WO2020218469A1 - 粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法 - Google Patents

粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法 Download PDF

Info

Publication number
WO2020218469A1
WO2020218469A1 PCT/JP2020/017606 JP2020017606W WO2020218469A1 WO 2020218469 A1 WO2020218469 A1 WO 2020218469A1 JP 2020017606 W JP2020017606 W JP 2020017606W WO 2020218469 A1 WO2020218469 A1 WO 2020218469A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fibrous cellulose
water
powder
less
Prior art date
Application number
PCT/JP2020/017606
Other languages
English (en)
French (fr)
Inventor
みづき 酒井
浩己 山本
実央 山中
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019085253A external-priority patent/JP7322491B2/ja
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Publication of WO2020218469A1 publication Critical patent/WO2020218469A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/28Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts
    • C09K17/50Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts the organic compound being of natural origin, e.g. cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a granulating agent for powder, a granulated product using the granulating agent for powder, and a method for producing the same.
  • Patent Document 1 describes a mixed lime fertilizer containing 1) dolomite or limestone: 10 to 90%, 2) magnesium hydroxide: 10 to 40%, and 3) oyster shell: 10 to 60% (% is mass). In, it is described that yeast fermentation waste liquid, amino acid fermentation waste liquid, pulp waste liquid, alcohol fermentation waste liquid and the like are used as the binder.
  • Patent Document 2 provides a granulator for a powder metal raw material and a wet granulation method for a powder metal raw material using the granulator, which can be widely applied not only in the iron manufacturing industry but also in the entire metal material manufacturing industry.
  • the object is characterized by containing one or more binder components selected from carboxymethyl cellulose salt, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, polyvinyl alcohol, polyacrylamide, polyacrylate, guar gum, tamarind gum and starch.
  • the granulating agent for powdered metal raw material is described.
  • Patent Document 3 provides a method for granulating a sintering raw material such as iron ore to obtain granulated particles having excellent pseudo-granulability, which is effective for improving air permeability and productivity in a sintering machine.
  • raw lime is mixed with a sintering raw material such as iron ore, water is sprinkled to perform primary granulation, and then a liquid binder having a viscosity of 5 to 100 mPa ⁇ s is added to perform secondary granulation.
  • a method for granulating a sintered raw material which comprises obtaining a granulated product having a water content of 6 to 9% by mass, wherein the liquid binder is bentonite, guar gum, polyvinyl alcohol, polyacrylamide, methyl cellulose, and the like. It is stated that it is preferable to contain one or more selected from the group consisting of ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl ethyl cellulose, starch, lignin, and water glass.
  • Patent Document 4 describes sugar alcohols and starches with respect to a stabilized solid preparation of (R)-(-)-3'-(2-amino-1-hydroxyethyl) -4'-fluoromethanesulfonanilide hydrochloride. It is described that a solid preparation having excellent stability can be obtained by using it as an excipient.
  • alcohol fermentation waste liquid and yeast fermentation waste liquid are used as a binder in Examples.
  • organic waste liquids such as pulp waste liquids have been used in addition to the yeast fermentation waste liquids, amino acid fermentation waste liquids, and alcohol fermentation waste liquids described above, but all of them have a large amount of addition to the inorganic powder. It is necessary, and there is a problem that the content of the inorganic powder is relatively small. Furthermore, many of these binders have a strong odor, and the working environment during granulation tends to deteriorate. In addition, some organic waste liquids are highly alkaline, and the working environment tends to deteriorate as well.
  • Patent Documents 2 and 3 describe a technique for granulating dust and iron ore in a steel mill using a solution of a water-soluble polymer as a binder, but the strength of the obtained granulated product is not sufficient. There wasn't. Further, Patent Document 4 discloses a technique for formulating a drug using a water-soluble polymer as an excipient, but the strength of the formulation has not been examined.
  • An object of the present invention is to provide a granulated product in which deterioration of the working environment during granulation due to odor and strong alkali is suppressed, and further, the amount of binder used is suppressed, and a method for producing the same. Furthermore, an object of the present invention is to provide a granulator for powder used for the granulated product.
  • the present inventor has found that fibrous cellulose containing at least fine fibrous cellulose is effective as a binder when granulating powder, and has completed the present invention.
  • the present invention relates to the following ⁇ 1> to ⁇ 21>.
  • At least one powder selected from the group consisting of inorganic powder and organic powder is granulated by a binder component containing fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less. , Granulated material.
  • a binder component containing fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less.
  • Granulated material .
  • ⁇ 3> The granulated product according to ⁇ 1> or ⁇ 2>, wherein the content of the fine fibrous cellulose in the fibrous cellulose is 5% by mass or more and 100% by mass or less.
  • ⁇ 4> The granulated product according to any one of ⁇ 1> to ⁇ 3>, wherein the fine fibrous cellulose has an anionic group.
  • ⁇ 5> The granulated product according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the fine fibrous cellulose with respect to 100 parts by mass of the powder is 0.01 part by mass or more and 1 part by mass or less.
  • ⁇ 6> The granulated product according to any one of ⁇ 1> to ⁇ 5>, wherein the binder component further contains a water-soluble polymer.
  • ⁇ 7> The granulated product according to ⁇ 6>, wherein the total solid content of the fibrous cellulose and the water-soluble polymer with respect to 100 parts by mass of the powder is 0.001 part by mass or more and 10 parts by mass or less.
  • ⁇ 8> The method according to ⁇ 6> or ⁇ 7>, wherein the blending ratio of the water-soluble polymer and the fibrous cellulose (water-soluble polymer / fibrous cellulose) is 1/10 or more and 1000/1 or less.
  • the water-soluble polymer is a high-viscosity water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C.
  • the blending ratio (high-viscosity water-soluble polymer / low-viscosity water-soluble polymer, mass ratio) of the high-viscosity water-soluble polymer and the low-viscosity water-soluble polymer is 1/1 or more and 20/1.
  • the granulated product according to ⁇ 9> which is as follows.
  • ⁇ 11> The granulated product according to ⁇ 9> or ⁇ 10>, wherein the high-viscosity water-soluble polymer is selected from the group consisting of carboxymethyl cellulose, oxidized starch, polyacrylamide, guar gum, and polyacrylic acid.
  • ⁇ 12> The granulated product according to any one of ⁇ 9> to ⁇ 11>, wherein the low-viscosity water-soluble polymer is selected from the group consisting of polyacrylate and alginate.
  • ⁇ 13> The granulated product according to any one of ⁇ 1> to ⁇ 12>, wherein the powder has a particle size of 12 mesh or more.
  • ⁇ 14> The granulated product according to any one of ⁇ 1> to ⁇ 13>, wherein the granulated product is for fertilizer, soil conditioner, and snow melting agent.
  • the inorganic powder contains at least one selected from the group consisting of nitrogen, phosphoric acid, potassium, lime, silicic acid, magnesium, manganese, and boron as a main component.
  • ⁇ 16> The granulated product according to any one of ⁇ 1> to ⁇ 15>, wherein the average particle size of the granulated product is 1 mm or more and 10 mm or less.
  • ⁇ 19> When the viscosity of the 1% by mass aqueous solution at 25 ° C is 1,000 mPa ⁇ s or more and the viscosity of the 1% by mass aqueous solution at 25 ° C is 100 mPa ⁇ s or less.
  • An aqueous dispersion of fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less is mixed with at least one powder selected from the group consisting of an inorganic powder and an organic powder for granulation.
  • a method for producing a granulated product which comprises a step of mixing and granulating a dispersion liquid.
  • the present invention it is possible to provide a granulated product and a method for producing the same, in which deterioration of the working environment during granulation due to odor and strong alkali is suppressed, and further, the amount of binder used is suppressed. Further, according to the present invention, it is possible to provide a granulating agent for powder used for the granulated product.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to the fibrous cellulose-containing slurry having a carboxy group and the pH.
  • the granulated product of the present invention comprises at least one powder selected from the group consisting of inorganic powder and organic powder by a binder component containing fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less. It is granulated.
  • the method for producing a granulated product of the present invention includes a step of mixing an aqueous dispersion of fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less with an inorganic powder to granulate.
  • fibrous cellulose functions as a binder component and is granulated by binding powders.
  • the binder component (granulation agent) containing fibrous cellulose is also referred to as a "binder component” or a "binder”.
  • the fibrous cellulose used for granulation is also referred to as a "binder solution”.
  • the binder solution does not mean that the fibrous cellulose is dissolved, but includes a solution in which the fibrous cellulose is dispersed. According to the present invention, there is provided a granulated product and a method for producing the same, in which deterioration of the working environment for granulation due to odor and strong alkali is suppressed, and the amount of binder used is suppressed.
  • the granulated product of the present invention has high grain hardness and disintegration in water, and can be suitably used for various uses such as fertilizers, soil conditioners, and snow melting agents.
  • the detailed reason for obtaining the above-mentioned effects is unknown, but some of them are considered as follows.
  • the fibrous cellulose containing fine fibrous cellulose as a binder for the inorganic powder, deterioration of the granulation work environment due to odor and strong alkali is suppressed.
  • the fibrous cellulose and the aqueous dispersion containing the fibrous cellulose have almost no odor and have a pH of about 3 to 10, and suppress the deterioration of the working environment as compared with the conventional pulp waste liquid and the like. It is possible.
  • the fine fibrous cellulose functions as a thickener because the fibrous cellulose contains fine fibrous cellulose, and it is possible to bind inorganic powders to each other with a small amount of use. Therefore, it is considered that the amount used can be suppressed as compared with the conventional binder.
  • the fibrous cellulose containing fine fibrous cellulose imparts an appropriate grain hardness to the granulated product, and since the fibrous cellulose is hydrophilic, the granulated product has disintegration property in water. it is conceivable that.
  • fibrous cellulose is biodegradable, it is expected that the binder will reduce the environmental load even when it is used as a fertilizer, soil conditioner, snow melting agent, or the like.
  • the binder component preferably contains a water-soluble polymer in addition to the fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less.
  • the granulated product is granulated by binding the powder with fibrous cellulose and a water-soluble polymer functioning as binder components.
  • the binder component contains fibrous cellulose and a water-soluble polymer, it is possible to provide a granulated product having high grain hardness and a method for producing the same. In addition, it has high grain hardness and disintegration in water, and can be suitably used for various applications such as foods, cosmetics, pharmaceuticals, fertilizers, soil conditioners, and snow melting agents.
  • the fibrous cellulose containing the fine fibrous cellulose is hydrophilic, it is considered that the granulated product has disintegration property in water. Furthermore, since fibrous cellulose is biodegradable, it is expected that the binder will reduce the environmental load even when it is used as a fertilizer, soil conditioner, snow melting agent, or the like. In addition, since fibrous cellulose is a naturally derived component, it is expected to be applied to foods, pharmaceuticals, and cosmetics. Hereinafter, the present invention will be described in more detail.
  • the fibrous cellulose of the present invention contains fine fibrous cellulose having a fiber width of 1,000 nm or less (hereinafter, also simply referred to as “fine fibrous cellulose” or “CNF”). Further, the fibrous cellulose may contain fibrous cellulose having a fiber width of more than 1,000 nm (hereinafter, also referred to as “pulp fiber”) in addition to the fine fibrous cellulose.
  • the fine fibrous cellulose is a fibrous cellulose having a fiber width of 1,000 nm or less.
  • the fiber width of the fibrous cellulose can be measured by, for example, observation with an electron microscope.
  • the content of the fine fibrous cellulose in the fibrous cellulose is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass, still more preferably, from the viewpoint of the viscosity of the binder solution and economic efficiency. Is 20% by mass or more, more preferably 30% by mass or more, and may be 100% by mass.
  • fine fibrous cellulose fine fibrous cellulose containing an ionic group described later and unmodified fine fibrous cellulose may be used in combination.
  • the fiber width of fine fibrous cellulose is 1,000 nm or less.
  • the fiber width of the fine fibrous cellulose is, for example, preferably 2 nm or more and 1,000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Is particularly preferred.
  • the average fiber width of fine fibrous cellulose is, for example, 1,000 nm or less.
  • the average fiber width of the fine fibrous cellulose is preferably 2 nm or more and 1,000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more and 10 nm or less. Is particularly preferred.
  • the fine fibrous cellulose is, for example, monofibrous cellulose.
  • the average fiber width of the fine fibrous cellulose is measured as follows, for example, using an electron microscope. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid to prepare a sample for TEM observation. And. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1,000 times, 5,000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
  • a straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1,000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and 0.1 ⁇ m or more and 600 ⁇ m or less. Is even more preferable.
  • the fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the fine fibrous cellulose preferably has an I-type crystal structure.
  • the ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion.
  • the crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 20 or more and 10,000 or less, and more preferably 50 or more and 1,000 or less.
  • the axial ratio is not particularly limited, but is preferably 20 or more and 10,000 or less, and more preferably 50 or more and 1,000 or less.
  • the fine fibrous cellulose in this embodiment has, for example, at least one of an ionic group and a nonionic group. From the viewpoint of improving the dispersibility of the fibers in the dispersion medium and increasing the defibration efficiency in the defibration treatment, it is more preferable that the fine fibrous cellulose has an ionic group.
  • the ionic group can include, for example, either one or both of an anionic group and a cationic group.
  • the nonionic group for example, an alkyl group and an acyl group can be included. In the present embodiment, it is particularly preferable to have an anionic group as the ionic group.
  • the fine fibrous cellulose may not be subjected to a treatment for introducing an ionic group.
  • anionic group as an ionic group examples include a phosphoric acid group or a substituent derived from a phosphoric acid group (sometimes simply referred to as a phosphoric acid group), a carboxy group or a substituent derived from a carboxy group (simply referred to as a carboxy group). (Sometimes), and at least one selected from a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), preferably at least one selected from a phosphoric acid group and a carboxy group. It is more preferably a species, especially a phosphorusoxo acid group.
  • the phosphoric acid group or the substituent derived from the phosphoric acid group is, for example, a substituent represented by the following formula (1).
  • the phosphorus oxo acid group is, for example, a divalent functional group obtained by removing a hydroxy group from phosphoric acid. Specifically, it is a group represented by -PO 3 H 2 .
  • Substituents derived from a phosphorus oxo acid group include substituents such as a salt of a phosphorus oxo acid group and a phosphorus oxo acid ester group.
  • the substituent derived from the phosphoric acid group may be contained in the fibrous cellulose as a group in which the phosphoric acid group is condensed (for example, a pyrophosphate group).
  • the phosphorous acid group may be, for example, a phosphorous acid group (phosphonic acid group), and the substituent derived from the phosphorous acid group is a salt of a phosphorous acid group, a phosphorous acid ester group, or the like. May be good.
  • a is O ⁇
  • the rest is either R or OR. It is also possible that all of each ⁇ n and ⁇ 'are O ⁇ .
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • ⁇ in the formula (1) may be a group derived from a cellulose molecular chain.
  • Examples of the saturated-linear hydrocarbon group include, but are not limited to, a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.
  • the inducing group in R a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted with respect to the main chain or side chain of the above-mentioned various hydrocarbon groups.
  • the group is mentioned, but it is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • the molecular weight of the phosphorus oxo acid group can be set to an appropriate range, permeation into the fiber raw material is facilitated, and the yield of fine fibrous cellulose can be increased. It can also be increased.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include aliphatic ammonium or aromatic ammonium
  • examples of monovalent or higher valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, and lithium.
  • examples thereof include cations of divalent metals such as calcium and magnesium, hydrogen ions, and the like, but the present invention is not particularly limited. These may be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ is heated and is easily industrially used, but is not particularly limited.
  • the amount of the ionic group introduced into the fine fibrous cellulose is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and more preferably 0.20 mmol / g or more per 1 g (mass) of the fine fibrous cellulose. It is more preferably 50 mmol / g or more, and particularly preferably 1.00 mmol / g or more.
  • the amount of the ionic group introduced into the fine fibrous cellulose is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less per 1 g (mass) of the fibrous cellulose, for example, 3 It is more preferably .50 mmol / g or less, and even more preferably 3.00 mmol / g or less.
  • the amount of the ionic group introduced within the above range it is possible to facilitate the miniaturization of the fiber raw material and enhance the stability of the fine fibrous cellulose.
  • good properties can be exhibited in various applications such as a thickener for fine fibrous cellulose.
  • the denominator in the unit mmol / g indicates the mass of the fine fibrous cellulose when the counter ion of the ionic group is a hydrogen ion (H + ).
  • the amount of the ionic group introduced into the fibrous cellulose can be measured by, for example, a neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise to fibrous cellulose having a phosphorus oxo acid group and pH.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • the amount of the phosphorus oxo acid group introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the defibration treatment similar to the defibration treatment step described later may be performed on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained.
  • the titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • two points are confirmed in which the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociating acid of the fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point.
  • the amount is equal to the amount of the second dissociating acid of the fibrous cellulose contained in the slurry used for the titration, and the amount of alkali required from the start to the second end point of the titration is the fibrous cellulose contained in the slurry used for the titration. Is equal to the total amount of dissociated acid.
  • the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group is apparently It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the phosphorous acid group is a phosphorous acid group
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero.
  • the titration curve has one point where the pH increment is maximized. Since the denominator of the above-mentioned phosphorus oxo acid group introduction amount (mmol / g) indicates the mass of the acid-type fibrous cellulose, the phosphorus oxo acid group amount of the acid-type fibrous cellulose (hereinafter referred to as the phosphorus oxo acid group amount). (Called (acid type))).
  • the denominator is converted to the mass of fibrous cellulose when the cation C is a counterion.
  • the amount of phosphorus oxo acid groups hereinafter, the amount of phosphorus oxo acid groups (C type)
  • C type the amount of phosphorus oxo acid groups
  • Phosphoric acid group amount (C type) Phosphoric acid group amount (acid type) / ⁇ 1+ (W-1) x A / 1000 ⁇ A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fibrous cellulose (the sum of the strongly acidic group amount and the weakly acidic group amount of the phosphoric acid group).
  • W Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added dropwise to fibrous cellulose having a carboxy group and pH.
  • the amount of the carboxy group introduced into the fibrous cellulose is measured, for example, as follows. First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the defibration treatment similar to the defibration treatment step described later may be performed on the measurement target before the treatment with the strongly acidic ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution to obtain a titration curve as shown in FIG. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target.
  • the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Observed.
  • the maximum point of this increment is called the first end point.
  • the region from the start of titration to the first end point in FIG. 2 is referred to as a first region.
  • the amount of alkali required in the first region is equal to the amount of carboxy groups in the slurry used for titration.
  • the amount of alkali (mmol) required in the first region of the titration curve is divided by the solid content (g) in the fine fibrous cellulose-containing slurry to be titrated, so that the amount of carboxy group introduced (mmol / g). ) was calculated.
  • the above-mentioned amount of carboxy group introduced (mmol / g) is the amount of substituents per 1 g of mass of fibrous cellulose when the counterion of the carboxy group is hydrogen ion (H + ) (hereinafter, the amount of carboxy group (acid). Type)) is shown.
  • the denominator of the above-mentioned carboxy group introduction amount (mmol / g) is the mass of the acid type fibrous cellulose, the carboxy group amount of the acid type fibrous cellulose (hereinafter, the carboxy group amount (acid type)). ) Is shown.
  • the denominator is converted to the mass of fibrous cellulose when the cation C is a counterion.
  • carboxy group amount (C type) Carboxylic acid group amount (acid type) / ⁇ 1+ (W-1) x (carboxyl group amount (acid type)) / 1000 ⁇ W: Formula amount per valence of cation C (for example, Na is 23, Al is 9)
  • the fibrous cellulose-containing slurry in order to eliminate the influence of carbon dioxide dissolved in the fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration.
  • an inert gas such as nitrogen gas
  • Pulp fiber is finely divided before measurement.
  • Fine fibrous cellulose is produced from a fibrous raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from used paper. As the pulp of the present embodiment, one of the above types may be used alone, or two or more types may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • long fiber fine fibrous cellulose having a small decomposition of cellulose in pulp and a large axial ratio can be obtained.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • long fiber fine fibrous cellulose having a large axial ratio is used, the viscosity tends to increase.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetobacter can be used.
  • a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • an ionic group introduction step In order to obtain the above-mentioned fine fibrous cellulose into which an ionic group has been introduced, an ionic group introduction step, a washing step, and an alkali treatment step (neutralization step) in which the ionic group is introduced into the above-mentioned fiber raw material containing cellulose ), It is preferable to have the defibration treatment step in this order, and an acid treatment step may be provided instead of or in addition to the washing step.
  • the ionic group introduction step include a phosphorus oxo acid group introduction step and a carboxy group introduction step. Each will be described below.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is introduced into cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
  • the reaction between the fiber raw material containing cellulose and Compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “Compound B”). You may.
  • the reaction of the fiber raw material containing cellulose with the compound A may be carried out in the absence of the compound B.
  • a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state can be mentioned.
  • the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted.
  • the reaction since the reaction has high uniformity, it is preferable to add the mixture in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution.
  • the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of Compound A and Compound B may be added to the fiber raw material, or after the excess amounts of Compound A and Compound B are added to the fiber raw material, respectively, the excess Compound A and Compound B are added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration-condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphorus pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Examples of phosphates, phosphates, and dehydration-condensed phosphates include lithium salts, sodium salts, potassium salts, and ammonium salts of phosphoric acid, phosphorous acid, or dehydration-condensed phosphoric acid, and these are among various types. It can be a sum.
  • phosphoric acid and phosphoric acid A sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more.
  • the amount of phosphorus atoms added to the fiber raw material is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • triethylamine in particular is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and a band.
  • a mold drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a hot air drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. can be adopted.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside. Examples of such a heating device include a hot air drying device such as a blower type oven. By constantly discharging the water in the apparatus system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. it can.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material. In the present embodiment, as an example of a preferable embodiment, there is a case where the phosphorus oxo acid group introduction step is performed twice.
  • the amount of the phosphorus oxo acid group introduced into the fiber raw material is, for example, 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and 0.50 mmol / g / g per 1 g (mass) of fine fibrous cellulose. It is more preferably g or more, and particularly preferably 1.00 mmol / g or more. Further, the amount of the phosphorus oxo acid group introduced into the fiber raw material is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less per 1 g (mass) of fine fibrous cellulose, for example. It is more preferably 00 mmol / g or less.
  • the carboxy group introduction step has an oxidation treatment such as ozone oxidation, oxidation by the Fenton method, TEMPO oxidation treatment, a compound having a group derived from carboxylic acid or a derivative thereof, or a group derived from carboxylic acid with respect to the fiber raw material containing cellulose. This is done by treating with an acid anhydride of the compound or a derivative thereof.
  • the compound having a group derived from a carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, itaconic acid, citric acid, aconitic acid and the like.
  • Examples include tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from carboxylic acid is not particularly limited, and examples thereof include an imide of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imide of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include an imide of a dicarboxylic acid compound such as maleimide, succinateimide, and phthalateimide.
  • the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a dicarboxylic acid compound such as maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, itaconic anhydride and the like. Acid anhydride can be mentioned.
  • the derivative of the acid anhydride of the compound having a group derived from carboxylic acid is not particularly limited, but for example, a compound having a carboxy group such as dimethylmaleic acid anhydride, diethylmaleic acid anhydride, diphenylmaleic acid anhydride and the like. Examples thereof include those in which at least a part of the hydrogen atom of the acid anhydride is substituted with a substituent such as an alkyl group or a phenyl group.
  • the aldehyde generated in the oxidation process can be efficiently oxidized to the carboxy group.
  • the TEMPO oxidation treatment may be carried out under the condition that the pH is 10 or more and 11 or less. Such a treatment is also referred to as an alkaline TEMPO oxidation treatment.
  • the alkaline TEMPO oxidation treatment can be carried out, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a co-catalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. ..
  • the amount of carboxy group introduced into the fiber raw material varies depending on the type of substituent, but for example, when a carboxy group is introduced by TEMPO oxidation, it is preferably 0.10 mmol / g or more per 1 g (mass) of fine fibrous cellulose. , 0.20 mmol / g or more, more preferably 0.50 mmol / g or more, and particularly preferably 0.90 mmol / g or more. Further, it is preferably 2.5 mmol / g or less, more preferably 2.20 mmol / g or less, and further preferably 2.00 mmol / g or less. In addition, when the substituent is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fine fibrous cellulose.
  • a washing step can be performed on the ionic group-introduced fibers as needed.
  • the washing step is performed by washing the ionic group-introduced fibers with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.
  • alkali treatment neutralization treatment
  • the alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the ionic group-introduced fiber in an alkaline solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, for example, sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent.
  • the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • a polar solvent containing water or a polar organic solvent exemplified by alcohol for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the ionic group-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1,000% by mass or more, with respect to the absolute dry mass of the ionic group-introduced fiber, for example. More preferably, it is 25,000% by mass or less.
  • the ionic group-introduced fiber may be washed with water or an organic solvent after the ionic group introduction step and before the alkali treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated ionic group-introduced fibers with water or an organic solvent from the viewpoint of improving handleability.
  • the fiber raw material When producing fine fibrous cellulose, the fiber raw material may be subjected to acid treatment between the step of introducing an ionic group and the defibration treatment step described later.
  • the ionic group introduction step, the acid treatment step, the alkali treatment step, and the defibration treatment step may be performed in this order.
  • the acid treatment method is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic liquid containing an acid.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic solution used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used as the acid contained in the acidic solution.
  • the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1,000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. It is more preferably mass% or less.
  • Fine fibrous cellulose can be obtained by defibrating the ionic group-introduced fiber in the defibration treatment step.
  • a defibration treatment apparatus can be used.
  • the defibrating apparatus is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a twin shaft.
  • a kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used.
  • the defibration treatment step for example, it is preferable to dilute the ionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aproton polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate, butyl acetate and the like.
  • the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of the fine fibrous cellulose during the defibration treatment can be appropriately set.
  • the slurry obtained by dispersing the phosphorus oxo acid group-introduced fiber in the dispersion medium may contain a solid content other than the phosphorus oxo acid group-introduced fiber such as urea having a hydrogen bond property.
  • the fibrous cellulose may contain pulp fibers having a fiber width of more than 1,000 nm in addition to the above-mentioned fine fibrous cellulose.
  • the pulp fiber may have, for example, at least one of an ionic group and a nonionic group. From the viewpoint of improving the dispersibility of the pulp fiber in the dispersion medium, it is more preferable that the pulp fiber has an ionic group.
  • the ionic group can include, for example, either one or both of an anionic group and a cationic group.
  • the nonionic group for example, an alkyl group and an acyl group can be included. In the present embodiment, it is particularly preferable to have an anionic group as the ionic group.
  • the method for introducing an anionic group into pulp fibers is obtained by carrying out an ionic group introduction step in the method for producing fine fibrous cellulose, and is produced by the same method except that it does not have a defibration treatment step. be able to.
  • the fiber width and average fiber width of the pulp fiber are preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 25 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 100 ⁇ m or less, from the viewpoint of obtaining good granulation property. It is 50 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the fiber width and average fiber width of the pulp fibers are measured by the methods described in the Examples.
  • the content of the pulp fibers in the fibrous cellulose is preferably 95% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less, from the viewpoint of the viscosity of the binder solution and economic efficiency, and is 0. It may be% by mass.
  • the granulated product of the present invention contains a water-soluble polymer.
  • the water-soluble polymer is a water-soluble polymer excluding the above-mentioned fibrous cellulose.
  • the water-soluble polymer means a polymer compound having a solubility of 1 g or more in 100 g of water having an arbitrary liquid temperature of 0 to 100 ° C. Further, the polymer compound means a compound having a weight average molecular weight of 1,000 or more, and is preferably 5,000 or more.
  • the water-soluble polymer is not particularly limited, and examples thereof include polysaccharides and derivatives thereof, water-soluble proteins, and water-soluble synthetic polymers.
  • the polysaccharide and its derivative include cellulose derivatives such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose; resin polysaccharides such as Arabic gum, trarant gum and Karaya gum, tamarind gum, guar gum, tara gum and locust.
  • Seed polysaccharides such as bean gum; seaweed polysaccharides such as alginate, propylene glycol alginate, carrageenan, farcellan, agar; plant polysaccharides such as high methoxypectin and low methoxypectin; raw starch, dextrin British gum, oxidation Examples include starches and starches such as etherified or esterified starches; microbially produced polysaccharides such as xanthan gum, purulan and glucan; amino polysaccharides such as chitin and chitosan; mucopolysaccharides such as chondroitin sulfate and hyaluronic acid.
  • water-soluble protein examples include casein, gelatin, albumin and the like.
  • water-soluble synthetic polymer examples include alkylene oxides such as polyvinyl alcohol, polyvinylpyrrolidone and polyethylene oxide, and polyalkylene glycols such as polyethylene glycol.
  • it is selected from the group consisting of starches, cellulose derivatives, gelatin, polyvinyl alcohol and its derivatives, polyacrylamide, polyacrylic acid and salts thereof, polyacrylic acid copolymers, polyvinylpyrrolidone, and polyethylene glycol. At least one, more preferably starches, cellulose derivatives, polyvinyl alcohol and derivatives thereof, polyacrylamide, poreacrylic acid and salts thereof.
  • the water-soluble polymer may be used alone or in combination of two or more.
  • a water-soluble polymer As a water-soluble polymer, a water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C. of 1,000 mPa ⁇ s or more (hereinafter, a water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C. of 1,000 mPa ⁇ s or more).
  • a water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C. is 100 mPa ⁇ s or less from the viewpoint of reducing the viscosity of the binder solution.
  • a sex polymer (hereinafter, a water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C. of 100 mPa ⁇ s or less is also referred to as a “low viscosity water-soluble polymer”) in combination.
  • the viscosity of a 1% by mass aqueous solution of a highly viscous water-soluble polymer at 23 ° C. is 1,000 mPa ⁇ s or more, and is preferably 1,300 mPa ⁇ s or more, more preferably from the viewpoint of improving the grain hardness of the granulated product.
  • the viscosity of a 1% by mass aqueous solution of a low-viscosity water-soluble polymer at 23 ° C. is 100 mPa ⁇ s or less, preferably 70 mPa ⁇ s or less, more preferably 40 mPa ⁇ s or less, and further preferably 20 mPa ⁇ s or less. is there.
  • the lower limit is not particularly limited, but from the viewpoint of availability, it is preferably 0.01 mPa ⁇ s or more.
  • an aqueous solution having a solid content concentration adjusted to 1% by mass is stirred at 1,500 rpm for 5 minutes with a disperser, and then allowed to stand in an environment of 23 ° C. and 50% relative humidity for 24 hours before measurement. After that, the measurement is performed using a B-type viscometer under the conditions of 23 ° C. and a rotation speed of 3 rpm. More specifically, for example, an analog viscometer T-LVT manufactured by BLOOKFIELD, which is a B-type viscometer, can be used.
  • the measurement conditions are, for example, a liquid temperature of 23 ° C. and a viscometer rotation speed of 3 rpm, and the viscosity value 3 minutes after the start of measurement is taken as the viscosity of the dispersion liquid.
  • the aqueous solution may be in a dispersed state or the water-soluble polymer may be completely dissolved.
  • Examples of the high-viscosity water-soluble polymer include carboxymethyl cellulose, hydroxyethyl cellulose, oxidized starch, polyacrylamide, guar gum, and polyacrylic acid. Among these, carboxymethyl cellulose and oxidized starch are used from the viewpoint of grain hardness of the granulated product. Polyacrylamide is preferred, and carboxymethyl cellulose is more preferred.
  • Examples of the low-viscosity water-soluble polymer include polyacrylates and alginates. Among these, polyacrylates are used from the viewpoint of reducing the viscosity of the binder solution and the grain hardness of the granulated product. Preferably, sodium polyacrylate is more preferred.
  • examples of the polyacrylate include alkali metal salts of polyacrylic acid such as sodium polyacrylate and potassium polyacrylate, and sodium polyacrylate is preferable.
  • examples of the alginate include sodium alginate, potassium alginate, and ammonium alginate, and sodium alginate is preferable.
  • the mixing ratio of the high-viscosity water-soluble polymer and the low-viscosity water-soluble polymer is preferably 1/2 or more, more preferably 1/1 or more, still more preferably 1.5 / 1 or more, from the viewpoint of reducing the viscosity of the binder solution and the grain hardness of the granulated product. Yes, and preferably 20/1 or less, more preferably 10/1 or less, still more preferably 5/1 or less.
  • a powder is granulated by using fibrous cellulose and, if necessary, a water-soluble polymer as a binder component (granulator) of a powder selected from the group consisting of an inorganic powder and an organic powder.
  • a binder component granulator
  • the content of the fine fibrous cellulose with respect to 100 parts by mass of the powder is preferably 0.01 part by mass or more, more preferably 0.03 part by mass or more, from the viewpoint of imparting granulation property and appropriate grain hardness to the granulated product.
  • the total solid content of the fibrous cellulose and the water-soluble polymer with respect to 100 parts by mass of the powder is preferably 0 from the viewpoint of granulation property and grain hardness of the granulated product. .001 parts by mass or more, more preferably 0.005 parts by mass or more, still more preferably 0.01 parts by mass or more, and preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 1 part by mass. It is less than a part.
  • the blending ratio of the water-soluble polymer and the fibrous cellulose is the viscosity of the binder solution and the granules of the granules. From the viewpoint of hardness, it is preferably 1/10 or more, more preferably 1/3 or more, still more preferably 1/1 or more, and preferably 1,000/1 or less, more preferably 100/1 or less, further. It is preferably 10/1 or less, more preferably 5/1 or less.
  • the binder component is preferably added in a liquid state, and more preferably in an aqueous dispersion state.
  • the binder solution containing the binder component it is preferable that at least a part of the fibrous cellulose and the water-soluble polymer which are the binder components are dissolved, and a part may be in a dispersed state.
  • the viscosity of the binder solution when used is preferably 0.1 mPa ⁇ s or more, more preferably 1 mPa ⁇ s or more, still more preferably 5 mPa ⁇ s, from the viewpoint of uniformly mixing with the powder and handling during production.
  • the concentration of the binder solution at the time of use is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, still more, from the viewpoint of facilitating drying. It is preferably 0.2% by mass or more, preferably 5.0% by mass or less, more preferably 4.0% by mass or less, still more preferably 3.0% by mass, from the viewpoint of uniformly applying and handling. % Or less.
  • the solvent of the binder solution is preferably water as a main component, and may contain an organic solvent in addition to water.
  • the organic solvent include the polar organic solvents mentioned in the defibration step.
  • the content of water in the solvent of the aqueous dispersion is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 100% by mass. You may.
  • the granulated product of the present invention is obtained by granulating at least one powder selected from the group consisting of inorganic powder and organic powder by the above-mentioned binder component.
  • the inorganic powder used in the present invention is not particularly limited, and may be appropriately selected depending on the intended use of the granulated product.
  • the inorganic powder is at least one selected from the group consisting of nitrogen, phosphoric acid, potassium, lime, silicic acid, magnesium, manganese and boron oxide (B 2 O 3 ). It is preferable that it is an inorganic powder containing.
  • the granulated product when used as a nutritional component of a plant, sulfur oxide (SO 2 ), iron, copper, zinc, molybdenum and the like are exemplified.
  • examples of the inorganic powder include dolomite (main components are magnesium carbonate and calcium carbonate) and sulfur.
  • Examples of the nitrogen-based inorganic powder include ammonium sulfate ((NH 4 ) 2 SO 4 ), ammonium chloride (NH 4 Cl), ammonium nitrate, (NH 4 NO 3 ) sodium nitrate (NaNO 3 ), and lime nitrogen (CaCN 2 ).
  • CaO is exemplified.
  • lime nitrogen is made from, for example, coke and quicklime obtained from coal
  • sodium nitrate is made from, for example, nitratine.
  • Examples of the inorganic powder containing phosphoric acid as a main component include lime superphosphate (a mixture of Ca (H 2 PO 4 ) 2 ⁇ H 2 O and Ca SO 4 ) and triple superphosphate (Ca (H 2 PO 4 )).
  • triple superphosphate is a mixture of monocalcium phosphate produced by reacting phosphate rock with sulfuric acid and calcium sulfate (plaster), and triple superphosphate reacts phosphate ore with phosphoric acid.
  • plaster calcium sulfate
  • Ammonium phosphate is obtained by reacting phosphoric acid and ammonium obtained by reacting phosphate ore with sulfuric acid.
  • Fused phosphate fertilizer is obtained by heating and melting phosphate rock and serpentinite in an electric furnace.
  • Fluorine apatite in phosphate rock is decomposed by heating to remove fluorine, resulting in organic phosphate fertilizer. .. Further, the calcined phosphate fertilizer is obtained by calcining phosphate ore at a high temperature so as not to melt with sodium carbonate and phosphoric acid to destroy the apatite structure and remove fluorine to obtain phosphoric acid fertilizer.
  • the inorganic powder based on potassium, potassium chloride (KCl), potassium sulfate (K 2 SO 4), potassium silicate and the like.
  • Potassium chloride can be obtained by a method obtained by beneficiation or recrystallization of ore (silvinite, carnalitite, etc.), a method obtained by concentrating natural brine, fractional crystallization, or the like. Further, potassium sulfate is obtained by reacting potassium chloride with sulfuric acid. Potassium silicate is obtained by mixing fly ash, potassium hydroxide and magnesium hydroxide, granulating, and firing.
  • the inorganic powder containing lime as a main component is an inorganic powder containing calcium as a main component, and examples thereof include quick lime, slaked lime, lime carbonate, and lime nitrogen.
  • Examples of the inorganic powder containing silicic acid as a main component include mines, and specific examples thereof include pig iron ore, ordinary steel ore, stainless ore, and silicon manganese ore.
  • Examples of the inorganic powder containing magnesium as a main component include dolomite (domite lime) and dolomite. Further, magnesium chloride, magnesium sulfate, magnesium nitrate and the like may be used.
  • Examples of the inorganic powder containing manganese as a main component include manganese sulfate and manganese carbonate.
  • the granulated product may be a compound fertilizer containing two or more of the three elements of nitrogen (N), phosphoric acid (P), and potassium (K). It may be a trace element compound fertilizer containing both manganese and boron.
  • the granulated product when it is for fertilizer, it may contain an organic powder such as urea in addition to the above-mentioned inorganic powder, but from the viewpoint of granulation property, the inorganic powder relative to the total of the inorganic powder and the organic powder.
  • the amount of the above is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and may be 100% by mass.
  • examples of the inorganic powder include pearlite, vermiculite, zeolite, bentonite, and diatomaceous earth calcined product.
  • examples of the inorganic powder include calcium chloride, sodium chloride, magnesium chloride, and carbon black.
  • urea or a metal acetate salt such as calcium acetate, magnesium acetate, or potassium acetate may be used in addition to the above-mentioned inorganic powder.
  • Foods such as tablets and granules, cosmetics, when used in pharmaceutical applications, the inorganic powder, calcium carbonate, dicalcium phosphate (calcium hydrogen phosphate and its dihydrate, CaHPO 4 ⁇ 2H 2 O ), Dicalcium phosphate (calcium phosphate, Ca 3 (PO 4 ) 2 ), calcium sulfate, kaolin and the like are exemplified.
  • Organic powder may be appropriately selected from organic powders used in foods, cosmetics, pharmaceuticals, and fertilizers.
  • organic powders used as excipients in pharmaceuticals include microcrystalline cellulose, powdered cellulose, dextroses, dextrin, starch additives, fructose, lactitol, anhydrous lactose, lactose, martitol, maltodextrin, maltose, etc.
  • examples thereof include mannitol, sorbitol, starch, corn starch, potato starch, pregelatinized starch, modified pregelatinized starch, tapioca starch, wheat starch, refined sucrose, and compressed sugar.
  • At least one powder selected from the group consisting of an inorganic powder and an organic powder may be used alone or in combination of two or more. Further, powders having different particle diameters (particle size) may be mixed and used depending on the intended use.
  • an inorganic powder is preferable from the viewpoint of grain hardness and the like, and a water-insoluble or poorly water-soluble inorganic powder is more preferable.
  • water insoluble means that the solubility in 100 g of water at 25 ° C. is 0.1 g or less, and water insoluble means that the solubility in 100 g of water at 25 ° C. is more than 0.1 g and 0.5 g. It means that
  • the particle size of the powder is not particularly limited, but it is preferably 12 mesh or more.
  • the particle size means the maximum mesh of the sieve through which 50% by mass or more of the particles have passed.
  • the particle size of the inorganic powder is more preferably 16 mesh or more, further preferably 30 mesh or more, still more preferably 50 mesh or more, and particularly preferably 83 mesh or more. Further, it is preferably 500 mesh or less, more preferably 330 mesh or less, still more preferably 200 mesh or less, still more preferably 149 mesh or less. The relationship between the mesh and the mesh is determined in accordance with JIS Z 8801-1: 2006.
  • 12 mesh has a mesh of 1.40 mm
  • 16 mesh has a mesh of 1 mm
  • 30 mesh has a mesh of 550 ⁇ m
  • 50 mesh Corresponds to an opening of 300 ⁇ m
  • 83 mesh corresponds to an opening of 180 ⁇ m
  • the 500 mesh corresponds to the opening 25 ⁇ m
  • the 330 mesh corresponds to the opening 45 ⁇ m
  • the 200 mesh corresponds to the opening 75 ⁇ m
  • the 149 mesh corresponds to the opening 100 ⁇ m.
  • the granulated product of the present invention is selected from the group consisting of inorganic powder and organic powder by a binder component containing fibrous cellulose containing fine fibrous cellulose and, if necessary, a water-soluble polymer. It is made by granulating two powders.
  • the granulated product may contain other components in addition to the fibrous cellulose, the water-soluble polymer, and the powder.
  • the grain hardness of the granulated product varies depending on the intended use of the granulated product, and may be appropriately selected according to the intended use.
  • the granulated product is used for fertilizer, it is preferably 450 g or more, more preferably 500 g or more, still more preferably 550 g or more, still more preferably 700 g or more, still more preferably, from the viewpoint of being able to withstand storage and mechanical spraying.
  • the granulated product when used for pharmaceutical purposes, it is preferably 1,000 g or more, from the viewpoint of storage stability, suppression of disintegration in the oral cavity, and imparting appropriate disintegration into water. It is preferably 3,000 g or more, more preferably 5,000 g or more, and preferably 30,000 g or less, more preferably 20,000 g or less, still more preferably 16,000 g or less.
  • the grain hardness of the granulated product is measured by the method described in Examples.
  • the average particle size of the granulated product is not particularly limited and may be appropriately selected depending on the intended use, but from the viewpoint of easy granulation, it is preferably 1 mm or more, and preferably 10 mm or less, more preferably 8 mm or less. , More preferably 6 mm or less, and even more preferably 4 mm or less.
  • the average particle size is measured by the sieving method, and a low-tap automatic sieving device using a standard sieving conforming to JIS Z 8801: 2006 is used. Weigh the sample and use the average particle size as the cumulative particle size of 50%. Fine particles and coarse particles may be removed by sieving the granulated product obtained by the present invention.
  • the granules can be applied to various uses, for example, fertilizers, soil conditioners, snow melting agents, antislip agents, paving materials, foods, pharmaceuticals, cosmetics and the like.
  • the granulated product of the present invention is suitably used for fertilizers, soil improvement and snow melting agents from the viewpoint of the grain hardness of the granulated product and the disintegration property of the granulated product in water.
  • the method for producing the granulated product (granulation method) of the present invention is not particularly limited, but fine fibrous cellulose having a fiber width of 1,000 nm or less is added to at least one powder selected from the group consisting of inorganic powder and organic powder. It is preferable to have a step of mixing and granulating an aqueous dispersion containing a fibrous cellulose containing the above and, if necessary, a water-soluble polymer. For example, it may be appropriately selected from granulation methods such as stirring granulation, rolling granulation, and extrusion granulation.
  • the method for producing a granulated product of the present invention is an aqueous dispersion containing a fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less and, if necessary, a water-soluble polymer in a powder. It is preferable to have a step of mixing and granulating the powder (binder solution), and a step of rolling and granulating the powder using a binder solution containing fibrous cellulose and, if necessary, a water-soluble polymer. It is more preferable to have.
  • the powder and the binder component used are as described above, and the preferred embodiment is also the same.
  • the amount of the binder solution applied to the powder is based on 100 parts by mass of the powder from the viewpoint of uniformly applying the binder solution to the powder to promote uniform granulation and enabling granulation in a short time. It is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, further preferably 7 parts by mass or more, and preferably 100 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 20 parts by mass. It is as follows. Therefore, it is preferable to appropriately adjust the concentration of the binder solution so that the amount of the binder solution applied to the powder is within a desired range, and then apply the binder solution to the powder.
  • the solvent of the binder solution contains water as a main component, and may contain an organic solvent in addition to water.
  • organic solvent examples include the polar organic solvents mentioned in the defibration step.
  • the content of water in the solvent of the aqueous dispersion is 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 100% by mass. You may.
  • the granulated product is obtained by granulating the powder using fibrous cellulose and, if necessary, a water-soluble polymer as a binder component, and water-dispersing the fibrous cellulose and, if necessary, a water-soluble polymer. It is preferably applied to the powder as a liquid (binder solution).
  • a liquid (binder solution) preferably a liquid (binder solution).
  • rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crush granulation and the like can be used, and rolling granulation is preferable.
  • the rolling granulation method is particularly preferable from the viewpoint that spherical ones are generally preferred over those having irregular shapes and sharp corners.
  • the rolling granulation method a known method may be appropriately selected, and a Roche method, a drum method, or the like can be used. Further, as the rolling granulator, a cement mixer, a drum mixer, a bread type granulator and the like are used.
  • the method of applying the binder solution is not particularly limited, and the powder and the binder solution may be kneaded in advance with a mixer or a kneader and then placed in a granulator. However, the binder solution is uniformly applied to the entire powder to perform granulation. From the viewpoint of uniform progress, it is preferable to apply small droplets such as spray.
  • the granulation time is not particularly limited, but from the viewpoint of obtaining a granulated product having a desired grain hardness and from the viewpoint of producing the granulated product in a short time and improving the production efficiency, it is preferably 1 minute or more, more preferably 2 Minutes or more, more preferably 4 minutes or more, and preferably 60 minutes or less, more preferably 30 minutes or less, still more preferably 10 minutes or less. Further, from the viewpoint of removing excess water from the granulated product, heating may be performed during the granulation, or gas may be supplied during the granulation.
  • the granulated product obtained by rolling granulation may be appropriately classified by sieving or the like. As a result, fine particles and coarse particles are removed to obtain a granulated product having a desired particle size.
  • the granulator for powder of the present invention (also simply referred to as "granulator") contains fibrous cellulose containing fine fibrous cellulose having a fiber width of 1,000 nm or less, and further contains a water-soluble polymer. You may. Examples of the above-mentioned fibrous cellulose, fine fibrous cellulose and water-soluble polymer include the above-mentioned fibrous cellulose, fine fibrous cellulose and water-soluble, and the preferred range is also the same. Further, as described above, when a high-viscosity water-soluble polymer having a viscosity of a 1% by mass aqueous solution at 23 ° C.
  • the water-soluble polymer 1% by mass at 23 ° C. It is preferable to use a low-viscosity water-soluble polymer having a viscosity of 100 mPa ⁇ s or less in combination.
  • the preferred embodiments of the high-viscosity water-soluble polymer and the low-viscosity water-soluble polymer and the preferred embodiments relating to the combined use are as described above. Further, the preferable blending ratio of the fibrous cellulose and the water-soluble polymer in the granulating agent for powder is also as described above.
  • the granulating agent for powder may have any properties such as powder, wet powder, and liquid, and when used, it is prepared in the form of a slurry dissolved or dispersed in water and used as a binder. It is preferable to use it after making it into a solution.
  • a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water.
  • a chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphate group into the cellulose in the pulp to obtain a phosphate group-introduced pulp fiber (phosphorylated pulp).
  • the obtained phosphorylated pulp was washed.
  • the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp 1 is stirred so that the pulp is uniformly dispersed, and then filtration and dehydration are repeated. I went by.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows.
  • the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was gradually added while stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. ..
  • the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized.
  • the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment, and ion-exchanged water was added to obtain a phosphorylated pulp dispersion (dispersion liquid (1)) having a solid content concentration of 2% by mass.
  • a phosphorylated pulp dispersion (dispersion liquid (1)) having a solid content concentration of 2% by mass.
  • the amount of phosphoric acid group (first dissociated acid amount) measured by the measuring method described later was 1.45 mmol / g.
  • the total amount of dissociated acid was 2.45 mmol / g.
  • the fiber width measured by the measuring method described later was about 30 ⁇ m.
  • the obtained subphosphorylated pulp was subjected to a micronization treatment in the same manner as in [Production Example 2] to obtain a phosphite-introduced fine fibrous cellulose (subphosphorylated CNF) dispersion (dispersion (3)). ..
  • the amount of (sub) phosphorous acid group (first dissociated acid amount) measured by the measuring method described later was 1.51 mmol / g.
  • the total amount of dissociated acid was 1.54 mmol / g.
  • the fiber width measured by the measuring method described later was 3 to 5 nm.
  • TEMPO oxide CNF carboxy group-introduced fine fibrous cellulose
  • the obtained TEMPO oxide pulp was washed.
  • the pulp slurry after TEMPO oxidation is dehydrated to obtain a dehydrated sheet, and then 5,000 parts by mass of ion-exchanged water is poured, stirred and uniformly dispersed, and then filtered and dehydrated is repeated.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the obtained TEMPO oxide pulp was subjected to a miniaturization treatment in the same manner as in [Production Example 2] to obtain a carboxy group-introduced fine fibrous cellulose (TEMPO oxide CNF) dispersion liquid (dispersion liquid (4)).
  • TEMPO oxide CNF carboxy group-introduced fine fibrous cellulose
  • dispersion liquid (4) dispersion liquid (4)
  • the amount of carboxy group measured by the measuring method described later was 1.30 mmol / g.
  • the fiber width measured by the measuring method described later was 3 to 5 nm.
  • the pre-beaten unmodified pulp fibers were subjected to a micronization treatment in the same manner as in [Production Example 2] to obtain an unmodified fine fibrous cellulose (unmodified CNF) dispersion liquid (dispersion liquid (6)).
  • unmodified CNF unmodified fine fibrous cellulose
  • dispersion liquid (6) dispersion liquid
  • the fiber widths of the phosphoric acid group-introduced pulp and the unmodified pulp fiber were measured using a Kayani fiber length measuring device (manufactured by Kayani Automation Co., Ltd., FS-200 type).
  • the fiber width of the fine fibrous cellulose was measured by the following method.
  • the supernatant of the fine fibrous cellulose dispersion was diluted with water so that the concentration of the fine fibrous cellulose was 0.01% by mass or more and 0.1% by mass or less, and was added dropwise to the hydrophilized carbon grid film. This was dried, stained with uranyl acetate, and observed with a transmission electron microscope (JEOL-2000EX, manufactured by JEOL Ltd.).
  • the amount of the phosphorus oxo acid group of the fine fibrous cellulose is obtained in a fibrous cellulose-containing slurry prepared by diluting a dispersion containing the target fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass.
  • the measurement was carried out by performing a treatment with an ion exchange resin and then performing a titration with an alkali.
  • a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) having a volume of 1/10 is added to the fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour and then shaken. This was done by pouring onto a mesh with a mesh size of 90 ⁇ m to separate the resin and the slurry. For titration using alkali, the change in pH value indicated by the slurry is measured while adding 10 ⁇ L of a 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry treated with an ion exchange resin every 5 seconds. I went by doing.
  • the titration was carried out while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration.
  • the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1).
  • the amount of alkali required from the start of the titration to the first end point is equal to the amount of the first dissociated acid in the slurry used for the titration.
  • the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of phosphate groups (mmol / g).
  • phosphorus oxo oxide pulp For phosphorus oxo oxide pulp, ion-exchanged water is added to the phosphorus oxo oxide pulp to prepare a slurry having a solid content concentration of 2% by mass, and this slurry is 200 MPa using a wet atomizer (manufactured by Sugino Machine Limited, Starburst). The dispersion obtained by treating twice at the same pressure as described above was titrated with an alkali in the same manner as described above.
  • Example 1-1 As the raw material inorganic powder, lime powder manufactured by Oji Forest & Products Co., Ltd. (hereinafter, also simply referred to as "lime powder”) was used. To 100 parts by mass of lime powder, 0.05 parts by mass of the dispersion liquid (2) was added as a binder in terms of solid content, and the mixture was rotated for 5 minutes with a cement mixer to granulate. The dispersion liquid (2) was appropriately diluted with ion-exchanged water so that the amount added to 100 parts by mass of the lime powder was 10 parts by mass. The granulated product was sieved to obtain a granulated product having a particle size of 1 to 4 mm.
  • Example 1-2 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-1] except that the amount of the dispersion liquid (2) added was 0.1 parts by mass in terms of solid content.
  • Example 1-3 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-1] except that the amount of the dispersion liquid (2) added was 0.2 parts by mass in terms of solid content.
  • Example 1-4 Except that the amount of the dispersion liquid (2) added was 0.4 parts by mass in terms of solid content and diluted with ion-exchanged water so that the amount added to 100 parts by mass of the lime powder was 20 parts by mass, [Example 1-1] ], A granulated product having a particle size of 1 to 4 mm was obtained.
  • Example 1-5 Granules having a particle size of 1 to 4 mm in the same manner as in [Example 1-1] except that 0.05 parts by mass of the dispersion liquid (3) was added as a binder to 100 parts by mass of the lime powder.
  • Example 1-6 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-5] except that the amount of the dispersion liquid (3) added was 0.1 parts by mass in terms of solid content.
  • Example 1-7 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-5] except that the amount of the dispersion liquid (3) added was 0.2 parts by mass in terms of solid content.
  • Example 1-8 [Example 1-5] except that the amount of the dispersion liquid (3) added was 0.4 parts by mass in terms of solid content and diluted with ion-exchanged water so that the amount added to 100 parts by mass of lime powder was 20 parts by mass. ], A granulated product having a particle size of 1 to 4 mm was obtained.
  • Example 1-9 Granules having a particle size of 1 to 4 mm in the same manner as in [Example 1-1] except that 0.05 parts by mass of the dispersion liquid (4) was added as a binder to 100 parts by mass of the lime powder.
  • Example 1-10 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-9] except that the amount of the dispersion liquid (4) added was 0.1 parts by mass in terms of solid content.
  • Example 1-11 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-9] except that the amount of the dispersion liquid (4) added was 0.2 parts by mass in terms of solid content.
  • Example 1-12 [Example 1-9] except that the amount of the dispersion liquid (4) added was 0.4 parts by mass in terms of solid content and diluted with ion-exchanged water so that the amount added to 100 parts by mass of lime powder was 20 parts by mass. ], A granulated product having a particle size of 1 to 4 mm was obtained.
  • Example 1-13 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-1] except that the dispersion liquid (6) was added to 100 parts by mass of the lime powder as a binder in an amount of 0.05 parts by mass in terms of solid content. It was.
  • Example 1-14 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-13] except that the amount of the dispersion liquid (6) added was 0.1 parts by mass in terms of solid content.
  • Example 1-15 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 1-13] except that the amount of the dispersion liquid (6) added was 0.2 parts by mass in terms of solid content.
  • Example 1-16 Except that the amount of the dispersion liquid (6) added was 0.4 parts by mass in terms of solid content and diluted with ion-exchanged water so that the amount added to 100 parts by mass of the lime powder was 20 parts by mass, [Example 1-13] ], A granulated product having a particle size of 1 to 4 mm was obtained.
  • Example 1-17 [Example 1-17] Except for adding 0.32 parts by mass of the dispersion liquid (1) as a binder and 0.08 parts by mass of the dispersion liquid (2) as a solid content to 100 parts by mass of the lime powder. ], A granulated product having a particle size of 1 to 4 mm was obtained.
  • the dispersion liquid (1) and the dispersion liquid (2) were appropriately diluted with ion-exchanged water so that the total amount added to 100 parts by mass of the lime powder was 20 parts by mass.
  • Example 1-18 [Example 1-1] Except that the dispersion liquid (5) was added as a binder in an amount of 0.32 parts by mass and the dispersion liquid (6) was added in an amount of 0.08 parts by mass with respect to 100 parts by mass of the lime powder. ], A granulated product having a particle size of 1 to 4 mm was obtained. The dispersion liquid (5) and the dispersion liquid (6) were appropriately diluted with ion-exchanged water so that the total amount added to 100 parts by mass of the lime powder was 20 parts by mass.
  • Example 2-1 The dispersion liquid (2) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (1).
  • As the raw material inorganic powder lime powder manufactured by Oji Forest & Products Co., Ltd. (hereinafter, also simply referred to as "lime powder”) was used.
  • Example 2-2 The dispersion liquid (2) and the polyvinyl alcohol solution (2) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyvinyl alcohol (PVA) as a solid content is 0.4% by mass.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • ion-exchanged water were mixed to prepare a binder solution (2).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (2).
  • Dispersion solution (2) starch (potato starch net running, Okhotsk net running) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of starch as a solid content is 0.4% by mass.
  • An aqueous solution manufactured by Agricultural Cooperative Association
  • ion-exchanged water were mixed to prepare a binder solution (3).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (3).
  • Example 2-4 The dispersion liquid (2) and polyacrylamide (prince) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyacrylamide (PAM) as a solid content is 0.2% by mass.
  • An aqueous solution of Flock A-30791VR (manufactured by Oji Engineering Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (4).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (4).
  • Example 2-5 The dispersion liquid (2) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.4% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (5).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (5).
  • Example 2-6 The dispersion liquid (3) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (6).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (6).
  • Example 2-7 The dispersion liquid (3) and the polyvinyl alcohol solution (3) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyvinyl alcohol (PVA) as a solid content is 0.4% by mass.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • ion-exchanged water were mixed to prepare a binder solution (7).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (7).
  • Example 2-8 Dispersion solution (3), starch (potato starch net running, Okhotsk net running) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of starch as a solid content is 0.4% by mass.
  • An aqueous solution manufactured by Agricultural Cooperative Association
  • ion-exchanged water were mixed to prepare a binder solution (8).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (8).
  • Example 2-9 The dispersion liquid (3) and polyacrylamide (prince) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyacrylamide (PAM) as a solid content is 0.2% by mass.
  • An aqueous solution of Flock A-30791VR (manufactured by Oji Engineering Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (9).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (9).
  • Example 2-10 The dispersion liquid (3) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.4% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (10).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (10).
  • Example 2-11 The dispersion liquid (4) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (11).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (11).
  • Example 2-12 The dispersion liquid (4) and the polyvinyl alcohol solution (4) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyvinyl alcohol (PVA) as a solid content is 0.4% by mass.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • ion-exchanged water were mixed to prepare a binder solution (12).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (12).
  • Example 2-13 Dispersion solution (4), starch (potato starch net running, Okhotsk net running) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of starch as a solid content is 0.4% by mass.
  • An aqueous solution manufactured by Agricultural Cooperative Association
  • ion-exchanged water were mixed to prepare a binder solution (13).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (13).
  • Example 2-14 The dispersion liquid (4) and polyacrylamide (prince) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyacrylamide (PAM) as a solid content is 0.2% by mass.
  • An aqueous solution of Flock A-30791VR (manufactured by Oji Engineering Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (14).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (14).
  • Example 2-15 The dispersion liquid (4) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.4% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (15).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (15).
  • Example 2-16 The dispersion (6) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (16).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (16).
  • Example 2-17 The dispersion liquid (6) and the polyvinyl alcohol solution (6) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyvinyl alcohol (PVA) as a solid content is 0.4% by mass.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • ion-exchanged water were mixed to prepare a binder solution (17).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (17).
  • Example 2-18 Dispersion solution (6), starch (potato starch net running, Okhotsk net running) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of starch as a solid content is 0.4% by mass.
  • An aqueous solution manufactured by Agricultural Cooperative Association
  • ion-exchanged water were mixed to prepare a binder solution (18).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (18).
  • Example 2-19 The dispersion liquid (6) and polyacrylamide (prince) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of polyacrylamide (PAM) as a solid content is 0.2% by mass.
  • An aqueous solution of Flock A-30791VR (manufactured by Oji Engineering Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (19).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (19).
  • Example 2-20 The dispersion (6) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.4% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • Polymer H, an aqueous solution of Telnite Co., Ltd.), and ion-exchanged water were mixed to prepare a binder solution (20).
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (20).
  • the dispersion liquid (1) is prepared so that the content of fibrous cellulose as a solid content is 0.32% by mass, and the dispersion liquid is adjusted so that the content of fibrous cellulose as a solid content is 0.08% by mass.
  • (2) is mixed with an aqueous solution of carboxymethyl cellulose (Telpolymer H, manufactured by Ternite Co., Ltd.) so that the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass, and ion-exchanged water is appropriately added.
  • a binder solution (21) was prepared. Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (21).
  • the dispersion liquid (5) is prepared so that the content of fibrous cellulose as a solid content is 0.32% by mass, and the dispersion liquid is adjusted so that the content of fibrous cellulose as a solid content is 0.08% by mass.
  • (6) is mixed with an aqueous solution of carboxymethyl cellulose (telpolymer H, manufactured by Ternite Co., Ltd.) so that the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass, and ion-exchanged water is appropriately added.
  • a binder solution (22) was prepared. Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (22).
  • Example 2-23 The dispersion liquid (2) and carboxymethyl cellulose (tel) so that the content of fibrous cellulose as a solid content is 0.1% by mass and the content of carboxymethyl cellulose (CMC) as a solid content is 0.4% by mass.
  • An aqueous solution of Polymer H (manufactured by Ternite Co., Ltd.) and ion-exchanged water were mixed to prepare a binder solution (1).
  • As the raw material organic powder D-sorbitol powder manufactured by Kanto Chemical Co., Inc. (hereinafter, also simply referred to as “sorbitol powder”) was used.
  • Example 2-24 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-23] except that the binder solution (1) was changed to the binder solution (2).
  • Example 2-25 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-23] except that the binder solution (1) was changed to the binder solution (3).
  • Example 2-26 Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-23] except that the binder solution (1) was changed to the binder solution (4).
  • Example 2-27 The content of fibrous cellulose as a solid content was 0.1% by mass, the content of carboxymethyl cellulose (CMC) as a solid content was 0.4% by mass, and sodium polyacrylate (SPA) as a solid content was 0. Dispersion solution (2), aqueous solution of carboxymethyl cellulose (terpolymer H, manufactured by Ternite Co., Ltd.), aqueous solution of sodium polyacrylate (Aron A-20UN, manufactured by Toa Synthetic Co., Ltd.), and ion exchange so as to be 1% by mass. Water was mixed to prepare a binder solution (23). Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (23).
  • Example 2-28 The content of fibrous cellulose as a solid content was 0.1% by mass, the content of carboxymethyl cellulose (CMC) as a solid content was 0.33% by mass, and sodium polyacrylate (SPA) as a solid content was 0.
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (24).
  • a binder solution (28) was prepared by adjusting polyacrylamide (Oji Flock A-30791VR, manufactured by Oji Engineering Co., Ltd.) with ion-exchanged water so that the content of polyacrylamide as a solid content was 0.2% by mass. did.
  • Granules having a particle size of 1 to 4 mm were obtained in the same manner as in [Example 2-1] except that the binder solution (1) was changed to the binder solution (28).
  • inorganic particles (lime) and organic powder (sorbitol) were obtained by using a binder component containing fibrous cellulose containing fine fibrous cellulose and a water-soluble polymer.
  • a binder component containing fibrous cellulose containing fine fibrous cellulose and a water-soluble polymer In each of the prepared Examples 2-1 to 2-28, granulated products having disintegration property in water and excellent grain hardness were obtained. Further, by using the high-viscosity water-soluble polymer and the low-viscosity water-soluble polymer in combination, it was possible to achieve a low viscosity of the binder solution without lowering the grain hardness. Furthermore, in Examples 2-1 to 2-28, the pH of the binder solution was near neutral, and there was no odor. As shown in Comparative Examples 2-1 to 2-5, when the fibrous cellulose containing the fine fibrous cellulose was not contained, sufficient grain hardness could not be obtained in any of the cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pest Control & Pesticides (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

低粘度であり、粉末と均一に混合可能であり、さらに、得られる造粒物の粒硬度が高い粉末用造粒剤、並びに、該粉末造粒剤を用いた造粒物、およびその製造方法を提供すること。 繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含有するバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる、造粒物。

Description

粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法
 本発明は、粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法に関する。
 一般的に、鉱物肥料の多くは、粉状または砂状(以下、これらを合わせて粉体状ともいう)を呈しており、以前は、粉体状のまま土壌に散布して用いられてきた。しかし、機械散布が一般的に行われるようになり、散布用機械への適用性、または散布時の飛散防止の観点から、粉体状肥料を粒状化することが必要とされるようになってきている。
 特許文献1には、1)ドロマイトまたは石灰石:10~90%、2)水酸化マグネシウム:10~40%、および3)カキガラ:10~60%(%は質量)を配合してなる混合石灰肥料において、バインダーとして、イースト菌発酵廃液、アミノ酸発酵廃液、パルプ廃液、アルコール発酵廃液等を使用すること記載されている。
 また、水溶性高分子は、種々の粉末を造粒する際のバインダーや、医薬品の製剤時の結合剤として広く使用されている。
 特許文献2には、製鉄業のみならず、広く金属材料製造業全般において適用することができる、粉末金属原料用造粒剤およびそれを用いた粉末金属原料の湿式造粒法を提供することを目的として、カルボキシメチルセルロース塩、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸塩、グアーガム、タマリンドガムおよびデンプンから選ばれる1種以上のバインダー成分を含有することを特徴とする粉末金属原料用造粒剤が記載されている。
 特許文献3には、鉄鉱石等の焼結原料を造粒して、焼結機における通気性の改善、生産性の向上に有効な擬似粒子化性に優れた造粒粒子を得る方法を提供することを目的として、鉄鉱石等の焼結原料に生石灰を配合し、散水を行って一次造粒を行った後、さらに粘度が5~100mPa・sの液状バインダーを添加して二次造粒を行って、含水率6~9質量%の造粒物を得ることを特徴とする焼結原料の造粒方法が記載され、前記液状バインダーが、ベントナイト、グアーガム、ポリビニルアルコール、ポリアクリルアミド、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルエチルセルロース、でんぷん、リグニン、および水ガラスよりなる群から選ばれる1種または2種以上を含むことが好ましい旨が記載されている。
 特許文献4には、(R)-(-)-3’-(2-アミノ-1-ヒドロキシエチル)-4’-フロロメタンスルホンアニリド塩酸塩の安定化固形製剤に関し、糖アルコールおよびデンプン類を賦形剤とすることにより、安定性に優れた固形製剤が得られることが記載されている。
特開2003-128484号公報 特開2000-178662号公報 特開2007-113086号公報 国際公開第00/10557号
 特許文献1に記載された混合石灰肥料では、実施例において、アルコール発酵廃液やイースト菌発酵廃液をバインダーとして使用している。従来、粒状化の際のバインダーとしては、上述したイースト菌発酵廃液、アミノ酸発酵廃液、アルコール発酵廃液に加え、パルプ廃液などの有機廃液が使用されてきたが、いずれも無機粉末に対する添加量が多量に必要であり、無機粉末の含有量が相対的に少なくなるという問題があった。
 さらにこれらのバインダーには、臭気の強いものが多く、粒状化の際の作業環境が悪化する傾向があった。また、一部の有機廃液は、アルカリ性が強く、同様に、作業環境が悪化する傾向があった。
 また、特許文献2および3には、水溶性高分子の溶液をバインダーとして、製鉄所のダストや鉄鉱石を造粒する技術が記載されているが、得られた造粒物の強度は十分ではなかった。
 さらに、特許文献4には、水溶性高分子を賦形剤として医薬品を製剤する技術が開示されているが、製剤の強度については検討されていない。
 本発明は、臭気および強アルカリによる造粒時の作業環境の悪化が抑制され、さらに、バインダーの使用量が抑制された造粒物およびその製造方法を提供することを目的とする。さらに、本発明は前記造粒物に使用する粉末用造粒剤を提供することを目的とする。
 本発明者は、少なくとも微細繊維状セルロースを含有する繊維状セルロースが、粉末を造粒する際のバインダーとして有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の<1>~<21>に関する。
 <1> 繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含有するバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる、造粒物。
 <2> 前記繊維状セルロースが、繊維幅が1,000nmを超えるパルプ繊維を含有する、<1>に記載の造粒物。
 <3> 前記繊維状セルロース中の前記微細繊維状セルロースの含有量が5質量%以上100質量%以下である、<1>または<2>に記載の造粒物。
 <4> 前記微細繊維状セルロースが、アニオン性基を有する、<1>~<3>のいずれかに記載の造粒物。
 <5> 前記粉末100質量部に対する前記微細繊維状セルロースの含有量が0.01質量部以上1質量部以下である、<1>~<4>のいずれかに記載の造粒物。
 <6> バインダー成分が、さらに水溶性高分子を含有する、<1>~<5>のいずれかに記載の造粒物。
 <7> 前記粉末100質量部に対する前記繊維状セルロースおよび水溶性高分子の合計固形分量が0.001質量部以上10質量部以下である、<6>に記載の造粒物。
 <8> 前記水溶性高分子と、前記繊維状セルロースとの配合比率(水溶性高分子/繊維状セルロース)が1/10以上1000/1以下である、<6>または<7>に記載の造粒物。
 <9> 前記水溶性高分子が、23℃における1質量%水溶液の粘度が1,000mPa・s以上である高粘度水溶性高分子と、23℃における1質量%水溶液の粘度が100mPa・s以下である低粘度水溶性高分子とを含有する、<6>~<8>のいずれかに記載の造粒物。
 <10> 前記高粘度水溶性高分子と、前記低粘度水溶性高分子との配合比率(高粘度水溶性高分子/低粘度水溶性高分子、質量比)が、1/1以上20/1以下である、<9>に記載の造粒物。
 <11> 前記高粘度水溶性高分子が、カルボキシメチルセルロース、酸化デンプン、ポリアクリルアミド、グアーガム、およびポリアクリル酸よりなる群から選択される、<9>または<10>に記載の造粒物。
 <12> 前記低粘度水溶性高分子が、ポリアクリル酸塩およびアルギン酸塩よりなる群から選択される、<9>~<11>のいずれかに記載の造粒物。
 <13> 前記粉末の粒度が12メッシュ以上である、<1>~<12>のいずれかに記載の造粒物。
 <14> 前記造粒物が、肥料用、土壌改良剤用、融雪剤用である、<1>~<13>のいずれかに記載の造粒物。
 <15> 前記無機粉末が、窒素、リン酸、カリウム、石灰、ケイ酸、マグネシウム、マンガン、ホウ素よりなる群から選択される少なくとも1つを主成分とする、<1>~<14>のいずれかに記載の造粒物。
 <16> 前記造粒物の平均粒径が1mm以上10mm以下である、<1>~<15>のいずれかに記載の造粒物。
 <17> 繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含む、粉末用造粒剤。
 <18> さらに、水溶性高分子を含む、<17>に記載の粉末用造粒剤。
 <19> 水溶性高分子が、25℃における1質量%水溶液の粘度が1,000mPa・s以上である高粘度水溶性高分子と、25℃における1質量%水溶液の粘度が100mPa・s以下である低粘度水溶性高分子とを含有する、<18>に記載の粉末用造粒剤。
 <20> 無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースの水系分散液を混合して造粒する工程を有する、造粒物の製造方法。
 <21> 無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースと、水溶性高分子とを含有する水系分散液を混合して造粒する工程を有する、造粒物の製造方法。
 本発明によれば、臭気および強アルカリによる造粒時の作業環境の悪化が抑制され、さらに、バインダーの使用量が抑制された造粒物およびその製造方法を提供することができる。さらに、本発明によれば、前記造粒物に使用する粉末用造粒剤を提供することができる。
図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。
[造粒物およびその製造方法]
 本発明の造粒物は、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含有するバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる。また、本発明の造粒物の製造方法は、無機粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースの水系分散液を混合して造粒する工程を有する。
 本発明の造粒物は、繊維状セルロースがバインダー成分として機能し、粉末を結合することで造粒されている。以下の説明において、繊維状セルロースを含む結合剤成分(造粒剤)を、「バインダー成分」または「バインダー」ともいう。また、造粒の際に使用する繊維状セルロースを、「バインダー溶液」ともいう。なお、バインダー溶液は、繊維状セルロースが溶解していることを意味するものではなく、繊維状セルロースが分散状態であるものを含むものである。
 本発明によれば、臭気および強アルカリによる造粒の作業環境の悪化が抑制され、さらに、バインダーの使用量が抑制された造粒物およびその製造方法が提供される。また、本発明の造粒物は高い粒硬度を有するとともに、水中での崩壊性を有し、肥料、土壌改良剤、融雪剤等の各種の用途に好適に使用可能である。
 上述した効果が得られる詳細な理由は不明であるが、一部は以下のように考えられる。微細繊維状セルロースを含有する繊維状セルロースを無機粉末のバインダーとして使用することにより、臭気および強アルカリによる造粒の作業環境の悪化が抑制される。繊維状セルロース、および該繊維状セルロースを含有する水系分散液は、臭気が殆んどなく、また、pHも3~10程度であり、従来のパルプ廃液等に比べて、作業環境の悪化を抑制可能である。また、繊維状セルロースが微細繊維状セルロースを含有することにより、該微細繊維状セルロースは増粘剤として機能することが知られており、少ない使用量で無機粉末同士を結着することが可能であるために、従来のバインダーに比べて、使用量が抑制できたと考えられる。
 また、微細繊維状セルロースを含有する繊維状セルロースは、造粒物に適度な粒硬度を付与するとともに、繊維状セルロースが親水性であることから、造粒物は水中での崩壊性を有するものと考えられる。さらに、繊維状セルロースは、生分解性であることから、肥料、土壌改良剤、融雪剤等に使用した場合でも、バインダーによる環境負荷の低減が期待される。
 本発明において、前記バインダー成分は、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースに加え、水溶性高分子を含有することが好ましい。なお、この場合、造粒物は、繊維状セルロースおよび水溶性高分子がバインダー成分として機能し、粉末を結合することで造粒されている。
 バインダー成分が繊維状セルロースおよび水溶性高分子を含有する場合、粒硬度が高い造粒物およびその製造方法を提供することができる。また、高い粒硬度を有するとともに、水中での崩壊性を有し、食品、化粧品、医薬品、肥料、土壌改良剤、融雪剤等の各種の用途に好適に使用可能である。
 上述した効果が得られる詳細な理由は不明であるが、一部は以下のように考えられる。従来、水溶性高分子の溶液は、種々の粉末を造粒する際のバインダーや、医薬品の製剤時の結合剤として広く使用されてきたが、得られる造粒物の硬度に改善の余地があった。一方、微細繊維状セルロースは、それ自体が、造粒物に適度な粒硬度を付与するとともに、過度な造粒剤の粘度上昇を伴わないため、造粒剤が粉末に均一に混合されるため、より粒硬度に優れる造粒物が得られたと考えられる。また、微細繊維状セルロースを含有する繊維状セルロースは、親水性であることから、造粒物は水中での崩壊性を有するものと考えられる。さらに、繊維状セルロースは、生分解性であることから、肥料、土壌改良剤、融雪剤等に使用した場合でも、バインダーによる環境負荷の低減が期待される。また、繊維状セルロースは天然由来成分であることから、食品、医薬品、化粧品への展開が期待される。
 以下、本発明についてさらに詳細に説明する。
<繊維状セルロース>
 本発明の繊維状セルロースは、繊維幅が1,000nm以下の微細繊維状セルロース(以下、単に「微細繊維状セルロース」または「CNF」ともいう)を含有する。また、繊維状セルロースは、前記微細繊維状セルロースに加えて、繊維幅が1,000nmを超える繊維状セルロース(以下、「パルプ繊維」ともいう)を含有していてもよい。
〔微細繊維状セルロース〕
 微細繊維状セルロースは、繊維幅が1,000nm以下である繊維状セルロースである。なお、繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。
 繊維状セルロース中の微細繊維状セルロースの含有量は、バインダー溶液の粘度、および経済性の観点から、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%、さらに好ましくは20質量%以上、よりさらに好ましくは30質量%以上であり、100質量%であってもよい。
 微細繊維状セルロースとして、後述するイオン性基を含有する微細繊維状セルロースと、未変性微細繊維状セルロースとを併用してもよい。
 微細繊維状セルロースの繊維幅は、1,000nm以下である。微細繊維状セルロースの繊維幅は、たとえば2nm以上1,000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。微細繊維状セルロースの繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、微細繊維状セルロースによる強度や剛性の向上という効果をより発現しやすくすることができる。
 微細繊維状セルロースの平均繊維幅は、たとえば1,000nm以下である。微細繊維状セルロースの平均繊維幅は、2nm以上1,000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることがとくに好ましい。微細繊維状セルロースの平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、微細繊維状セルロースによる強度や剛性の向上という効果をより発現しやすくすることができる。なお、微細繊維状セルロースは、たとえば単繊維状のセルロースである。
 微細繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1,000倍、5,000倍、10,000倍あるいは50,000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。ただし、試料、観察条件や倍率は下記の条件を満たすように調整する。
 (1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
 (2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
 微細繊維状セルロースの繊維長は、とくに限定されないが、たとえば0.1μm以上1,000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制できる。また、微細繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、微細繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。
 微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
 微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
 微細繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば20以上10,000以下であることが好ましく、50以上1,000以下であることがより好ましい。軸比を上記下限値以上とすることにより、溶媒分散体を作製した際に十分な増粘性が得られやすい。軸比を上記上限値以下とすることにより、たとえば微細繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
 本実施形態における微細繊維状セルロースは、たとえばイオン性基および非イオン性基のうちの少なくとも1種を有する。分散媒中における繊維の分散性を向上させ、解繊処理における解繊効率を高める観点からは、微細繊維状セルロースがイオン性基を有することがより好ましい。イオン性基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。また、非イオン性基としては、たとえばアルキル基およびアシル基などを含むことができる。本実施形態においては、イオン性基としてアニオン性基を有することがとくに好ましい。
 なお、微細繊維状セルロースには、イオン性基を導入する処理が行われていなくてもよい。
 イオン性基としてのアニオン性基としては、たとえばリンオキソ酸基またはリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リンオキソ酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リンオキソ酸基であることがとくに好ましい。
 リンオキソ酸基またはリンオキソ酸基に由来する置換基は、たとえば下記式(1)で表される置換基である。
 リンオキソ酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-POで表される基である。リンオキソ酸基に由来する置換基には、リンオキソ酸基の塩、リンオキソ酸エステル基などの置換基が含まれる。なお、リンオキソ酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。また、リンオキソ酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リンオキソ酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい 。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。α,α,・・・,αおよびα’のうちa個がOであり、残りはR,ORのいずれかである。なお、各αおよびα’の全てがOであっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(1)におけるαは、セルロース分子鎖に由来する基であってもよい。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、またはn-ブチル基等が挙げられるが、とくに限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、またはt-ブチル基等が挙げられるが、とくに限定されない。飽和-環状炭化水素基としては、シクロペンチル基、またはシクロヘキシル基等が挙げられるが、とくに限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、またはアリル基等が挙げられるが、とくに限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、または3-ブテニル基等が挙げられるが、とくに限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、とくに限定されない。芳香族基としては、フェニル基、またはナフチル基等が挙げられるが、とくに限定されない。
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖または側鎖に対し、カルボキシ基、ヒドロキシ基、またはアミノ基などの官能基のうち、少なくとも1種類が付加または置換した状態の官能基が挙げられるが、とくに限定されない。また、Rの主鎖を構成する炭素原子数はとくに限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細繊維状セルロースの収率を高めることもできる。
 βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、または芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、もしくはリチウム等のアルカリ金属のイオンや、カルシウム、もしくはマグネシウム等の2価金属の陽イオン、または水素イオン等が挙げられるが、とくに限定されない。これらは1種または2種類以上を組み合わせて適用することもできる。有機物または無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、またはカリウムのイオンが好ましいが、とくに限定されない。
 微細繊維状セルロースに対するイオン性基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、微細繊維状セルロースに対するイオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.50mmol/g以下であることがさらに好ましく、3.00mmol/g以下であることがよりさらに好ましい。イオン性基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、微細繊維状セルロースの安定性を高めることが可能となる。また、イオン性基の導入量を上記範囲内とすることにより、微細繊維状セルロースの増粘剤などの種々用途において良好な特性を発揮することができる。
 ここで、単位mmol/gにおける分母は、イオン性基の対イオンが水素イオン(H)であるときの微細繊維状セルロースの質量を示す。
 繊維状セルロースに対するイオン性基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。
 図1は、リンオキソ酸基を有する繊維状セルロースに対するNaOH滴下量とpHの関係を示すグラフである。
 図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。たとえば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量を示すことから、酸型の繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
 すなわち、下記計算式によって算出する。
 リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
 A[mmol/g]:繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の強酸性基量と弱酸性基量を足した値)
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量とpHの関係を示すグラフである。
 繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。
 まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2に示すような滴定曲線を得る。なお、必要に応じて、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 図2に示されるように、この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が一つ観測される。この増分の極大点を第1終点と呼ぶ。ここで、図2における滴定開始から第1終点までの領域を第1領域と呼ぶ。第1領域で必要としたアルカリ量が、滴定に使用したスラリー中のカルボキシ基量と等しくなる。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除すことで、カルボキシ基の導入量(mmol/g)を算出した。
 なお、上述のカルボキシ基導入量(mmol/g)は、カルボキシ基の対イオンが水素イオン(H)であるときの繊維状セルロースの質量1gあたりの置換基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。
 なお、上述のカルボキシ基導入量(mmol/g)は、分母が酸型の繊維状セルロースの質量であることから、酸型の繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(酸型)と呼ぶ)を示している。一方で、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))(mmol/g)を求めることができる。
 すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
 なお、滴定法によるリンオキソ酸基量やカルボキシ基量等の置換基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低い置換基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、たとえば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、たとえば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。
 上述の方法によるイオン性基量の測定は、繊維幅が1,000nm以下の微細繊維状セルロースに適用され、繊維幅が1,000nmを超えるパルプ繊維のイオン性基の量を測定する場合には、パルプ繊維を微細化してから測定する。
〔微細繊維状セルロースの製造方法〕
(セルロースを含む繊維原料)
 微細繊維状セルロースは、セルロースを含む繊維原料から製造される。
 セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。
 また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
 上述のようなイオン性基を導入した微細繊維状セルロースを得るためには、上述したセルロースを含む繊維原料にイオン性基を導入するイオン性基導入工程、洗浄工程、アルカリ処理工程(中和工程)、解繊処理工程をこの順で有することが好ましく、洗浄工程の代わりに、または洗浄工程に加えて、酸処理工程を有していてもよい。イオン性基導入工程としては、リンオキソ酸基導入工程およびカルボキシ基導入工程が例示される。以下、それぞれについて説明する。
(イオン性基導入工程)
-リンオキソ酸基導入工程-
 リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
 本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素およびその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態または湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、とくに乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、とくに水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、とくに限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、たとえばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。
 これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、とくに限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
 本実施態様で使用する化合物Bは、上述の通り、尿素およびその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
 反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、とくにトリエチルアミンは良好な反応触媒として働くことが知られている。
 リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加または混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、熱風乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練または撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分および化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、たとえば送風方式のオーブン等の熱風乾燥装置が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。
 リンオキソ酸基導入工程は、少なくとも1回行えばよいが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リンオキソ酸基導入工程を2回行う場合が挙げられる。
 繊維原料に対するリンオキソ酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリンオキソ酸基の導入量は、たとえば微細繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細繊維状セルロースの安定性を高めることができる。
-カルボキシ基導入工程-
 カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、とくに限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、とくに限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、とくに限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボン酸由来の基を有する化合物の酸無水物としては、とくに限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、とくに限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、たとえばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。
 また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
 繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、微細繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、微細繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。
(洗浄工程)
 本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてイオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりイオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
(アルカリ処理(中和処理)工程)
 微細繊維状セルロースを製造する場合、イオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理(中和処理)を行ってもよい。アルカリ処理の方法としては、とくに限定されないが、たとえばアルカリ溶液中に、イオン性基導入繊維を浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、とくに限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
 アルカリ処理工程におけるアルカリ溶液の温度は、とくに限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるイオン性基導入繊維のアルカリ溶液への浸漬時間は、とくに限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、とくに限定されないが、たとえばイオン性基導入繊維の絶対乾燥質量に対して100質量%以上100,000質量%以下であることが好ましく、1,000質量%以上25,000質量%以下であることがより好ましい。
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、イオン性基導入工程の後であってアルカリ処理工程の前に、イオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったイオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。
(酸処理工程)
 微細繊維状セルロースを製造する場合、イオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。たとえば、イオン性基導入工程、酸処理工程、アルカリ処理工程および解繊処理工程をこの順で行ってもよい。
 酸処理の方法としては、とくに限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、とくに限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、とくに限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。
 酸処理における酸溶液の温度は、とくに限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、とくに限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、とくに限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100,000質量%以下であることが好ましく、1,000質量%以上10,000質量%以下であることがより好ましい。
(解繊処理工程)
 イオン性基導入繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。
 解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、とくに限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
 解繊処理工程においては、たとえばイオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。
 また、リンオキソ酸基導入繊維を分散媒に分散させて得たスラリー中には、たとえば水素結合性のある尿素などのリンオキソ酸基導入繊維以外の固形分が含まれていてもよい。
〔パルプ繊維〕
 本発明において、繊維状セルロースは、上述した微細繊維状セルロースに加えて、繊維幅が1,000nmを超えるパルプ繊維を含有していてもよい。
 パルプ繊維は、たとえばイオン性基および非イオン性基のうちの少なくとも1種を有していてもよい。分散媒中におけるパルプ繊維の分散性を向上させる観点からは、パルプ繊維がイオン性基を有することがより好ましい。イオン性基としては、たとえばアニオン性基およびカチオン性基のいずれか一方または双方を含むことができる。また、非イオン性基としては、たとえばアルキル基およびアシル基などを含むことができる。本実施形態においては、イオン性基としてアニオン性基を有することがとくに好ましい。
 パルプ繊維にアニオン性基を導入する方法は、微細繊維状セルロースの製造方法における、イオン性基導入工程を実施することで得られ、解繊処理工程を有しない以外は、同様の方法により製造することができる。
 パルプ繊維の繊維幅および平均繊維幅は、良好な造粒性を得る観点から、好ましくは3μm以上、より好ましくは10μm以上、さらに好ましくは25μm以上であり、そして、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは35μm以下である。
 パルプ繊維の繊維幅および平均繊維幅は、実施例に記載の方法により測定される。
 繊維状セルロース中のパルプ繊維の含有量は、バインダー溶液の粘度、および経済性の観点から、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下であり、0質量%であってもよい。
<水溶性高分子>
 本発明の造粒物は、水溶性高分子を含有する。なお、本発明において、水溶性高分子とは、上述した繊維状セルロースを除く水溶性高分子である。
 水溶性高分子とは、0~100℃の任意の液温の水100gに対して、1g以上の溶解性を有する高分子化合物を意味する。また、高分子化合物とは、重量平均分子量が1,000以上の化合物を意味し、5,000以上であることが好ましい。
 水溶性高分子としてはとくに限定されないが、多糖類およびその誘導体、水溶性タンパク質、水溶性合成高分子が例示される。
 多糖類およびその誘導体としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体;アラビアガム,トララントガム,カラヤガム等の樹脂多糖類、タマリンドガム、グアーガム、タラガム、ローカストビーンガム等の種子多糖類;アルギン酸塩、アルギン酸プロピレングリコールエステル、カラギーナン、ファーセルラン、寒天等の海藻多糖類;ハイメトキシペクチン、ローメトキシペクチン等の植物多糖類;生デンプン、デキストリンブリティッシュガム、酸化デンプンおよびエーテル化またはエステル化デンプン等のデンプン類;キサンタンガム、プルラン、グルカン等の微生物生産多糖類;キチン、キトサン等のアミノ多糖類;コンドロイチン硫酸、ヒアルロン酸等のムコ多糖類が例示される。
 水溶性タンパク質としては、カゼイン、ゼラチン、アルブミン等が例示される。
 水溶性合成高分子としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等のアルキレンオキサイド、ポリエチレングリコール等のポリアルキレングリコールが例示される。
 これらの中でも、好ましくは、デンプン類、セルロース誘導体、ゼラチン、ポリビニルアルコールおよびその誘導体、ポリアクリルアミド、ポリアクリル酸およびその塩、ポリアクリル酸共重合体、ポリビニルピロリドン、並びにポリエチレングリコールよりなる群から選択される少なくとも1つ、より好ましくはデンプン類、セルロース誘導体、ポリビニルアルコールおよびその誘導体、ポリアクリルアミド、ポアリアクリル酸およびその塩である。
 水溶性高分子は、1種単独で使用してもよく、2種以上を併用してもよい。
 水溶性高分子として、1質量%水溶液の23℃における粘度が1,000mPa・s以上である水溶性高分子(以下、1質量%水溶液の23℃における粘度が1,000mPa・s以上である水溶性高分子を、「高粘度水溶性高分子」ともいう)を使用する場合には、バインダー溶液の粘度を低下させる観点から、1質量%水溶液の23℃における粘度が100mPa・s以下である水溶性高分子(以下、1質量%水溶液の23℃における粘度が100mPa・s以下である水溶性高分子を、「低粘度水溶性高分子」ともいう)を併用することが好ましい。
 高粘度水溶性高分子の1質量%水溶液の23℃における粘度は、1,000mPa・s以上であり、造粒物の粒硬度を向上させる観点から、好ましくは1,300mPa・s以上、より好ましくは1,700mPa・s以上、さらに好ましくは2,000mPa・s以上であり、そして、取扱い性の観点から、好ましくは100,000mPa・s以下、より好ましくは60,000mPa・s以下、さらに好ましくは10,000mPa・s以下である。
 また、低粘度水溶性高分子の1質量%水溶液の23℃における粘度は、100mPa・s以下であり、好ましくは70mPa・s以下、より好ましくは40mPa・s以下、さらに好ましくは20mPa・s以下である。下限はとくに限定されないが、入手容易性の観点から、好ましくは0.01mPa・s以上である。
 上記の粘度は、固形分濃度を1質量%に調整した水溶液を1,500rpmで5分間、ディスパーサーにて撹拌した後、測定前に23℃、相対湿度50%の環境下に24時間静置した後、B型粘度計を用いて23℃、回転数3rpmの条件で測定する。より具体的には、たとえばB型粘度計であるBLOOKFIELD社製、アナログ粘度計T-LVTを用いることができる。測定条件は、たとえば液温23℃にて、粘度計の回転数は3rpmにて測定を行い、測定開始から3分のときの粘度値を当該分散液の粘度とする。なお、上記水溶液は、水溶性高分子が完全に溶解していてもよく、分散状態であってもよい。
 高粘度水溶性高分子としては、カルボキシメチルセルロース、ヒドロキシエチルセルロース、酸化デンプン、ポリアクリルアミド、グアーガム、ポリアクリル酸が例示され、これらの中でも、造粒物の粒硬度の観点から、カルボキシメチルセルロース、酸化デンプン、ポリアクリルアミドが好ましく、カルボキシメチルセルロースがより好ましい。
 また、低粘度水溶性高分子としては、ポリアクリル酸塩、アルギン酸塩が例示され、これらの中でも、バインダー溶液の粘度低減の観点、および造粒物の粒硬度の観点から、ポリアクリル酸塩が好ましく、ポリアクリル酸ナトリウムがより好ましい。
 ここで、ポリアクリル酸塩としては、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム等のポリアクリル酸のアルカリ金属塩が例示され、ポリアクリル酸ナトリウムが好ましい。
 また、アルギン酸塩としては、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムが例示され、アルギン酸ナトリウムが好ましい。
 高粘度水溶性高分子と、低粘度水溶性高分子とを併用する場合、高粘度水溶性高分子と低粘度水溶性高分子との配合比(高粘度水溶性高分子/低粘度水溶性高分子、質量比)は、バインダー溶液の粘度低減の観点および造粒物の粒硬度の観点から、好ましくは1/2以上、より好ましくは1/1以上、さらに好ましくは1.5/1以上であり、そして、好ましくは20/1以下、より好ましくは10/1以下、さらに好ましくは5/1以下である。
<バインダー成分およびそのバインダー溶液>
 本発明において、無機粉末および有機粉末よりなる群から選択される粉末のバインダー成分(造粒剤)として、繊維状セルロースおよび必要に応じて水溶性高分子を使用して、粉末を造粒するものである。
 粉末100質量部に対する微細繊維状セルロースの含有量は、造粒性および造粒物に適度な粒硬度を付与する観点から、好ましくは0.01質量部以上、より好ましくは0.03質量部以上、さらに好ましくは0.05質量部以上、よりさらに好ましくは0.1質量部以上、よりさらに好ましくは0.15質量部以上、よりさらに好ましくは0.2質量部以上であり、バインダーの使用量を抑制する観点から、好ましくは1質量部以下、より好ましくは0.8質量部以下、さらに好ましくは0.6質量部以下、よりさらに好ましくは0.5質量部以下、よりさらに好ましくは0.4質量部以下、よりさらに好ましくは0.3質量部以下である。
 バインダー成分として水溶性高分子を含有する場合には、粉末100質量部に対する繊維状セルロースおよび水溶性高分子の合計固形分量は、造粒性および造粒物の粒硬度の観点から、好ましくは0.001質量部以上、より好ましくは0.005質量部以上、さらに好ましくは0.01質量部以上であり、そして、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは1質量部以下である。
 バインダー成分が水溶性高分子および繊維状セルロースを含有する場合、水溶性高分子と繊維状セルロースとの配合比率(水溶性高分子/繊維状セルロース)は、バインダー溶液の粘度および造粒物の粒硬度の観点から、好ましくは1/10以上、より好ましくは1/3以上、さらに好ましくは1/1以上であり、そして、好ましくは1,000/1以下、より好ましくは100/1以下、さらに好ましくは10/1以下、より好ましくは5/1以下である。
 バインダー成分は、液体の状態で付与することが好ましく、水系分散液の状態で付与することがより好ましい。バインダー成分を含有するバインダー溶液は、バインダー成分である繊維状セルロースおよび水溶性高分子の少なくとも一部が溶解していることが好ましく、一部は分散状態であってもよい。
 バインダー溶液の使用時の粘度は、均一に粉末と混合する観点、および製造時の取扱い性の観点から、好ましくは0.1mPa・s以上、より好ましくは1mPa・s以上、さらに好ましくは5mPa・s以上であり、そして、好ましくは4,000mPa以下、より好ましくは2,000mPa・s以下、さらに好ましくは1,500mPa・s以下、よりさらに好ましくは1,000mPa・s以下、とくに好ましくは950mPa・s以下である。
 なお、使用時のバインダー溶液の濃度は、乾燥を容易にする観点から、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、よりさらに好ましくは0.2質量%以上であり、均一に付与する観点、および取扱い性の観点から、好ましくは5.0質量%以下、より好ましくは4.0質量%以下、さらに好ましくは3.0質量%以下である。
 バインダー溶液の溶媒としては、水を主成分とするものであることが好ましく、水に加えて有機溶媒を含有していてもよい。前記有機溶媒としては、解繊工程において挙げた極性有機溶媒が例示される。水系分散液の溶媒中の水の含有量は、50質量%以上であり、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、100質量%であってもよい。
<粉末>
 本発明の造粒物は、上述したバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる。
〔無機粉末〕
 本発明において使用される無機粉末としては、とくに限定されず、造粒物の使用目的に応じて、適宜選択すればよい。
 造粒物を肥料用に使用する場合、無機粉末としては、窒素、リン酸、カリウム、石灰、ケイ酸、マグネシウム、マンガン、酸化ホウ素(B)よりなる群から選択される少なくとも1つを主成分とする無機粉末であることが好ましい。
 また、造粒物を植物の栄養成分に使用する場合、酸化硫黄(SO)、鉄、銅、亜鉛、モリブデンなどが例示される。
 その他、無機粉末としては、ドロマイト(主成分は炭酸マグネシウムと炭酸カルシウム)、硫黄が例示される。
 窒素を主成分とする無機粉末としては、硫酸アンモニウム((NHSO)、塩化アンモニウム(NHCl)、硝酸アンモニウム、(NHNO)硝酸ナトリウム(NaNO)、石灰窒素(CaCN、CaO)が例示される。ここで、石灰窒素は、たとえば、石炭から得られるコークスと生石灰とを原料としており、硝酸ナトリウムは、たとえばチリ硝石を原料としている。
 リン酸を主成分とする無機粉末としては、過リン酸石灰(Ca(HPO・HOとCaSOとの混合物)、重過リン酸石灰(Ca(HPO・HO)、熔成リン肥、焼成リン肥(CaNa(PO)、リン酸アンモニウムが例示される。ここで、過リン酸石灰は、リン鉱石を硫酸と反応させ生成するリン酸一カルシウムと、硫酸カルシウム(石膏)との混合物であり、重過リン酸石灰は、リン鉱石とリン酸とを反応させ、リン酸一カルシウムを製造する。また、リン酸アンモニウムはリン鉱石と硫酸とを反応させて得られたリン酸とアンモニウムとを反応させて得られる。熔成リン肥は、リン鉱石と蛇紋岩を電気炉で加熱溶解して得られ、リン鉱石中のフッ素アパタイトを加熱により分解し、フッ素を除去することで、有機リン酸肥料としたものである。さらに、焼成リン肥は、リン鉱石を炭酸ナトリウム、リン酸と溶融しない程度の高温で焼成し、アパタイト構造を破壊し、フッ素を除去し、リン酸肥料とするものである。
 カリウムを主成分とする無機粉末としては、塩化カリウム(KCl)、硫酸カリウム(KSO)、ケイ酸カリウム等が例示される。塩化カリウムは、鉱石(シルビナイト、カーナリタイトなど)を選鉱または再結晶などを行って得る方法、天然かん水を濃縮、分別結晶などを行って得る方法、などによって得られる。また、硫酸カリウムは、塩化カリウムに硫酸を反応させることによって得られる。ケイ酸カリウムは、フライアッシュ、水酸化カリウムおよび水酸化マグネシウムを混合、造粒し、さらに焼成することによって得られる。
 石灰を主成分とする無機粉末は、カルシウム分を主成分とする無機粉末であり、たとえば、生石灰、消石灰、炭酸石灰、石灰窒素などが例示される。
 また、ケイ酸を主成分とする無機粉末は、鉱さいが挙げられ、具体的には、製銑鉱さい、普通鋼鉱さい、ステンレス鉱さい、シリコマンガン鉱さい等が例示される。
 マグネシウムを主成分とする無機粉末としては、ドロマイト(苦土石灰)、キーゼライト等が例示される。また、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム等を使用してもよい。
 マンガンを主成分とする無機粉末としては、硫酸マンガン、炭酸マンガン等が例示される。また、マンガン鉱さいを使用してもよい。
 ホウ素を主成分とする無機粉末としては、ホウ砂が例示される。
 なお、無機粉末は、1種を単独で使用してもよく、2種以上を併用してもよい。また、造粒物が肥料用である場合、造粒物は、窒素(N)、リン酸(P)、カリウム(K)の三要素のうち、2以上を含む複合肥料であってもよく、マンガン、ホウ素の両方を含む微量要素複合肥料であってもよい。
 造粒物が肥料用である場合、上述した無機粉末に加え、さらに、尿素等の有機粉末を含有していてもよいが、造粒性の観点から、無機粉末と有機粉末の合計に対する無機粉末の量が、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上であり、そして、100質量%であってもよい。
 造粒物を土壌改良剤用に使用する場合、無機粉末としては、パーライト、バーミキュライト、ゼオライト、ベントナイト、珪藻土焼成物等が例示される。
 また、造粒物を融雪剤用に使用する場合には、無機粉末としては、塩化カルシウム、塩化ナトリウム、塩化マグネシウム、カーボンブラック等が例示される。
 なお、造粒物を融雪剤用に使用する場合、上記の無機粉末に加えて、さらに、尿素や、酢酸カルシウム、酢酸マグネシウム、酢酸カリウム等の酢酸金属塩を使用してもよい。
 造粒物を錠剤等の食品、化粧品、医薬品の用途に使用する場合には、無機粉末としては、炭酸カルシウム、第二リン酸カルシウム(リン酸水素カルシウムおよびその二水和物、CaHPO・2HO)、第三リン酸カルシウム(リン酸カルシウム、Ca(PO)、硫酸カルシウム、カオリン等が例示される。
〔有機粉末〕
 有機粉末としては、食品、化粧品、医薬品、肥料に使用される有機粉末の中から、適宜選択すればよい。
 たとえば、医薬品の賦形剤として使用される有機粉末としては、微結晶セルロース、粉末セルロース、デキストレート類、デキストリン、ブドウ糖添加物、果糖、ラクチトール、無水乳糖、乳糖、マルチトール、マルトデキストリン、マルトース、マンニトール、ソルビトール、デンプン、トウモロコシデンプン、バレイショデンプン、アルファー化デンプン、変性アルファー化デンプン、タピオカデンプン、コムギデンプン、精製白糖、圧縮糖が例示される。
 無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末は、1種を単独で使用してもよく、2種以上を併用してもよい。また、用途に応じて、粒径(粒度)の異なる粉末を混合して使用してもよい。
 粉末としては、粒硬度等の観点から、無機粉末が好ましく、水不溶性または水難溶性の無機粉末であることがより好ましい。なお、水不溶性とは、25℃の水100gに対する溶解性が0.1g以下であることを意味し、水難溶性であるとは、25℃の水100gに対する溶解性が0.1g超0.5g以下であることを意味する。
 粉末の粒度はとくに限定されないが、12メッシュ以上であることが好ましい。ここで、粒度とは、50質量%以上の粒子が通過したふるいの最大メッシュを意味する。無機粉末の粒度は、より好ましくは16メッシュ以上、さらに好ましくは30メッシュ以上、よりさらに好ましくは50メッシュ以上、とくに好ましくは83メッシュ以上である。また、好ましくは500メッシュ以下、より好ましくは330メッシュ以下、さらに好ましくは200メッシュ以下、よりさらに好ましくは149メッシュ以下である。
 なお、メッシュと目開きとの関係は、JIS Z 8801-1:2006に準拠して求められ、12メッシュは目開き1.40mm、16メッシュは目開き1mm、30メッシュは目開き550μm、50メッシュは目開き300μm、83メッシュは目開き180μmに相当する。また、500メッシュは目開き25μm、330メッシュは目開き45μm、200メッシュは目開き75μm、149メッシュは目開き100μmに相当する。
<造粒物の特性>
 本発明の造粒物は、微細繊維状セルロースを含有する繊維状セルロースと、必要に応じて水溶性高分子とを含有するバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる。
 なお、本発明において、造粒物は、繊維状セルロース、水溶性高分子、および粉末に加え、他の成分を含有していてもよい。
 造粒物の粒硬度は、造粒物の用途によって異なる、用途に応じて適宜選択すればよい。
 造粒物を肥料用に使用する場合には、保存および機械散布に耐えうる観点から、好ましくは450g以上、より好ましくは500g以上、さらに好ましくは550g以上、よりさらに好ましくは700g以上、よりさらに好ましくは800g以上、よりさらに好ましくは900g以上であり、そして、適度な水への崩壊性を付与する観点から、好ましくは5,000g以下、より好ましくは3,000g以下、さらに好ましくは2,000g以下、よりさらに好ましくは1,500g以下、よりさらに好ましくは1,200g以下である。
 また、造粒物を医薬用途に使用する場合には、保存性、口腔内での崩壊を抑制する観点、および適度な水への崩壊性を付与する観点から、好ましくは1,000g以上、より好ましくは3,000g以上、さらに好ましくは5,000g以上であり、そして、好ましくは30,000g以下、より好ましくは20,000g以下、さらに好ましくは16,000g以下である。
 造粒物の粒硬度は、実施例に記載の方法により測定される。
 造粒物の平均粒径はとくに限定されず、用途により適宜選択すればよいが、造粒が容易である観点から、好ましくは1mm以上であり、そして、好ましくは10mm以下、より好ましくは8mm以下、さらに好ましくは6mm以下、よりさらに好ましくは4mm以下である。
 平均粒径は、ふるい分け法により測定され、JIS Z 8801:2006に準拠した基準ふるいを使用したロータップ式自動ふるい器を使用し、目開きの小さなものから順に重ね合わせて、それぞれのふるい上に残った試料を秤量し、累積50%となる粒径を平均粒径とする。
 なお、本発明により得られた造粒物に対して、ふるい分けを行うことで、微粒子や粗大粒子を除去してもよい。
 本発明において、造粒物は種々の用途に適用でき、たとえば、肥料、土壌改良剤、融雪剤、防滑剤、舗装材、食品、医薬品、化粧品等の種々の用途に適用できる。
 これらの中でも、造粒物の粒硬度および造粒物が水中での崩壊性を有する観点から、本発明の造粒物は、肥料用、土壌改良用および融雪剤用として好適に使用される。
[造粒物の製造方法]
 本発明の造粒物の製造方法(造粒方法)はとくに限定されないが、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースと、必要に応じて水溶性高分子とを含有する水系分散液を混合して造粒する工程を有することが好ましい。
 たとえば、撹拌造粒、転動造粒、押出造粒等の造粒方法から適宜選択すればよい。これらの中でも、使用時に水中での崩壊性を有する造粒物とする観点、および製造コストの観点から、転動造粒が好ましい。
 本発明の造粒物の製造方法は、粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースと、必要に応じて水溶性高分子とを含有する水系分散液(バインダー溶液)を混合して造粒する工程を有するものであることが好ましく、粉末を、繊維状セルロースおよび必要に応じて水溶性高分子を含有するバインダー溶液を用いて転動造粒する工程を有することがより好ましい。
 ここで、使用する粉末およびバインダー成分については上述した通りであり、好ましい態様も同様である。
 粉末に付与するバインダー溶液の量は、粉末に均一にバインダー溶液を付与して、造粒を均一に進行させる観点、および短時間での造粒を可能とする観点から、粉末100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上、さらに好ましくは7質量部以上であり、そして、好ましくは100質量部以下、より好ましくは60質量部以下、さらに好ましくは20質量部以下である。
 従って、粉末に付与するバインダー溶液の量が所望の範囲となるように、バインダー溶液の濃度を適宜調整して、粉末に付与することが好ましい。
 バインダー溶液の溶媒としては、水を主成分とするものであり、水に加えて有機溶媒を含有していてもよい。前記有機溶媒としては、解繊工程において挙げた極性有機溶媒が例示される。水系分散液の溶媒中の水の含有量は、50質量%以上であり、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、100質量%であってもよい。
 造粒物は、粉末を、繊維状セルロースおよび必要に応じて水溶性高分子をバインダー成分として使用して造粒することにより得られ、繊維状セルロースおよび必要に応じて水溶性高分子を水分散液(バインダー溶液)として、粉末に付与することが好ましい。造粒方法としては転動造粒、流動層造粒、撹拌造粒、圧縮造粒、押出造粒、破砕造粒等の方法が使用可能であり、中でも転動造粒が好ましい。肥料用造粒物などは、一般に球状のものが、不規則形状や鋭い角をもったものよりも好まれる観点から、転動造粒法がとくに好適である。
 転動造粒法としては、公知の方法から適宜選択すればよく、ロッシェ法、ドラム法などが利用できる。また、転動造粒器としては、セメントミキサー、ドラムミキサー、パン型造粒器などが使用される。
 バインダー溶液の付与方法はとくに限定されず、予め粉末とバインダー溶液をミキサーやニーダーによって混練してから造粒器に入れてもよいが、バインダー溶液を粉末全体に均一に付与して、造粒を均一に進行させる観点から、噴霧付与など、小さな液滴で付与することが好ましい。
 造粒時間はとくに限定されないが、所望の粒硬度を有する造粒物を得る観点、短時間で造粒物を製造し、製造効率を向上させる観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは4分以上であり、そして、好ましくは60分以下、より好ましくは30分以下、さらに好ましくは10分以下である。
 また、造粒物から余分な水分を除去する観点から、造粒中に加熱してもよく、また、造粒中に気体を送気してもよい。
 本発明において、転動造粒により得られた造粒物に対して、適宜ふるい分け等の分級を行ってもよい。これにより、微小な粒子や粗大な粒子を除去して、所望の粒径を有する造粒物が得られる。
[粉末用造粒剤]
 本発明の粉末用造粒剤(単に「造粒剤」ともいう)は、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含有し、さらに、水溶性高分子を含有してもよい。
 上記繊維状セルロース、微細繊維状セルロースおよび水溶性高分子としては、上述した繊維状セルロース、微細繊維状セルロースおよび水溶性が例示され、好ましい範囲も同様である。
 また、上述したように、水溶性高分子として、23℃における1質量%水溶液の粘度が1,000mPa・s以上である高粘度水溶性高分子を使用する場合には、23℃における1質量%水溶液の粘度が100mPa・s以下である低粘度水溶性高分子を併用することが好ましい。高粘度水溶性高分子および低粘度水溶性高分子の好ましい態様および併用に関する好ましい態様は、上述した通りである。
 また、粉末用造粒剤中の繊維状セルロースと水溶性高分子との好ましい配合比率に関しても、上述した通りである。
 なお、粉末用造粒剤は、粉末状、ウェットパウダー状、液状等のいずれの性状であってもよく、使用に際にしては、水に溶解または分散させたスラリー状に調製して、バインダー溶液とした後、使用することが好ましい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[製造例1]
[リン酸基導入パルプ繊維(リン酸化パルプ)の作製]
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121:2012に準じて測定されるカナダ標準濾水度(CSF)が700mL)を使用した。この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸基導入パルプ繊維(リン酸化パルプ)を得た。
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、100g(絶乾質量)のリン酸化パルプ1に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。
 次いで、中和処理後のリン酸化パルプに対して上記洗浄処理を行い、イオン交換水を添加して固形分濃度が2質量%のリン酸化パルプ分散液(分散液(1))を得た。
 リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った結果、1,230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。また、後述する測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gであった。なお、総解離酸量は、2.45mmol/gであった。後述する測定方法で測定される繊維幅は30μm程度であった。
[製造例2]
[リン酸基導入微細繊維状セルロース(リン酸化CNF)の作製]
 上記製造例1にて得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて2回処理し、リン酸基導入微細繊維状セルロース(リン酸化CNF)分散液(分散液(2))を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、後述する測定方法で測定されるリン酸基量(第1解離酸量)は、1.45mmol/gであった。後述する測定方法で測定される繊維幅は3~5nmであった。
[製造例3]
[亜リン酸基導入微細繊維状セルロース(亜リン酸化CNF)の作製]
 リン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、[製造例1]と同様に操作を行い、亜リン酸基が導入されたパルプ繊維(亜リン酸化パルプ)を得た。
 得られた亜リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1,210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られた亜リン酸化パルプに対し[製造例2]と同様に微細化処理を行い、亜リン酸基導入微細繊維状セルロース(亜リン酸化CNF)分散液(分散液(3))を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、後述する測定方法で測定される(亜)リン酸基量(第1解離酸量)は1.51mmol/gだった。なお、総解離酸量は、1.54mmol/gであった。後述する測定方法で測定される繊維幅は3~5nmであった。
[製造例4]
[カルボキシ基導入微細繊維状セルロース(TEMPO酸化CNF)の作製]
 原料パルプとして、王子製紙株式会社製の針葉樹クラフトパルプ(未乾燥)を使用した。この原料パルプに対してアルカリTEMPO酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)と、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10,000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。上記TEMPO酸化処理により、パルプ繊維にカルボキシ基が導入された。
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5,000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたTEMPO酸化パルプに対し[製造例2]と同様に微細化処理を行い、カルボキシ基導入微細繊維状セルロース(TEMPO酸化CNF)分散液(分散液(4))を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。また、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gであった。後述する測定方法で測定される繊維幅は3~5nmであった。
[製造例5]
[未変性パルプ繊維の作製]
 針葉樹クラフトパルプを離解して、未変性パルプ繊維を得た。未変性パルプ繊維にイオン交換水を加え、濃度が2質量%となるように希釈し、分散液(5)とした。後述する測定方法で測定される繊維幅は30μm程度であった。
[製造例6]
[未変性微細繊維状セルロース(未変性CNF)の作製]
 上記[製造例5]で得られた未変性パルプ繊維にイオン交換水を加え、濃度が2質量%となるように希釈した後、リファイナー処理に供してCSFが50mL以下になるまで叩解(プレ解繊)した。
 プレ叩解した未変性パルプ繊維に対し[製造例2]と同様に微細化処理を行い、未変性微細繊維状セルロース(未変性CNF)分散液(分散液(6))を得た。後述する方法で繊維幅を測定したところ、1000nm以下の微細繊維状セルロースが観察された。
[繊維幅の測定]
 リン酸基導入パルプおよび未変性パルプ繊維の繊維幅は、カヤーニ繊維長測定器(カヤーニオートメーション株式会社製、FS-200形)を用いて測定した。
 微細繊維状セルロースの繊維幅を下記の方法で測定した。微細繊維状セルロース分散液の上澄み液を、微細繊維状セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子株式会社製、JEOL-2000EX)により観察した。
[リンオキソ酸基量の測定]
 微細繊維状セルロースのリンオキソ酸基量は、対象となる微細繊維状セルロースを含む分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリン酸基量(mmol/g)とした。
 リンオキソ酸化パルプについては、リンオキソ酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製し、このスラリーを、湿式微粒化装置(株式会社スギノマシン製、スターバースト)で200MPaの圧力にて2回処理して得られた分散液に対して、上述した方法と同様にアルカリを用いた滴定を行った。
[カルボキシ基量の測定]
 微細繊維状セルロースおよびカルボキシ基導入パルプ繊維のカルボキシ基量は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えた以外は[リンオキソ酸基量の測定]と同様に測定した。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
[実施例1-1]
 原料無機粉末として、王子木材緑化株式会社製の石灰粉末(以下、単に「石灰粉末」ともいう。)を使用した。石灰粉末100質量部に、バインダーとして分散液(2)を固形分で0.05質量部添加し、セメントミキサーで5分回転して造粒した。なお、分散液(2)は、石灰粉末100質量部に対する添加量が10質量部となるように適宜イオン交換水で希釈して使用した。造粒物を篩い分けし、粒径1~4mmの造粒物を得た。
[実施例1-2]
 分散液(2)の添加量を固形分で0.1質量部とした以外は、[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-3]
 分散液(2)の添加量を固形分で0.2質量部とした以外は、[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-4]
 分散液(2)の添加量を固形分で0.4質量部とし、石灰粉末100質量部に対する添加量が20質量部となるようにイオン交換水で希釈した以外は、[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-5]
 石灰粉末100質量部に対して、バインダーとして分散液(3)を固形分で0.05質量部添加した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-6]
 分散液(3)の添加量を固形分で0.1質量部とした以外は、[実施例1-5]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-7]
 分散液(3)の添加量を固形分で0.2質量部とした以外は、[実施例1-5]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-8]
 分散液(3)の添加量を固形分で0.4質量部とし、石灰粉末100質量部に対する添加量が20質量部となるようにイオン交換水で希釈した以外は、[実施例1-5]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-9]
 石灰粉末100質量部に対して、バインダーとして分散液(4)を固形分で0.05質量部添加した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-10]
 分散液(4)の添加量を固形分で0.1質量部とした以外は、[実施例1-9]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-11]
 分散液(4)の添加量を固形分で0.2質量部とした以外は、[実施例1-9]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-12]
 分散液(4)の添加量を固形分で0.4質量部とし、石灰粉末100質量部に対する添加量が20質量部となるようにイオン交換水で希釈した以外は、[実施例1-9]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-13]
 石灰粉末100質量部に、バインダーとして分散液(6)を固形分で0.05質量部添加した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-14]
 分散液(6)の添加量を固形分で0.1質量部とした以外は、[実施例1-13]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-15]
 分散液(6)の添加量を固形分で0.2質量部とした以外は、[実施例1-13]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-16]
 分散液(6)の添加量を固形分で0.4質量部とし、石灰粉末100質量部に対する添加量が20質量部となるようにイオン交換水で希釈した以外は、[実施例1-13]と同様にして、粒径1~4mmの造粒物を得た。
[実施例1-17]
 石灰粉末100質量部に対して、バインダーとして分散液(1)を固形分で0.32質量部、分散液(2)を固形分で0.08質量部添加した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。なお、分散液(1)および分散液(2)は、石灰粉末100質量部に対する合計の添加量が20質量部となるように適宜イオン交換水で希釈して使用した。
[実施例1-18]
 石灰粉末100質量部に対して、バインダーとして分散液(5)を固形分で0.32質量部、分散液(6)を固形分で0.08質量部添加した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。なお、分散液(5)および分散液(6)は、石灰粉末100質量部に対する合計の添加量が20質量部となるように適宜イオン交換水で希釈して使用した。
[比較例1-1]
 石灰粉末100質量部に、バインダーとして分散液(5)を固形分で0.4質量部添加し、石灰粉末100質量部に対する添加量が20質量部となるようにイオン交換水で希釈した以外は[実施例1-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例1-2]
 石灰粉末100質量部に対して、バインダーとしてパルプ廃液(黒液)を固形分で1質量部添加し、セメントミキサーで5分回転して造粒した。パルプ廃液は、石灰粉末100質量部に対する添加量が10質量部となるように適宜イオン交換水で希釈して使用した。造粒物を篩い分けし、粒径1~4mmの造粒物を得た。
[実施例2-1]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(2)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(1)を作製した。
 原料無機粉末として、王子木材緑化株式会社製の石灰粉末(以下、単に「石灰粉末」ともいう。)を使用した。石灰粉末100質量部に対して、バインダー溶液(1)を10質量部添加し、セメントミキサーで2分間回転して造粒した。造粒物を熱風乾燥機で100℃30分間乾燥した。得られた造粒物を篩い分けし、粒径1~4mmの造粒物を得た。
[実施例2-2]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリビニルアルコール(PVA)の含有量が0.4質量%となるように、分散液(2)、ポリビニルアルコール溶液(PVA-117、株式会社クラレ製)、およびイオン交換水を混合し、バインダー溶液(2)を作製した。バインダー溶液(1)を前記バインダー溶液(2)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-3]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのデンプンの含有量が0.4質量%となるように、分散液(2)、デンプン(馬鈴薯澱粉 網走、オホーツク網走農業協同組合製)の水溶液、およびイオン交換水を混合し、バインダー溶液(3)を作製した。バインダー溶液(1)を前記バインダー溶液(3)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-4]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリアクリルアミド(PAM)の含有量が0.2質量%となるように、分散液(2)、ポリアクリルアミド(王子フロックA-30791VR、王子エンジニアリング株式会社製)の水溶液、およびイオン交換水を混合し、バインダー溶液(4)を作製した。バインダー溶液(1)を前記バインダー溶液(4)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-5]
 固形分としての繊維状セルロースの含有量が0.4質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(2)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(5)を作製した。バインダー溶液(1)を前記バインダー溶液(5)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-6]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(3)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(6)を作製した。バインダー溶液(1)を前記バインダー溶液(6)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-7]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリビニルアルコール(PVA)の含有量が0.4質量%となるように、分散液(3)、ポリビニルアルコール溶液(PVA-117、株式会社クラレ製)、およびイオン交換水を混合し、バインダー溶液(7)を作製した。バインダー溶液(1)を前記バインダー溶液(7)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-8]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのデンプンの含有量が0.4質量%となるように、分散液(3)、デンプン(馬鈴薯澱粉 網走、オホーツク網走農業協同組合製)の水溶液、およびイオン交換水を混合し、バインダー溶液(8)を作製した。バインダー溶液(1)を前記バインダー溶液(8)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-9]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリアクリルアミド(PAM)の含有量が0.2質量%となるように、分散液(3)、ポリアクリルアミド(王子フロックA-30791VR、王子エンジニアリング株式会社製)の水溶液、およびイオン交換水を混合し、バインダー溶液(9)を作製した。バインダー溶液(1)を前記バインダー溶液(9)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-10]
 固形分としての繊維状セルロースの含有量が0.4質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(3)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(10)を作製した。バインダー溶液(1)を前記バインダー溶液(10)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-11]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(4)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(11)を作製した。バインダー溶液(1)を前記バインダー溶液(11)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-12]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリビニルアルコール(PVA)の含有量が0.4質量%となるように、分散液(4)、ポリビニルアルコール溶液(PVA-117、株式会社クラレ製)、およびイオン交換水を混合し、バインダー溶液(12)を作製した。バインダー溶液(1)を前記バインダー溶液(12)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-13]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのデンプンの含有量が0.4質量%となるように、分散液(4)、デンプン(馬鈴薯澱粉 網走、オホーツク網走農業協同組合製)の水溶液、およびイオン交換水を混合し、バインダー溶液(13)を作製した。バインダー溶液(1)を前記バインダー溶液(13)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-14]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリアクリルアミド(PAM)の含有量が0.2質量%となるように、分散液(4)、ポリアクリルアミド(王子フロックA-30791VR、王子エンジニアリング株式会社製)の水溶液、およびイオン交換水を混合し、バインダー溶液(14)を作製した。バインダー溶液(1)を前記バインダー溶液(14)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-15]
 固形分としての繊維状セルロースの含有量が0.4質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(4)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(15)を作製した。バインダー溶液(1)を前記バインダー溶液(15)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-16]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(6)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(16)を作製した。バインダー溶液(1)を前記バインダー溶液(16)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-17]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリビニルアルコール(PVA)の含有量が0.4質量%となるように、分散液(6)、ポリビニルアルコール溶液(PVA-117、株式会社クラレ製)、イオン交換水を混合し、バインダー溶液(17)を作製した。バインダー溶液(1)を前記バインダー溶液(17)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-18]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのデンプンの含有量が0.4質量%となるように、分散液(6)、デンプン(馬鈴薯澱粉 網走、オホーツク網走農業協同組合製)の水溶液、およびイオン交換水を混合し、バインダー溶液(18)を作製した。バインダー溶液(1)を前記バインダー溶液(18)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-19]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのポリアクリルアミド(PAM)の含有量が0.2質量%となるように、分散液(6)、ポリアクリルアミド(王子フロックA-30791VR、王子エンジニアリング株式会社製)の水溶液、およびイオン交換水を混合し、バインダー溶液(19)を作製した。バインダー溶液(1)を前記バインダー溶液(19)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-20]
 固形分としての繊維状セルロースの含有量が0.4質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(6)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(20)を作製した。バインダー溶液(1)を前記バインダー溶液(20)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-21]
 固形分としての繊維状セルロースの含有量が0.32質量%となるように、分散液(1)を、固形分としての繊維状セルロースの含有量が0.08質量%となるように分散液(2)を、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるようにカルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液を混合し、イオン交換水を適宜加えて、バインダー溶液(21)を作製した。バインダー溶液(1)を前記バインダー溶液(21)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-22]
 固形分としての繊維状セルロースの含有量が0.32質量%となるように、分散液(5)を、固形分としての繊維状セルロースの含有量が0.08質量%となるように分散液(6)を、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるようにカルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液を混合し、イオン交換水を適宜加えて、バインダー溶液(22)を作製した。バインダー溶液(1)を前記バインダー溶液(22)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-23]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%となるように、分散液(2)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、およびイオン交換水を混合し、バインダー溶液(1)を作製した。
 原料有機粉末として、関東化学株式会社製のD-ソルビトール粉末(以下、単に「ソルビトール粉末」ともいう。)を使用した。ソルビトール粉末100質量部に対して、バインダー溶液(1)を10質量部添加し、セメントミキサーで2分間回転して造粒した。造粒物を熱風乾燥機で100℃30分間乾燥した。得られた造粒物を篩い分けし、粒径1~4mmの造粒物を得た。
[実施例2-24]
 バインダー溶液(1)をバインダー溶液(2)に変更した以外は[実施例2-23]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-25]
 バインダー溶液(1)をバインダー溶液(3)に変更した以外は[実施例2-23]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-26]
 バインダー溶液(1)をバインダー溶液(4)に変更した以外は[実施例2-23]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-27]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.4質量%、固形分としてのポリアクリル酸ナトリウム(SPA)が0.1質量%となるように、分散液(2)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、ポリアクリル酸ナトリウム水溶液(アロン A-20UN、東亞合成株式会社製)、およびイオン交換水を混合し、バインダー溶液(23)を作製した。
 バインダー溶液(1)をバインダー溶液(23)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[実施例2-28]
 固形分としての繊維状セルロースの含有量が0.1質量%、固形分としてのカルボキシメチルセルロース(CMC)の含有量が0.33質量%、固形分としてのポリアクリル酸ナトリウム(SPA)が0.17質量%となるように、分散液(2)、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、ポリアクリル酸ナトリウム水溶液(アロン A-20UN、東亞合成株式会社製)、およびイオン交換水を混合し、バインダー溶液(24)を作製した。
 バインダー溶液(1)をバインダー溶液(24)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例2-1]
 固形分としてのカルボキシメチルセルロースの含有量が0.4質量%となるように、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)をイオン交換水で調整し、バインダー溶液(25)を作製した。
 バインダー溶液(1)をバインダー溶液(25)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例2-2]
 固形分としてのポリビニルアルコールの含有量が0.4質量%となるように、ポリビニルアルコール溶液(PVA-117、株式会社クラレ製)をイオン交換水で調整し、バインダー溶液(26)を作製した。バインダー溶液(1)を前記バインダー溶液(26)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例2-3]
 固形分としてのデンプンの含有量が0.4質量%となるように、デンプン(馬鈴薯澱粉 網走、オホーツク網走農業協同組合製)をイオン交換水で調整し、バインダー溶液(27)を作製した。バインダー溶液(1)を前記バインダー溶液(27)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例2-4]
 固形分としてのポリアクリルアミドの含有量が0.2質量%となるように、ポリアクリルアミド(王子フロックA-30791VR、王子エンジニアリング株式会社製)をイオン交換水で調整し、バインダー溶液(28)を作製した。バインダー溶液(1)を前記バインダー溶液(28)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[比較例2-5]
 固形分としてのカルボキシメチルセルロースの含有量が0.4質量%、固形分としてのポリアクリル酸ナトリウムの含有量が0.1質量%となるように、カルボキシメチルセルロース(テルポリマーH、株式会社テルナイト製)の水溶液、アロン A-20UN、およびイオン交換水を調整し、バインダー溶液(29)を作製した。バインダー溶液(1)を前記バインダー溶液(29)に変更した以外は[実施例2-1]と同様にして、粒径1~4mmの造粒物を得た。
[石灰粉末の粒度の測定]
 JIS Z8801-1:2006に準拠したメッシュを用いて篩い分けしたところ、50質量%以上の粒子が通過した篩の最大メッシュは100メッシュであった。
[D-ソルビトール粉末の粒度の測定]
 JIS Z8801-1:2006に準拠したメッシュを用いて篩い分けしたところ、50質量%以上の粒子が通過した篩の最大メッシュは30メッシュであった。
[バインダー溶液の粘度の測定]
 各バインダー液の粘度をB型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定した。測定条件は、回転速度3rpmとし、測定開始から3分後の粘度値を当該分散液の粘度とした。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置した。測定時の分散液の液温は23℃であった。
[粒硬度の測定]
 粒径1~4mmの造粒物10粒の硬度を木屋式硬度計にて測定し、その平均値を粒硬度とした。
 実施例2-1~2-28、比較例2-1~2-5については、測定結果から、以下の基準に基づいて、粒硬度を評価した。
  A:60g以上
  B:40g以上60g未満
  C:20g以上40g未満
  D:20g未満
[水中崩壊性の評価]
 3mm以上の造粒物を選択し、造粒物20粒を目開き2000μmのふるい上に並べて、適当な大きさの容器中に置き、造粒物が水に十分浸るまで水を注いだ。1夜静置後、ふるいを取り出してふるい上に残存する未崩壊粒を数え、崩壊率が8割以上となった場合を崩壊性ありとした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[結果]
 表1の結果から、実施例でバインダーとして使用した繊維状セルロースは、全てpHが9以下であり、臭気もなかった。また、得られた造粒物の粒硬度は500g以上で、強度の高い造粒物が得られた。さらに、水中での崩壊性もあった。一方、比較例1-1はバインダーのpHおよび臭気は良好で崩壊性もあったが、粒硬度が低かった。また、比較例1-2は粒硬度および崩壊性は良好だったが、バインダーのpHは12以上で独特の臭気があった。また、実施例と比較すると、使用するバインダーの量も多かった。
 従って、本発明では、pHや臭気の問題なく、バインダーの使用量が少なくても、粒硬度と水中での崩壊性に優れた造粒物が得られることが示された。
 また、表2の結果から、実施例に示すように、微細繊維状セルロースを含む繊維状セルロースおよび水溶性高分子を含有するバインダー成分を用いて、無機粒子(石灰)および有機粉末(ソルビトール)を造立した実施例2-1~2-28では、いずれも、水中での崩壊性を有し、かつ、粒硬度に優れた造粒物が得られた。
 また、高粘度水溶性高分子および低粘度水溶性高分子を併用することにより、粒硬度を低下させることなく、バインダー溶液の低粘度化を達成することができた。
 さらに、実施例2-1~2-28では、バインダー溶液のpHは中性付近であり、また、臭気もなかった。
 比較例2-1~2-5に示すように、微細繊維状セルロースを含む繊維状セルロースを含有しない場合には、いずれも十分な粒硬度を得ることができなかった。
 本発明により、粒硬度と水中での崩壊性に優れた造粒物を提供でき、肥料、土壌改良剤、融雪剤、防滑剤、舗装材、食品、医薬品、化粧品等の種々の用途に適用が期待される。

Claims (21)

  1.  繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含有するバインダー成分により、無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末を造粒してなる、造粒物。
  2.  前記繊維状セルロースが、繊維幅が1,000nmを超えるパルプ繊維を含有する、請求項1に記載の造粒物。
  3.  前記繊維状セルロース中の前記微細繊維状セルロースの含有量が5質量%以上100質量%以下である、請求項1または2に記載の造粒物。
  4.  前記微細繊維状セルロースが、アニオン性基を有する、請求項1~3のいずれかに記載の造粒物。
  5.  前記粉末100質量部に対する前記微細繊維状セルロースの含有量が0.01質量部以上1質量部以下である、請求項1~4のいずれかに記載の造粒物。
  6.  バインダー成分が、さらに水溶性高分子を含有する、請求項1~5のいずれかに記載の造粒物。
  7.  前記粉末100質量部に対する前記繊維状セルロースおよび水溶性高分子の合計固形分量が0.001質量部以上10質量部以下である、請求項6に記載の造粒物。
  8.  前記水溶性高分子と、前記繊維状セルロースとの配合比率(水溶性高分子/繊維状セルロース)が1/10以上1000/1以下である、請求項6または7に記載の造粒物。
  9.  前記水溶性高分子が、23℃における1質量%水溶液の粘度が1,000mPa・s以上である高粘度水溶性高分子と、23℃における1質量%水溶液の粘度が100mPa・s以下である低粘度水溶性高分子とを含有する、請求項6~8のいずれかに記載の造粒物。
  10.  前記高粘度水溶性高分子と、前記低粘度水溶性高分子との配合比率(高粘度水溶性高分子/低粘度水溶性高分子、質量比)が、1/1以上20/1以下である、請求項9に記載の造粒物。
  11.  前記高粘度水溶性高分子が、カルボキシメチルセルロース、酸化デンプン、ポリアクリルアミド、グアーガム、およびポリアクリル酸よりなる群から選択される、請求項9または10に記載の造粒物。
  12.  前記低粘度水溶性高分子が、ポリアクリル酸塩およびアルギン酸塩よりなる群から選択される、請求項9~11のいずれかに記載の造粒物。
  13.  前記粉末の粒度が12メッシュ以上である、請求項1~12のいずれかに記載の造粒物。
  14.  前記造粒物が、肥料用、土壌改良剤用、融雪剤用である、請求項1~13のいずれかに記載の造粒物。
  15.  前記無機粉末が、窒素、リン酸、カリウム、石灰、ケイ酸、マグネシウム、マンガン、ホウ素よりなる群から選択される少なくとも1つを主成分とする、請求項1~14のいずれかに記載の造粒物。
  16.  前記造粒物の平均粒径が1mm以上10mm以下である、請求項1~15のいずれかに記載の造粒物。
  17.  繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースを含む、粉末用造粒剤。
  18.  さらに、水溶性高分子を含む、請求項17に記載の粉末用造粒剤。
  19.  水溶性高分子が、25℃における1質量%水溶液の粘度が1,000mPa・s以上である高粘度水溶性高分子と、25℃における1質量%水溶液の粘度が100mPa・s以下である低粘度水溶性高分子とを含有する、請求項18に記載の粉末用造粒剤。
  20.  無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースの水系分散液を混合して造粒する工程を有する、造粒物の製造方法。
  21.  無機粉末および有機粉末よりなる群から選択される少なくとも1つの粉末に、繊維幅が1,000nm以下の微細繊維状セルロースを含有する繊維状セルロースと、水溶性高分子とを含有する水系分散液を混合して造粒する工程を有する、造粒物の製造方法。

     
PCT/JP2020/017606 2019-04-26 2020-04-24 粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法 WO2020218469A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019085253A JP7322491B2 (ja) 2019-04-26 2019-04-26 造粒物およびその製造方法、並びに無機粉末用造粒剤
JP2019-085253 2019-04-26
JP2020061247 2020-03-30
JP2020-061247 2020-03-30

Publications (1)

Publication Number Publication Date
WO2020218469A1 true WO2020218469A1 (ja) 2020-10-29

Family

ID=72942217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017606 WO2020218469A1 (ja) 2019-04-26 2020-04-24 粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法

Country Status (1)

Country Link
WO (1) WO2020218469A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939789A (ja) * 1982-08-27 1984-03-05 ダイセル化学工業株式会社 肥料造粒方法
JP2000178662A (ja) * 1998-10-05 2000-06-27 Daicel Chem Ind Ltd 粉末金属原料用造粒剤及び湿式造粒法
JP2014520181A (ja) * 2011-06-08 2014-08-21 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ 凍結防止組成物
JP2017057285A (ja) * 2015-09-17 2017-03-23 王子ホールディングス株式会社 微細繊維状セルロース含有物の製造方法
WO2018038194A1 (ja) * 2016-08-26 2018-03-01 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP2018076572A (ja) * 2016-11-11 2018-05-17 セイコーエプソン株式会社 造粒粉末および造粒粉末の製造方法
JP2018104803A (ja) * 2016-12-28 2018-07-05 セイコーエプソン株式会社 造粒粉末、造粒粉末の製造方法および焼結体の製造方法
JP2018123313A (ja) * 2017-01-27 2018-08-09 Jfeスチール株式会社 製鉄コークス用配合炭、製鉄コークス用成型炭、製鉄コークスおよび製鉄コークス用成型炭の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939789A (ja) * 1982-08-27 1984-03-05 ダイセル化学工業株式会社 肥料造粒方法
JP2000178662A (ja) * 1998-10-05 2000-06-27 Daicel Chem Ind Ltd 粉末金属原料用造粒剤及び湿式造粒法
JP2014520181A (ja) * 2011-06-08 2014-08-21 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ 凍結防止組成物
JP2017057285A (ja) * 2015-09-17 2017-03-23 王子ホールディングス株式会社 微細繊維状セルロース含有物の製造方法
WO2018038194A1 (ja) * 2016-08-26 2018-03-01 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP2018076572A (ja) * 2016-11-11 2018-05-17 セイコーエプソン株式会社 造粒粉末および造粒粉末の製造方法
JP2018104803A (ja) * 2016-12-28 2018-07-05 セイコーエプソン株式会社 造粒粉末、造粒粉末の製造方法および焼結体の製造方法
JP2018123313A (ja) * 2017-01-27 2018-08-09 Jfeスチール株式会社 製鉄コークス用配合炭、製鉄コークス用成型炭、製鉄コークスおよび製鉄コークス用成型炭の製造方法

Similar Documents

Publication Publication Date Title
JP7095595B2 (ja) 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP5950012B1 (ja) 微細繊維状セルロース含有物の製造方法
JP6361836B1 (ja) 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
KR20210046834A (ko) 미세 섬유상 셀룰로오스 함유물
WO2017047631A1 (ja) 組成物、微細繊維状セルロース含有物及び微細繊維状セルロース含有物の製造方法
JP6601088B2 (ja) 微細繊維状セルロース含有物
JP7355028B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP6569482B2 (ja) 地下層処理用組成物、地下層処理用流体、地下層処理用流体の製造方法及び地下層の処理方法
JP6507962B2 (ja) 微細繊維状セルロース含有組成物
WO2020218469A1 (ja) 粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法
JP7322491B2 (ja) 造粒物およびその製造方法、並びに無機粉末用造粒剤
JP2021181667A (ja) 微細繊維状セルロース、分散液、シート及び微細繊維状セルロースの製造方法
JP2022026834A (ja) 成形体及び成形体の製造方法
JP2021159914A (ja) 粉末用造粒剤、並びにこれを用いた造粒物およびその製造方法
JP7010206B2 (ja) 繊維状セルロース
JP6859629B2 (ja) 繊維状セルロース含有物
JP2021116519A (ja) 微細繊維状セルロース・微細無機層状化合物含有物の製造方法及び微細繊維状セルロース・微細無機層状化合物含有物
JP2022020607A (ja) 繊維状セルロース含有物及びその応用
JP7107267B2 (ja) 組成物
JP2020132652A (ja) 繊維状セルロース含有組成物、液状組成物及び成形体
WO2020121952A1 (ja) 繊維状セルロース
JP2021155738A (ja) 粉塵飛散防止剤及び粉塵飛散防止方法
JP7127005B2 (ja) 微細繊維状セルロース含有物
JP6780730B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP6780729B2 (ja) 微細繊維状セルロース含有組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794829

Country of ref document: EP

Kind code of ref document: A1