant.
  • gaseous refrigerant flows into the compressor 192 (e.g., configured as a variable speed compressor), which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through the condenser 194.
  • the condenser 194 heat exchange with surrounding air occurs to cool the refrigerant and condense the refrigerant into a liquid state.
  • at least one FMU e.g., the second FMU or condenser fan 218, is directed toward the condenser 194 (e.g., in the machine room 200) to selectively help heat exchange with the condenser 194 and ambient air .
  • the refrigerator appliance 100 may include a condenser fan 218 (e.g., configured as a variable-speed fan), which is in fluid communication with the machine compartment 200 to push air through the condenser 194.
  • the expansion device 196 may be configured as, for example, a valve, a capillary tube, or other restriction device that receives liquid refrigerant from the condenser 194.
  • the liquid refrigerant enters the evaporator 198 from the expansion device 196.
  • the pressure of the liquid refrigerant drops and evaporates. Due to the pressure drop and phase change of the refrigerant, the evaporator 198 is cooler than the fresh food compartment 122 and the freezing compartment 124 of the refrigerator appliance 100. It can be seen that cooling air is generated and the fresh food compartment 122 and the freezing compartment 124 of the refrigerator appliance 100 are cooled.
  • the evaporator 198 is a kind of heat exchanger that transfers heat from the air passing through the evaporator 198 to the refrigerant flowing through the evaporator 198.
  • the illustrated sealed cooling system 190 is only an exemplary configuration of the sealed cooling system 190, which may include additional components (for example, one or more additional evaporators, compressors, expansion devices, or condensers). ).
  • the sealed cooling system 190 may also include a reservoir 199.
  • the accumulator 199 may be provided downstream of the evaporator 198 and may be configured to collect the condensed refrigerant from the refrigerant flow before passing it to the compressor 192.
  • a part of the evaporator 198 may be disposed in the freezer compartment 124 (for example, adjacent to the rear wall of the inner container of the freezer compartment 124).
  • a portion of the evaporator 198 is disposed on or in the fresh food compartment 122 (for example, adjacent to the rear wall of the inner container of the fresh food compartment 122).
  • Other components of the sealed cooling system 190 may be located in the mechanical compartment 200 of the refrigerator appliance 100.
  • the evaporator 198 includes a first evaporator portion 204, a second evaporator portion 206, and a third evaporator portion 208.
  • the first evaporator section 204, the second evaporator section 206, and the third evaporator section 208 may be connected in fluid communication (for example, in series or parallel) so that the refrigerant is in the second evaporator section 206 or the third evaporator section 208
  • the first evaporator section 204 was passed first before.
  • the first evaporator part 204 is connected to the second evaporator part 206 and the third evaporator part 208 by fixed conduit branches.
  • the first evaporator section 204 is connected to the second evaporator section 206 and the third evaporator section 208 through a multi-way valve 210 for connecting The refrigerant is selectively guided to the second evaporator part 206 and the third evaporator part 208.
  • the first evaporator part 204 is disposed in the first freezing compartment 180
  • the second evaporator part 206 is disposed in the second freezing compartment 182
  • the third evaporator part 208 is disposed in the fresh food compartment 122.
  • any other suitable configuration for the evaporator 198 is possible and within the scope of the present disclosure.
  • the refrigerator appliance 100 may also include one or more FMUs, such as fans, to help circulate air through one or more of the evaporator 198 and the refrigerator compartment 122 and the freezer compartment 124.
  • the refrigerator appliance 100 may include at least one FMU (eg, a third FMU or a first fan 212) that is in fluid communication with the first evaporator part 204 so as to push air through the first evaporator part 204.
  • the first fan 212 is configured as a variable speed fan.
  • the refrigerator appliance 100 may include at least one FMU (eg, a fourth FMU or a second fan 214) that is in fluid communication with the second evaporator portion 206 to push air through the second evaporator portion 206.
  • the second fan 214 is configured as a variable speed fan.
  • the refrigerator appliance 100 may include at least one FMU (e.g., a fifth FMU or a third fan 216) that is in fluid communication with the third evaporator portion 208 to push air through the third evaporator ⁇ 208 ⁇ Part 208.
  • the third fan 216 is configured as a variable speed fan.
  • one or more fans in the refrigerator appliance 100 may be set to correspond to the corresponding heat exchangers (for example, the first evaporator part 204, the second evaporator Any suitable fan (e.g., axial flow fan, radial blower, etc.) in fluid communication with the condenser section 206, the third evaporator section 208, the condenser 194, etc.).
  • the first fan 212 may be an axial flow fan disposed between the first evaporator part 204 and the first freezing compartment 180 to selectively circulate air and promote the first evaporator part and the first freezer compartment. Heat exchange between freezer compartments.
  • the second fan 214 may be an axial fan disposed between the second evaporator part 206 and the second freezing compartment 182 to selectively circulate air and promote the interaction between the second evaporator part and the second freezing compartment 182. Heat exchange between the second freezer compartment.
  • the third fan 216 may be an axial fan, which is provided between the third evaporator part 208 and the fresh food compartment 122 to selectively circulate air and promote the third evaporator part and the fresh food compartment. Heat exchange between food compartments.
  • the condenser fan 218 may be an axial fan provided in the machine room 200 to circulate air therein.
  • FMUs for example, 192, 212, 214, 216, and 218, can usually be started and controlled according to the cooling requirements of the refrigerator appliance 100, as will be described below, the start and operation of the FMU (for example, the speed gear) can be staggered Or in order.
  • the method 600 provides a method for operating a refrigerating appliance, such as the refrigerator appliance 100 including multiple FMUs as described above (FIG. 1).
  • the method 600 may be executed by the controller 114 (FIG. 1), for example.
  • the controller 144 may be operatively coupled to one or more FMUs (eg, 192, 212, 214, 216, and 218), the room sensor 156, the environmental sensor 158, or the user control panel 140.
  • the controller 144 may send signals to or receive signals from the FMU (eg, 192, 212, 214, 216, and 218), the room sensor 156, the environmental sensor 158, or the user control panel 140.
  • the controller 144 can also be operatively coupled to other suitable components of the appliance 100 to facilitate the operation of the appliance 100 of the refrigerator.
  • the method 600 includes the steps of activating a first FMU to generate a first fluid flow.
  • the first FMU can start to operate at a standstill, so that the first fluid flow starts after being substantially at rest (for example, the fluid flow rate is zero).
  • the first FMU may be configured as, for example, a compressor, a fan, a blower, a pump, or any other actively powered component for pushing fluid (eg, refrigerant, water, air, etc.) through a relatively static body.
  • fluid eg, refrigerant, water, air, etc.
  • 610 may include activating the compressor so that the refrigerant flows through the sealed cooling system.
  • the first FMU is configured as a fan
  • 610 may include rotating the fan from a standstill so that it passes through the fan housing and generates active airflow in the corresponding chamber (eg, as described above).
  • the fan is a condenser fan.
  • the first FMU is set as the loudest one among the plurality of FMUs.
  • the first FMU can be the one that produces the highest magnitude in its corresponding operating speed gear (for example, as the user will assume during the use of the refrigeration appliance, as measured in decibels from the position in front of the refrigeration appliance) noisysy FMU.
  • 610 initiates or arouses by receiving a cooling signal.
  • a cooling signal can generally indicate that activation of one or more FMUs will be desired (e.g., to cool or otherwise reduce the temperature within a portion of the refrigeration appliance). As generally understood, it can be determined that cooling is necessary according to one or more methods or sequences.
  • the cooling signal indicates that the temperature detected by the corresponding temperature sensor at a part of the refrigeration appliance has risen above the set temperature limit.
  • the cooling signal may be received from one or more temperature sensors (such as the temperature sensors described above).
  • the cooling signal indicates that an ice dispensing operation has been initiated.
  • the cooling signal may be received from the dispenser in response to the user actuating the actuation mechanism or paddle.
  • activating the first FMU can mask the noise generated by the heating element, the movement of ice falling from or in the refrigerating appliance, the activation of the water valve that guides water to refill the ice maker, etc.
  • the method 600 includes the step of gradually increasing the speed gear of the first FMU to the first operating speed gear within a first predetermined ramp period at a first predetermined ramp rate.
  • 620 usually occurs after 610 and provides an operating speed gear greater than zero.
  • the first operating speed gear is a predetermined speed gear, which generally corresponds to a desired volume flow of fluid through or through the first FMU.
  • the first predetermined ramp rate is an increase rate of gradually increasing the speed gear of the first FMU (for example, from zero or stationary). The gradual increase may last for a few seconds (for example, 3 to 5 seconds) and stop in response to the first FMU reaching the first operating speed gear.
  • the first FMU may continue to operate at the first operating speed (for example, until a new operating speed gear is desired for the first FMU, the cooling operation ends, or it is no longer desired to start the first FMU ).
  • the gradual increase in speed may be less audibly perceptible (e.g., to the user) compared to an immediate and unlimited increase from a standstill to the first operating speed gear.
  • the method 600 includes the step of starting the second FMU after starting the first FMU (eg, to generate a second fluid flow).
  • 630 only occurs or starts after 610.
  • the second FMU can start to operate from a standstill, so that the second fluid flow starts after being substantially still (for example, the fluid flow rate is zero).
  • the second FMU may be provided as, for example, a compressor, a fan, a blower, a pump, or any other actively powered component for pushing fluid (eg, refrigerant, water, air, etc.) through a relatively static body.
  • 630 may include activating the compressor so that the refrigerant flows through the sealed cooling system.
  • the second FMU is configured as a fan
  • 630 may include rotating the fan from a standstill, so that it passes through the fan and generates active airflow in the corresponding chamber (eg, as described above).
  • at least a part of the noise generated by the second FMU may be masked by the noise generated by the first FMU.
  • the activation of the second FMU is delayed by a set sequential period (for example, defined in seconds).
  • a set sequential period for example, defined in seconds.
  • the second FMU can be kept inactive or prevented from starting in other ways.
  • the set sequence period may expire before the first FMU reaches the set operating speed gear.
  • 630 may occur during at least a part of 620.
  • the activation of the second FMU is initiated after the first FMU reaches the first operating speed gear.
  • 630 can occur after 620.
  • 630 occurs in response to 620 (e.g., immediately following).
  • 630 is further delayed until the set time period expires after the first FMU reaches the first operating speed gear.
  • the method includes the step of gradually increasing the speed gear of the second FMU to the second operating speed gear within a second predetermined ramp-up period at a second predetermined ramp-up rate.
  • 640 usually occurs after 630 and provides an operating speed gear greater than zero.
  • the second operating speed gear is a predetermined speed gear, which generally corresponds to fluid flowing through or through the second FMU (for example, with the first fluid flow or the first operating speed gear). Separate) desired volume flow.
  • the second predetermined ramp rate is an increase rate of gradually increasing the speed gear of the second FMU (for example, from zero or stationary). The gradual increase may last for a few seconds (for example, 3 to 5 seconds) and stop in response to the second FMU reaching the second operating speed gear.
  • the second FMU may continue to operate at the second operating speed (for example, until a new operating speed gear is desired for the second FMU, the cooling operation ends, or the second FMU is no longer expected to be activated ).
  • the gradual increase in speed may be less audibly perceptible (e.g., to the user) compared to the immediate and unlimited increase from a standstill to the second operating speed gear.
  • the activation of the second FMU may occur before the first FMU reaches the first operating speed gear.
  • 640 is initiated during the first predetermined ramp-up period. In an alternative embodiment, 640 is only initiated after the first FMU has reached the first operating speed gear.
  • the method 600 not only provides a gradual increase in the speed gears of the first FMU and the second FMU, but also provides a gradual decrease.
  • the gradual decrease can be performed after reaching the first operating speed gear and the second operating speed gear (for example, when the first FMU and the second FMU are moved in the first operating speed gear and the second operating speed gear, respectively) Runtime) starts.
  • the method 600 includes the steps of: gradually (eg, within a first predetermined reduction period, such as can be measured in seconds) from the first operating speed gear at a first predetermined reduction rate. The speed gear of the first FMU.
  • the gradual decrease may continue until, for example, the first FMU reaches a speed gear of zero or is otherwise inactive.
  • the method 600 may include the following steps: gradually (for example, within a second predetermined reduction period, such as can be measured in seconds) from the second operating speed gear at a second predetermined reduction rate to lower the second FMU Speed gear. The gradual decrease may continue until, for example, the second FMU reaches a speed gear of zero or is otherwise inactive.
  • a second predetermined reduction period such as can be measured in seconds
  • the gradual decrease of the second FMU may overlap with the gradual decrease of the first FMU.
  • the speed gear of the second FMU may also decrease.
  • the gradual lowering of the second FMU may only start after the gradual lowering of the first FMU has started.
  • the gradual decrease of the first FMU may be configured to end only after the gradual decrease of the second FMU ends.
  • the first FMU can remain active from the time before the second FMU is active to a later time after the second FMU is inactive.
  • the gradual decrease of the first FMU may be configured to occur within a predetermined period of time that corresponds to pressure equalization in the sealed cooling system (e.g., equalization between the evaporator and the condenser ).
  • the first FMU may be a condenser fan
  • the second FMU may be a compressor.
  • the condenser fan can remain active after the compressor reaches an inactive state and the pressure of the refrigerant in the corresponding sealed cooling system.
  • the noise generated by the first FMU can mask the noise generated by the second FMU or the sealed cooling system.
  • the first FMU is configured as a variable speed FMU.
  • the first FMU may have multiple first operating speed gears.
  • the first FMU may have a first low-speed gear, a first middle-speed gear, and a first high-speed gear.
  • the method 600 further includes the step of increasing the speed gear of the first FMU again (ie, after 620).
  • the speed gear of the first FMU may be increased from the first low-speed gear to the first middle-speed gear or the first high-speed gear.
  • Raising the speed gear of the first FMU again may also occur gradually (for example, within a predetermined time period equal to or different from the first predetermined time period at a predetermined ramp rate equal to or different from the first predetermined ramp rate, respectively) ).
  • the method 600 may further provide for reducing the speed gear of the first FMU (for example, lowering from the first high gear to the first intermediate gear or the first low gear) Bit).
  • the second FMU is configured as a variable speed FMU.
  • the second FMU may have multiple second operating speed gears.
  • the second FMU may have a second low-speed gear, a second middle-speed gear, and a second high-speed gear.
  • the method 600 further includes the step of increasing the speed gear of the second FMU again (ie, after 640).
  • the speed gear of the second FMU may be increased from the second low-speed gear to the second middle-speed gear or the second high-speed gear.
  • Raising the speed gear of the second FMU again may also occur gradually (for example, within a predetermined time period equal to or different from the second predetermined time period at a predetermined ramp rate equal to or different from the second predetermined ramp rate, respectively ).
  • the method 600 may further provide for reducing the speed gear of the second FMU (for example, lowering from the second high gear to the second middle gear or the second low gear) Bit).
  • the method 600 may include similar activation of other FMUs.
  • a third FMU may be set, and the method 600 may include the following steps: after the second FMU is started, the third FMU is started to generate a third fluid flow; and the third predetermined ramp rate is used for the third predetermined period of time.
  • the speed gear of the third FMU is gradually increased to the third operating speed gear.
  • additional FMUs may be similarly activated sequentially to gradually increase the speed.
  • one or more audible electronic components that generate one or more undesired noises at a substantially constant frequency can be selectively activated.
  • Water valve or heating element can be selectively activated.
  • the method 600 may include the following steps: activating the audio electronic component within a set delay period after 610.
  • the audible electronic component is activated during 620 or while the first FMU continues to operate in the first operating speed gear.
  • the heating element may be activated at the same time as the activation of the first FMU (e.g., condenser fan) (e.g., during or after 620) to perform a defrosting operation at the evaporator.
  • the activation of the acoustic electronic element can be adjusted to overlap with the operation of the first FMU, and at least a part of the noise generated by the acoustic electronic element can be advantageously masked by the noise generated by the first FMU.
  • an exemplary refrigeration appliance may include multiple FMUs, such as a first FMU, a second FMU, a third FMU, a fourth FMU, and a fifth FMU.
  • each FMU will produce a noise level of 0 when it is not running, but will generally increase noise production as the corresponding speed gear increases.
  • each FMU can be started separately.
  • the first FMU (for example, set as a compressor or alternatively set as a condenser fan) is activated and gradually increases the speed at a first predetermined ramp rate (ie, the speed gear gradually increases) , Until it reaches the running speed gear.
  • the second FMU (for example, set as a condenser fan or alternatively set as a compressor) is activated and gradually increases the speed at a second predetermined ramp rate until the second operating speed is reached So far.
  • the third FMU (for example, set as the first evaporator fan) is activated and gradually increases the speed at a third predetermined ramp rate until the third operating speed gear is reached until.
  • the fourth FMU (for example, set as the second evaporator fan) is activated and gradually increases the speed at a fourth predetermined ramp rate until the fourth operating speed gear is reached.
  • the fifth FMU (for example, set as the third evaporator fan) is activated and gradually increases the speed at a fifth predetermined ramp rate until the fifth operating speed gear is reached.
  • FIG. 7 illustrates a specific sequence of FMUs that are activated and increased in speed
  • alternative embodiments may provide any suitable sequence or speed increase among multiple FMUs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种制冷电器(100),包括壳体(102)、第一流体推动单元、第二流体推动单元以及控制器(144)。壳体(102)可以限定出冷藏室,第一流体推动单元和第二流体推动单元可以彼此分离地安装到壳体(102)。控制器(144)可以与第一流体推动单元和第二流体推动单元可操作地通信,控制器(144)可以被配置为发起冷却运行,冷却运行包括:启动第一流体推动单元以产生第一流体流动;以第一预定斜升率逐渐提高第一流体推动单元的速度档位;在启动第一流体推动单元之后,启动第二流体推动单元以产生第二流体流动;以及,逐渐提高第二流体推动单元的速度档位。

Description

制冷电器和使噪声冲击最小化的方法 技术领域
本主题总体涉及诸如空调电器和冰箱电器的制冷电器,并且更具体地涉及用于使由这种电器产生的噪声的冲击最小化的特征和方法。
背景技术
通常,制冷电器(例如,冰箱电器、空调电器等)产生的噪声量随着时间的流逝而减少。技术的进步允许现代消费电器产生比几年前大多数消费电器更少的噪声。先进的阻尼材料也减少了现代电器发出的可听噪声量。然而,来自制冷电器(例如,在容纳制冷电器的房间内)的过多或不期望的噪声仍然是用户经常关注的问题。
如果制冷电器包括根据不同的速度和时间表运行的多个流体推动单元,诸如泵、压缩机或风扇,则可能加剧这些关注的问题。虽然这种电器由于它们可以对不同的条件(例如,环境温度、使用负荷等)做出响应并响应于这些条件改变其运行而可以比以前的电器更高效,但所产生的噪声甚至可能更易被感知。作为示例,对于用户来说,可能更显著的是风扇的速度在多个档位(例如,低档位和高档位)之间瞬间切换,然后将风扇维持在单个速度档位。作为另一个示例,与同时启动风扇和压缩机时相比,对于用户来说可能更显著的是突然分别启动风扇和压缩机,因为噪声的多次突然增加可能引起用户的注意。在任一示例中,由电器产生的噪声的明显变化和即时变化(即,可变噪声级)可以比单个持续噪声级更易被感知,即使持续噪声级在量级(例如,如以分贝dB为单位测量的)上大于可变噪声级。因此,可变噪声级将经常打扰用户并降低用户对给定电器的整体享受。
已经尝试通过使用相位与噪声的相位相反的声音(例如,抗噪声信号)来掩蔽或消除噪声。然而,这种系统通常增加电器的整体复杂性和成本。比如,需要有源声源(诸如扬声器)来传输这种声音。这些部件可能特别增加材料成本和组装复杂性。而且,可能难以在要被掩蔽的声音的音量或频率迅速变化的环境中实施主动声音掩蔽。
因此,提供一种被构造为解决上述问题中的一个或多个的消费电器将是有用的。特别地,提供一种具有用于使可检测冲击(例如,用户感知的听觉冲击)最小化的特征的制冷电器可以是有利的,该冲击由制冷电器中的一个或多个流体推动单元引 起
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本公开的一个示例性方面中,提供了一种运行制冷电器的方法。该方法可以包括以下步骤:启动第一流体推动单元(FMU),以产生第一流体流动。方法还可以包括以下步骤:以第一预定斜升率在第一预定斜升时段内将第一FMU的速度档位逐渐提高到第一运行速度档位。方法还可以包括以下步骤:在启动第一FMU之后启动第二FMU,以产生第二流体流动。方法又可以包括以下步骤:以第二预定斜升率在第二预定斜升时段内将第二FMU的速度档位逐渐提高到第二运行速度档位。
在本公开的另一个示例性方面中,提供了一种冰箱电器。该冰箱电器可以包括壳体、第一流体推动单元(FMU)、第二FMU以及控制器。壳体可以限定冷藏室。第一FMU可以安装到壳体,以产生制冷电器上的第一流体流动。第二FMU可以与第一FMU分离地安装到壳体,以产生制冷电器上的第二流体流动。控制器可以与第一FMU和第二FMU可操作地通信。控制器可以被配置为发起冷却运行。冷却操作可以包括:启动第一FMU,以产生第一流体流动;以第一预定斜升率在第一预定斜升时段内将第一FMU的速度档位逐渐提高到第一运行速度档位;在启动第一FMU之后启动第二FMU,以产生第二流体流动;以及以第二预定斜升率在第二预定斜升时段内将第二FMU的速度档位逐渐提高到第二运行速度档位。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更好理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳模式。
图1提供了根据本公开的示例性实施方式的冰箱电器的立体图。
图2提供了图1的示例性冰箱电器的前视图,其中冰箱门体和冷冻门体被示出为处于打开位置。
图3提供了图1的示例性冰箱电器的前示意图,其中为了清楚起见,去除冰箱 门体和冷冻门体。
图4提供了图1的示例性冰箱电器的后示意图。
图5提供了用于示例性冰箱电器的密封冷却系统的示意图。
图6提供了例示了根据本公开的示例性实施方式的运行制冷电器的方法的流程图。
图7提供了例示了根据本公开的示例性实施方式的运行的图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。
现在转向附图,图1提供了制冷电器的立体图。具体地,图1提供了根据本公开的示例性实施方式的冰箱电器100。图2提供了冰箱电器100的前视图,其中冰箱门体128和冷冻门体130被示出为处于打开位置。
冰箱电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102限定用于接收食品以便储存的冷藏室。特别地,壳体102限定设置在壳体102的顶部104处或与其相邻设置的新鲜食物室122和设置在壳体102的底部106处或与其相邻设置的冷冻室124。由此可见,冰箱电器100通常被称为下置式冰箱。然而,认识到,本公开的益处适用于其他类型和样式的制冷电器(例如,上置式冰箱电器、对开门式冰箱电器、整体式末端空调电器、整体式中央空调电器、分体式空调系统等)。因此,本文阐述的描述仅出于例示性目的,而无意于在任何方面 限于任何特定的制冷电器构造。
在所例示的实施方式中,冷冻室124通常沿着侧向L在左壁与右壁之间延伸,沿着竖向V在底壁与顶壁之间延伸,并且沿着横向T在室开口与后壁之间延伸。在可选实施方式中,冰箱电器100还包括中梁,该中梁设置在冷冻室124内,以将冷冻室124分为第一冷冻室和第二冷冻室。可选地,中梁通常可以沿着横向T在室开口与后壁之间延伸,并且沿着竖向V在底壁与顶壁之间延伸。这样,中梁通常可以是竖直定向的,并且将冷冻室124分成两个(例如,尺寸相等)的室180、182(图3)。
冰箱门体128可旋转地铰接到壳体102的边缘,以便选择性地接近新鲜食物室122。类似地,冷冻门体130可旋转地铰接到壳体102的边缘,以便选择性地接近冷冻室124。为了防止冷空气泄漏,冰箱门体128、冷冻门体130或壳体102可以在门体128、130与壳体102相遇的界面处限定一个或多个密封机构(例如,橡胶垫圈)。冰箱门体128和冷冻门体130在图1中被示出为处于关闭位置,并且在图2中被示出为处于打开位置。
冰箱电器100还包括用于分配液态水或冰的分配组件132。分配组件132包括分配器134,该分配器被设置在冰箱电器100的外部上或安装到该外部(例如,在冰箱门体128中的一个上)。分配器134包括用于获取冰和液态水的排放口136。被示出为拨片的致动机构138安装在排放口136下方,以便操作分配器134。在另选示例性实施方式中,可以使用任意合适的致动机构来操作分配器134。例如,分配器134可以包括传感器(例如,超声传感器)或按钮,而不是拨片。设置控制面板140,以便控制操作模式。例如,控制面板140包括多个用户输入(未标记),诸如水分配按钮和冰分配按钮,这些用户输入用于选择期望的操作模式,诸如碎冰或非碎冰。
排放口136和致动机构138是分配器134的外部零件,并且安装在分配器凹部142中。分配器凹部142设置在预定高度处,该预定高度方便用户取冰或水,并且使得用户能够在不需要弯腰的情况下且在不需要打开冰箱门体128的情况下取冰。在示例性实施方式中,分配器凹部142设置在接近用户的胸部水平的水平处。根据示例性实施方式,分配组件132可以从制冰机152接收冰,该制冰机设置在冷藏室(例如,新鲜食物室122)的子室中。如将理解的,制冰机152可以包括一个或多个用于选择性地供应液态水以便冷冻的水阀。另外或另选地,可以在制冰机152内或在冰箱电器100内的别处设置一个或多个加热元件159(例如,以选择性地加热制冰机模具主体的部分或对冰箱电器100的各种部分除霜)。比如,冰箱电器100还可以包括 设置在新鲜食物室122或冷冻室124内的加热元件159。在这种实施方式中,加热元件159通常被构造为升高对应新鲜食物室122(例如,其蒸发器)或冷冻室124(例如,其蒸发器)的温度。另外或另选地,加热元件159可以被设置为帮助防止蒸发器198的不期望冻结或促进其解冻(例如,经由传导或通过加热穿过蒸发器198循环的空气)。通常,加热元件159可以包括一个或多个加热元件,诸如带状电阻加热器、加热线圈或任意其他合适的加热元件。
在一些实施方式中,冰箱电器100还包括控制器144。冰箱电器100的运行通常可以由控制器144来调节,该控制器可操作地耦合到控制面板140。在示例性实施方式中,控制面板140表示通用I/O(“GPIO”)装置或功能块。在其他示例性实施方式中,控制面板140包括输入部件,诸如包括旋转拨号盘、按钮、触摸板以及触摸屏的各种电气、机械或机电输入装置中的一个或多个。控制面板140可以经由一条或多条信号线或共享的通信总线与控制器144通信。控制面板140提供用于用户对冰箱电器100的运行的操纵的选择。响应于用户对控制面板140的操纵,控制器144运行冰箱电器100的各种部件。例如,如下面讨论的,控制器144与密封冷却系统190的各种部件可操作地耦合或通信(图3和图4)。控制器144还可以与各种传感器通信,诸如例如室温度传感器156或环境温度传感器158。控制器144可以从这些温度传感器156、158接收信号,这些信号对应于传感器各自位置内的大气或空气的温度。而且,控制器144可以基于从控制面板140、传感器156、158或冰箱电器100的另一个合适部分接收的信号来发起一个或多个运行(例如,冷却运行)。
控制器144包括存储器和一个或多个处理装置,诸如微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与冰箱电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一些实施方式中,处理器执行存储在存储器中的永久编程指令。对于某些实施方式,指令包括软件包,该软件包用于运行冰箱电器100,并且例如执行运行例程,该运行例程包括下面参照图6描述的示例方法600。存储器可以是与处理器分开的部件,或者可以机载地包括在处理器内。另选地,控制器144可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合;诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
在一些实施方式中,如本领域技术人员所知的,各种储存部件被安装在新鲜食物室122和冷冻室124内,以方便食品在其中的储存。特别地,储存部件包括安装 在新鲜食物室122或冷冻室124内的盒146、抽屉148以及层架150。盒146、抽屉148以及层架150用于接收食品(例如,饮料或固体食品),并且可以帮助组织这些食品类别。作为示例,抽屉148可以接收新鲜食品(例如,蔬菜、水果或奶酪),并且增加这种新鲜食品的使用寿命。
现在转向图3至图5,提供了冰箱电器100的多个示意图,以例示例如密封冷却系统190的各种部分。具体地,图3提供了前示意图,该前示意图例示了在冷藏室122、冷冻室124内或与其热连通的密封冷却系统190的部分。对于图3,注意的是,为了清楚起见,去除门体128、130(图1)。图4提供了后示意图,该后示意图例示了与冷藏室122、冷冻室124(图3)隔开的、冰箱电器100的后部(例如,机械室200)上或内的密封冷却系统190的部分。
密封冷却系统190通常被构造为执行蒸汽压缩循环,该蒸汽压缩循环用于冷却冰箱电器100内(例如,新鲜食物室122和冷冻室124内)的空气。设置一个或多个流体推动单元(FMU)(例如,压缩机、风扇、鼓风机、泵等),以推动对应的流体(诸如制冷剂流体或空气)穿过密封冷却系统190(例如,如在压缩机的情况下)或穿过密封冷却系统190的一部分(例如,如在风扇的情况下)。
在某些实施方式中,一个或多个FMU设置有多个运行速度档位(例如,低速档位、中速档位以及高速档位)。各个运行速度档位可以是预定速度档位,该预定速度档位通常对应于流体流经或流过FMU的期望体积流量。FMU的低速档位可以对应于相对较慢的体积流量;FMU的中速档位可以对应于中等体积流量,该中等体积流量大于低速档位的体积流量;FMU的高速档位可以对应于相对较快的体积流量,该体积流量大于低速档位或中等档位的体积流量。由此,一个或多个FMU可以是变速FMU(例如,变速压缩机、变速风扇、变速鼓风机、变速泵等)。
在所例示的实施方式中,密封冷却系统190包括至少一个FMU(例如,第一FMU或压缩机192)、冷凝器194、膨胀装置196以及蒸发器198,这些部件串联连接并填充有制冷剂。在一些实施方式中,在密封冷却系统190的运行期间,气态制冷剂流入压缩机192(例如,设置为变速压缩机)中,该压缩机192运行以增大制冷剂的压力。制冷剂的该压缩升高其温度,该温度通过使气态制冷剂穿过冷凝器194来降低。在冷凝器194内,发生与周围空气的热交换,以便冷却制冷剂并使得制冷剂冷凝为液态。在可选实施方式中,至少一个FMU(例如,第二FMU或冷凝器风扇218)指向冷凝器194(例如,在机械室200内),以选择性地帮助与冷凝器194和环境空气换热。例如,冰箱电器100可以包括冷凝器风扇218(例如,设置为变速风扇),该冷 凝器风扇与机械室200流体连通,以便推动空气穿过冷凝器194。
膨胀装置196可以被设置为例如阀、毛细管或从冷凝器194接收液态制冷剂的其他限制装置。液态制冷剂从膨胀装置196进入蒸发器198。在离开膨胀装置196并进入蒸发器198时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器198相对于冰箱电器100的新鲜食物室122和冷冻室124是凉的。由此可见,产生冷却空气并且对冰箱电器100的新鲜食物室122和冷冻室124进行制冷。由此,蒸发器198是一种热交换器,该热交换器将热量从经过蒸发器198的空气传递到流过蒸发器198的制冷剂。
应当理解,所例示的密封冷却系统190仅仅是密封冷却系统190的示例性构造,该密封冷却系统可以包括附加的部件(例如,一个或多个附加的蒸发器、压缩机、膨胀装置或冷凝器)。作为示例,密封冷却系统190还可以包括储液器199。储液器199可以设置在蒸发器198的下游,并且可以被构造为在将来自制冷剂流的冷凝制冷剂传递到压缩机192之前收集它。
总体参照图3和图4,蒸发器198的一部分可以设置在冷冻室124内(例如,与冷冻室124的内胆的后壁相邻)。在另外或另选的实施方式中,蒸发器198的一部分设置在新鲜食物室122上或内(例如,与新鲜食物室122的内胆的后壁相邻)。密封冷却系统190的其他部件(例如,压缩机192和冷凝器194)可以位于冰箱电器100的机械室200内。
在所例示的实施方式中,蒸发器198包括第一蒸发器部分204、第二蒸发器部分206以及第三蒸发器部分208。第一蒸发器部分204、第二蒸发器部分206以及第三蒸发器部分208可以流体连通地(例如,串联或并联)连接,使得制冷剂在第二蒸发器部分206或第三蒸发器部分208之前首先穿过第一蒸发器部分204。在示例性实施方式中,第一蒸发器部分204通过固定导管支路连接到第二蒸发器部分206和第三蒸发器部分208。在诸如图5所例示的实施方式的另选实施方式中,第一蒸发器部分204通过多路阀210连接到第二蒸发器部分206、第三蒸发器部分208,该多路阀用于将制冷剂选择性地引导到第二蒸发器部分206和第三蒸发器部分208。如图例示,第一蒸发器部分204设置在第一冷冻室180内,第二蒸发器部分206设置在第二冷冻室182内,并且第三蒸发器部分208设置在新鲜食物室122内。然而,应当理解,根据另选实施方式,用于蒸发器198的任意其他合适的构造是可能的并且在本公开的范围内。
冰箱电器100还可以包括一个或多个FMU,诸如风扇,以帮助使空气循环穿过蒸 发器198和冷藏室122、冷冻室124中的一个或多个。作为示例,冰箱电器100可以包括至少一个FMU(例如,第三FMU或第一风扇212),该FMU与第一蒸发器部分204流体连通,以便推动空气穿过第一蒸发器部分204。可选地,第一风扇212被设置为变速风扇。作为另外或另选示例,冰箱电器100可以包括至少一个FMU(例如,第四FMU或第二风扇214),该FMU与第二蒸发器部分206流体连通,以便推动空气穿过第二蒸发器部分206。可选地,第二风扇214被设置为变速风扇。作为另一个另外或另选示例,冰箱电器100可以包括至少一个FMU(例如,第五FMU或第三风扇216),该FMU与第三蒸发器部分208流体连通,以便推动空气穿过第三蒸发器部分208。可选地,第三风扇216被设置为变速风扇。
如所理解的,冰箱电器100内的一个或多个风扇(例如,风扇212、214、216、218)可以被设置为与对应的热交换器(例如,第一蒸发器部分204、第二蒸发器部分206、第三蒸发器部分208、冷凝器194等)流体连通的任意合适的风扇(例如,轴流风扇,径向鼓风机等)。作为示例,第一风扇212可以是轴流风扇,该轴流风扇设置在第一蒸发器部分204与第一冷冻室180之间,以选择性地循环空气并促进第一蒸发器部分与第一冷冻室之间的热交换。作为另一个示例,第二风扇214可以是轴流风扇,该轴流风扇设置在第二蒸发器部分206与第二冷冻室182之间,以选择性地循环空气并促进第二蒸发器部分与第二冷冻室之间的热交换。作为又一个示例,第三风扇216可以是轴流风扇,该轴流风扇设置在第三蒸发器部分208与新鲜食物室122之间,以选择性地循环空气并促进第三蒸发器部分与新鲜食物室之间的热交换。作为又一个示例,冷凝器风扇218可以是设置在机械室200内以使空气在其中循环的轴流风扇。
虽然FMU(例如,192、212、214、216以及218)通常可以根据冰箱电器100的冷却需求来启动和控制,但如下面将描述的,FMU的启动和运行(例如,速度档位)可以错开或按顺序排列。
现在转向图6,提供了根据本公开的示例性实施方式的方法600的流程图。通常,方法600提供了一种运行制冷电器的方法,该制冷电器诸如如上所述的包括多个FMU的冰箱电器100(图1)。方法600可以比如由控制器114(图1)执行。例如,如所讨论的,控制器144可以可操作地耦合到一个或多个FMU(例如,192、212、214、216以及218)、室传感器156、环境传感器158或用户控制面板140。在运行期间,控制器144可以向FMU(例如,192、212、214、216以及218)、室传感器156、环境传感器158或用户控制面板140发送信号或从其接收信号。控制器144通常还可 以可操作地耦合到电器100的其他合适部件,以便于冰箱电器100的运行。
在610处,方法600包括以下步骤:启动第一FMU,以产生第一流体流动。通常,第一FMU可以从静止开始运行,使得第一流体流动在大体静止(例如,流体流速为零)之后开始。第一FMU可以被设置为例如压缩机、风扇、鼓风机、泵或用于推动流体(例如,制冷剂、水、空气等)穿过相对静态的主体的任意其他以有源方式提供动力的部件。作为示例,如果第一FMU被设置为压缩机,则610可以包括启动压缩机,使得制冷剂流过密封冷却系统。作为另一个示例,如果第一FMU被设置为风扇,则610可以包括使风扇从静止旋转,使得穿过风扇外壳并且在对应的室(例如,如上所述)内产生主动气流。在一些这种实施方式中,如上所述,风扇是冷凝器风扇。
在某些实施方式中,第一FMU被设置为多个FMU中声音最大的一个。换言之,第一FMU可以是在其对应的运行速度档位下产生最高量级(例如,如用户将在使用制冷电器期间所假定的,如从制冷电器前面的位置以分贝为单位测量的)的噪声的FMU。
在一些实施方式中,610通过接收冷却信号来发起或激起。通常,冷却信号通常可以指示一个或多个FMU的启动将是期望的(例如,以冷却或以其他方式降低制冷电器的一部分内的温度)。如通常理解的,可以根据一个或多个方法或顺序来确定冷却是必要的。在可选实施方式中,冷却信号指示对应温度传感器在制冷电器的一部分处检测到的温度已经升高到设定温度极限以上。比如,冷却信号可以从一个或多个温度传感器(诸如上述温度传感器)接收。在另外或另选的实施方式中,冷却信号指示已经发起冰分配操作。比如,冷却信号可以响应于用户致动致动机构或拨片而从分配器接收。有利地,启动第一FMU可以掩蔽由加热元件、从制冷电器或在制冷电器内落下的冰的移动、引导水以重新注满制冰机的水阀的启动等产生的噪声。
在620处,方法600包括以下步骤:以第一预定斜升率在第一预定斜升时段内将第一FMU的速度档位逐渐提高到第一运行速度档位。由此,620通常在610后发生,并且提供大于零的运行速度档位。在一些实施方式中,第一运行速度档位是预定速度档位,该预定速度档位通常对应于流体流经或流过第一FMU的期望体积流量。第一预定斜升率是逐渐提高第一FMU的速度档位(例如,从零或静止)的提高率。逐渐提高可以持续几秒钟(例如,3到5秒),并且响应于第一FMU达到第一运行速度档位而停止。一旦达到第一运行速度档位,则第一FMU可以继续以第一运行速度运行(例如,直到对于第一FMU期望新的运行速度档位、冷却运行结束、或者不再期 望启动第一FMU为止)。有利地,与从静止到第一运行速度档位的即时无限制的提高相比,速度的逐渐提高可能在听觉上更不可感知(例如,对于用户而言)。
在630处,方法600包括以下步骤:在启动第一FMU之后启动第二FMU(例如,以产生第二流体流动)。换言之,630仅在610之后发生或开始。通常,第二FMU可以从静止开始运行,使得第二流体流动在大体静止(例如,流体流速为零)之后开始。第二FMU可以被设置为例如压缩机、风扇、鼓风机、泵或用于推动流体(例如,制冷剂、水、空气等)穿过相对静态的主体的任意其他以有源方式提供动力的部件。作为示例,如果第二FMU被设置为压缩机,则630可以包括启动压缩机,使得制冷剂流过密封冷却系统。作为另一个示例,如果第二FMU被设置为风扇,则630可以包括使风扇从静止旋转,使得穿过风扇并且在对应的室(例如,如上所述)内产生主动气流。有利地,由第二FMU产生的噪声的至少一部分可以被由第一FMU产生的噪声掩蔽。
在一些实施方式中,第二FMU的启动(即630)被延迟设定的顺序时段(例如,以秒为单位定义)。换言之,仅在设定的顺序时段到期时才可以允许630开始。在到期之前,可以将第二FMU保持为不活动或者以其他方式阻止其启动。可选地,设定的顺序时段可以在第一FMU达到设定的运行速度档位之前到期。由此,630可以在620的至少一部分期间发生。
在另选实施方式中,第二FMU的启动(即630)在第一FMU达到第一运行速度档位之后发起。换言之,630可以在620之后发生。在一些这种实施方式中,630响应于620(例如,紧随其后)发生。在其他实施方式中,630被进一步延迟,直到设定的时间段在第一FMU达到第一运行速度档位之后到期为止。
在640处,方法包括以下步骤:以第二预定斜升率在第二预定斜升时段内将第二FMU的速度档位逐渐提高到第二运行速度档位。由此,640通常在630后发生,并且提供大于零的运行速度档位。在一些实施方式中,第二运行速度档位是预定速度档位,该预定速度档位通常对应于流体流经或流过第二FMU(例如,与第一流体流动或第一运行速度档位分开)的期望体积流量。第二预定斜升率是逐渐提高第二FMU的速度档位(例如,从零或静止)的提高率。逐渐提高可以延续几秒钟(例如,3到5秒),并且响应于第二FMU达到第二运行速度档位而停止。一旦达到第二运行速度档位,则第二FMU可以继续以第二运行速度运行(例如,直到对于第二FMU期望新的运行速度档位、冷却运行结束、或者不再期望启动第二FMU为止)。有利地,与从静止到第二运行速度档位的即时无限制的提高相比,速度的逐渐提高可能在听觉上 更不可感知(例如,对于用户而言)。
如上所述,第二FMU的启动可以在第一FMU达到第一运行速度档位之前发生。在一些这种实施方式中,640在第一预定斜升时段期间发起。在另选实施方式中,640仅在第一FMU已经达到第一运行速度档位之后才发起。
在某些实施方式中,方法600不仅提供第一FMU和第二FMU的速度档位的逐渐提高,还提供逐渐降低。逐渐降低可以在达到第一运行速度档位和第二运行速度档位之后(例如,当第一FMU和第二FMU这两者分别以第一运行速度档位和第二运行速度档位活动地运行时)开始。在一些这种实施方式中,方法600包括以下步骤:以第一预定降低率从第一运行速度档位逐渐地(例如,在第一预定降低时段内,诸如可以以秒为单位测量的)降低第一FMU的速度档位。逐渐降低可以一直持续到例如第一FMU达到零的速度档位或者以其他方式不活动为止。类似地,方法600可以包括以下步骤:以第二预定降低率从第二运行速度档位逐渐地(例如,在第二预定降低时段内,诸如可以以秒为单位测量的)降低第二FMU的速度档位。逐渐降低可以一直持续到例如第二FMU达到零的速度档位或者以其他方式不活动为止。
可选地,第二FMU的逐渐降低可以与第一FMU的逐渐降低重叠。比如,随着第一FMU的速度档位降低,第二FMU的速度档位也可以降低。
另外或另选地,第二FMU的逐渐降低可以仅在第一FMU的逐渐降低已经开始之后开始。
而且另外或另选地,第一FMU的逐渐降低可以被配置为仅在第二FMU的逐渐降低结束之后才结束。由此,第一FMU可以从第二FMU活动之前的时间到第二FMU不活动之后的稍后时间保持活动。在一些这种实施方式中,第一FMU的逐渐降低可以被配置为在预定时间段内发生,该预定时间段对应于密封冷却系统内的压力均衡(例如,蒸发器与冷凝器之间的均衡)。例如,第一FMU可以是冷凝器风扇,而第二FMU可以是压缩机。由此,在压缩机达到不活动状态和对应密封冷却系统内的制冷剂压力之后,冷凝器风扇可以保持活动。
有利地,由第一FMU产生的噪声可以掩蔽由第二FMU或密封冷却系统产生的噪声。
在某些实施方式中,如上所述,第一FMU被设置为变速FMU。由此,第一FMU可以具有多个第一运行速度档位。作为示例,第一FMU可以具有第一低速档位、第一中速档位以及第一高速档位。在一些这种实施方式中,方法600还包括以下步骤:再次提高第一FMU的速度档位(即,在620之后)。例如,第一FMU的速度档位可以 从第一低速档位提高到第一中速档位或第一高速档位。再次提高第一FMU的速度档位也可以逐渐发生(例如,分别地,以等于或不同于第一预定斜升率的预定斜升率在等于或不同于第一预定时间段的预定时间段内)。类似地,如果方法600提供第一FMU的逐渐降低,则方法600可以进一步提供降低第一FMU的速度档位(例如,从第一高速档位降低到第一中速档位或第一低速档位)。
在另外或另选实施方式中,如上所述,第二FMU被设置为变速FMU。由此,第二FMU可以具有多个第二运行速度档位。作为示例,第二FMU可以具有第二低速档位、第二中速档位以及第二高速档位。在一些这种实施方式中,方法600还包括以下步骤:再次提高第二FMU的速度档位(即,在640之后)。例如,第二FMU的速度档位可以从第二低速档位提高到第二中速档位或第二高速档位。再次提高第二FMU的速度档位也可以逐渐发生(例如,分别地,以等于或不同于第二预定斜升率的预定斜升率在等于或不同于第二预定时间段的预定时间段内)。类似地,如果方法600提供第二FMU的逐渐降低,则方法600可以进一步提供降低第二FMU的速度档位(例如,从第二高速档位降低到第二中速档位或第二低速档位)。
注意,虽然图6处仅列出了两个FMU,但方法600可以包括另外FMU的类似启动。比如,可以设置第三FMU,并且方法600可以包括以下步骤:在启动第二FMU之后启动第三FMU,以产生第三流体流动;以及以第三预定斜升率在第三预定时间段内将第三FMU的速度档位逐渐提高到第三运行速度档位。在另外的示例中,如鉴于以上描述将理解的,可以类似地顺序启动另外的FMU,以逐渐提高速度。
在另外的实施方式中,作为方法600的一部分,可选择性地启动以大体恒定的频率产生一个或多个不期望的噪声的一个或多个有声电子元件(例如,如上所述的制冰机、水阀或加热元件)。比如,方法600可以包括以下步骤:在610之后的设定延迟时段内启动有声电子元件。在一些这种实施方式中,有声电子元件在620期间或在第一FMU继续以第一运行速度档位运行的同时启动。比如,可以在第一FMU(例如,冷凝器风扇)启动的同时(例如,在620期间或之后)启动加热元件,以便在蒸发器处进行除霜操作。由此,有声电子元件的启动可以被调整为与第一FMU的运行重叠,并且由有声电子元件产生的噪声的至少一部分可以有利地被由第一FMU产生的噪声掩蔽。
现在转向图7,该图例示了随着时间(如以秒为单位测量的)流逝由示例性制冷电器(例如,冰箱电器100-图1)产生的噪声(如以分贝为单位测量的)。如上所述,示例性制冷电器可以包括多个FMU,诸如第一FMU、第二FMU、第三FMU、第四FMU 以及第五FMU。而且,如所理解的,各个FMU在不运行时将产生0噪声级,但通常将随着对应速度档位提高而增加噪声产生。
通常,各个FMU可以单独启动。在所例示的图中,第一FMU(例如,被设置为压缩机或另选地设置为冷凝器风扇)被启动并以第一预定斜升率逐渐提高速度(即,速度档位逐渐提高),直到达到运行速度档位为止。随着第一FMU的速度提高,第二FMU(例如,被设置为冷凝器风扇或另选地设置为压缩机)被启动并以第二预定斜升率逐渐提高速度,直到达到第二运行速度档位为止。在第二FMU达到第二运行速度档位之后,第三FMU(例如,被设置为第一蒸发器风扇)被启动并以第三预定斜升率逐渐提高速度,直到达到第三运行速度档位为止。随着第三FMU的速度提高,第四FMU(例如,被设置为第二蒸发器风扇)被启动并以第四预定斜升率逐渐提高速度,直到达到第四运行速度档位为止。随着第四FMU的速度提高,第五FMU(例如,被设置为第三蒸发器风扇)被启动并以第五预定斜升率逐渐提高速度,直到达到第五运行速度档位为止。
注意,虽然图7例示了被启动并提高速度的特定顺序的FMU,但根据本公开,另选实施方式可以在多个FMU之间提供任意合适的顺序或速度提高。
本书面描述使用示例对本发明进行了公开(其中包括最佳模式),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种运行包括第一流体推动单元(FMU)和第二FMU的制冷电器的方法,所述方法可以包括以下步骤:
    启动所述第一FMU,以产生第一流体流动;
    以第一预定斜升率在第一预定斜升时段内将所述第一FMU的速度档位逐渐提高到第一运行速度档位;
    在启动所述第一FMU之后启动所述第二FMU,以产生第二流体流动;以及
    以第二预定斜升率在第二预定斜升时段内将所述第二FMU的速度档位逐渐提高到第二运行速度档位。
  2. 根据权利要求1所述的方法,还包括以下步骤:
    在所述制冷电器处接收冷却信号,其中,启动所述第一FMU响应于接收所述冷却信号。
  3. 根据权利要求1所述的方法,其中,所述制冷电器还包括第三FMU,并且其中,所述方法还包括以下步骤:
    在启动所述第二FMU之后启动所述第三FMU,以产生第三流体流动;以及
    以第三预定斜升率在第三预定时间段内将所述第三FMU的速度档位逐渐提高到第三运行速度档位。
  4. 根据权利要求1所述的方法,其中,所述第一FMU或所述第二FMU是与密封冷却系统流体连通的压缩机,并且其中,所述第一流体流动或所述第二流体流动是穿过所述密封冷却系统的制冷剂流动。
  5. 根据权利要求1所述的方法,其中,所述第一FMU或所述第二FMU是与冷藏室流体连通的风扇,并且其中,所述第一流体流动或所述第二流体流动是穿过所述冷藏室的空气流动。
  6. 根据权利要求1所述的方法,其中,所述制冷电器还包括有声电子元件,并且其中,所述方法还包括以下步骤:
    在启动所述第一FMU之后的设定延迟时段内启动所述有声电子元件。
  7. 根据权利要求1所述的方法,还包括以下步骤:
    以第一预定降低率在第一预定降低时段内从所述第一运行速度档位逐渐降低所述第一FMU的所述速度档位;以及
    在降低所述第一FMU的所述速度档位之前,以第二预定降低率在第二预定降低时段内从所述第二运行速度档位逐渐降低所述第二FMU的所述速度档位。
  8. 根据权利要求1所述的方法,其中,启动所述第二FMU在启动所述第一FMU之后的设定顺序时段内延迟。
  9. 根据权利要求1所述的方法,其中,启动所述第二FMU在所述第一FMU达到所述第一运行速度档位之后发起。
  10. 根据权利要求1所述的方法,其中,提高所述第二FMU的所述速度档位在所述第一预定斜升时段期间发起。
  11. 一种制冷电器,该制冷电器包括:
    壳体,该壳体限定冷藏室;
    第一流体推动单元(FMU),该第一FMU安装到所述壳体,以产生所述制冷电器上的第一流体流动;
    第二FMU,该第二FMU与所述第一FMU分离地安装到所述壳体,以产生所述制冷电器上的第二流体流动;以及
    控制器,该控制器与所述第一FMU和所述第二FMU可操作地通信,所述控制器被配置为发起冷却运行,所述冷却运行包括:
    启动所述第一FMU,以产生所述第一流体流动;
    以第一预定斜升率在第一预定斜升时段内将所述第一FMU的速度档位逐渐提高到第一运行速度档位;
    在启动所述第一FMU之后启动所述第二FMU,以产生所述第二流体流动;以及
    以第二预定斜升率在第二预定斜升时段内将所述第二FMU的速度档位逐渐提高到第二运行速度档位。
  12. 根据权利要求11所述的制冷电器,其中,所述冷却运行还包括:
    在所述制冷电器处接收冷却信号,其中,启动所述第一FMU响应于接收所述冷却信号。
  13. 根据权利要求11所述的制冷电器,还包括第三FMU,该第三FMU与所述第二FMU分离地安装到所述壳体,以产生所述制冷电器的第三流体流动,其中,所述冷却运行还包括:
    在启动所述第二FMU之后启动所述第三FMU,以产生所述第三流体流动;以及以第三预定斜升率在第三预定时间段内将所述第三FMU的速度档位逐渐提高到 第三运行速度档位。
  14. 根据权利要求11所述的制冷电器,其中,所述第一FMU或所述第二FMU是与密封冷却系统流体连通的压缩机,并且其中,所述第一流体流动或所述第二流体流动是穿过所述密封冷却系统的制冷剂流动。
  15. 根据权利要求11所述的制冷电器,其中,所述第一FMU或所述第二FMU是与冷藏室流体连通的风扇,并且其中,所述第一流体流动或所述第二流体流动是穿过所述冷藏室的空气流动。
  16. 根据权利要求11所述的制冷电器,还包括安装到所述壳体的有声电子元件,其中,所述冷却运行还包括:
    在启动所述第一FMU之后的设定延迟时段内启动所述有声电子元件。
  17. 根据权利要求11所述的制冷电器,其中,所述冷却运行还包括:
    以第一预定降低率在第一预定降低时段内从所述第一运行速度档位逐渐降低所述第一FMU的所述速度档位;以及
    在降低所述第一FMU的所述速度档位之前,以第二预定降低率在第二预定降低时段内从所述第二运行速度档位逐渐降低所述第二FMU的所述速度档位。
  18. 根据权利要求11所述的制冷电器,其中,启动所述第二FMU在启动所述第一FMU之后的设定顺序时段内延迟。
  19. 根据权利要求11所述的制冷电器,其中,启动所述第二FMU在所述第一FMU达到所述第一运行速度档位之后发起。
  20. 根据权利要求11所述的制冷电器,其中,提高所述第二FMU的所述速度档位在所述第一预定斜升时段期间发起。
PCT/CN2020/087127 2019-05-02 2020-04-27 制冷电器和使噪声冲击最小化的方法 WO2020221183A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080032314.3A CN113767257B (zh) 2019-05-02 2020-04-27 制冷电器和使噪声冲击最小化的方法
EP20798863.5A EP3964778A4 (en) 2019-05-02 2020-04-27 REFRIGERATION APPARATUS AND METHOD FOR REDUCING NOISE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/401,302 2019-05-02
US16/401,302 US10941981B2 (en) 2019-05-02 2019-05-02 Refrigeration appliances and methods of minimizing noise impact

Publications (1)

Publication Number Publication Date
WO2020221183A1 true WO2020221183A1 (zh) 2020-11-05

Family

ID=73016098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087127 WO2020221183A1 (zh) 2019-05-02 2020-04-27 制冷电器和使噪声冲击最小化的方法

Country Status (4)

Country Link
US (1) US10941981B2 (zh)
EP (1) EP3964778A4 (zh)
CN (1) CN113767257B (zh)
WO (1) WO2020221183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019006554A1 (de) * 2019-09-18 2021-03-18 Truma Gerätetechnik GmbH & Co. KG Heizvorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675511A (zh) * 2002-08-05 2005-09-28 Bsh博施及西门子家用器具有限公司 具有通风机的制冷设备和用于此的控制方法
US7490480B2 (en) * 2003-03-14 2009-02-17 Maytag Corporation Variable speed refrigeration system
CN102331152A (zh) * 2011-08-15 2012-01-25 海尔集团公司 冰箱启动控制方法
CN202267320U (zh) * 2011-09-27 2012-06-06 合肥美的荣事达电冰箱有限公司 制冷设备
EP2522942A1 (de) * 2011-05-11 2012-11-14 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
CN103438631A (zh) * 2013-09-02 2013-12-11 合肥美的电冰箱有限公司 具有低启动噪音的变频式的制冷设备
CN105444499A (zh) * 2015-12-25 2016-03-30 青岛海尔股份有限公司 风道系统、冰箱及其控制方法
CN109668373A (zh) * 2017-10-16 2019-04-23 海信(山东)冰箱有限公司 一种双系统风冷冰箱的控制方法及控制系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480752B2 (ja) 1994-12-08 2003-12-22 東芝デジタルメディアエンジニアリング株式会社 冷凍サイクル装置
US6883339B2 (en) * 2001-04-04 2005-04-26 Lg Electronics Inc. Method for controlling power saving operation of refrigerator with two evaporator
KR20050056722A (ko) 2003-12-10 2005-06-16 삼성전자주식회사 냉장고 및 그 제어 방법
KR20060128190A (ko) 2005-06-09 2006-12-14 위니아만도 주식회사 공기 조화기 소음 제어 방법
KR100766177B1 (ko) * 2006-08-04 2007-10-10 주식회사 대우일렉트로닉스 공기 조화기의 운전 제어 방법
US8640471B2 (en) * 2010-06-14 2014-02-04 Lg Electronics Inc. Control method for refrigerator
KR101663835B1 (ko) 2010-08-06 2016-10-14 엘지전자 주식회사 냉장고의 운전 제어 방법
US20120050037A1 (en) * 2010-09-01 2012-03-01 General Electric Company Critical peak pricing audio alert
EP2437008B1 (en) * 2010-10-04 2018-07-04 Whirlpool Corporation Refrigeration appliance with two evaporators in series and method for controlling such appliance
US9574814B2 (en) * 2012-07-10 2017-02-21 Samsung Electronics Co., Ltd. Refrigerator and control method for the same
CN103808095B (zh) * 2012-11-09 2017-09-22 博西华电器(江苏)有限公司 用于冰箱的方法
CN104956155B (zh) * 2012-12-21 2017-05-03 特灵国际有限公司 系统和用于控制包括可变速度压缩机的系统的方法
US9453661B2 (en) * 2013-03-12 2016-09-27 Haier US Appliance Solutions, Inc Control system for a dual evaporator refrigeration system
CN104359283B (zh) * 2014-11-14 2017-01-18 合肥美的电冰箱有限公司 风冷冰箱的控制方法、装置及风冷冰箱
CN104482714A (zh) * 2014-12-30 2015-04-01 合肥美的电冰箱有限公司 制冷部件控制方法、制冷部件控制装置和制冷设备
CN105758077A (zh) * 2016-04-13 2016-07-13 青岛海尔股份有限公司 冰箱及其控制方法
DE102016221616A1 (de) * 2016-11-04 2018-05-09 BSH Hausgeräte GmbH Kältegerät mit einem Geräuschsensor
CN109405408B (zh) * 2018-10-18 2021-01-01 长虹美菱股份有限公司 一种风扇电机转速控制方法及应用该方法的冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675511A (zh) * 2002-08-05 2005-09-28 Bsh博施及西门子家用器具有限公司 具有通风机的制冷设备和用于此的控制方法
US7490480B2 (en) * 2003-03-14 2009-02-17 Maytag Corporation Variable speed refrigeration system
EP2522942A1 (de) * 2011-05-11 2012-11-14 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
CN102331152A (zh) * 2011-08-15 2012-01-25 海尔集团公司 冰箱启动控制方法
CN202267320U (zh) * 2011-09-27 2012-06-06 合肥美的荣事达电冰箱有限公司 制冷设备
CN103438631A (zh) * 2013-09-02 2013-12-11 合肥美的电冰箱有限公司 具有低启动噪音的变频式的制冷设备
CN105444499A (zh) * 2015-12-25 2016-03-30 青岛海尔股份有限公司 风道系统、冰箱及其控制方法
CN109668373A (zh) * 2017-10-16 2019-04-23 海信(山东)冰箱有限公司 一种双系统风冷冰箱的控制方法及控制系统

Also Published As

Publication number Publication date
US20200348076A1 (en) 2020-11-05
US10941981B2 (en) 2021-03-09
CN113767257A (zh) 2021-12-07
EP3964778A4 (en) 2022-06-22
EP3964778A1 (en) 2022-03-09
CN113767257B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP6254404B2 (ja) 遮蔽装置およびそれを有する冷蔵庫
US8371136B2 (en) Ice producing method
US8161763B2 (en) Method for controlling a compressor and a control valve of a refrigerator
JP5826317B2 (ja) 冷蔵庫
KR0181522B1 (ko) 발효기능을 구비한 냉장고시스템
JP2017146094A (ja) 遮蔽装置およびそれを有する冷蔵庫
WO2020221183A1 (zh) 制冷电器和使噪声冲击最小化的方法
AU2014303819B2 (en) Refrigerator
JP6211872B2 (ja) 冷蔵庫
CN106687757A (zh) 具有可选的噪声发射的冷却设备
KR100678777B1 (ko) 냉장고
JP2007292333A (ja) 冷凍冷蔵庫
JP2006226622A (ja) 冷蔵庫
JP2011153788A (ja) 冷蔵庫
KR20160098783A (ko) 냉장고 및 그 제어방법
JP2021113629A (ja) 冷蔵庫
JP2006234213A (ja) 冷蔵庫
JP2016011830A (ja) 冷蔵庫
TWI394926B (zh) 電冰箱及其溫度控制方法
JP4568062B2 (ja) 冷蔵庫
KR20090074965A (ko) 직냉 및 간냉 겸용 냉장고
KR20240050936A (ko) 냉장고 및 냉장고의 제어방법
JP2006234219A (ja) 冷蔵庫
JP3563676B2 (ja) 冷蔵庫
JP2005337678A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798863

Country of ref document: EP

Effective date: 20211202