WO2020218467A1 - とろみ付与用組成物 - Google Patents

とろみ付与用組成物 Download PDF

Info

Publication number
WO2020218467A1
WO2020218467A1 PCT/JP2020/017601 JP2020017601W WO2020218467A1 WO 2020218467 A1 WO2020218467 A1 WO 2020218467A1 JP 2020017601 W JP2020017601 W JP 2020017601W WO 2020218467 A1 WO2020218467 A1 WO 2020218467A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickening
mass
liquid
composition
xanthan gum
Prior art date
Application number
PCT/JP2020/017601
Other languages
English (en)
French (fr)
Inventor
川上 智美
結樹 早川
麻奈 加藤
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to JP2021516231A priority Critical patent/JPWO2020218467A1/ja
Publication of WO2020218467A1 publication Critical patent/WO2020218467A1/ja
Priority to JP2023007809A priority patent/JP2023038291A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran

Definitions

  • the present technology relates to a thickening composition, and particularly to a thickening composition used for thickening liquid foods and drinks.
  • Patent Document 1 discloses a tromi agent composition containing xanthan gum and a water-soluble calcium salt.
  • Dama is particularly likely to occur when the composition is mixed with a highly viscous liquid.
  • a beverage such as water or tea
  • the composition is added and mixed again in order to further increase the viscosity
  • lumps are particularly likely to occur. ..
  • Many of the thickening compositions that have been commercially available so far often cause lumps when added and mixed with the liquid in two or more portions, for example. Therefore, it is considered useful if there is a thickening composition capable of adjusting the thickening without causing lumps even if the liquid is added and mixed in a plurality of times.
  • the liquid may be excessively thickened by the first addition and mixing of the thickening composition to the liquid.
  • the thickening composition that can be added and mixed in multiple times to adjust the thickening while checking the degree of thickening. it is conceivable that.
  • the purpose of this technique is to provide a new thickening composition capable of imparting thickening to a liquid without causing lumps.
  • a thickening composition having a specific composition is suitable for imparting thickening to a liquid, particularly suitable for imparting thickening to a highly viscous liquid. It was.
  • the present technology includes xanthan gum and citrate, A liquid having a viscosity of 50 mPa ⁇ s can be further thickened.
  • a composition for imparting thickening is provided.
  • the content ratio of the xanthan gum may be less than 35% by mass.
  • the citrate may be an alkali metal salt of citric acid.
  • the thickening composition may be a powder or granular material.
  • the content ratio of the xanthan gum may be 30% by mass or less.
  • the citric acid equivalent content of the citrate may be 0.3% by mass or more.
  • x and y are the following formula (1).
  • x and y are the following formula (2).
  • x and y are the following formula (3).
  • the thickening composition may further contain an excipient.
  • the thickening composition of the present technology is suitable for thickening a liquid.
  • the thickening composition of the present technology can further thicken a highly viscous liquid without causing lumps.
  • the effect of the present technology is not limited to the effect described here, and may be any effect described in the present specification.
  • the thickening composition of the present technology can further increase the thickening without causing lumps even when it is further added to the once thickened liquid.
  • the thickening composition of the present technology can be used to adjust the thickening of the liquid by adding and mixing the liquid a plurality of times while checking the degree of thickening applied to the liquid. The details of the thickening composition of the present technology will be described below.
  • the content ratio of the xanthan gum is, for example, less than 35% by mass, preferably 33% by mass or less, more preferably 30% by mass or less, for example, 28% by mass or less, 25% by mass or less, 23% by mass or less. Alternatively, it may be 20% by mass or less. Keeping the content ratio of xanthan gum within the above numerical range contributes to preventing the occurrence of lumps when thickening the liquid.
  • the content ratio of the xanthan gum may be, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 12% by mass or more, and even more preferably 15% by mass or more.
  • the content ratio of xanthan gum is the ratio of the mass of xanthan gum to the total mass of the components other than water used as a binder among the components contained in the thickening composition of the present technology. That is, the content ratio of the xanthan gum is almost synonymous with the ratio of the content of the xanthan gum used as a raw material to 100 parts by mass of the thickening composition of the present technology.
  • the xanthan gum is a polysaccharide having glucose, mannose, and glucuronic acid as constituent units.
  • the main chain of the xanthan gum is composed of glucose
  • the side chain of the xanthan gum is composed of mannose and glucuronic acid.
  • the side chains may be attached to every other glucose residue in the main chain.
  • the mannose residue at the end of the side chain may or may not have pyruvic acid.
  • the mannose residue attached to the main chain may or may not be acetylated.
  • the xanthan gum may be a polysaccharide produced by Xanthomonas campestris, and more particularly a polysaccharide secreted by xanthomonas campestris outside the cells.
  • the citrate is preferably an alkali metal salt of citric acid, more preferably a sodium or potassium salt of citric acid, or a mixture of a sodium salt of citric acid and / or a potassium salt of citric acid, and even more. It is preferably a sodium salt of citric acid.
  • the sodium salt of the citric acid is more preferably trisodium citrate, for example trisodium citrate dihydrate.
  • the ratio of the xanthan gum content to the citric acid equivalent content of the citrate may be, for example, 19 or less, 18 or less, 17 or less, 16 or less, or 15 or less. In this embodiment, the ratio may be, for example, 5 or more, 7 or more, or 9 or more. It is considered that the ratio within the above numerical range contributes to the improvement of the dispersibility and / or the solubility of the composition. It is considered that the ratio within the above numerical range can further thicken the highly viscous liquid.
  • the content ratio of the xanthan gum is preferably 30% by mass or less, more preferably 28% by mass or less, and further preferably 25% by mass or less.
  • the ratio of the xanthan gum content to the citric acid equivalent content of the citrate may be, for example, greater than 19, more specifically 20 or more, 22 or more, or 25. That may be the above. In this embodiment, the ratio may be, for example, 50 or less, 45 or less, 43 or less, 40 or less, or 35 or less. In this embodiment, the content ratio of the xanthan gum is preferably 25% by mass or less, more preferably 23% by mass or less, and even more preferably 22.5% by mass or less.
  • the content ratio of the citrate is preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and even more preferably 0. It may be 7% by mass or more.
  • the fact that the content ratio of the citrate is within the above numerical range contributes to imparting thickening without causing lumps.
  • the content ratio of the citrate (particularly trisodium citrate dihydrate) is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 6% by mass or less, 5 It may be mass% or less, or 4 mass% or less.
  • the citric acid equivalent content of the citrate is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.6% by mass or more, and even more. It may be preferably 0.7% by mass or more.
  • the citric acid conversion content of the citrate may be, for example, 1.0% by mass or more, 1.3% by mass or more, or 1.5% by mass or more. The fact that the citric acid conversion content ratio is within the above numerical range contributes to imparting thickening without causing lumps.
  • the citric acid conversion content of the citrate is preferably 7.0% by mass or less, more preferably 6.0% by mass or less, and even more preferably 5.0% by mass or less.
  • the citric acid conversion content ratio may be, for example, 4.0% by mass or less, 3.0% by mass or less, or 2.0% by mass or less.
  • citrate within the above numerical range, it is possible to impart thickening without impairing the flavor of the food.
  • x and y are as follows. Equation (1) y> 0.0084x 2 -0.1782x + 0.413 ⁇ (1) It satisfies. It is desirable that the content ratios of xanthan gum and citrate satisfy this formula (1) in order to give the composition the property that the high-viscosity liquid can be further thickened without causing lumps. Due to the above characteristics, x and y are more preferably expressed in the following equation (2).
  • the thickening composition may further contain an excipient.
  • the excipient may be, for example, one or a combination of two or more selected from the group consisting of dextrins, starches, and sugars.
  • dextrin include dextrin, amylodextrin, erythrodextrin, acrodextrin, maltdextrin, and cyclodextrin.
  • starch include raw starch such as corn-derived starch, mochi corn-derived starch, horseshoe-derived starch, sweet potato-derived starch, wheat-derived starch, rice-derived starch, rice cake rice-derived starch, tapioca-derived starch, and sago palm-derived starch.
  • Processed starch in which any of the raw starch is physically or chemically treated can be mentioned.
  • As the processed starch acid-decomposed starch, oxidized starch, pregelatinized starch, grafted starch, etherified starch having a carboxymethyl group or hydroxyalkyl group introduced therein, esterified starch having an acetyl group introduced therein, starch, etc.
  • Examples thereof include crosslinked starch in which a polyfunctional group is bonded between two or more hydroxyl groups, for example, emulsifying starch in which a hydrophobic group such as an octenyl succinic acid group is introduced, and starch which has been subjected to wet heat treatment or dry heat treatment.
  • the sugar include sucrose, fructose, glucose, maltose, starch saccharified product, reduced starch starch syrup, and trehalose.
  • the excipient one or a combination of two or more of these listed materials may be used.
  • the thickening composition of the present technology has a property of being able to further thicken a liquid having a viscosity of 50 mPa ⁇ s (particularly without causing lumps). Whether or not it has this property can be determined as follows. (Step 1) 150 g of pure water (DIW) is prepared, and the temperature of the pure water is adjusted to 20 ⁇ 2 ° C. A sample to be determined to have the above characteristics is added and mixed with the pure water to adjust the viscosity to 50 mPa ⁇ s. Record the mass of the sample required for the adjustment (hereinafter referred to as "quantity A"). When the sample is the thickening composition of the present technology, no lumps are generated after the viscosity adjustment.
  • DIW pure water
  • Step 2 150 g of pure water is prepared, and the temperature of the pure water is adjusted to 20 ⁇ 2 ° C. The sample is added and mixed with the pure water to adjust the viscosity to 400 mPa ⁇ s. The mass of the sample required for the adjustment (hereinafter referred to as "quantity B") is recorded. When the sample is the thickening composition of the present technology, no lumps are generated after the viscosity adjustment.
  • Step 3 150 g of pure water is prepared again, and the temperature of the pure water is adjusted to 20 ⁇ 2 ° C. Then, the sample of the amount A recorded in step 1 is added to and mixed with the pure water to adjust the viscosity to 50 mPa ⁇ s.
  • the liquid having a viscosity of 50 mPa ⁇ s can be further thickened.
  • the thickening composition having the above characteristics is not limited to a liquid having a viscosity of 50 mPa ⁇ s, and can further thicken a liquid having a viscosity of 50 mPa ⁇ s or more. More preferably, the thickening composition of the present technology can further thicken (particularly without causing lumps) a liquid having a viscosity of 100 mPa ⁇ s, 200 mPa ⁇ s, or 300 mPa ⁇ s. Has characteristics.
  • thickness may mean a state in which a liquid has a certain viscosity, for example, a state in which a liquid has a viscosity higher than that of water.
  • the viscosity may be as described above.
  • the “thickening composition” may mean a composition used for increasing the viscosity of a liquid, that is, a composition for thickening.
  • the “thickening composition” can also be referred to as a thickener or a thickening composition.
  • the thickening composition of the present technology is preferably a powder or granular material, and may be, for example, a powder or granules. By having such a shape, the composition can be dispersed and / or dissolved in a liquid more quickly.
  • the proportion of particles having a particle diameter of 125 ⁇ m to 425 ⁇ m is 60% by mass or more, more preferably 70% by mass or more, and even more preferably 80% by mass or more among all the particles constituting the powder or granular material.
  • the proportion of particles having a particle size of 125 ⁇ m to 425 ⁇ m is measured as follows. That is, 40 mesh (425 ⁇ m), 60 mesh (250 ⁇ m), 80 mesh (180 ⁇ m), 100 mesh (150 ⁇ m), 120 mesh (125 ⁇ m), and 200 mesh (75 ⁇ m) sieves are superposed, and 10 g of powder and granules are sieved. (ATM Sonic Shifter, Amplitude 3, 5 minutes), the mass of the sample on each sieve and the sample passed through the sieve was measured. The above ratio is calculated based on the measured mass value.
  • the xanthan gum, citrate, and excipients used in the mixing step are preferably in powder form, i.e., in the mixing step, powdered xanthan gum, powdered citrate, and powdered excipient. Can be mixed.
  • powdered xanthan gum, powdered citrate, and powdered excipient Can be mixed.
  • the details of these components may be as described in the above "(1) Composition of thickening composition".
  • the ratio of the xanthan gum blending ratio to the citric acid equivalent blending ratio of the citrate may be, for example, 19 or less, 18 or less, 17 or less, 16 or less, or 15 or less. In this embodiment, the ratio may be, for example, 5 or more, 7 or more, or 9 or more. In this embodiment, the blending ratio of the xanthan gum is preferably 30% by mass or less, more preferably 28% by mass or less, and further preferably 25% by mass or less.
  • the citric acid-equivalent compounding ratio of the citric acid is a value obtained by multiplying the citric acid compounding ratio by (molecular weight of citric acid / molecular weight of the citric acid).
  • the blending ratio of the citric acid is the ratio of the blending mass of the citric acid to the mass of the thickening composition of the present technology.
  • the ratio of the xanthan gum blending ratio to the citric acid equivalent blending ratio of the citrate may be, for example, more than 19, more specifically, 20 or more, 22 or more, or 25. That may be the above. In this embodiment, the ratio may be, for example, 50 or less, 45 or less, 43 or less, 40 or less, or 35 or less. In this embodiment, the blending ratio of the xanthan gum is preferably 25% by mass or less, more preferably 23% by mass or less, and even more preferably 22.5% by mass or less.
  • x and y are It preferably satisfies the above formula (1), more preferably the above formula (2), and even more preferably the above formula (3).
  • the blending ratio of the excipient is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 62% by mass or more, 65% by mass or more, or 70% by mass. % Or more.
  • the blending ratio of the excipient (particularly dextrin) is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
  • powdered lactate may also be mixed.
  • a calcium salt is preferable.
  • the explanation described in "(1) Composition of thickening composition” above applies.
  • the blending ratio of lactate may be set so as to obtain the composition described in the above "(1) Composition of thickening composition", for example, the composition of the above "(1) Thickening composition”.
  • the content ratio described in “” may be adopted as the blending ratio of lactate.
  • the blending ratio of the lactate may be preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more.
  • the blending ratio of the lactate may be preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less.
  • the binder used in the granulation step may be, for example, water.
  • the mixing step and the granulation step may be performed using a commercially available granulator, and for example, a fluidized bed granulator can be used.
  • the granulation step is preferably carried out so as to obtain the powder or granular material described above.
  • the thickening composition of the present technology is used to thicken a liquid.
  • the liquid is preferably a liquid containing water, and more preferably a liquid containing water as a base.
  • the liquid is preferably a liquid food or drink.
  • the liquid food or drink may be, for example, a liquid containing a tea component, a liquid containing a protein and / or a fat, a liquid containing an acid component, a liquid containing a salt content, or a liquid containing a mineral. More specific examples of the liquid food and drink are as follows.
  • Milky beverages such as milk, processed milk, dairy beverages, lactic acid fermented beverages, and drink yogurt
  • Soft drinks such as soft drinks containing fruit or vegetable juices, sports drinks, functional drinks, ion drinks, vitamin-containing drinks, etc.
  • Fruit juice drinks such as orange juice
  • Vegetable juice beverages such as tomato juice and carrot juice
  • Tea beverages such as green tea beverages, black tea beverages, barley tea beverages, brown rice beverages, matcha beverages, and roasted tea beverages
  • Coffee drinks Cocoa drink
  • Nutritional beverages such as vitamin supplements
  • Liquors such as fruit wine (wine, etc.), sake, and whiskey
  • Soups such as miso soup, fresh soup, consomme soup, potage soup, cream soup, and Chinese soup
  • Liquid end foods such as stews, curries, and gratins
  • Special foods or therapeutic foods such as protein / phosphorus / potassium-adjusted foods, salt-adjusted foods, fat-adjusted foods, intestinal-regulating foods, calcium / iron / vitamin
  • the thickening composition of the present technology may be used to add thickening to any of these specific examples of liquid foods and drinks. That is, the present technology also provides a food or drink composition containing the thickening composition of the present technology.
  • the food or drink composition may have a viscosity of, for example, 10 mPa ⁇ s to 2000 mPa ⁇ s.
  • the food and drink composition having the viscosity may be for, for example, a person who has difficulty swallowing, but may be ingested by a person other than the person who has difficulty swallowing.
  • the thickening composition of the present technology may be used, for example, to make the viscosity of a liquid (particularly the above liquid food or drink) 10 mPa ⁇ s to 2000 mPa ⁇ s, for example, a liquid having a viscosity of less than 10 mPa ⁇ s (for example, In particular, it may be used to make the viscosity of the liquid food or drink) 10 mPa ⁇ s to 2000 mPa ⁇ s.
  • the viscosity may be 10 mPa ⁇ s to 1000 mPa ⁇ s, or 50 mPa ⁇ s to 500 mPa ⁇ s.
  • the viscosity of the liquid after thickening according to the thickening composition of the present technology is 10 mPa ⁇ s to 2000 mPa ⁇ s and 10 mPa ⁇ s to 1000 mPa ⁇ s as described above, for example, 50 mPa ⁇ s to 500 mPa ⁇ s. It may be there.
  • the viscosity may be appropriately set according to the oral function of the subject (human) ingesting the liquid. In the present specification, the viscosity is measured under the following conditions using an E-type rotational viscometer (MCR302, Anton Pearl Japan Co., Ltd.). Slip speed: 50sec -1 Cone angle: 1 ° Cone radius: 50 mm Gap: 100 ⁇ m
  • the composition is added and mixed with the liquid (particularly the above liquid food and drink).
  • the liquid particularly the above liquid food and drink.
  • the composition for example, preferably 0.1 g to 15 g, more preferably 0.3 g to 13 g, still more preferably 0.5 g to 10 g of the composition is added and mixed with respect to 150 g of the liquid. You can.
  • the temperature of the liquid thickened by the thickening composition of the present technology may be preferably 0 ° C. to 60 ° C., more preferably 3 ° C. to 55 ° C., and even more preferably 5 ° C. to 50 ° C. Since the thickening composition of the present technology is excellent in solubility and / dispersibility, even if it is added to a liquid having such a wide range of temperatures, it is possible to impart thickening to the liquid without causing lumps.
  • the term "lump" may mean an aggregate of powders that are assembled without being dissolved or dispersed when the powder is added to a liquid, and in particular, a size that can be visually confirmed. A lump that has.
  • the thickening composition of the present technology may be used to add thickening to a liquid by adding and mixing it in a plurality of steps. Conventionally, it has been difficult to thicken a liquid in a plurality of stages due to factors such as the occurrence of lumps.
  • the thickening composition of the present technology can impart thickening to a liquid without causing lumps even if it is added and mixed in the liquid in a plurality of stages.
  • the thickening composition of the present technology may be added and mixed with the liquid in 2 to 10 times, for example, 2 to 8 times, 2 to 6 times, or 2 to 4 times. , May be added to the liquid.
  • the interval between the plurality of steps may be such that the thickening imparted by the one-step thickening is stabilized.
  • the interval between the plurality of steps may be, for example, 10 seconds or longer, 15 seconds or longer, or 20 seconds or longer.
  • the interval between the plurality of steps may be, for example, 10 minutes or less, 5 minutes or less,
  • the thickening composition of the present technology is added and mixed with a liquid having a viscosity of less than 10 mPa ⁇ s to make the viscosity of the liquid 50 mPa ⁇ s to 200 mPa ⁇ s, and then further for thickening of the present technology.
  • the composition can be added and mixed to adjust the viscosity of the liquid to 200 mPa ⁇ s to 500 mPa ⁇ s. Even if the composition is added and mixed in two steps in this way, lumps are unlikely to occur.
  • the thickening performance of the thickening composition was evaluated. The details of the evaluation will be described below.
  • composition of Example 1 20 parts by mass of xanthan gum (manufactured by Saneigen FFI, same in the following test), 1.6 parts by mass of calcium lactate pentahydrate (manufactured by Daiichi Kasei Co., Ltd., same in the following test), tricitrate 2.4 parts by mass of sodium dihydrate and 76 parts by mass of dextrin (manufactured by Toa Kasei Co., Ltd., the same in the following test) are granulated by a fluidized layer granulator to form a powder or granular material (hereinafter, "composition of Example 1"). “Things").
  • the content ratio of each component in the composition of Example 1 corresponds to the above-mentioned parts by mass, and is as shown in the column of Example 1 in Table 1 below.
  • X / C is the ratio of the content ratio of xanthan gum / the content ratio of trisodium citrate dihydrate in terms of citric acid.
  • composition of Example 2 powder or granular material having the composition as shown in the columns of Examples 2 to 5 in Table 1 (hereinafter, "Composition of Example 2" to “Composition of Example 5, respectively”). I also got a thing.
  • the amount required for adjusting the viscosity was also investigated in the same manner. The results are also shown in Table 2. In Examples 3 to 5, since the viscosity of 100 mPa ⁇ s was not adjusted in the following evaluation, the amount required for the adjustment to the viscosity of 100 mPa ⁇ s was not investigated.
  • Example 1 In order to achieve the target viscosity, the presence or absence of lumps when the composition of Example 1 was added and mixed in two portions was evaluated. The presence or absence of lumps was determined based on whether or not an insoluble matter having a diameter of 5 mm or more could be visually confirmed. Specifically, the following operations were performed.
  • Table 3 shows the determination results of the presence or absence of lumps in the viscosity adjustment of the above five patterns. Note that "-" in Table 3 has not been evaluated.
  • compositions of Examples 2 to 5 the same operation as that performed for the composition of Example 1 was performed as described above, and the presence or absence of lumps when added and mixed in two portions was evaluated. .. The evaluation results are shown in Table 3 above. As shown in Table 3, no lumps were generated in any of the five patterns in the composition of Example 2. In all of the five patterns, the second thickening imparted more thickening than after the first thickening. Further, for the compositions of Examples 3 to 5, no lumps were generated at 50 mPa ⁇ s ⁇ 400 mPa ⁇ s where the viscosity change width was the largest (the second addition amount was the largest), and the initial viscosity value was the highest 200 mPa ⁇ . No lumps occurred in s.
  • the second thickening imparted more thickening than after the first thickening. Therefore, when the viscosity of the other three patterns is adjusted, it is considered that the thickening can be imparted without causing lumps at the time of the second thickening.
  • compositions of the compositions of Examples 1 and 2 with the composition of the compositions of Examples 3 to 5, the latter does not contain calcium lactate. Similar to the compositions of Examples 1 and 2, the compositions of Examples 3 to 5 containing no calcium lactate could be thickened in two steps without causing lumps. Therefore, it can be seen that calcium lactate may or may not be contained in order to exert the effect of the composition of the present technology.
  • composition of Example 6 Similar to the composition of Example 1, powder or granular material having the composition as shown in the columns of each Example and Comparative Example in Table 4 (hereinafter, “Composition of Example 6” and “Comparative Example 1 respectively”). "Composition” etc.) was obtained.
  • the viscosities of 150 g (20 ° C.) of pure water are adjusted to 50 mPa ⁇ s, 200 mPa ⁇ s, and 400 mPa by first adding and mixing each composition once. The amount of the composition required to adjust to s was investigated.
  • Example 1 in Test Example 1 is also located on the lower left side separated by the thick black line in Table 5. The same applies to the other Examples 2 to 5.
  • the citrate content is preferably 10% by mass or less so as not to impair the flavor of the liquid to be thickened.
  • the maximum value of the citric acid-equivalent content ratio of the comparative example at each concentration of xanthan gum can be calculated using spreadsheet software (Microsoft Excel). It was plotted using and an approximate curve of a quadratic polypoly was obtained. Similarly, the intermediate value between the maximum value of the comparative example and the minimum value of the example of the citric acid conversion content ratio at each concentration of xanthan gum, and the minimum value of the example of the citric acid conversion content ratio at each concentration of xanthan gum. , Obtained an approximate curve of a quadratic polynomial.
  • the rhombus is a plot result of the maximum value of the citric acid conversion content ratio of the comparative example at each concentration of xanthan gum.
  • the squares are the plot results for the minimum values of the examples of the citric acid conversion content ratio at each concentration of xanthan gum.
  • the triangles are the plot results of the intermediate values between the maximum value of the comparative example and the minimum value of the example of the citric acid conversion content ratio at each concentration of xanthan gum.
  • the xanthan gum content ratio when the xanthan gum content ratio was 35% by mass, lumps occurred even if the value was close to 10% by mass, which is the upper limit of the amount of citrate added. Therefore, it can be seen that the xanthan gum content needs to be less than 35% by mass, and is preferably 30% by mass or less, for example.
  • the xanthan gum content / citric acid conversion content of citrate is preferably 19 or less, for example, 18 or less. It is considered to be 17 or less, or 16 or less.
  • the xanthan gum content / citric acid equivalent content of citrate is preferably less than 43, for example, 40.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本技術は、ダマを生じることなくとろみを液体に付与することができる新たなとろみ付与用組成物を提供することを目的とする。 本技術は、キサンタンガムとクエン酸塩とを含み、50mPa・sの粘度を有する液体にとろみをさらに付与することができる、とろみ付与用組成物を提供する。前記クエン酸塩はクエン酸のアルカリ金属塩であってよい。また、前記とろみ付与用組成物は好ましくは粉粒体である。前記キサンタンガムの含有割合は、好ましくは35質量%未満である。また、本技術は、当該とろみ付与用組成物を含む飲食品組成物も提供する。

Description

とろみ付与用組成物
 本技術は、とろみ付与用組成物に関し、特には液状飲食品にとろみを付与するために用いられるとろみ付与用組成物に関する。
 嚥下困難者にとって、例えば水又はお茶などの液体をそのまま摂取することは困難な場合がある。そのため、液体にとろみを付与して摂取しやすくすることがしばしば行われる。これまでに、液体にとろみを付与するための組成物に関していくつか提案されている。例えば、下記特許文献1には、キサンタンガムと水溶性カルシウム塩とを含有することを特徴とするトロミ剤組成物が開示されている。
特開2006-271258号公報
 とろみ付与用組成物を液体に混合した場合にダマが生じることは望ましくない。ダマは、粘度が高い液体に当該組成物が混合された場合に特に生じやすい。例えば水又はお茶などの飲料に当該組成物を添加及び混合して当該飲料の粘度を高めた後に、粘度をさらに高めるために再度当該組成物を添加及び混合した場合には、特にダマが生じやすい。これまでに市販されているとろみ付与用組成物の多くは、例えば2回以上に分けて液体に添加及び混合された場合には、しばしばダマが生じる。そこで、複数回に分けて液体に添加及び混合しても、ダマを生じること無くとろみを調整できるとろみ付与用組成物があれば、有用であると考えられる。
 例えばとろみ付与用組成物の液体への1回目の添加及び混合では所望のとろみが当該液体に付与されない場合がある。その場合には、とろみ付与用組成物の液体への2回目の添加及び混合が行われうる。しかしながら、当該液体には当該1回目の添加及び混合によって既にある程度とろみが付与されている。そのため、当該2回目の添加及び混合によって、当該組成物のダマが生じやすい。当該ダマは、当該液体へのとろみ付与に役立たたない。また、当該ダマを有する液体は、例えば嚥下困難者用の飲料として許容されない場合がある。そのため、2回目以降のとろみ付与用組成物の液体への添加によっても、ダマを生じないとろみ付与用組成物があれば、有用であると考えられる。
 また、とろみ付与用組成物の液体への1回目の添加及び混合によって、当該液体に過度にとろみが付与される場合もある。過度にとろみが付与されることを防ぐために、とろみの程度を確認しながら、複数回に分けて添加及び混合してとろみを調整することが可能なとろみ付与用組成物があれば、有用であると考えられる。
 以上を踏まえ、本技術は、ダマを生じることなくとろみを液体に付与することができる新たなとろみ付与用組成物を提供することを目的とする。
 本発明者らは、特定の組成を有するとろみ付与用組成物が、液体にとろみを付与するために適していること、特には粘度の高い液体にとろみを付与するために適していることを見出した。
 すなわち、本技術は、キサンタンガムとクエン酸塩とを含み、 
 50mPa・sの粘度を有する液体にとろみをさらに付与することができる、
 とろみ付与用組成物を提供する。
 前記キサンタンガムの含有割合が35質量%未満であってよい。
 前記クエン酸塩は、クエン酸のアルカリ金属塩であってよい。
 前記とろみ付与用組成物は粉粒体であってよい。
 前記キサンタンガムの含有割合は30質量%以下であってよい。
 前記クエン酸塩のクエン酸換算含有割合が0.3質量%以上であってよい。
 本技術の一つの実施態様に従い、前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(1)
 y>0.0084x-0.1782x+0.413   ・・・(1)
 を満たすものであってよい。
 前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(2)
 y≧0.012x-0.3407x+2.3448   ・・・(2)
 を満たすものであってもよい。
 前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(3)
 y≧0.0157x-0.5033x+4.2766  ・・・(3)
 を満たすものであってもよい。
 前記とろみ付与用組成物は、さらに賦形剤を含んでもよい。
 前記賦形剤がデキストリン、澱粉、及び糖類からなる群から選ばれる1つ又は2以上の組合せであってよい。
 前記賦形剤の含有割合は50質量%~90質量%であってよい。
 本技術に従うとろみ付与用組成物は、液体の粘度を10mPa・s~2000mPa・sにするために用いられてよい。
 本技術のとろみ付与用組成物は、水を含有する液体にとろみを付与するために用いられてよい。
 本技術に従うとろみ付与用組成物は、複数の段階に分けて液体に添加及び混合することによって当該液体にとろみを付与するために用いられてもよい。
 本技術は、本技術に従うとろみ付与用組成物を含む、飲食品組成物も提供する。
 前記飲食品組成物は、10mPa・s~2000mPa・sの粘度を有してよい。
 本技術は、キサンタンガム、クエン酸塩、及び賦形剤を混合して粉末状混合物を得る混合工程、及び
 前記粉末状混合物を、バインダーを用いて造粒して組成物を得る造粒工程
 を含む、50mPa・sの粘度を有する液体にとろみをさらに付与することができるとろみ付与用組成物の製造方法も提供する。
 本技術のとろみ付与用組成物は、液体にとろみを付与するために適している。また、本技術のとろみ付与用組成物は、粘度の高い液体に、ダマを生じることなくとろみをさらに付与することができる。
 なお、本技術の効果は、ここに記載された効果に限定されず、本明細書内に記載されたいずれかの効果であってもよい。
キサンタンガム含有割合とクエン酸塩のクエン酸換算含有割合との関係を示すグラフである。
 以下に本技術の好ましい実施形態について説明する。ただし、本技術は以下の好ましい実施形態のみに限定されず、本技術の範囲内で自由に変更することができる。
1.本技術のとろみ付与用組成物
 本技術のとろみ付与用組成物は、キサンタンガムとクエン酸塩とを含み、50mPa・s以上の粘度を有する液体にとろみをさらに付与することができるという特性を有する。
 これまでに知られている多くのとろみ付与用組成物の多くは、このような高粘度の液体に添加及び混合された場合にダマを生じ、当該ダマはとろみ付与に貢献しない。本技術のとろみ付与用組成物は、50mPa・sの粘度を有する液体にとろみをさらに付与することができるという特性を有し、より特には、当該粘度を有する液体にダマを生じることなくとろみをさらに付与することができるという特性を有する。そのため、本技術のとろみ付与用組成物は、一度とろみ付与された液体にさらに添加された場合であっても、ダマを生じることなくとろみをさらに高めることができる。また、本技術のとろみ付与用組成物によって、液体に付与されるとろみの程度を確認しながら、複数回の添加及び混合によって当該液体のとろみを調整することもできる。
 以下で、本技術のとろみ付与用組成物の詳細を説明する。
(1)とろみ付与用組成物の組成
 前記キサンタンガムの含有割合は、例えば35質量%未満であり、好ましくは33質量%以下であり、より好ましくは30質量%以下であり、例えば28質量%以下、25質量%以下、23質量%以下、又は20質量%以下であってよい。前記キサンタンガムの含有割合を上記数値範囲内とすることが、液体にとろみを付与する際のダマ発生を防ぐことに貢献する。
 前記キサンタンガムの含有割合は、例えば5質量%以上、好ましくは10質量%以上、より好ましくは12質量%以上、さらにより好ましくは15質量%以上であってよい。前記キサンタンガムの含有割合を上記下限値以上とすることによって、効率的に液体にとろみを付与することができ、例えばより少ない量の当該組成物によって所望のとろみを液体に付与することができる。
 前記キサンタンガムの含有割合は、本技術のとろみ付与用組成物に含まれる成分のうち、バインダーとして用いられる水以外の成分の合計質量に対する、キサンタンガムの質量の割合である。すなわち、当該キサンタンガムの含有割合は、本技術のとろみ付与用組成物100質量部に対して、その原料として使用したキサンタンガムの含量の割合とほぼ同義である。本明細書内において、キサンタンガム以外の成分(例えばクエン酸塩及び賦形剤など)の含有割合も、同様である。すなわち、本技術の組成物中の各成分の含有割合は、バインダーとして用いられる水以外の成分の合計質量に対する各成分の質量の割合である。
 前記キサンタンガムは、グルコース、マンノース、及びグルクロン酸を構成単位として有する多糖類である。前記キサンタンガムの主鎖はグルコースから構成され、且つ、前記キサンタンガムの側鎖はマンノース及びグルクロン酸から構成される。前記側鎖は、前記主鎖のグルコース残基に、1つおきに結合していてよい。前記側鎖の末端のマンノース残基は、ピルビン酸を有してよく又は有していなくてもよい。前記主鎖に結合したマンノース残基はアセチル化されていてよく又はアセチル化されていなくてもよい。
 前記キサンタンガムは、キサントモナス・キャンペストリス(Xanthomonas campestris)により産生される多糖類であってよく、より特にはキサントモナス・キャンペストリスが菌体外に分泌した多糖類であってよい。
 前記クエン酸塩は、好ましくはクエン酸のアルカリ金属塩であり、より好ましくはクエン酸のナトリウム塩若しくはカリウム塩、又は、クエン酸のナトリウム塩及び若しくはクエン酸のカリウム塩の混合物であり、さらにより好ましくはクエン酸のナトリウム塩である。当該クエン酸のナトリウム塩は、より好ましくはクエン酸三ナトリウムであり、例えばクエン酸三ナトリウム二水和物である。
 本技術の一つの実施態様に従い、前記キサンタンガムの含有割合/前記クエン酸塩のクエン酸換算含有割合の比は、例えば19以下、18以下、17以下、16以下、又は15以下であってよい。この実施態様において、当該比は、例えば5以上、7以上、又は9以上であってよい。上記数値範囲内の比が、組成物の分散性及び/又は溶解性向上に寄与していると考えられる。上記数値範囲内の比により、粘度の高い液体にさらにとろみを付与することができると考えられる。この実施態様において、前記キサンタンガムの含有割合は、好ましくは30質量%以下であり、より好ましくは28質量%以下であり、さらに好ましくは25質量%以下である。
 前記キサンタンガムの含有割合は、本技術のとろみ付与用組成物の質量に対する前記キサンタンガムの含有質量の割合である。
 前記クエン酸塩のクエン酸換算含有割合とは、当該クエン酸塩の含有割合に、(クエン酸の分子量/当該クエン酸塩の分子量)を乗じて得られる値である。当該クエン酸塩の含有割合は、本技術のとろみ付与用組成物の質量に対する前記クエン酸塩の含有質量の割合である。
 本技術の他の実施態様に従い、前記キサンタンガムの含有割合/前記クエン酸塩のクエン酸換算含有割合の比は、例えば19超であってよく、より具体的には20以上、22以上、又は25以上であってよい。この実施態様において、当該比は、例えば50以下、45以下、43以下、40以下、又は35以下であってよい。この実施態様において、前記キサンタンガムの含有割合は、好ましくは25質量%以下であり、より好ましくは23質量%以下であり、さらにより好ましくは22.5質量%以下である。
 前記クエン酸塩(特にはクエン酸三ナトリウム二水和物)の含有割合は、好ましくは0.5質量%以上であり、より好ましくは0.6質量%以上であり、さらにより好ましくは0.7質量%以上であってよい。前記クエン酸塩の含有割合が上記数値範囲内にあることが、ダマを生じることなくとろみを付与することに貢献する。
 前記クエン酸塩(特にはクエン酸三ナトリウム二水和物)の含有割合は、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、さらにより好ましくは6質量%以下、5質量%以下、又は4質量%以下であってよい。上記数値範囲内でクエン酸塩を用いることによって、食品の風味を損なうことなくとろみを付与することができる。
 前記クエン酸塩のクエン酸換算含有割合は、好ましくは0.3質量%以上であり、より好ましくは0.5質量%以上であり、さらにより好ましくは0.6質量%以上であり、さらにより好ましくは0.7質量%以上であってよい。前記クエン酸塩のクエン酸換算含有割合は、例えば1.0質量%以上、1.3質量%以上、又は1.5質量%以上であってもよい。前記クエン酸換算含有割合が上記数値範囲内にあることが、ダマを生じることなくとろみを付与することに貢献する。
 前記クエン酸塩のクエン酸換算含有割合は、好ましくは7.0質量%以下であり、より好ましくは6.0質量%以下であり、さらにより好ましくは5.0質量%以下であってよい。例えば、当該クエン酸換算含有割合は、例えば4.0質量%以下、3.0質量%以下、又は2.0質量%以下であってよい。上記数値範囲内でクエン酸塩を用いることによって、食品の風味を損なうことなくとろみを付与することができる。
 本技術において、50mPa・sの粘度を有する液体にとろみをさらに付与することができるという特性は、例えばキサンタンガム及びクエン酸塩の含有量を調整することによって組成物に備えることができ、例えばこれら2つの成分の含有量を以下で説明する式(1)~(3)のいずれかを満たすように設定することによって組成物に備えることができる。
 本技術の一つの実施態様に従い、前記キサンタンガムの含有割合(質量%)をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合(質量%)をyとした場合に、x及びyが以下の式(1)
 y>0.0084x-0.1782x+0.413   ・・・(1)
 を満たすものである。キサンタンガム及びクエン酸塩の含有割合がこの式(1)を満たすことが、ダマを生じることなく高粘度の液体にとろみをさらに付与することができるという特性を組成物に与えるために望ましい。
 上記特性のために、より好ましくはx及びyは以下の式(2)
 y≧0.012x-0.3407x+2.3448   ・・・(2)
 を満たし、さらにより好ましくはx及びyは以下の式(3)
 y≧0.0157x-0.5033x+4.2766  ・・・(3)
 を満たす。
 前記とろみ付与用組成物はさらに賦形剤を含みうる。当該賦形剤は、例えばデキストリン、澱粉、及び糖類からなる群から選ばれる1つ又は2以上の組合せであってよい。
 前記デキストリンとして、例えばデキストリン、アミロデキストリン、エリトロデキストリン、アクロデキストリン、マルトデキストリン、及びシクロデキストリンを挙げることができる。
 前記澱粉として、トウモロコシ由来澱粉、モチトウモロコシ由来澱粉、馬鈴薯由来澱粉、甘蔗由来澱粉、小麦由来澱粉、米由来澱粉、餅米由来澱粉、タピオカ由来澱粉、及びサゴヤシ由来澱粉などの生澱粉、及び、当該生澱粉のいずれかに物理的又は化学的処理を施した加工澱粉を挙げることができる。当該加工澱粉として、酸分解澱粉、酸化澱粉、α化澱粉、グラフト化澱粉、例えばカルボキシメチル基又はヒドロキシアルキル基などが導入されたエーテル化澱粉、例えばアセチル基などが導入されたエステル化澱粉、澱粉の2カ所以上の水酸基間に多官能基を結合させた架橋澱粉、例えばオクテニルコハク酸基などの疎水基が導入された乳化性澱粉、及び湿熱処理又は乾熱処理された澱粉を挙げることができる。
 前記糖類として、ショ糖、果糖、ぶどう糖、麦芽糖、澱粉糖化物、還元澱粉水飴、及びトレハロースを挙げることができる。
 前記賦形剤として、これら列挙された材料のうちの1つ又は2以上の組合せが用いられてよい。
 本技術の好ましい実施態様に従い、前記賦形剤はデキストリンである。デキストリンを賦形剤として用いることが、本技術の組成物の液体への分散性及び/又は溶解性の向上に貢献する。本技術において用いられるデキストリンのデキストロース当量(DE)は、好ましくは5~20であり、より好ましくは10~15である。この数値範囲内のDEを有するデキストリンが、本技術の組成物の液体への分散性及び/又は溶解性の向上に貢献する。
 前記賦形剤(特にはデキストリン)の含有割合は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらにより好ましくは62質量%以上、65質量%以上、又は70質量%以上である。
 前記賦形剤(特にはデキストリン)の含有割合は、好ましくは90質量%以下であり、より好ましくは85質量%以下であり、さらにより好ましくは80質量%以下である。
 前記賦形剤の含有割合の数値範囲の上限値及び下限値は、上記で述べた値のうちからそれぞれ選択されてよく、当該含有割合は、例えば50質量%~90質量%、好ましくは60質量%~85質量%でありうる。
 上記数値範囲内の含有割合が、本技術の組成物の液体への分散性及び/又は溶解性の向上に貢献する。
 前記とろみ付与用組成物はさらに乳酸塩を含んでよく、又は、乳酸塩を含まなくてもよい。例えば、乳酸塩は、乳酸カルシウムであってよい。
 乳酸塩の含有割合は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらにより好ましくは1質量%以上であってよい。乳酸塩の含有割合は、好ましくは5質量%以下、より好ましくは4質量%以下、さらにより好ましくは3質量%以下であってよい。
(2)とろみ付与用組成物の特性及び形状
 本技術のとろみ付与用組成物は、50mPa・sの粘度を有する液体にとろみを(特にはダマを生じることなく)さらに付与することができるという特性を有する。この特性を有するかどうかは、以下のとおりにして決定することができる。
(工程1)純水(DIW)150gを用意し、当該純水の温度を20±2℃に調節する。上記特性を有するかが判定されるべき試料を当該純水に添加及び混合して、粘度を50mPa・sに調整する。当該調整に必要な当該試料の質量(以下「量A」という)を記録する。なお、当該試料が本技術のとろみ付与用組成物である場合、当該粘度調整後にダマは発生しない。
(工程2)純水150gを用意し、当該純水の温度を20±2℃に調節する。当該試料を当該純水に添加及び混合して、粘度を400mPa・sに調整する。当該調整に必要な当該試料の質量(以下「量B」という)を記録する。なお、当該試料が本技術のとろみ付与用組成物である場合、当該粘度調整後にダマは発生しない。
(工程3)再度純水150gを用意し、当該純水の温度を20±2℃に調節する。そして、工程1において記録された量Aの当該試料を当該純水に添加及び混合して、粘度が50mPa・sに調整される。当該調整後30分間、粘度調整された当該試料を含有する純水を20±2℃で静置する。当該静置後、(量B-量A)の量の当該試料を5秒かけて攪拌しながら添加する。さらにその後30秒間攪拌を行う。これらの攪拌は、いずれも180mmのスパーテルを用いて攪拌速度3rpsで行われる。
(工程4)工程3における30秒間の攪拌後に、ダマの有無を目視により確認する。ダマの有無は、直径5mm以上の大きさの不溶物が目視で確認できるか否かを基準として判断する。ダマが生じている場合は、50mPa・sの粘度を有する液体にとろみをさらに付与することができないと判定される。ダマが生じていない場合は、50mPa・sの粘度を有する液体にとろみをさらに付与することができると判定される。
 上記特性を有するとろみ付与用組成物は、50mPa・sの粘度を有する液体に限らず、50mPa・s以上の粘度を有する液体にさらにとろみを付与することもできる。
 本技術のとろみ付与用組成物は、より好ましくは、100mPa・s、200mPa・s、又は300mPa・sの粘度を有する液体にとろみを(特にはダマを生じることなく)さらに付与することができるという特性を有する。これらの特性を有するかどうかは、以上で述べた工程1~4(ただし「50mPa・s」がそれぞれ「100mPa・s」、「200mPa・s」、又は「300mPa・s」に読み替えられる)を行うことによって決定することができる。
 本明細書内において、「とろみ」とは、液体が多少の粘度を有する状態を意味してよく、例えば水よりも高い粘度を有する状態をいう。当該粘度は、上記で述べたとおりであってよい。
 また、本明細書内において、「とろみ付与用組成物」とは、液体の粘度を増加させるために用いられる組成物、すなわち増粘するための組成物を意味してよい。「とろみ付与用組成物」は、増粘剤または増粘性組成物ということもできる。
 本技術のとろみ付与用組成物は、好ましくは粉粒体であり、例えば粉末又は顆粒であってよい。当該組成物は、このような形状を有することによって、より早く液体に分散及び/又は溶解することができる。
 前記粉粒体を構成する全粒子のうち、粒子径が125μm~425μmである粒子の割合が60質量%以上であり、より好ましくは70質量%以上、さらにより好ましくは80質量%以上である。
 粒子径が125μm~425μmである粒子の割合は、以下のとおりに測定される。すなわち、40メッシュ(425μm)、60メッシュ(250μm)、80メッシュ(180μm)、100メッシュ(150μm)、120メッシュ(125μm)、200メッシュ(75μm)の篩を重ね合わせ、粉粒体10gを篩過(ATM Sonic Shifter、アンプリチュード3、5分間)し、各篩上の試料及び篩を通過した試料の質量を測定した。測定された質量値に基づき、上記割合が算出される。
(3)とろみ付与用組成物の製造方法
 本技術のとろみ付与用組成物は、当該組成物に含まれる成分を混合及び造粒することにより製造することができる。本技術のとろみ付与用組成物の製造方法は例えば以下の工程を含む。
 キサンタンガム、クエン酸塩、及び賦形剤を混合して粉末状混合物を得る混合工程、及び
 前記粉末状混合物を、バインダーを用いて造粒して組成物を得る造粒工程。
 前記混合工程において用いられるキサンタンガム、クエン酸塩、及び賦形剤は好ましくは粉末状であり、すなわち、前記混合工程において、粉末状のキサンタンガム、粉末状のクエン酸塩、及び粉末状の賦形剤が混合されうる。これら成分の詳細は、上記「(1)とろみ付与用組成物の組成」において述べたとおりであってよい。
 また、これらの成分の、前記混合工程における配合割合は、上記「(1)とろみ付与用組成物の組成」において述べた組成が得られるように設定されてよく、例えば上記「(1)とろみ付与用組成物の組成」において述べた含有割合が、これら成分の前記混合工程における配合割合として採用されてよい。
 例えば、前記キサンタンガムの配合割合は、上記「(1)とろみ付与用組成物の組成」において述べたように、例えば35質量%未満であり、好ましくは33質量%以下であり、より好ましくは30質量%以下であり、例えば28質量%以下、25質量%以下、23質量%以下、又は20質量%以下であってよい。また、前記キサンタンガムの配合割合は、例えば5質量%以上、好ましくは10質量%以上、より好ましくは12質量%以上、さらにより好ましくは15質量%以上であってよい。前記キサンタンガムの配合割合は、本技術のとろみ付与用組成物に含まれる成分のうち、バインダーとして用いられる水以外の成分の合計質量に対する、キサンタンガムの質量の割合である。
 本技術の一つの実施態様に従い、前記キサンタンガムの配合割合/前記クエン酸塩のクエン酸換算配合割合の比は、例えば19以下、18以下、17以下、16以下、又は15以下であってよい。この実施態様において、当該比は、例えば5以上、7以上、又は9以上であってよい。この実施態様において、前記キサンタンガムの配合割合は、好ましくは30質量%以下であり、より好ましくは28質量%以下であり、さらに好ましくは25質量%以下である。
 前記クエン酸塩のクエン酸換算配合割合とは、当該クエン酸塩の配合割合に、(クエン酸の分子量/当該クエン酸塩の分子量)を乗じて得られる値である。当該クエン酸塩の配合割合は、本技術のとろみ付与用組成物の質量に対する前記クエン酸塩の配合質量の割合である。
 本技術の他の実施態様に従い、前記キサンタンガムの配合割合/前記クエン酸塩のクエン酸換算配合割合の比は、例えば19超であってよく、より具体的には20以上、22以上、又は25以上であってよい。この実施態様において、当該比は、例えば50以下、45以下、43以下、40以下、又は35以下であってよい。この実施態様において、前記キサンタンガムの配合割合は、好ましくは25質量%以下であり、より好ましくは23質量%以下であり、さらにより好ましくは22.5質量%以下である。
 本技術の一つの実施態様に従い、前記キサンタンガムの配合割合(質量%)をxとし、且つ、前記クエン酸塩のクエン酸換算配合割合(質量%)をyとした場合に、x及びyが、好ましくは上記式(1)、より好ましくは上記式(2)、さらにより好ましくは上記式(3)を満たす。
 前記賦形剤(特にはデキストリン)の配合割合は、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、さらにより好ましくは62質量%以上、65質量%以上、又は70質量%以上である。
 前記賦形剤(特にはデキストリン)の配合割合は、好ましくは90質量%以下であり、より好ましくは85質量%以下であり、さらにより好ましくは80質量%以下である。
 前記混合工程において、粉末状の乳酸塩も混合されてよい。乳酸塩としては、カルシウム塩が好ましい。乳酸塩の詳細についても、上記「(1)とろみ付与用組成物の組成」において述べた説明が当てはまる。また、乳酸塩の配合割合についても、上記「(1)とろみ付与用組成物の組成」において述べた組成が得られるように設定されてよく、例えば上記「(1)とろみ付与用組成物の組成」において述べた含有割合が、乳酸塩の配合割合として採用されてよい。前記乳酸塩の配合割合は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらにより好ましくは1質量%以上であってよい。乳酸塩の配合割合は、好ましくは5質量%以下、より好ましくは4質量%以下、さらにより好ましくは3質量%以下であってよい。
 前記造粒工程において用いられるバインダーは、例えば水であってよい。
 前記混合工程及び前記造粒工程は、市販入手可能な造粒装置を用いて行われてよく、例えば、流動層造粒装置を用いることができる。当該造粒工程は、好ましくは上記で述べた粉粒体が得られるように行われる。
(4)とろみ付与用組成物の使用方法
 本技術のとろみ付与用組成物は、液体にとろみを付与するために用いられる。当該液体は、好ましくは水を含む液体であり、より好ましくは水を母体として含む液体である。
 当該液体は、好ましくは液状飲食品である。当該液状飲食品は、例えば茶成分を含む液体、蛋白質及び/又は脂肪を含む液体、酸成分を含む液体、塩分を含む液体、又はミネラルを含む液体でありうる。当該液状飲食品のより具体的な例は、以下のとおりである。 
 水;
 乳性飲料、例えば牛乳、加工乳、乳飲料、乳酸菌飲料、及びドリンクヨーグルトなど;
 清涼飲料、例えば果汁又は野菜汁入りの清涼飲料、スポーツ飲料、機能性成分含有飲料、イオン飲料、ビタミン含有飲料など;
 果汁飲料、例えばオレンジジュースなど;
 野菜汁飲料、例えばトマトジュース及びニンジンジュースなど;
 茶飲料、例えば緑茶飲料、紅茶飲料、麦茶飲料、玄米茶飲料、抹茶飲料、及びほうじ茶飲料など;
 コーヒー飲料;
 ココア飲料;
 栄養補給用飲料、例えばビタミン補給用飲料など;
 酒、例えば果実酒(ワインなど)、日本酒、及びウィスキーなど;
 スープ、例えば味噌汁、清汁、コンソメスープ、ポタージュスープ、クリームスープ、及び中華スープなど;
 液状最終食品、例えばシチュー、カレー、及びグラタンなど;
 特殊食品又は治療食、例えば蛋白質・リン・カリウム調整食品、塩分調整食品、油脂調整食品、整腸作用食品、カルシウム・鉄・ビタミン強化食品、低アレルギー食品、濃厚流動食、ミキサー食、及びキザミ食など;及び
 液状調味料、例えば醤油及びソースなど。
 本技術のとろみ付与用組成物は、液状飲食品のこれらの具体例のいずれかにとろみを付与するために用いられてよい。
 すなわち、本技術は、本技術のとろみ付与用組成物を含む飲食品組成物も提供する。当該飲食品組成物は、例えば10mPa・s~2000mPa・sの粘度を有しうる。当該粘度を有する飲食品組成物は、例えば嚥下困難者用であってよいが、嚥下困難者以外のヒトにより摂取されてもよい。
 本技術のとろみ付与用組成物は、例えば液体(特には上記液状飲食品)の粘度を10mPa・s~2000mPa・sにするために用いられてよく、例えば10mPa・s未満の粘度を有する液体(特には上記液状飲食品)の粘度を10mPa・s~2000mPa・sとするために用いられてよい。当該粘度は、10mPa・s~1000mPa・sであってもよく、50mPa・s~500mPa・sであってもよい。
 本技術のとろみ付与用組成物によるとろみ付与後の液体の粘度は、上記のとおり10mPa・s~2000mPa・sであり、10mPa・s~1000mPa・sであり、例えば50mPa・s~500mPa・sであってよい。当該粘度は、当該液体を摂取する対象(ヒト)の口腔機能に応じて適宜設定されてよい。
 本明細書内において、粘度は、E型回転粘度計(MCR302、株式会社アントンパール・ジャパン)を用いて以下の条件下で測定される。
ずり速度:50sec-1
コーン角度:1°
コーン半径:50mm
ギャップ:100μm
 本技術のとろみ付与用組成物によって液体にとろみを付与するために、当該組成物は当該液体(特には上記液状飲食品)に添加及び混合される。液体へのとろみ付与のために、例えば液体150gに対して好ましくは0.1g~15g、より好ましくは0.3g~13g、さらにより好ましくは0.5g~10gの当該組成物が添加及び混合されてよい。
 本技術のとろみ付与用組成物によってとろみ付与される液体の温度は、好ましくは0℃~60℃、より好ましくは3℃~55℃、さらにより好ましくは5℃~50℃であってよい。本技術のとろみ付与用組成物は溶解性及び/分散性に優れているので、このような幅広い温度の液体に添加されても、ダマを生じることなく液体にとろみを付与することができる。本明細書内において、「ダマ」とは、粉末を液体に加えたときに、溶解又は分散することなく集合した粉末の集合物を意味してよく、特には肉眼で確認できる程度の大きさを有する塊をいう。
 本技術のとろみ付与用組成物は、複数の段階に分けて液体に添加及び混合することによって当該液体にとろみを付与するために用いられてよい。従来、複数の段階に分けて液体にとろみを付与することは、例えばダマ発生などの要因によって困難であった。本技術のとろみ付与用組成物は、複数の段階に分けて液体に添加及び混合されても、ダマを生じることなく液体にとろみを付与することができる。本技術のとろみ付与用組成物は、例えば2回~10回に分けて液体に添加及び混合されてよく、例えば2回~8回、2回~6回、又は2回~4回に分けて、液体に添加されてよい。
 当該複数の段階の間隔は、1段階のとろみ付与によって付与されたとろみが安定する程度の間隔であってよい。当該複数の段階の間隔は、例えば10秒以上、15秒以上、又は20秒以上であってよい。当該複数の段階の間隔は、例えば10分以下、5分以下、又は1分以下であってもよい。
 例えば、10mPa・s未満の粘度を有する液体に本技術のとろみ付与用組成物を添加及び混合して、当該液体の粘度を50mPa・s~200mPa・sとし、その後さらに、本技術のとろみ付与用組成物を添加及び混合して、当該液体の粘度が200mPa・s~500mPa・sに調整されうる。このように2段階に分けて当該組成物を添加及び混合しても、ダマが生じにくい。
 以下で実施例を参照して本技術をより詳しく説明するが、本技術はこれら実施例に限定されるものではない。
[試験例1]とろみ付与用組成物の製造及び評価
 本技術に従うとろみ付与用組成物のとろみ付与性能を評価した。以下で当該評価の詳細を説明する。
1.本技術に従うとろみ付与用組成物の製造
 キサンタンガム(三栄源エフ・エフ・アイ社製、以下の試験において同じ)20質量部、乳酸カルシウム五水和物(第一化成社製、以下の試験において同じ)1.6質量部、クエン酸三ナトリウム二水和物2.4質量部、及びデキストリン(東亜化成社製、以下の試験において同じ)76質量部を流動層造粒装置により造粒して粉粒体(以下「実施例1の組成物」という)を得た。実施例1の組成物中の各成分の含有割合は、上記質量部に対応するものであり、以下表1の実施例1の列に示されるとおりである。なお、表1においてX/Cは、キサンタンガムの含有割合/クエン酸三ナトリウム二水和物のクエン酸換算含有割合の比である。
Figure JPOXMLDOC01-appb-T000001
 実施例1の組成物と同様にして、表1の実施例2~5の列に示されるとおりの組成を有する粉粒体(以下それぞれ「実施例2の組成物」~「実施例5の組成物」という)も得た。
2.本技術に従うとろみ付与用組成物の評価
(1)とろみ付与に必要な量の調査
 実施例1の組成物を1回添加及び混合することにより純水150g(20℃)の粘度を50mPa・s、100mPa・s、200mPa・s、及び400mPa・sに調整するために必要な当該組成物の量を調査した。その結果、以下表2に示されるとおりの量が必要であることが分かった。
 表2中の各欄において、上段の数値が添加された組成物の量であり、下段括弧内の数値が実際に測定された粘度である。
 実施例2~5の組成物についても、同様に粘度を調整するために必要な量を調査した。その結果も表2に示されている。なお、実施例3~5については、以下の評価で100mPa・sの粘度への調整は行われなかったので、100mPa・sの粘度への調整に必要な量は調査されなかった。
Figure JPOXMLDOC01-appb-T000002
(2)2段階でとろみ付与した場合のダマ発生の有無の判定
 目標とする粘度を達成するために、実施例1の組成物を2回に分けて添加及び混合した場合のダマの発生の有無を評価した。なお、ダマ発生の有無は、直径5mm以上の大きさの不溶物が目視で確認できるか否かを基準として判断した。具体的には以下の操作を行った。
<1回目のとろみ付与(50mPa・sへの粘度調整)>
 純水150gを用意し、当該純水の温度を20±2℃に調温した。当該純水に、上記表2中の実施例1の列且つ目標粘度値50mPa・sの行の欄に示される量(1.6g)の実施例1の組成物を添加及び混合して、液体の粘度を50mPa・sに調整した。当該粘度調整において、ダマは生じなかった。当該粘度調整後、当該液体を20±2℃で30分間静置した。
<2回目のとろみ付与(50mPa・sから200mPa・sへの粘度調整)>
 前記30分間の静置後、当該液体にさらに実施例1の組成物を添加及び混合した。添加された実施例1の組成物の量は、4.1g(上記表2中の実施例1の列且つ目標粘度値50mPa・sの行の欄に示される量)-1.6g(上記1回目のとろみ付与のために用いた量)=2.5gであった。当該添加は、5秒かけて攪拌しながら行われた。添加後さらに30秒間攪拌が行われた。これらの攪拌は、いずれもスパーテルを用いて攪拌速度3rpsで行われた。
 30秒間の攪拌終了後、液体中のダマの有無を目視により確認した。その結果、ダマは存在しなかった。また、2回目のとろみ付与によって、1回目のとろみ付与後よりも、さらにとろみが付与された。
<他の粘度への調整>
 以上では、2段階とろみ付与によって、純水の粘度を50mPa・sに調整し、そして次に、50mPa・sから200mPa・sへと調整した。他の粘度への調整も可能であるかを確認した。具体的には以下の4つのパターンの粘度調整が行われた。
1段階目      →  2段階目
100mPa・s  →  200mPa・s
 50mPa・s  →  400mPa・s
100mPa・s  →  400mPa・s
200mPa・s  →  400mPa・s
 以下表3に、以上の5パターンの粘度調整におけるダマ発生の有無の判定結果を示す。なお、表3中の「-」については、評価を行っていない。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるとおり、実施例1の組成物について、5パターンのいずれにおいてもダマは発生しなかった。5パターンのいずれにおいても、2回目のとろみ付与によって、1回目のとろみ付与後よりもさらにとろみが付与された。
<実施例2~5の組成物による粘度調整>
 実施例2~5の組成物についても、以上で実施例1の組成物について行われた操作と同じ操作を行って、2回に分けて添加及び混合した場合のダマの発生の有無を評価した。評価結果が上記表3に示されている。
 表3に示されるとおり、実施例2の組成物についても、5パターンのいずれにおいてもダマは発生しなかった。5パターンのいずれにおいても、2回目のとろみ付与によって、1回目のとろみ付与後よりもさらにとろみが付与された。
 また、実施例3~5の組成物について粘度変化幅が最も大きい(2回目添加量が最も多い)50mPa・s→400mPa・sにおいてダマが発生せず、且つ、初期粘度値が最も高い200mPa・sにおいてもダマは発生しなかった。さらに、2回目のとろみ付与によって、1回目のとろみ付与後よりもさらにとろみが付与された。そのため、他の3パターンの粘度調整を行った場合において、2回目のとろみ付与の際にダマが発生せずにとろみを付与することができると考えられる。 
 また、実施例1及び2の組成物の組成と実施例3~5の組成物の組成とを比較すると、後者では乳酸カルシウムが含まれていない。乳酸カルシウムを含まない実施例3~5の組成物についても、実施例1及び2の組成物と同様に、ダマを発生することなく2段階でとろみを付与することができた。そのため、本技術の組成物による効果を奏するために、乳酸カルシウムは含まれていてもよく、又は、含まれていなくてもよいことが分かる。
[試験例2]組成についての検討
 本技術に従うとろみ付与用組成物のとろみ付与性能を評価した。以下で当該評価の詳細を説明する。
1.本技術に従うとろみ付与用組成物及び比較例のとろみ付与用組成物の製造
 実施例1の組成物と同様にして、表4の各実施例及び比較例の列に示されるとおりの組成を有する粉粒体(以下それぞれ「実施例6の組成物」及び「比較例1の組成物」などという)を得た。
Figure JPOXMLDOC01-appb-T000004
2.評価
 上記試験例1の(1)で述べた操作と同じように、まず各組成物を1回添加及び混合することにより純水150g(20℃)の粘度を50mPa・s、200mPa・s、及び400mPa・sに調整するために必要な当該組成物の量を調査した。
 次に、上記試験例1の(2)で述べた操作と同じようにして、目標とする粘度を達成するために、各組成物を2回に分けて添加及び混合した場合のダマの発生の有無を評価した。具体的には以下の粘度へ調整された。
1段階目      →  2段階目
 50mPa・s  →  400mPa・s
200mPa・s  →  400mPa・s
 表4の観察結果欄に示されるとおり、実施例6~10のいずれの組成物においても、2段階目のとろみ付与においてダマは生じなかった。一方で、比較例1~7のいずれの組成物においても、2段階目のとろみ付与においてダマは生じた。ダマは、各液体中に約30個程度確認された。
 表4に示される結果を以下表5に示されるとおりに変換すると、キサンタンガムの各濃度に応じて所定量以上のクエン酸塩を含めることによって、ダマの発生を防ぐことができると考えられる。試験例1における実施例1も、表5中の太い黒線によって分けられた左下側に位置する。他の実施例2~5も同じである。
 なお、クエン酸塩含有割合は、とろみ付与される液体の風味を損なわないようにするために、10質量%以下が望ましい。
Figure JPOXMLDOC01-appb-T000005
 そこで、X軸をキサンタンガム含有割合とし、Y軸をクエン酸塩のクエン酸換算含有割合として、キサンタンガムの各濃度における比較例のクエン酸換算含有割合の最大値を、表計算ソフト(Microsoft Excel)を用いてプロットし、二次の多項式の近似曲線を得た。同様に、キサンタンガムの各濃度におけるクエン酸換算含有割合の比較例の最大値と実施例の最小値との中間の値、及びキサンタンガムの各濃度におけるクエン酸換算含有割合の実施例の最小値についても、二次の多項式の近似曲線を得た。これらプロットに用いた数値を以下表6に示す。また、これらプロットにより得られた近似曲線、各近似曲線の近似式(二次多項式)、及び各近似曲線の決定係数が図1に示されている。図1において、菱形は、キサンタンガムの各濃度における比較例のクエン酸換算含有割合の最大値のプロット結果である。四角は、キサンタンガムの各濃度におけるクエン酸換算含有割合の実施例の最小値についてのプロット結果である。三角は、キサンタンガムの各濃度におけるクエン酸換算含有割合の比較例の最大値と実施例の最小値との中間の値のプロット結果である。
Figure JPOXMLDOC01-appb-T000006
 キサンタンガムの各濃度における比較例のクエン酸換算含有割合値のプロット結果より、前記キサンタンガムの含有割合(質量%)をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合(質量%)をyとした場合に、x及びyが以下の式(1)
 y>0.0084x-0.1782x+0.413   ・・・(1)
 を満たすことによって、ダマを生じることなく高粘度の液体にとろみをさらに付与することができると考えられる。
 また、キサンタンガムの各濃度におけるクエン酸換算含有割合の比較例の値と実施例の最小値との中間の値のプロット結果より、x及びyは以下の式(2)
 y≧0.012x-0.3407x+2.3448   ・・・(2)
 を満たすことがより好ましいと分かる。
 また、キサンタンガムの各濃度におけるクエン酸換算含有割合の実施例の最小値の値のプロット結果より、x及びyは以下の式(3)
 y≧0.0157x-0.5033x+4.2766  ・・・(3)
 を満たすことがさらにより好ましいと分かる。
 また、比較例7の結果より、キサンタンガム含有割合が35質量%である場合、クエン酸塩の添加量の上限である10質量%に近い値であってもダマが発生した。そのため、キサンタンガム含有割合は35質量%未満とすることが必要であり、例えば30質量%以下とすることが好ましいことが分かる。
 また、例えばキサンタンガム含有割合が25質量%以下である場合は、クエン酸塩のクエン酸換算含有割合が1.57質量%以上であればダマは発生しないが、当該クエン酸換算含有割合が1.31質量%以下の場合はダマが発生しうる。そのため、キサンタンガム含有割合が25質量%以下である場合において二段階添加によるダマ発生を防ぐためには、キサンタンガム含有割合/クエン酸塩のクエン酸換算含有割合は好ましくは19以下であり、例えば18以下、17以下、又は16以下であると考えられる。
 また、例えばキサンタンガム含有割合が22.5質量%以下である場合は、クエン酸塩のクエン酸換算含有割合が0.78質量%以上であればダマは発生しないが、当該クエン酸換算含有割合が0.52質量%以下の場合はダマが発生しうる。そのため、キサンタンガム含有割合が22.5質量%以下である場合において二段階添加によるダマ発生を防ぐためには、キサンタンガム含有割合/クエン酸塩のクエン酸換算含有割合は好ましくは43未満であり、例えば40以下、35以下、33以下、又は30以下であると考えられる。

Claims (18)

  1.  キサンタンガムとクエン酸塩とを含み、
     50mPa・sの粘度を有する液体にとろみをさらに付与することができる、
     とろみ付与用組成物。
  2.  前記キサンタンガムの含有割合が35質量%未満である、請求項1に記載のとろみ付与用組成物。
  3.  前記クエン酸塩が、クエン酸のアルカリ金属塩である、請求項1又は2に記載のとろみ付与用組成物。
  4.  前記とろみ付与用組成物が粉粒体である、請求項1~3のいずれか一項に記載のとろみ付与用組成物。
  5.  前記キサンタンガムの含有割合が30質量%以下である、請求項1~4のいずれか一項に記載のとろみ付与用組成物。
  6.  前記クエン酸塩のクエン酸換算含有割合が0.3質量%以上である、請求項1~5のいずれか一項に記載のとろみ付与用組成物。
  7.  前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(1)
     y>0.0084x-0.1782x+0.413   ・・・(1)
     を満たすものである、請求項1~6のいずれか一項に記載のとろみ付与用組成物。
  8.  前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(2)
     y≧0.012x-0.3407x+2.3448   ・・・(2)
     を満たすものである、請求項1~6のいずれか一項に記載のとろみ付与用組成物。
  9.  前記キサンタンガムの含有割合をxとし、且つ、前記クエン酸塩のクエン酸換算含有割合をyとした場合に、x及びyが以下の式(3)
     y≧0.0157x-0.5033x+4.2766  ・・・(3)
     を満たすものである、請求項1~6のいずれか一項に記載のとろみ付与用組成物。 
  10.  前記とろみ付与用組成物がさらに賦形剤を含む、請求項1~9のいずれか一項に記載のとろみ付与用組成物。
  11.  前記賦形剤がデキストリン、澱粉、及び糖類からなる群から選ばれる1つ又は2以上の組合せである、請求項10に記載のとろみ付与用組成物。
  12.  前記賦形剤の含有割合が50質量%~90質量%である、請求項10又は11に記載のとろみ付与用組成物。
  13.  液体の粘度を10mPa・s~2000mPa・sにするために用いられる、請求項1~12のいずれか一項に記載のとろみ付与用組成物。
  14.  水を含有する液体にとろみを付与するために用いられる、請求項1~13のいずれか一項に記載のとろみ付与用組成物。
  15.  複数の段階に分けて液体に添加及び混合することによって当該液体にとろみを付与するために用いられる、請求項1~14のいずれか一項に記載のとろみ付与用組成物。
  16.  請求項1~15のいずれか一項に記載のとろみ付与用組成物を含む、飲食品組成物。
  17.  10mPa・s~2000mPa・sの粘度を有する、請求項16に記載の飲食品組成物。
  18.  キサンタンガム、クエン酸塩、及び賦形剤を混合して粉末状混合物を得る混合工程、及び
     前記粉末状混合物を、バインダーを用いて造粒して組成物を得る造粒工程
     を含む、50mPa・sの粘度を有する液体にとろみをさらに付与することができるとろみ付与用組成物の製造方法。
PCT/JP2020/017601 2019-04-26 2020-04-24 とろみ付与用組成物 WO2020218467A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021516231A JPWO2020218467A1 (ja) 2019-04-26 2020-04-24 とろみ付与用組成物
JP2023007809A JP2023038291A (ja) 2019-04-26 2023-01-23 とろみ付与用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019085308 2019-04-26
JP2019-085308 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218467A1 true WO2020218467A1 (ja) 2020-10-29

Family

ID=72942219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017601 WO2020218467A1 (ja) 2019-04-26 2020-04-24 とろみ付与用組成物

Country Status (2)

Country Link
JP (2) JPWO2020218467A1 (ja)
WO (1) WO2020218467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071471A1 (ja) * 2020-10-02 2022-04-07 森永乳業株式会社 とろみ付与用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271258A (ja) * 2005-03-29 2006-10-12 Morinaga Milk Ind Co Ltd トロミ剤組成物及びゲル状嚥下食
WO2007136083A1 (ja) * 2006-05-24 2007-11-29 Meiji Dairies Corporation 液状食品増粘化剤及びその製造法
JP2009000055A (ja) * 2007-06-22 2009-01-08 Morinaga Milk Ind Co Ltd 液状食品用増粘組成物、及び液状食品用増粘組成物の製造方法
JP2014023478A (ja) * 2012-07-27 2014-02-06 Asahi Kasei Chemicals Corp 錠剤型の増粘化剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271258A (ja) * 2005-03-29 2006-10-12 Morinaga Milk Ind Co Ltd トロミ剤組成物及びゲル状嚥下食
WO2007136083A1 (ja) * 2006-05-24 2007-11-29 Meiji Dairies Corporation 液状食品増粘化剤及びその製造法
JP2009000055A (ja) * 2007-06-22 2009-01-08 Morinaga Milk Ind Co Ltd 液状食品用増粘組成物、及び液状食品用増粘組成物の製造方法
JP2014023478A (ja) * 2012-07-27 2014-02-06 Asahi Kasei Chemicals Corp 錠剤型の増粘化剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKO, MASAKUNI ET AL.: "Rheological Properties of Ca Salt of Xanthan in Aqueous Media", AGRIC. BIOL. CHEM., vol. 51, no. 11, 1987, pages 2919 - 2923, XP055759144 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071471A1 (ja) * 2020-10-02 2022-04-07 森永乳業株式会社 とろみ付与用組成物

Also Published As

Publication number Publication date
JPWO2020218467A1 (ja) 2021-10-14
JP2023038291A (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5734436B2 (ja) 高機能セルロース複合体
JP5341601B2 (ja) 液状食品用ゲル化剤及びゲル状食品の製造方法
JP6853325B2 (ja) セルロース複合体
WO2013122127A1 (ja) セルロース組成物
JP4781208B2 (ja) 粉末の造粒方法及び易分散・易溶解性顆粒組成物
EP1692949A2 (en) Water-soluble dietary fiber-containing composition and method for preparing same
JP4723047B1 (ja) 分散性及び粘度発現性を兼ね備えた増粘化剤
JP2008220362A (ja) 咀嚼・嚥下困難者用ゲル化剤
KR102148898B1 (ko) 잔탄검 조립물 및 증점용 조성물
JP4657893B2 (ja) 液状組成物用増粘化剤
JP2006526419A (ja) 食品に使用する、瞬時に分散可能な予備ゼラチン化されたデンプン
JP6724104B2 (ja) 大麦粉末を含む食品
JP4675852B2 (ja) 液状組成物用増粘化剤
WO2020218467A1 (ja) とろみ付与用組成物
JP4964424B2 (ja) 新規食感を有する未化工α化澱粉
WO2021010257A1 (ja) とろみ付与用組成物
JP2014103923A (ja) ゼリー飲食品及びゼリー飲食品の製造方法
JP6800861B2 (ja) 増粘多糖類含有製剤の製造方法
AU2019409732B2 (en) Agglomerated composition comprising an edible solid particulate component and a potato starch
JP2003135030A (ja) 微細セルロース含有複合体を配合してなる食品組成物
JP3487792B2 (ja) サイリウム粘性低下用造粒多糖類およびこれを含有するサイリウム組成物または粉末飲料
JP2019172789A (ja) 改質キサンタンガムの製造方法及び改質キサンタンガム
JP7317585B2 (ja) 流動状ゲル状食品用ベース
JP7181030B2 (ja) 飲食用粉末組成物及び溶け残り低減方法
WO2022071471A1 (ja) とろみ付与用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794737

Country of ref document: EP

Kind code of ref document: A1