WO2020220975A1 - 电池模组、电池包及电路板 - Google Patents

电池模组、电池包及电路板 Download PDF

Info

Publication number
WO2020220975A1
WO2020220975A1 PCT/CN2020/084279 CN2020084279W WO2020220975A1 WO 2020220975 A1 WO2020220975 A1 WO 2020220975A1 CN 2020084279 W CN2020084279 W CN 2020084279W WO 2020220975 A1 WO2020220975 A1 WO 2020220975A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
hole
battery
circuit board
metal wire
Prior art date
Application number
PCT/CN2020/084279
Other languages
English (en)
French (fr)
Inventor
朱贤春
曾超
曹华
钱木
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020220975A1 publication Critical patent/WO2020220975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of energy storage devices, in particular to a battery module, a battery pack and a circuit board.
  • This application provides a battery module, a battery pack and a circuit board to solve the problems in the prior art and improve the accuracy of the thermal runaway alarm of the battery module.
  • a first aspect of the present application provides a battery module, which includes a plurality of battery cells stacked in sequence, and an explosion-proof valve is provided on the battery cells.
  • the battery module further includes a circuit board arranged above the battery cell, and a temperature sensing device is arranged on the circuit board, and the position of the temperature sensing device corresponds to the explosion-proof valve.
  • the temperature sensing device can be connected with the battery management system to form a loop, which can cause the loop to open when the explosion-proof valve bursts.
  • the temperature sensing device is a metal wire etched on the circuit board.
  • the circuit board includes a body and a through hole opened on the body, and the position of the through hole corresponds to the explosion-proof valve.
  • the temperature sensing device is a metal wire formed on the circuit board; the metal wire separates the through hole into a plurality of regions.
  • the metal wire is configured to be etched on the circuit board.
  • the multiple metal wires are parallel to each other and are all perpendicular to the extending direction of the through hole.
  • the metal wire is fixed on the body.
  • the metal wire is arranged above or below the through hole, and two ends of the metal wire are fixed to the two ends along the length direction of the body outside the through hole.
  • the metal wire extends along the length direction of the battery module, and the projection of the metal wire in the height direction of the battery module is partially located in the projection of the through hole in the height direction of the battery module. Inside.
  • the metal wire is arranged above or below the through hole, and two ends of the metal wire are fixed to two ends in the width direction of the body outside the through hole.
  • the metal wire extends along the width direction of the battery module, or the extending direction of the metal wire crosses the extending direction of the through hole, and the projection of the metal wire in the height direction of the battery module , Partly located within the projection of the through hole in the height direction of the battery module.
  • the body is provided with a pad, and the metal wire is fixed to the body through the pad.
  • the through hole includes a first through hole and a second through hole.
  • Both the first through hole and the second through hole are strip-shaped holes.
  • Both the first through hole and the second through hole extend along the direction in which the explosion-proof valves are arranged.
  • the material of the metal wire is any one of copper, aluminum or tin.
  • the battery module further includes a side plate fixed to the side of the battery cell, an end plate fixed to the end of the battery cell, and an isolation plate arranged above the battery cell.
  • An exhaust hole is provided on the isolation plate, and the exhaust hole corresponds to the explosion-proof valve.
  • the circuit board is arranged on the isolation board; the temperature sensing device corresponds to the exhaust hole.
  • a second aspect of the present application provides a battery pack, which includes a battery management system and the battery module described in any one of the above.
  • the temperature sensing device in the battery module is connected with the battery management system to form a loop.
  • a third aspect of the present application provides a circuit board, which is used for electrical connection with battery cells of a battery module, wherein a temperature sensing device is provided on the circuit board.
  • the temperature sensing device is used to connect with the battery management system to form a loop, which can cause the loop to open when the explosion-proof valve of the battery cell bursts.
  • the setting position of the temperature sensing device corresponds to the explosion-proof valve of the battery cell.
  • the battery module includes battery cells and a circuit board stacked in sequence, an explosion-proof valve is provided on the battery cells, and a temperature sensing device is provided on the circuit board.
  • the position of the temperature sensing device corresponds to the explosion-proof valve.
  • the temperature sensing device can be connected with the battery management system to form a loop.
  • FIG. 1 is a schematic structural decomposition diagram of a battery module provided by an embodiment of the application
  • Figure 2 is a main sectional view of the structure of a battery cell
  • FIG. 3 is a schematic diagram of the structure of the circuit board in the battery module shown in FIG. 1;
  • Figure 4 is an enlarged view of A in Figure 3;
  • Figure 5 is an enlarged view of B in Figure 3;
  • FIG. 6 is a schematic structural decomposition diagram of another battery module provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a circuit board in the battery module shown in FIG. 6;
  • FIG. 8 is a schematic structural diagram of yet another battery module provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the structure of the circuit board in the battery module shown in FIG. 8;
  • Figure 10 is a partial enlarged view of Figure 9;
  • Figure 11 is a schematic diagram of another circuit board structure.
  • FIG. 1 is a schematic structural decomposition diagram of a battery module provided by an embodiment of the application. As shown in FIG. 1, an embodiment of the application provides a battery module 1 including a plurality of battery cells 11 stacked in sequence.
  • FIGS. 1 and 2 is a main cross-sectional view of the structure of the battery cell.
  • an explosion-proof valve 111 is provided on the battery cell 11, where the battery cell 11 includes a housing 112, an electrode assembly 113, and a top cover assembly 114 , The explosion-proof valve 111 is arranged on the top cover assembly 114.
  • the housing 112 may have a hexahedral shape or other shapes.
  • the case 112 has an internal space that accommodates the electrode assembly 113 and the electrolyte.
  • the housing 112 may be made of materials such as aluminum, aluminum alloy, or plastic.
  • the electrode assembly 113 may be formed by spirally winding the first pole piece, the second pole piece, and the diaphragm together around a winding axis, wherein the diaphragm is an insulator interposed between the first pole piece and the second pole piece. The electrode assembly 113 reacts with the electrolyte to output electrical energy.
  • the battery module 1 also includes a circuit board 15 arranged above the battery cells 11.
  • the circuit board 15 may be in the form of an FPC or a PCB, with a thickness of 0.1-2 mm, and insulation greater than 500 M ⁇ .
  • the circuit board 15 is provided with a temperature sensing device 151.
  • the position of the temperature sensing device 151 corresponds to the explosion-proof valve 111.
  • the temperature sensing device 151 can be connected with the battery management system to form a loop, which can cause the circuit to be disconnected when the explosion-proof valve 111 bursts.
  • the battery module 1 may also include a side plate 12 fixed to the side of the battery cell 11, an end plate 13 fixed to the end of the battery cell 11, and an isolation plate 14 arranged above the battery cell 11.
  • the isolation plate 14 is provided with an exhaust hole (not shown) corresponding to the explosion-proof valve 111, the circuit board 15 is located on the isolation plate 14, the temperature sensing device 151 corresponds to the exhaust hole, and the upper cover 16 covers the temperature sensing device 151 and the isolation board 14 and fixed with the isolation board 14.
  • the temperature sensing device 151 is a metal wire 151a directly etched on the circuit board 15.
  • the metal wire 151a may be a copper wire.
  • the circuit board is etched, a copper wire is formed to connect each component.
  • an excess copper wire is directly formed during etching to connect with the battery management system to form the above-mentioned loop. Refer to the loop formed in FIG. 5 . In this way, when the battery module is thermally runaway, when the electrolyte is sprayed from the explosion-proof valve 111, the copper wire on the circuit board 15 can be fused, so that the thermal runaway state of the battery module can be accurately reflected.
  • the circuit board structure in the prior art can also be used without changing the structure of the existing circuit board, which is easier to implement.
  • the corresponding battery model The structure of other components on the group does not need to be changed, and the cost is lower.
  • the above-mentioned metal lines 151a are directly formed during the etching process of the circuit board, which can also minimize the etching area of the circuit board and improve the utilization rate of materials.
  • FIG. 6 is a structural exploded view of another battery module provided by an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a circuit board in the battery module shown in FIG.
  • the battery module 1 provided by the embodiment shown in FIG. 6 includes a battery cell 11, a side plate 12, an end plate 13, and an isolating plate 14.
  • the isolating plate 14 has an exhaust hole 141, and each battery cell 11 passes through a confluence Row 17 is connected in series or in parallel.
  • the battery module 1 further includes a circuit board 15 on which a temperature sensing device 151 is provided.
  • the temperature sensing device 151 may be a metal wire 151a that can be connected to the battery management system to form a loop.
  • the circuit board 15 includes a body 152 and a through hole 153 opened on the body 152, and the position of the through hole 153 corresponds to the explosion-proof valve 111.
  • the temperature sensing device 151 is a metal wire 151 a formed on the circuit board 15, and the metal wire 151 a divides the through hole 153 into a plurality of regions.
  • the metal line 151a may be directly formed during the etching process of the circuit board.
  • the metal line 151a may be a curved shape, such as an S shape, which separates the through hole 153 into multiple regions.
  • the metal line 151a may also be 6 and 7, by providing through holes 153 on the body 152 of the circuit board 15, and multiple metal wires 151a divide the through holes 153 into multiple regions, and the electrolyte is When the explosion-proof valve erupts, it can reduce the area that the electrolyte breaks through, and more directly and promptly fuse the metal wire 151a, thereby disconnecting the loop formed by the metal wire 151a and other parts of the circuit board 15, so as to quickly alarm. Timely and accurately reflect the thermal runaway state of the battery module.
  • the metal wire 151a is configured to be etched on the circuit board 15. During the etching of the circuit board 15, the metal wire 151a and the through hole 153 are directly formed. In multiple areas, the circuit board structure in the prior art can be used without structural changes to the existing circuit board, which is easier to implement. The structure of other components on the corresponding battery module does not need to be changed, and the cost is relatively high. low.
  • the metal wire 151a is configured to be etched on the circuit board 15.
  • the metal wire 151a is located in the through hole 153 and is integrally formed with the body 152.
  • the metal wire 151a is arranged inside the through hole 153, so that the upper and lower surfaces of the metal wire 151a are flush with the body 152 of the circuit board 15, and will not protrude from the surface of the body 152 of the circuit board 15, thereby reducing the occupied space , Improve the energy density of the battery module 1.
  • each metal wire 151a there are multiple metal wires 151a, and the multiple metal wires 151a are parallel to each other and are all perpendicular to the extending direction of the through hole 153 (the extending direction of the through hole 153 is shown in the X direction in FIG. 7).
  • each metal wire 151a can correspond to one explosion-proof valve 111. In this way, after any battery cell 11 has a thermal runaway, the circuit can be cut off, thereby reflecting the thermal runaway state in time.
  • FIG. 8 is a schematic structural diagram of another battery module provided by an embodiment of the application
  • FIG. 9 is a schematic structural diagram of a circuit board in the battery module shown in FIG. 8
  • FIG. 10 is a partial enlarged view of FIG. 9.
  • the metal wire 151a can also be fixed on the body 152 of the circuit board 15 after the circuit board 15 is etched.
  • the circuit board 15 includes a body 152 and a through hole 153 opened on the body, and the position of the through hole 153 corresponds to the explosion-proof valve 111.
  • the temperature sensing device 151 includes a metal wire 151 a disposed at the through hole 153, and the metal wire 151 a is fixed on the body 152.
  • the metal wire 151a may be disposed above or below the through hole 153, and two ends of the metal wire 151a are fixed to the two ends of the body 152 outside the through hole 153 along the length direction.
  • the metal wire 151a can be a metal wire 151a extending along the length direction of the battery module 1 (X direction in FIG. 8), and a metal wire 151a crossing the through hole 153 along the length direction of the through hole 153. After a plurality of explosion-proof valves 111 are crossed, any battery cell 11 undergoing thermal runaway will melt the metal wire 151a, thereby reflecting the thermal runaway state in time. At the same time, the projection of the metal wire 151a in the height direction of the battery module 1 (Z direction in FIG. 8) is partially located in the through hole 153 in the height direction of the battery module 1 (Z direction in FIG. 8).
  • the metal wire 151a roughly passes through the center position of all the explosion-proof valves 111, which can more accurately reflect the thermal runaway state of the battery module 1.
  • the metal wire 151a crosses multiple explosion-proof valves will cause insufficient strength of the metal wire 151a, it is possible to make a metal wire 151a cross over 2-
  • the three explosion-proof valves not only ensure the strength of the metal wire 151a, but also reflect the thermal runaway of the battery module in time.
  • FIG. 11 is a schematic diagram of another circuit board structure.
  • the metal wire 151a is arranged above or below the through hole 153, and both ends of the metal wire 151a are fixed on the body 152 outside the through hole 153 Both ends in the width direction (Y direction in FIG. 18).
  • the extension direction of the metal line 151a crosses the extension direction of the through hole 153, and the projection of the metal line 151a in the height direction of the battery module 1 (refer to the Z direction in FIG. 8) is located in the through hole 153 in the battery Within the projection in the height direction of the module 1.
  • the metal lines 151a extend along the width direction of the battery module 1 (the Y direction in FIG. 8), so that the extension direction of the metal lines 151a can be perpendicular to the extension direction of the through holes 153, so that each metal line 151a A single battery cell 11 can be monitored.
  • the extending direction of the metal wire 151a may also cross the extending direction of the through hole 153, that is, it is not perpendicular but has a certain angle, so that one metal wire 151a can monitor two or three battery cells 11 at the same time.
  • the projection of the metal wire 151a in the height direction (Z direction) of the battery module 1 is partially located within the projection of the through hole 153 in the height direction (Z direction) of the battery module 1.
  • a pad 154 is provided on the body 152, and the metal wire 151a can be fixed to the body 152 of the circuit board 15 through the pad 154.
  • the metal wire 151a may be made of a material with good conductivity such as aluminum or tin, and is fixed to the main body 152 through the pad 154.
  • the through hole 153 optionally includes a first through hole 153a and a second through hole 153b.
  • the first slot hole 153a and the second slot hole 153b may both be strip-shaped holes.
  • the centers of the first through hole 153a and the second through hole 153b The lines all extend along the direction in which the explosion-proof valves 111 are arranged.
  • the size of the first through hole 153a is relatively large, and may be elongated, extending along the direction in which the explosion-proof valves 111 are arranged. In this way, the first through hole 153a can simultaneously correspond to a plurality of explosion-proof valves 111, and the processing of the circuit board 15 is also easier.
  • the through hole 153 may also include a third through hole and the like.
  • the number of through holes can be set according to the number of explosion-proof valves.
  • the through holes can correspond to the explosion-proof valves one-to-one, or a larger-sized through hole can correspond to multiple explosion-proof valves 111 at the same time, for example, the first one in this embodiment
  • the through hole 153a can correspond to multiple explosion-proof valves 111 at the same time. It is also possible to provide a through hole with a smaller size corresponding to only one explosion-proof valve 111, such as the second through hole 153b in this embodiment.
  • the aforementioned metal wire 151a may also be provided in the second through hole 153b, and the metal wire 151a may be directly formed in the second through hole 153b.
  • the size of the second through hole 153b can be set according to the layout of the circuit board 15, for example, smaller than the size of the first through hole 153a.
  • the arrangement of the metal line 151a in the second through hole 153b is the same as the metal line 151a in the first through hole 153a.
  • the settings can be the same or different, so I won’t repeat them here.
  • the embodiment of the present application also provides a battery pack, including a battery management system and the battery module 1 provided in any embodiment of the present application.
  • the temperature sensing device 151 in the battery module 1 is connected to the battery management system to form a loop.
  • the battery management system sends the first alarm signal to the vehicle control module, and the vehicle control module can make corresponding control based on the first alarm signal, such as issuing an alarm to the occupants, or performing emergency braking on the vehicle, etc. .
  • the battery pack provided in the embodiment of the present application further includes a temperature alarm device and a voltage alarm device.
  • the temperature alarm device can be a thermocouple, a thermistor, or a bimetallic thermometer, etc., which is used to monitor the temperature of the battery module and send a second alarm signal to the battery management system when the temperature exceeds a set temperature threshold.
  • the above-mentioned temperature alarm device can detect the temperature of -40°C to 600°C, and is connected to the pole on the battery cell through processes such as welding and bonding to collect the temperature of the battery cell.
  • the voltage alarm device is used to monitor the voltage of the battery module and send a third alarm signal to the battery management system when the voltage exceeds a set voltage threshold.
  • the battery management system can transmit the above-mentioned alarm signal to the vehicle control module.
  • the temperature alarm device is electrically connected to the circuit board through the pad 155 connected to the temperature alarm device, and the voltage alarm device is electrically connected to the circuit board through the pad 156 connected to the voltage alarm device.
  • the embodiment of the application also provides a circuit board, which is used to electrically connect with the battery cells of the battery module, wherein the circuit board is provided with a temperature sensing device; the temperature sensing device is used to connect with the battery management system to form a loop , When the explosion-proof valve of the battery cell bursts, the circuit can be disconnected.
  • the setting position of the temperature sensing device corresponds to the explosion-proof valve of the battery cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及储能器件领域,尤其涉及一种电池模组、电池包及电路板,电池模组包括:依次堆叠的多个电池单体,所述电池单体上设置有防爆阀;所述电池模组还包括设置在所述电池单体上方的电路板,所述电路板上设置有感温装置,所述感温装置的位置对应于所述防爆阀;所述感温装置能够与电池管理系统连接形成回路,在所述防爆阀爆破时能够引发所述回路断路。本申请提供的电池模组及电池包,在电池模组发生热失控时,感温装置与电池管理系统形成的回路发生断路,提高了电池模组的热失控报警的准确性。

Description

电池模组、电池包及电路板
本申请要求于2019年04月30日提交中国专利局、申请号为201910361871.9、申请名称为“电池模组及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能器件领域,尤其涉及一种电池模组、电池包及电路板。
背景技术
目前,随着动力电池的能量密度越来越高,市场对电池安全性的需求越来越高。在发生滥用时,电池容易发生热失控,快速的形成高温及破坏力,可能烧穿电池箱上盖,发生着火,造成极大的安全事故。
现有技术中,仅在电池模组的内部进行温度采集,将采集到的信号传递给整车控制系统,但是有时会发生虚假信号的情况,导致误判。
发明内容
本申请提供了一种电池模组、电池包及电路板,以解决现有技术中的问题,提高电池模组的热失控报警准确性。
本申请第一方面提供了一种电池模组,其中,包括:依次堆叠的多个电池单体,所述电池单体上设置有防爆阀。
所述电池模组还包括设置在所述电池单体上方的电路板,所述电路板上设置有感温装置,所述感温装置的位置对应于所述防爆阀。
所述感温装置能够与电池管理系统连接形成回路,在所述防爆阀爆破时能够引发所述回路断路。
可选地,所述感温装置为刻蚀在所述电路板上的金属线。
可选地,所述电路板包括本体和开设在所述本体上的通孔,所述通孔的位置对应于所述防爆阀。
所述感温装置为形成在所述电路板上的金属线;所述金属线将所述通 孔分隔为多个区域。
可选地,所述金属线被配置为刻蚀在所述电路板上。
可选地,所述金属线为多根,多根所述金属线相互平行,且均垂直于所述通孔延伸的方向。
可选地,所述金属线固定在所述本体上。
可选地,所述金属线设置在所述通孔的上方或下方,且所述金属线的两端固定在所述通孔外的本体上沿长度方向的两端。
可选地,所述金属线沿电池模组的长度方向延伸,且所述金属线在电池模组的高度方向上的投影,部分位于所述通孔在电池模组的高度方向上的投影之内。
可选地,所述金属线设置在所述通孔的上方或下方,且所述金属线的两端固定在所述通孔外的本体上沿宽度方向的两端。
可选地,所述金属线沿电池模组的宽度方向延伸,或所述金属线的延伸方向与所述通孔延伸的方向交叉,且所述金属线在电池模组的高度方向上的投影,部分位于所述通孔在电池模组的高度方向上的投影之内。
可选地,其特征在于,所述本体设置有焊盘,所述金属线通过所述焊盘与所述本体固定。
可选地,所述通孔包括第一通孔和第二通孔。
所述第一通孔和所述第二通孔均为条形孔。
所述第一通孔和所述第二通孔均沿所述防爆阀排列的方向延伸。
可选地,所述金属线的材质为铜、铝或锡中的任一种。
可选地,所述电池模组还包括固定于所述电池单体边侧的侧板、固定于所述电池单体端部的端板以及设置于所述电池单体上方的隔离板。
所述隔离板上设置有排气孔,所述排气孔与所述防爆阀对应。
所述电路板设置在所述隔离板上;所述感温装置与所述排气孔相对应。
本申请第二方面提供了一种电池包,其中,包括电池管理系统和上述任一项所述的电池模组。
所述电池模组中的感温装置与所述电池管理系统连接形成回路。
本申请第三方面提供了一种电路板,所述电路板用于与电池模组的电池单体电气连接,其中,所述电路板上设置有感温装置。
所述感温装置用于与电池管理系统连接形成回路,在电池单体的防爆 阀爆破时能够引发所述回路断路。
可选地,所述感温装置的设置位置与所述电池单体的防爆阀相对应。
本申请提供的技术方案可以达到以下有益效果:
本申请提供的电池模组、电池包及电路板中,电池模组包括依次堆叠的电池单体以及电路板,电池单体上设置有防爆阀,电路板上设置有感温装置。感温装置的位置对应于防爆阀,感温装置能够与电池管理系统连接形成回路,在电池单体的防爆阀爆破时,电池单体内喷出的气体、液体或者火能引发回路发生断路,进而可以报警,提高了电池模组的热失控报警的准确性。
除了上面所描述的本发明实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本发明实施例提供的电池模组、电池包及电路板所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作出进一步详细的说明。
附图说明
图1为本申请实施例提供的一种电池模组的结构分解示意图;
图2为电池单体的结构主剖视图;
图3为图1所示的电池模组中电路板的结构示意图;
图4为图3中的A处放大图;
图5为图3中的B处放大图;
图6为本申请实施例提供的又一种电池模组的结构分解示意图;
图7为图6所示的电池模组中电路板的结构示意图;
图8为本申请实施例提供的又一种电池模组的结构示意图;
图9为本图8所示的电池模组中电路板的结构示意图;
图10为图9的局部放大图;
图11为又一种电路板的结构示意图。
附图标记:
1-电池模组;
11-电池单体;
111-防爆阀;
112-壳体;
113-电极组件;
114-顶盖组件;
12-侧板;
13-端板;
14-隔离板;
141-排气孔;
15-电路板;
151-感温装置;
151a-金属线;
152-本体;
153-通孔;
153a-第一通孔;
153b-第二通孔;
154-焊盘;
155-温度报警装置连接的焊盘;
156-电压报警装置连接的焊盘;
16-上盖;
17-汇流排。
具体实施方式
为了使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本发明保护的范围。
图1为本申请实施例提供的一种电池模组的结构分解示意图,如图1所示,本申请实施例提供了一种电池模组1,包括依次堆叠的多个电池单体11。
图2为电池单体的结构主剖视图,如图1和图2所示,电池单体11上设 置有防爆阀111,其中,电池单体11包括壳体112、电极组件113和顶盖组件114,防爆阀111设置在顶盖组件114上。壳体112可具有六面体形状或其他形状。壳体112具有容纳电极组件113和电解液的内部空间。壳体112可以由例如铝、铝合金或塑料等材料制造。
电极组件113可通过将第一极片、第二极片以及隔膜一同围绕卷绕轴线螺旋卷绕而形成,其中,隔膜是介于第一极片和第二极片之间的绝缘体。电极组件113与电解液反应后将电能输出。
电池模组1还包括设置在电池单体11上方的电路板15,电路板15可以为FPC或PCB的形式,厚度为0.1-2mm,绝缘性大于500MΩ。电路板15上设置有感温装置151,感温装置151的位置对应于防爆阀111,感温装置151能够与电池管理系统连接形成回路,在防爆阀111爆破时能够引发该回路断路。
在电池发生过充或者其他不可控的情况发生时,壳体112内部会产生大量的热,防爆阀111爆破,电池单体11内部的火或高温电解液的气体、液体会从防爆阀111喷出。此时,喷发的高温电解液或火将感温装置151熔断,从而使形成的回路断开,回路断开的信号可以反馈到电池管理系统,从而得到准确的热失控状态信息。也可以通过在回路中串联报警灯或蜂鸣器等报警器来进行报警。
如图1所示,电池模组1还可以包括固定于电池单体11边侧的侧板12、固定于电池单体11端部的端板13以及设置于电池单体11上方的隔离板14,隔离板14上设置有与防爆阀111相对应的排气孔(未示出),电路板15位于隔离板14上,感温装置151与排气孔相对应,上盖16覆盖感温装置151和隔离板14,并与隔离板14相固定。
图3为图1所示的电池模组中电路板的结构示意图,图4为图3中的A处放大图,图5为图3中的B处放大图。参照图3至图5,在本实施例中,感温装置151为直接刻蚀在电路板15上的金属线151a,如图4所示,该金属线151a可以是铜线。在刻蚀电路板时,会形成将各个元器件连接的铜线,本实施例在刻蚀时直接形成多余的铜线,用于与电池管理系统连接形成上述回路,参照图5中形成的回路。这样,在电池模组发生热失控时,电解液从防爆阀111处喷发时,能够将电路板15上的该部分的铜线熔断,从而能够准确地反映电池模组的热失控状态。
另外,直接在电路板15上刻蚀上述金属线151a,还能够利用现有技术中的电路板结构,而无需对现有的电路板进行结构上的改变,从而更容易实施,对应的电池模组上其他部件的结构也无需改变,成本较低。在电路板刻蚀的过程中直接形成上述金属线151a,还能够尽量减少电路板的刻蚀面积,提高了材料的利用率。
如图6所示,图6为本申请实施例提供的又一种电池模组的结构分解图,图7为图6所示的电池模组中电路板的结构示意图。图6所示的实施例提供的电池模组1包括电池单体11、侧板12、端板13以及隔离板14,隔离板14上具有排气孔141,各电池单体11之间通过汇流排17串联或并联。电池模组1还包括电路板15,电路板15上设置有感温装置151,感温装置151可以为金属线151a,该金属线151a能够与电池管理系统连接形成回路。
可选地,电路板15包括本体152和开设在本体152上的通孔153,通孔153的位置对应于防爆阀111。感温装置151为形成在电路板15上的金属线151a,金属线151a将通孔153分隔为多个区域。
如上文描述,金属线151a可以是在电路板刻蚀的过程中直接形成的,金属线151a可以是一条弯曲状,例如S形,将通孔153分隔为多个区域,金属线151a也可以为多条,图6和图7所示的实施例中,通过在电路板15的本体152上设置通孔153,且多条金属线151a将该通孔153分隔为多个区域,在电解液在防爆阀处喷发时,能够减小电解液冲破的面积,更加直接且及时地将金属线151a熔断,从而将金属线151a与电路板15上的其他部分所形成的回路断开,从而迅速报警,及时、准确地反映了电池模组的热失控状态。
优选地,图6和图7中所示的实施例中,金属线151a被配置为刻蚀在电路板15上,在刻蚀电路板15的过程中,直接形成金属线151a与通孔153的多个区域,可以利用现有技术中的电路板结构,而无需对现有的电路板进行结构上的改变,从而更容易实施,对应的电池模组上其他部件的结构也无需改变,成本较低。
另外,金属线151a被配置为刻蚀在电路板15上,这样的结构下,金属线151a位于通孔153内,且与本体152一体成型。将金属线151a设置在通孔153内部,能够使金属线151a的上下表面均与电路板15的本体152平齐,不会凸出于电路板15的本体152的表面,由此减少了占据空间,提高了电池模组1的能量密度。
优选地,金属线151a为多根,多根金属线151a相互平行,且均垂直于通孔153延伸的方向(通孔153延伸的方向如图7所示的X向)。多根金属线151a平行设置后,能够使每根金属线151a对应一个防爆阀111。这样,在任意一个电池单体11发生热失控后,都能将回路切断,从而及时地反映了热失控状态。
图8为本申请实施例提供的又一种电池模组的结构示意图,图9为图8所示的电池模组中电路板的结构示意图,图10为图9的局部放大图。作为一种实现方式,不同于上述金属线151a在刻蚀电路板的过程中形成的方式,金属线151a还可以在刻蚀电路板15之后,再固定在电路板15的本体152上。具体而言,电路板15包括本体152和开设在本体上的通孔153,通孔153的位置对应于防爆阀111。感温装置151包括设置在通孔153处的金属线151a,金属线151a固定在本体152上。
本实施例中,金属线151a可以设置在通孔153的上方或下方,且金属线151a的两端固定在通孔153外的本体152上沿长度方向的两端。
金属线151a可以是沿电池模组1的长度方向(图8中的X向)延伸,一根沿通孔153的长度方向跨过通孔153的金属线151a,这样,一根金属线151a同时跨过了多个防爆阀111,任意一个电池单体11发生热失控都会将这根金属线151a熔断,从而及时地反映了热失控状态。同时,上述的金属线151a在电池模组1的高度方向(图8中的Z向)上的投影,部分位于通孔153在电池模组1的高度方向(图8中的Z向)上的投影之内,这样,金属线151a大致经过所有防爆阀111的中心位置,能够更加准确地反应电池模组1的热失控状态。随着现有电池模组的尺寸越来越大,为了避免一根金属线151a跨过多个防爆阀的方式会造成金属线151a的强度不足,可以使一根金属线151a同时跨过2-3个防爆阀,由此,不仅能保证金属线151a的强度,还能及时地反映电池模组的热失控。
图11为又一种电路板的结构示意图,作为一种优选的实现方式,金属线151a设置在通孔153的上方或下方,且金属线151a的两端固定在通孔153外的本体152上沿宽度方向(图18的Y向)的两端。
本实施例中,金属线151a的延伸方向与通孔153延伸的方向交叉,且金属线151a在电池模组1的高度方向(参照图8的Z向)上的投影,位于通孔153在电池模组1的高度方向上的投影之内。
在该实施例中,金属线151a沿电池模组1的宽度方向(图8中的Y向)延伸,这样金属线151a的延伸方向可以垂直于通孔153延伸的方向,这样每个金属线151a都可以监测到一个电池单体11。金属线151a的延伸方向也可以与通孔153延伸的方向交叉,即不垂直而具有一定的角度,这样一个金属线151a可以同时监测两个或三个电池单体11。金属线151a在电池模组1的高度方向(Z向)上的投影,部分位于通孔153在电池模组1的高度方向(Z向)上的投影之内。
可选地,本体152上设置有焊盘154,金属线151a可以通过焊盘154与电路板15的本体152固定。金属线151a可以是铝或锡等导电性好的材质,通过焊盘154固定在本体152上。
通孔153可选地包括第一通孔153a和第二通孔153b,第一槽孔153a和第二槽孔153b可以均为条形孔,第一通孔153a和第二通孔153b的中心线均沿防爆阀111排列的方向延伸。本实施例中,第一通孔153a的尺寸较大,可以是长条状,沿防爆阀111排列的方向延伸。这样,第一通孔153a能够同时对应多个防爆阀111,电路板15的加工也更简易。在其他的实施例中,通孔153还可以包括第三通孔等。通孔的数量可以根据防爆阀的数量来设定,通孔可以与防爆阀一一对应,也可以设置一个尺寸较大的通孔同时对应多个防爆阀111,例如本实施例中的第一通孔153a,即能同时对应多个防爆阀111。还可以设置一个尺寸较小的通孔仅对应一个防爆阀111,例如本实施例中的第二通孔153b。
第二通孔153b中也可以设置有上述金属线151a,金属线151a可以直接成型在第二通孔153b内。第二通孔153b的尺寸大小可以根据电路板15的布局来设定,例如小于第一通孔153a的尺寸,金属线151a在第二通孔153b的设置与金属线151a在第一通孔153a的设置可以相同,也可以不同,在此不再赘述。
本申请实施例还提供了一种电池包,包括电池管理系统和本申请任意实施例提供的电池模组1,电池模组1中的感温装置151与电池管理系统连接形成回路,当回路发生断路时,电池管理系统向整车控制模块发送第一报警信号,整车控制模块根据该第一报警信号可以做出相应的控制,例如向乘车人员发出报警,或者对汽车进行紧急制动等。
进一步地,本申请实施例提供的电池包还包括温度报警装置和电压报警 装置。温度报警装置可以是热电偶、热敏电阻或双金属温度计等,用于监控电池模组的温度,并在温度超过设定的温度阈值时,向电池管理系统发送第二报警信号。上述温度报警装置可以探测-40℃-600℃的温度,通过焊接、粘接等工艺与电池单体上的极柱连接,采集电池单体的温度。
电压报警装置用于监控电池模组的电压,并在电压超过设定的电压阈值时,向电池管理系统发送第三报警信号。电池管理系统可以将上述报警信号传递给整车控制模块,通过温度报警装置、电压报警装置和上述的金属线相结合,整体上对电池模组进行温度、电压和热失控的监控,从而提高了电池模组的安全性。温度报警装置通过温度报警装置连接的焊盘155电连接于上述电路板,电压报警装置通过电压报警装置连接的焊盘156电连接于上述电路板。
本申请实施例还提供了一种电路板,电路板用于与电池模组的电池单体电气连接,其中,电路板上设置有感温装置;感温装置用于与电池管理系统连接形成回路,在电池单体的防爆阀爆破时能够引发回路断路。
其中,感温装置的设置位置与电池单体的防爆阀相对应。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种电池模组,其特征在于,包括:依次堆叠的多个电池单体,所述电池单体上设置有防爆阀;
    所述电池模组还包括设置在所述电池单体上方的电路板,所述电路板上设置有感温装置,所述感温装置的位置对应于所述防爆阀;
    所述感温装置能够与电池管理系统连接形成回路,在所述防爆阀爆破时能够引发所述回路断路。
  2. 根据权利要求1所述的电池模组,其特征在于,所述感温装置为刻蚀在所述电路板上的金属线。
  3. 根据权利要求1所述的电池模组,其特征在于,所述电路板包括本体和开设在所述本体上的通孔,所述通孔的位置对应于所述防爆阀;
    所述感温装置为形成在所述电路板上的金属线;所述金属线将所述通孔分隔为多个区域。
  4. 根据权利要求3所述的电池模组,其特征在于,所述金属线被配置为刻蚀在所述电路板上。
  5. 根据权利要求3或4所述的电池模组,其特征在于,所述金属线为多根,多根所述金属线相互平行,且均垂直于所述通孔延伸的方向。
  6. 根据权利要求3-5任一项所述的电池模组,其特征在于,所述金属线固定在所述本体上。
  7. 根据权利要求6所述的电池模组,其特征在于,所述金属线设置在所述通孔的上方或下方,且所述金属线的两端固定在所述通孔外的本体上沿长度方向的两端。
  8. 根据权利要求6或7所述的电池模组,其特征在于,所述金属线沿电池模组的长度方向延伸,且所述金属线在电池模组的高度方向上的投影,部分位于所述通孔在电池模组的高度方向上的投影之内。
  9. 根据权利要求3-8任一项所述的电池模组,其特征在于,所述金属线设置在所述通孔的上方或下方,且所述金属线的两端固定在所述通孔外的本体上沿宽度方向的两端。
  10. 根据权利要求9所述的电池模组,其特征在于,所述金属线沿电池模组的宽度方向延伸,或所述金属线的延伸方向与所述通孔延伸的方向 交叉,且所述金属线在电池模组的高度方向上的投影,部分位于所述通孔在电池模组的高度方向上的投影之内。
  11. 根据权利要求6-10任一项所述的电池模组,其特征在于,所述本体设置有焊盘,所述金属线通过所述焊盘与所述本体固定。
  12. 根据权利要求3-11任一项所述的电池模组,其特征在于,所述通孔包括第一通孔和第二通孔;
    所述第一通孔和所述第二通孔均为条形孔;
    所述第一通孔和所述第二通孔均沿所述防爆阀排列的方向延伸。
  13. 根据权利要求2-12任一项所述的电池模组,其特征在于,所述金属线的材质为铜、铝或锡中的任一种。
  14. 根据权利要求1-13任一项所述的电池模组,其特征在于,所述电池模组还包括固定于所述电池单体边侧的侧板、固定于所述电池单体端部的端板以及设置于所述电池单体上方的隔离板;
    所述隔离板上设置有排气孔,所述排气孔与所述防爆阀对应;
    所述电路板设置在所述隔离板上;所述感温装置与所述排气孔相对应。
  15. 一种电池包,其特征在于,包括电池管理系统和权利要求1-14任一项所述的电池模组;
    所述电池模组中的感温装置与所述电池管理系统连接形成回路。
  16. 一种电路板,所述电路板用于与电池模组的电池单体电气连接,其特征在于,所述电路板上设置有感温装置;
    所述感温装置用于与电池管理系统连接形成回路,在电池单体的防爆阀爆破时能够引发所述回路断路。
  17. 根据权利要求16所述的电路板,其特征在于,所述感温装置的设置位置与所述电池单体的防爆阀相对应。
PCT/CN2020/084279 2019-04-30 2020-04-10 电池模组、电池包及电路板 WO2020220975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910361871.9A CN111864155A (zh) 2019-04-30 2019-04-30 电池模组及电池包
CN201910361871.9 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220975A1 true WO2020220975A1 (zh) 2020-11-05

Family

ID=68280945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084279 WO2020220975A1 (zh) 2019-04-30 2020-04-10 电池模组、电池包及电路板

Country Status (4)

Country Link
US (1) US11489230B2 (zh)
EP (1) EP3734691B1 (zh)
CN (1) CN111864155A (zh)
WO (1) WO2020220975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489230B2 (en) 2019-04-30 2022-11-01 Contempory Amperex Technology Co., Limited Battery module and battery pack

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020213990A1 (de) * 2020-11-06 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Elektrischer Energiespeicher, Vorrichtung und Verfahren zum Betreiben eines elektrischen Energiespeichers
CN112652858B (zh) * 2021-01-18 2022-06-10 中国第一汽车股份有限公司 一种延缓热失控的电池模组、电池总成及电动车
CN114335802A (zh) * 2021-12-30 2022-04-12 重庆跃达电力设备有限公司 一种5g通信用智能储能电池组
CN114335873B (zh) * 2021-12-31 2023-07-07 安徽汉星综合能源有限公司 一种分区隔离式储能电池箱
CN114784403A (zh) * 2022-04-20 2022-07-22 华为数字能源技术有限公司 一种电池及储能系统
CN116417763B (zh) * 2023-05-31 2023-12-22 深圳海辰储能控制技术有限公司 一种储能装置、用电系统及储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762432A (zh) * 2016-04-26 2016-07-13 华霆(合肥)动力技术有限公司 一种电池模组爆喷状态的检测方法和装置
US20160233555A1 (en) * 2015-02-11 2016-08-11 Physical Sciences, Inc. Battery protection system and method
CN207818702U (zh) * 2018-01-31 2018-09-04 宁德时代新能源科技股份有限公司 电池模组
CN108899464A (zh) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 一种电池模组的汇流排和电池模组
CN209526152U (zh) * 2019-04-30 2019-10-22 宁德时代新能源科技股份有限公司 电池模组及电池包

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291426A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Flexible fusible link, systems, and methods
JPWO2011105095A1 (ja) * 2010-02-24 2013-06-20 三洋電機株式会社 バッテリモジュール、バッテリシステム、電動車両、移動体、電力貯蔵装置、電源装置および電気機器
JP2014220149A (ja) * 2013-05-09 2014-11-20 愛三工業株式会社 バスバーモジュール
CN105761532B (zh) 2014-12-19 2018-03-02 大陆汽车投资(上海)有限公司 动态语音提示方法及车载系统
JP6395935B2 (ja) * 2015-07-09 2018-09-26 日立オートモティブシステムズ株式会社 電池モジュール
US10440542B2 (en) * 2015-11-24 2019-10-08 NuGen Systems, Inc. Wireless battery monitoring and control system for parachute deployment and auto load disengagement
CN105428722A (zh) * 2015-12-11 2016-03-23 超威电源有限公司 一种高安全性能锂离子电池和电池包
KR101985761B1 (ko) * 2017-09-20 2019-06-04 삼성에스디아이 주식회사 배터리 관리 시스템
US10796873B2 (en) * 2017-12-15 2020-10-06 Nio Usa, Inc. Fusible link in battery module voltage sensing circuit
US10957892B2 (en) * 2018-08-23 2021-03-23 Rivian Ip Holdings, Llc Busbars having stamped fusible links
CN111864155A (zh) 2019-04-30 2020-10-30 宁德时代新能源科技股份有限公司 电池模组及电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233555A1 (en) * 2015-02-11 2016-08-11 Physical Sciences, Inc. Battery protection system and method
CN105762432A (zh) * 2016-04-26 2016-07-13 华霆(合肥)动力技术有限公司 一种电池模组爆喷状态的检测方法和装置
CN207818702U (zh) * 2018-01-31 2018-09-04 宁德时代新能源科技股份有限公司 电池模组
CN108899464A (zh) * 2018-07-02 2018-11-27 中兴高能技术有限责任公司 一种电池模组的汇流排和电池模组
CN209526152U (zh) * 2019-04-30 2019-10-22 宁德时代新能源科技股份有限公司 电池模组及电池包

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489230B2 (en) 2019-04-30 2022-11-01 Contempory Amperex Technology Co., Limited Battery module and battery pack

Also Published As

Publication number Publication date
US20200350539A1 (en) 2020-11-05
EP3734691C0 (en) 2023-11-15
EP3734691A1 (en) 2020-11-04
CN111864155A (zh) 2020-10-30
EP3734691B1 (en) 2023-11-15
US11489230B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2020220975A1 (zh) 电池模组、电池包及电路板
WO2020220462A1 (zh) 电池包
WO2020220570A1 (zh) 电池模组及电池包
CN209526152U (zh) 电池模组及电池包
WO2018157651A1 (zh) 一种单体电池、双电池组及电池模组
US20200243823A1 (en) Battery pack
WO2022142069A1 (zh) 一种防热失控的组件及电池模组
EP2752922B1 (en) Switching board having novel structure and battery module including same
WO2023035990A1 (zh) 单体电池、电池模组及电池包
JP6194672B2 (ja) 全固体二次電池及びその製造方法
TWI445227B (zh) 具新穎結構之二次電池組
WO2022213639A1 (zh) 动力电池总成及车辆
CN209730085U (zh) 电池模组
WO2020220887A1 (zh) 电池模组以及电池包
WO2019174088A1 (zh) 电池模组
WO2023221583A1 (zh) 端盖组件、电池单体、电池及用电设备
CN218039743U (zh) 一种电池连接片及电池
EP1987555B1 (en) Safety apparatus using high power battery
CN216563355U (zh) 电芯、电池模组及电池包
JP3231814U (ja) セル保護機能を有する接続モジュール
CN210427758U (zh) 一种bms电池管理系统
CN208655830U (zh) 电池保护装置及其加热结构、电子设备
CN220042176U (zh) 一种电池模组及电池包
CN213340653U (zh) 一种稳定的带双边保险的汇流排
CN218300177U (zh) 一种电芯内置熔断装置及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798867

Country of ref document: EP

Kind code of ref document: A1