WO2020218089A1 - 金属研磨用コロイダルシリカ - Google Patents

金属研磨用コロイダルシリカ Download PDF

Info

Publication number
WO2020218089A1
WO2020218089A1 PCT/JP2020/016437 JP2020016437W WO2020218089A1 WO 2020218089 A1 WO2020218089 A1 WO 2020218089A1 JP 2020016437 W JP2020016437 W JP 2020016437W WO 2020218089 A1 WO2020218089 A1 WO 2020218089A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polishing
silica
colloidal silica
silica particles
Prior art date
Application number
PCT/JP2020/016437
Other languages
English (en)
French (fr)
Inventor
杉山 大介
智陽 中野
Original Assignee
扶桑化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 扶桑化学工業株式会社 filed Critical 扶桑化学工業株式会社
Priority to KR1020217037482A priority Critical patent/KR20220002384A/ko
Priority to US17/605,304 priority patent/US20220228001A1/en
Priority to CN202080030757.9A priority patent/CN113727945A/zh
Publication of WO2020218089A1 publication Critical patent/WO2020218089A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to colloidal silica for metal polishing.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-41029
  • Patent Document 1 describes an aqueous dispersion for chemical mechanical polishing containing silica particles having predetermined chemical properties and an organic acid having two or more carboxyl groups.
  • Patent Document 1 as the effect of the organic acid, (1) it coordinates with metal ions such as copper, tantalum, and titanium eluted in the aqueous dispersion by polishing to prevent metal precipitation, and (2) copper film. , Barrier metal film, TEOS film, etc.
  • Patent Document 2 describes a chemical mechanical polishing (CMP) polishing composition for a cobalt-containing substrate, which comprises an abrasive such as colloidal silica and at least two types.
  • CMP chemical mechanical polishing
  • Patent Document 2 describes that the combination of two types of chelating agents gives a higher cobalt removal rate than the use of the chelating agent alone.
  • An object of the present invention is to provide colloidal silica for metal polishing capable of achieving a high polishing rate.
  • the present inventors have used colloidal silica containing silica particles in which a functional group containing at least one carboxyl group is fixed to the surface via a covalent bond. , It was found that a high polishing rate can be obtained by polishing a metal, and further studies were carried out based on this finding to complete the present invention.
  • the present invention includes the following aspects.
  • Item 1 Colloidal silica for metal polishing, which contains silica particles in which a functional group containing at least one carboxyl group is fixed to the surface via a covalent bond.
  • Item 2. The silica particles have the following formula (1): [In the formula, R 1 is an organic functional group having at least one carboxyl group, and R 2 and R 3 are the same or different, hydrogen atom, hydrocarbon group, or -OR 4 (R 4 is It is a hydrogen atom, a hydrocarbon group, or a silicon-containing group). ]
  • the colloidal silica according to Item 1 which has a group represented by.
  • colloidal silica according to Item 1 or 2 wherein the silica particles are silica particles surface-modified with a silane coupling agent having a functional group containing at least one carboxyl group or a precursor group thereof or a hydrolyzed condensate thereof. .. Item 4.
  • Item 2. The colloidal silica according to any one of Items 1 to 3, wherein the metal is a transition metal.
  • a high polishing rate can be obtained by polishing a metal with the colloidal silica of the present invention. Further, the colloidal silica of the present invention can achieve a high polishing rate of a metal even if the concentration of silica particles in the polishing composition is low.
  • FIG. 1 is a graph showing the relationship between the pH and zeta potential of colloidal silica of Examples and Comparative Examples.
  • the colloidal silica for metal polishing of the present invention contains silica particles (hereinafter, referred to as "surface-modified silica particles") in which a functional group containing at least one carboxyl group is fixed to the surface via a covalent bond.
  • the functional group is preferably an organic functional group containing at least one carboxyl group, and more preferably a hydrocarbon group having at least one carboxyl group.
  • the number of carboxyl groups contained in the functional group is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 to 2.
  • the position of the carboxyl group may be at the end of the functional group or at a site other than the end, but it is preferable that at least one is present at the end.
  • the surface-modified silica particles are, for example, silica particles in which the hydrogen atom of the surface hydroxyl group (silanol group) is replaced with a functional group containing at least one carboxyl group. That is, the surface-modified silica particles have, for example, a group represented by the formula: -OR (in the formula, R is a functional group containing at least one carboxyl group) on the surface instead of the hydroxyl group. It is a silica particle.
  • the oxygen atom in ⁇ OR is bonded to the silicon atom inside the silica particles.
  • R 1 is an organic functional group having at least one carboxyl group
  • R 2 and R 3 are the same or different, hydrogen atom, hydrocarbon group, or -OR 4 (R 4 is It is a hydrogen atom, a hydrocarbon group, or a silicon-containing group).
  • R 4 is It is a hydrogen atom, a hydrocarbon group, or a silicon-containing group).
  • It is a group represented by.
  • Examples of the organic functional group in R 1 include a hydrocarbon group and a heteroatom-containing hydrocarbon group.
  • hydrocarbon group examples include alkyl, cycloalkyl, aryl, and aralkyl groups.
  • alkyl group examples include C 1- such as methyl, ethyl, propyl (n-propyl, i-propyl), butyl (n-butyl, i-butyl, s-butyl, t-butyl), pentyl, and hexyl groups. Examples include 12 alkyl groups.
  • cycloalkyl group examples include C 5-12 cycloalkyl groups such as cyclopentyl and cyclohexyl groups.
  • aryl group examples include C6-12 aryl groups such as phenyl and naphthyl groups.
  • aralkyl group examples include C 6-12 aryl C 1-4 alkyl groups such as benzyl and phenethyl groups.
  • heteroatom-containing hydrocarbon group a hydrocarbon group containing at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom is preferable, and an example thereof is an oxygen-containing alkyl group (eg,).
  • the number of heteroatoms is preferably 1 to 3, and more preferably 1 or 2.
  • R 1 includes an alkyl group having at least one carboxyl group, an alkoxyalkyl group having at least one carboxyl group, an alkylthioalkyl group having at least one carboxyl group, or an alkyl having at least one carboxyl group.
  • Aminoalkyl groups are preferred, these groups are more preferably having 1 to 4 carboxy groups, even more preferably having 1 to 3 carboxy groups, and most preferably having 1 to 2 carboxy groups. preferable.
  • examples of the hydrocarbon group include the same groups as the hydrocarbon groups exemplified as the organic functional group in R 1 , preferably an alkyl group, and more preferably a C 1-4 alkyl group.
  • the silicon-containing group be a group formed by the reaction of another silanol group or a hydrogen atom present on the surface of the radicals substituted in the functional group containing at least one carboxyl group Often, it may be a group produced by reaction with a silane coupling agent (for example, a silane coupling agent exemplified as a surface modifier described later).
  • the surface-modified silica particles are preferably silica particles surface-modified with a compound having a functional group containing at least one carboxyl group or a precursor group thereof (hereinafter, referred to as "surface modifier").
  • Examples of the precursor group of the carboxyl group include a carboxylic acid ester group (eg, a carboxylic acid alkyl ester group such as a carboxylic acid methyl ester and a carboxylic acid ethyl ester) and a carboxylic acid anhydride group.
  • a carboxylic acid ester group eg, a carboxylic acid alkyl ester group such as a carboxylic acid methyl ester and a carboxylic acid ethyl ester
  • a carboxylic acid anhydride group eg, a carboxylic acid alkyl ester group such as a carboxylic acid methyl ester and a carboxylic acid ethyl ester
  • Examples of the at least one carboxyl group or its precursor group include one carboxyl group, one carboxylic acid ester group, two carboxyl groups, one carboxylic acid anhydride group, and two carboxylic acid esters. The group is mentioned.
  • the surface modifier usually has a reactive group that reacts with a hydroxyl group (silanol group) on the surface of silica particles, and is typically a silane coupling agent or a hydrolyzed condensate thereof.
  • silane coupling agent examples include the following formula (2): (In the formula, Q 1 is a hydrogen atom or a hydrocarbon group, and R 5 and R 6 are the same or different, a hydrogen atom, a hydrocarbon group, or -OR 7 (R 7 is a hydrogen atom or a hydrocarbon). It is a group.) And R 1 is the same as above.) Examples thereof include compounds represented by.
  • the hydrocarbon group represented by Q 1 and R 5 ⁇ R 7, include the same groups as the hydrocarbon groups exemplified as the organic functional groups in R 1.
  • Q 1 and R 5 to R 7 an alkyl group is preferable, and a C 1-4 alkyl group is more preferable.
  • the silane coupling agent preferably has the following formula (3): (In the formula, R 8 is a C 1-6 alkyl group having 1 to 3 carboxyl groups, a C 1-6 alkoxy C 1-6 alkyl group having 1 to 3 carboxyl groups, and 1 to 3 alkyl groups. a C 1-6 alkylthio C 1-6 alkyl group, or a 1-mono- or di-C 1-6 alkylamino C 1-6 alkyl group having 3 carboxyl groups having a carboxyl group, Q 2 - Q 4 is , Same or different, hydrogen atom or C 1-4 alkyl group.) It is a compound represented by.
  • the silane coupling agent is more preferably at least a 3- (trimethoxysilyl) propyl succinic anhydride or a hydrolyzate thereof, a 3- (triethoxysilyl) propyl succinic anhydride or a hydrolyzate thereof, and the like.
  • silane coupling agent or its hydrolyzed condensate may be combined with another silane coupling agent or its hydrolyzed condensate.
  • Other silane coupling agents include, for example, alkylsilanes (eg, methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, octyltrimethoxysilane).
  • Octiltriethoxysilane phenylsilane (eg, phenyltrimethoxysilane, phenyltriethoxysilane), mercaptoalkylsilane (eg, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane) and the like. These may be used alone or in combination of two or more.
  • the amount of carboxyl groups on the surface of the surface-modified silica particles is preferably 0.05 atomic% or more, more preferably 0.07 atomic% or more, from the viewpoint of increasing the polishing rate.
  • the amount of carboxyl groups on the surface of the surface-modified silica particles is preferably 0.5 atomic% or less, more preferably 0.3 atomic% or less, from the viewpoint of dispersion stability in a solvent.
  • the amount of carboxyl groups on the surface of the surface-modified silica particles is determined by centrifuging colloidal silica at 77,000 G at 5 ° C. for 90 minutes, drying the obtained precipitate at 60 ° C. for 12 hours, and then pulverizing the mixture.
  • a sample is prepared by drying at 60 ° C. under reduced pressure for 2 hours, and the sample is measured by X-ray photoelectron spectroscopy under the following conditions.
  • the zeta potential is preferably -60 to -10 mV, more preferably -55 mV to -15 mV, and particularly preferably -50 mV to -20 mV.
  • the difference between the zeta potential having a pH of 3 and the zeta potential having a pH of 6 is preferably 20 mV or more, more preferably 40 mV or more, and particularly preferably 60 mV or more.
  • the zeta potential of colloidal silica can be measured by an apparatus using the measurement principle of the ultrasonic attenuation method.
  • the BET specific surface area of the surface-modified silica particles is, for example, 15 to 550 m 2 / g, preferably 20 to 280 m 2 / g, and more preferably 30 to 180 m 2 / g.
  • the BET specific surface area can be measured using a sample in which colloidal silica is pre-dried on a hot plate and then heat-treated at 800 ° C. for 1 hour.
  • the average primary particle diameter of the surface-modified silica particles is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, from the viewpoint of increasing the polishing rate.
  • the average primary particle size of the surface-modified silica particles is preferably 200 nm or less, more preferably 150 nm or less, still more preferably 100 nm or less, from the viewpoint of suppressing the occurrence of scratches on the metal to be polished.
  • the average primary particle diameter of the surface-modified silica particles is calculated by 2727 / BET specific surface area (m 2 / g), where the true specific gravity of silica is 2.2.
  • the average secondary particle diameter of the surface-modified silica particles is preferably 6 nm or more, more preferably 12 nm or more, still more preferably 18 nm or more, from the viewpoint of increasing the polishing rate. Further, the average secondary particle diameter of the surface-modified silica particles is preferably 400 nm or less, more preferably 350 nm or less, still more preferably 300 nm or less, from the viewpoint of suppressing the occurrence of scratches on the metal to be polished.
  • the average secondary particle size of the surface-modified silica particles is a sample obtained by adding colloidal silica to a 0.05 mass% sodium dodecyl sulfate (SDS) aqueous solution and homogenizing the sample, and dynamically using the sample. Measured by the light scattering method ("ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.).
  • the association ratio of the surface-modified silica particles is preferably 1.2 or more, more preferably 1.4 or more, still more preferably 1.6 or more, from the viewpoint of increasing the polishing rate.
  • the association ratio of the surface-modified silica particles is preferably 5.5 or less, more preferably 5.0 or less, still more preferably 4.0 or less, from the viewpoint of suppressing the occurrence of scratches on the metal to be polished.
  • the association ratio of the surface-modified silica particles is calculated by the average secondary particle diameter / average primary particle diameter.
  • the surface-modified silica particles may be deformed particles. That is, the surface-modified silica particles preferably have a bent structure and / or a branched structure.
  • a "bent structure” is a secondary particle formed by combining three or more primary particles in a row and is not a straight line.
  • the "branched structure” is a secondary particle in which four or more primary particles are bonded and is not in a row (has branches).
  • the surface-modified silica particles preferably have a true specific gravity of 1.50 or more, more preferably 1.65 or more, and even more preferably 1.80 or more.
  • the true specific gravity is preferably 2.30 or less, more preferably 2.20 or less, and even more preferably 2.16 or less.
  • the upper limit of the true specific gravity is within the above range, the occurrence of scratches on the object to be polished is further reduced.
  • the true specific gravity can be measured by a measuring method in which a sample is dried on a hot plate at 150 ° C., held in a furnace at 300 ° C. for 1 hour, and then measured by a liquid phase replacement method using ethanol.
  • Colloidal silica is surface-modified silica particles dispersed in a dispersion medium.
  • Examples of the dispersion medium include water, an organic solvent, and a mixed solvent thereof.
  • Organic solvents are usually hydrophilic organic solvents, such as alcohols (eg methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, 1,4-butanediol), ketones (eg). : Acetone, methyl ethyl ketone), ester (eg ethyl acetate). These organic solvents can be used alone or in combination of two or more.
  • alcohols eg methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, 1,4-butanediol
  • ketones eg. : Acetone, methyl ethyl ketone
  • ester eg ethyl acetate
  • the dispersion medium is preferably water and / or alcohol, and more preferably water and / or methanol.
  • the content of the surface-modified silica particles in colloidal silica is, for example, 0.1 to 30% by mass, preferably 0.3 to 20% by mass.
  • Examples of the method for producing colloidal silica containing surface-modified silica particles include a method using a sol-gel method.
  • the method using the sol-gel method is, for example, (1) A step of preparing a mixture containing an alkoxysilane, an alkali catalyst, water or / and an organic solvent (hereinafter, also referred to as "silica sol"), and (2) the mixture is at least one carboxyl group or a precursor thereof. It is a method including a step of reacting with a compound having a functional group containing a group (surface modifier).
  • alkoxysilane examples include tetra C 1-8 alkoxysilane such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane. These can be used alone or in combination of two or more. Of these, tetra C 1-4 alkoxysilanes are preferred, and tetramethoxysilanes and / or tetraethoxysilanes are even more preferred.
  • the type of alkaline catalyst is not particularly limited.
  • an organic base catalyst containing no metal component is preferable, and an organic base catalyst containing nitrogen is preferable in terms of avoiding mixing of metal impurities.
  • examples of such an organic base catalyst include ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, monoethanolamine, diethanolamine, triethanolamine, tetramethylammonium hydroxide (TMAH), tetramethylguanidine, 3-.
  • TMAH tetramethylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • TMAH tetramethylguanidine
  • examples thereof include ethoxypropylamine, dipropylamine and triethylamine. These can be used alone or in combination of two or more.
  • Ammonia is preferable because it has excellent catalytic action, is highly volatile, and can be easily removed in a subsequent step. From the viewpoint of increasing the true specific gravity of the silica particles, it is preferable to select an organic base catalyst having a boiling point of 90 ° C. or higher so that it does not easily volatilize even when the reaction temperature is increased. Tetramethylammonium hydroxide and 3- At least one selected from ethoxypropylamine is more preferred.
  • organic solvent the same organic solvent as that exemplified in "Coroidal silica” can be used.
  • organic solvent alcohol is preferable, and methanol is more preferable.
  • the method for preparing the silica sol may be, for example, a method in which each component is mixed sequentially or simultaneously, and a mixture of two or three kinds of an alkoxysilane, an alkali catalyst, water or / and an organic solvent is used as a residual component. It may be a method of mixing, or a method of mixing two or three kinds of mixtures with each other.
  • the method for preparing the silica sol is typically a method of mixing a first mixture containing an alkoxysilane and optionally an organic solvent with a second mixture containing an alkaline catalyst, water and optionally an organic solvent.
  • the content of alkoxysilane is, for example, 70 to 100% by mass, preferably 75 to 100% by mass, when the first mixture is 100% by mass.
  • the content of the alkaline catalyst is, for example, 0.001 to 3.0% by mass, preferably 0.002 to 1.5% by mass, when the second mixture is 100% by mass.
  • the mixing ratio (mass ratio) of the first mixture and the second mixture is, for example, 5:95 to 50:50, preferably 10:90 to 45:55.
  • the mixing temperature of the first mixture and the second mixture is not particularly limited, but is, for example, 0 to 100 ° C, preferably 0 to 90 ° C.
  • the content of silica particles in the silica sol is not particularly limited, but is, for example, 5 to 35% by mass, preferably 10 to 30% by mass. In order to adjust the content of silica particles to the above range, the silica sol may be concentrated if necessary.
  • JP-A-2005-60217 and JP-A-2010-269985 can be referred to.
  • the step (2) may be, for example, any of the following steps (2A) or (2B).
  • step (2A) and step (2B) the conversion of the precursor group of the carboxyl group to the carboxyl group can be carried out by a conventional method, for example, the conversion of a carboxylic acid ester group or a carboxylic acid anhydride group to a carboxyl group. Can be carried out by hydrolysis. Of these, step (2B) is preferable.
  • the amount of the surface modifier used is, for example, 5 to 750 ⁇ mol, preferably 10 to 500 ⁇ mol with respect to 1 g of the silica particles before the surface modification.
  • the mixing temperature of the silica sol and the surface modifier is, for example, 0 to 150 ° C., preferably 0 to 120 ° C., and more preferably 10 to 90 ° C.
  • the colloidal silica can be suitably used for polishing metals.
  • the polishing can be, for example, chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • As the polishing conditions known or commonly used conditions can be adopted.
  • the composition for metal polishing is not particularly limited as long as it contains the colloidal silica, but may further contain additives.
  • the additive include a diluent, an oxidizing agent, a pH adjuster, an anticorrosive agent, a stabilizer, a surfactant and the like. These can be used alone or in combination of two or more.
  • the content of the surface-modified silica particles (or abrasive grains) in the metal polishing composition is, for example, 0.1 to 30% by mass, preferably 0.3 to 20% by mass, and more preferably 0.5 to 10% by mass. %. In the present invention, a high polishing rate can be realized even if the content of the surface-modified silica particles is small.
  • the metal to be polished is not particularly limited, and examples thereof include transition metals.
  • Preferred examples of the transition metal include cobalt, ruthenium, copper, tungsten, tantalum, and titanium. Of these, at least one selected from cobalt, ruthenium, and copper is more preferred.
  • the object to be polished is usually a metal film.
  • the polishing rate of the metal film can be increased. Further, the ratio of the polishing rate of the metal film to the polishing rate of the silicon oxide film can be increased, and the metal film can be selectively polished.
  • the metal is used for various purposes, and may be, for example, a metal film for semiconductors (eg, a metal film for electrode wiring, a barrier metal film) or the like.
  • Example 1 A mixed solution of tetramethoxysilane 1522.2 g and methanol 413.0 g was added dropwise to a mixed solution of pure water 2212.7 g, 26 mass% ammonia water 567.3 g, and methanol 12391 g over 25 minutes while keeping the liquid temperature at 20 ° C. Then, a silica sol methanol dispersion 1 was obtained. The obtained silica sol methanol dispersion 1 was charged under normal pressure, and the silica sol methanol dispersion 1 was added dropwise while keeping the volume constant to obtain a silica sol methanol dispersion 2 concentrated to a silica concentration of 20% by mass.
  • silica sol-methanol dispersion 2 800 g was taken in a 1 L flask, and 21.6 g of a hydrolyzate of (3-trimethoxysilylpropyl) succinic anhydride diluted with pure water to 10% by mass of the active ingredient was added.
  • a hydrolyzate of (3-trimethoxysilylpropyl) succinic anhydride diluted with pure water to 10% by mass of the active ingredient was added.
  • 1300 mL of pure water was added dropwise while keeping the volume constant.
  • the mixture was heated under reflux at 100 ° C. to react with the hydrolyzate of (3-trimethoxysilylpropyl) succinic anhydride.
  • Colloidal silica S1 having a silica particle concentration of 19.5% by mass was obtained by performing heating reflux until the total time of solvent substitution and heating reflux was 24 hours.
  • Example 2 To a mixed solution of 7500 g of pure water and 1.93 g of 3-ethoxypropylamine, 2740 g of tetramethoxysilane was added dropwise over 60 minutes while maintaining the solution temperature at 85 ° C. 15 minutes after the completion of the dropping, 50.14 g of 3-ethoxypropylamine was added to obtain a silica sol-methanol dispersion liquid 3. To a mixed solution of 5537 g of pure water and 2452 g of the silica sol methanol dispersion solution 3, 1762.7 g of tetramethoxysilane was added dropwise over 360 minutes while maintaining the solution temperature at 80 ° C. to obtain a silica sol methanol dispersion solution 4.
  • silica sol methanol dispersion 4 was charged under normal pressure, and the silica sol methanol dispersion 4 was added dropwise while keeping the volume constant to obtain a silica sol methanol dispersion 5 concentrated to a silica concentration of 20% by mass.
  • 900 g of silica sol methanol dispersion 5 was taken in a 1 L flask, and 1.550 g of 3-ethoxypropylamine was mixed. The pH of the mixed solution at this time was 9.5.
  • the BET specific surface area, primary particle diameter, secondary particle diameter, association ratio, true specific gravity, and surface modification amount of the obtained colloidal silicas of Examples and Comparative Examples were evaluated as follows.
  • ⁇ BET specific surface area> Colloidal silica was pre-dried on a hot plate and then heat-treated at 800 ° C. for 1 hour to prepare a sample for measurement. The BET specific surface area was measured using the prepared measurement sample.
  • ⁇ Primary particle size> The value calculated by 2727 / specific surface area (m 2 / g) was taken as the primary particle diameter (nm) of colloidal silica.
  • ⁇ Secondary particle size> As a sample for measurement of the dynamic light scattering method, colloidal silica was added to a 0.05 mass% sodium dodecyl sulfate (SDS) aqueous solution to prepare a homogenized sample. The secondary particle size was measured by the dynamic light scattering method (“ELSZ-2000S” manufactured by Otsuka Electronics Co., Ltd.) using the measurement sample.
  • SDS sodium dodecyl sulfate
  • the true specific gravity was measured by a measuring method in which the sample was dried on a hot plate at 150 ° C., held in a furnace at 300 ° C. for 1 hour, and then measured by a liquid phase replacement method using ethanol.
  • ⁇ Surface modification amount> The colloidal silica solution was centrifuged at 77,000 G, 5 ° C. for 90 minutes. The obtained precipitate was dried at 60 ° C. for 12 hours, then silica was pulverized and dried at 60 ° C. under reduced pressure for 2 hours to prepare a sample for measurement. Using the measurement sample, the amount of carboxyl groups on the surface was measured by X-ray photoelectron spectroscopy under the following conditions.
  • Table 1 shows the evaluation results of the physical properties of colloidal silica of Examples and Comparative Examples.
  • the zeta potentials of the colloidal silicas of Examples and Comparative Examples were evaluated as follows. ⁇ Zeta potential> The zeta potential of colloidal silica was measured using a measuring device using an ultrasonic attenuation method. The zeta potential measurement results of colloidal silica of Examples and Comparative Examples are shown in FIG.
  • Example 3 From the results of the polishing test 1, when the colloidal silica S1 obtained in Example 1 was used (Example 3), the polishing rate with respect to cobalt (Co) was 2000 ⁇ / min or more, whereas the unmodified colloidal silica S3 And when the sulfonic acid-modified colloidal silica S4 was used (Comparative Examples 4 and 5), the polishing rate was less than 1000 ⁇ . Further, the selection ratio calculated from the polishing rate ratio of cobalt (Co) and silicon oxide film (TEOS) is 9.0 or more when S1 of Example is used, whereas S3 and S4 of Comparative Example are used. When was used, it was less than 8.0.
  • the polishing rate for cobalt (Co) was 1600 ⁇ / min or more, whereas S5 in which maleic acid having a carboxyl group was added to unmodified colloidal silica was used. If so, the polishing rate was less than 1200 ⁇ . Further, the selection ratio calculated from the polishing rate ratio of cobalt (Co) and silicon oxide film (TEOS) was 8.0 or more when S1 was used, whereas S3 and S4 of Comparative Examples were used. The case was less than 3.0.
  • Polishing pad Nitta Haas IC1000 TM Pad Slurry supply rate: 50 mL / min Head rotation speed: 32 rpm Platen rotation speed: 32 rpm Polishing pressure: Ru film ... 6 psi Polishing time: Ru film ... 1 min Film thickness measuring machine: Ru film ... Electrical resistance type film thickness measuring machine
  • the polishing rate was 380 ⁇ / min or more even for ruthenium (Ru), and S5 in which maleic acid having a carboxyl group was added to the unmodified colloidal silica.
  • the polishing speed was 1.2 times or more as compared with the case of using.
  • Polishing test conditions Polishing machine: Nanofactor Co., Ltd. NF-300CMP Polishing pad: Nitta Haas IC1000 TM Pad Slurry supply rate: 50 mL / min Head rotation speed: 32 rpm Platen rotation speed: 32 rpm Polishing pressure: Cu film ... 1.5 psi Polishing time: Cu film ... 1 min
  • the polishing rate was 1900 ⁇ / min or more even for copper (Cu), and S5 in which maleic acid having a carboxyl group was added to the unmodified colloidal silica.
  • the polishing speed was 13 times or more as compared with the case of using. Further, from the result of ⁇ polishing test 2>, it can be estimated that the selection ratio of copper (Cu) and silicon oxide film (TEOS) is 9.5 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)

Abstract

高研磨レートを達成することができる金属研磨用コロイダルシリカの提供を課題とする。 前記課題は、少なくとも1個のカルボキシル基を含む官能基が共有結合を介して表面に固定されたシリカ粒子を含有する金属研磨用コロイダルシリカにより解決することができる。

Description

金属研磨用コロイダルシリカ
 本発明は、金属研磨用コロイダルシリカに関する。
 コロイダルシリカは、シリカ粒子を水等の媒体に分散させたものであり、半導体ウエハ等の研磨剤として使用されている。
 例えば、特開2010-41029号公報(特許文献1)には、所定の化学的性質を有するシリカ粒子と、2個以上のカルボキシル基を有する有機酸とを含有する化学機械研磨用水系分散体が記載されている。特許文献1には、有機酸の効果として、(1)研磨により水系分散体中に溶出される銅、タンタル、チタン等の金属イオンへ配位し、金属の析出を防ぐ、(2)銅膜、バリアメタル膜、TEOS膜等の研磨対象に対する研磨速度を高める、(3)研磨中に粉砕されてシリカ粒子から溶出されたナトリウムイオン又はカリウムイオンに配位し、ナトリウムイオン又はカリウムイオンが研磨対象面に吸着するのを阻害する、(4)シリカ粒子の表面へ吸着して、シリカ粒子の分散安定性を高める、ことが記載されている。
 また、特開2016-30831号公報(特許文献2)には、コバルト含有基板のための化学的機械的研磨(CMP)研磨組成物であって、コロイダルシリカ等の研磨剤と、少なくとも2種の特定のキレート化剤とを所定量ずつ含有し、残部が実質的に脱イオン水であり、pHが2.0~12である研磨組成物が記載されている。特許文献2には、キレート化剤を2種類組み合わせることにより、キレート化剤を単独で用いるよりも、高いコバルト除去速度を与えることが記載されている。
特開2010-41029号公報 特開2016-30831号公報
 金属の研磨において、研磨レートを、特許文献1及び2の研磨組成物で達成される研磨レートよりも更に向上させることが求められる。
 本発明は、高研磨レートを達成することができる金属研磨用コロイダルシリカを提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、少なくとも1個のカルボキシル基を含む官能基が共有結合を介して表面に固定されたシリカ粒子を含有するコロイダルシリカを用いて、金属を研磨することにより、高研磨レートが得られることを見出し、この知見に基づいて更に検討を重ね、本発明を完成した。
 すなわち、本発明は、次の態様を含む。
項1.
 少なくとも1個のカルボキシル基を含む官能基が共有結合を介して表面に固定されたシリカ粒子を含有する、金属研磨用コロイダルシリカ。
項2.
 前記シリカ粒子が、下記式(1):
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、少なくとも1個のカルボキシル基を有する有機官能基であり、R及びRは、同一又は異なって、水素原子、炭化水素基、又は-OR(Rは、水素原子、炭化水素基、又はケイ素含有基である。)である。]
で表される基を表面に有する、項1に記載のコロイダルシリカ。
項3.
 前記シリカ粒子が、少なくとも1個のカルボキシル基又はその前駆基を含む官能基を有するシランカップリング剤又はその加水分解縮合物で表面修飾されたシリカ粒子である、項1又は2に記載のコロイダルシリカ。
項4.
 前記金属が、遷移金属である、項1~3のいずれか一項に記載のコロイダルシリカ。項5.
 前記遷移金属が、コバルト、ルテニウム、銅、タングステン、タンタル、及びチタンから選択される少なくとも一種である、項4に記載のコロイダルシリカ。
 本発明のコロイダルシリカを用いて金属を研磨することにより、高研磨レートが得られる。また、本発明のコロイダルシリカは、研磨組成物中のシリカ粒子の濃度が低くても金属の高研磨レートを達成することができる。
図1は、実施例及び比較例のコロイダルシリカのpHとゼータ電位との関係を示すグラフである。
 本発明の金属研磨用コロイダルシリカは、少なくとも1個のカルボキシル基を含む官能基が共有結合を介して表面に固定されたシリカ粒子(以下、「表面修飾シリカ粒子」という。)を含む。前記官能基は、少なくとも1個のカルボキシル基を含む有機官能基が好ましく、少なくとも1個のカルボキシル基を有する炭化水素基がより好ましい。前記官能基に含まれるカルボキシル基の数は、好ましくは1~4個であり、より好ましくは1~3個、更に好ましくは1~2個である。カルボキシル基の位置は、官能基の末端であっても末端以外の部位であってもよいが、少なくとも1個は末端に存在することが好ましい。
 表面修飾シリカ粒子は、例えば、表面のヒドロキシル基(シラノール基)の水素原子が、少なくとも1個のカルボキシル基を含む官能基で置換されたシリカ粒子である。
 すなわち、表面修飾シリカ粒子は、例えば、ヒドロキシル基の代わりに、式:-OR(式中、Rは、少なくとも1個のカルボキシル基を含む官能基である。)で表される基を表面に有するシリカ粒子である。なお、-ORにおける酸素原子は、シリカ粒子の内部のケイ素原子と結合する。
 -ORは、特に限定されるものではないが、典型的には、下記式(1):
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、少なくとも1個のカルボキシル基を有する有機官能基であり、R及びRは、同一又は異なって、水素原子、炭化水素基、又は-OR(Rは、水素原子、炭化水素基、又はケイ素含有基である。)である。]
で表される基である。
 Rにおける有機官能基としては、例えば、炭化水素基、ヘテロ原子含有炭化水素基などが挙げられる。
 炭化水素基としては、例えば、アルキル、シクロアルキル、アリール、アラルキル基などが挙げられる。
 アルキル基としては、例えば、メチル、エチル、プロピル(n-プロピル、i-プロピル)、ブチル(n-ブチル、i-ブチル、s-ブチル、t-ブチル)、ペンチル、ヘキシル基などのC1-12アルキル基が挙げられる。
 シクロアルキル基としては、例えば、シクロペンチル、シクロヘキシル基などのC5-12シクロアルキル基が挙げられる。
 アリール基としては、例えば、フェニル、ナフチル基などのC6-12アリール基が挙げられる。
 アラルキル基としては、例えば、ベンジル、フェネチル基などのC6-12アリールC1-4アルキル基が挙げられる。
 ヘテロ原子含有炭化水素基としては、酸素原子、硫黄原子、及び窒素原子からなる群から選択される少なくとも一つのヘテロ原子を含有する炭化水素基が好ましく、その例としては、含酸素アルキル基(例:アルコキシ基、アルコキシアルキル基)、含硫黄アルキル基(例:アルキルチオアルキル基)、含窒素アルキル基(例:モノアルキルアミノアルキル基、ジアルキルアミノアルキル基)、含酸素複素環基(例:フラン、ベンゾフランなどの含酸素芳香族複素環基)、含硫黄複素環基(例:チオフェン、ベンゾチオフェンなどの含酸素芳香族複素環基)、含窒素複素環基(例:ピロール、ピリジン、インドール、キノリンなどの含窒素芳香族複素環基)が挙げられる。なお、ヘテロ原子含有炭化水素基において、ヘテロ原子の数は、好ましくは1~3個であり、さらに好ましくは1又は2個である。
 Rとしては、少なくとも1個のカルボキシル基を有するアルキル基、少なくとも1個のカルボキシル基を有するアルコキシアルキル基、少なくとも1個のカルボキシル基を有するアルキルチオアルキル基、又は少なくとも1個のカルボキシル基を有するアルキルアミノアルキル基が好ましく、これらの基は1~4個のカルボキシ基を有することがより好ましく、1~3個のカルボキシ基を有することが更に好ましく、1~2個のカルボキシ基を有することが最も好ましい。
 R~Rのうち、炭化水素基としては、Rにおける有機官能基として例示した炭化水素基と同様の基が挙げられ、好ましくはアルキル基であり、より好ましくはC1-4アルキル基である。
 Rのうち、ケイ素含有基としては、表面に存在する別のシラノール基又はその水素原子が少なくとも1個のカルボキシル基を含む官能基に置換された基との反応により生成する基であってもよく、シランカップリング剤(例えば、後記の表面修飾化剤として例示されるシランカップリング剤)との反応により生成する基であってもよい。
 表面修飾シリカ粒子は、少なくとも1個のカルボキシル基又はその前駆基を含む官能基を有する化合物(以下、「表面修飾化剤」という。)で表面修飾されたシリカ粒子であることが好ましい。
 カルボキシル基の前駆基としては、例えば、カルボン酸エステル基(例:カルボン酸メチルエステル、カルボン酸エチルエステルなどのカルボン酸アルキルエステル基)、カルボン酸無水物基が挙げられる。
 少なくとも1個のカルボキシル基又はその前駆基としては、例えば、1個のカルボキシル基、1個のカルボン酸エステル基、2個のカルボキシル基、1個のカルボン酸無水物基、2個のカルボン酸エステル基が挙げられる。
 表面修飾化剤は、通常、シリカ粒子の表面のヒドロキシル基(シラノール基)と反応する反応性基を有しており、典型的には、シランカップリング剤又はその加水分解縮合物である。
 前記シランカップリング剤としては、例えば、下記式(2):
Figure JPOXMLDOC01-appb-C000004
(式中、Qは、水素原子又は炭化水素基であり、R及びRは、同一又は異なって、水素原子、炭化水素基、又は-OR(Rは、水素原子又は炭化水素基である。)であり、Rは、前記と同じである。)
で表される化合物が挙げられる。
 Q及びR~Rで示される炭化水素基としては、Rにおける有機官能基として例示した炭化水素基と同様の基が挙げられる。Q及びR~Rとしては、アルキル基が好ましく、C1-4アルキル基がさらに好ましい。
 前記シランカップリング剤は、好ましくは、下記式(3):
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、1~3個のカルボキシル基を有するC1-6アルキル基、1~3個のカルボキシル基を有するC1-6アルコキシC1-6アルキル基、1~3個のカルボキシル基を有するC1-6アルキルチオC1-6アルキル基、又は1~3個のカルボキシル基を有するモノ又はジC1-6アルキルアミノC1-6アルキル基であり、Q~Qは、同一又は異なって、水素原子又はC1-4アルキル基である。)
で表される化合物である。
 前記シランカップリング剤は、さらに好ましくは、3-(トリメトキシシリル)プロピルコハク酸無水物又はその加水分解物、3-(トリエトキシシリル)プロピルコハク酸無水物又はその加水分解物などの、少なくとも1個のカルボキシル基又はその前駆基を有する(トリC1-4アルコキシシリル)C1-6アルカン又はその加水分解物;特開2000-336093号公報、特開2013-116872号公報、国際公開第2018/210711号などに記載のシランカップリング剤である。
 前記シランカップリング剤又はその加水分解縮合物は、他のシランカップリング剤又はその加水分解縮合物と組み合わせてもよい。他のシランカップリング剤としては、例えば、アルキルシラン(例:メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン)、フェニルシラン(例:フェニルトリメトキシシラン、フェニルトリエトキシシラン)、メルカプトアルキルシラン(例:3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン)などが挙げられる。これらは、単独で又は二種以上組み合わせてもよい。
 表面修飾シリカ粒子の表面のカルボキシル基量は、研磨レートをより高くする観点から、0.05atomic%以上が好ましく、0.07atomic%以上がより好ましい。また、表面修飾シリカ粒子の表面のカルボキシル基量は、溶媒中での分散安定性の観点から、0.5atomic%以下が好ましく、0.3atomic%以下がより好ましい。
 本明細書において、表面修飾シリカ粒子の表面のカルボキシル基量は、コロイダルシリカを77,000G、5℃、90分遠心分離し、得られた沈殿物を60℃で12時間乾燥させた後、粉砕し60℃、減圧下で2時間乾燥させたものをサンプルとし、当該サンプルを用いて、以下の条件のX線光電子分光法により測定される。
測定機器:Thermo Fisher Scientific社製 K-Alpa+照射X線:単結晶分光Al Kα
X線スポット径:400μm
なお、C-C、C-Hの結合エネルギーを284.6eVとして基準化した値を用い、結合エネルギー289.4~289.8eVの状態比率を粒子表面のカルボキシル基量として算出した。状態比率は、装置付属の相対感度係数(RSF)を用いて算出した。
 コロイダルシリカのゼータ電位は、例えば、pHが4のとき、-60~-10mVが好ましく、-55mV~-15mVがより好ましく、-50mV~-20mVが特に好ましい。
 また、コロイダルシリカにおいて、pHが3のゼータ電位とpH6のゼータ電位の差は、20mV以上が好ましく、40mV以上がより好ましく、60mV以上であることが特に好ましい。
 本明細書において、コロイダルシリカのゼータ電位は、超音波減衰法の測定原理を使用した装置により測定できる。
 表面修飾シリカ粒子のBET比表面積は、例えば、15~550m/g、好ましくは20~280m/g、さらに好ましくは30~180m/gである。
 本明細書において、BET比表面積は、コロイダルシリカをホットプレートの上で予備乾燥後、800℃で1時間熱処理したサンプルを用いて測定することができる。
 表面修飾シリカ粒子の平均一次粒子径は、研磨レートをより高くする観点から、5nm以上が好ましく、10nm以上がより好ましく、15nm以上がさらに好ましい。また、表面修飾シリカ粒子の平均一次粒子径は、研磨対象である金属の傷の発生を抑制する観点から、200nm以下が好ましく、150nm以下がより好ましく、100nm以下がさらに好ましい。
 本明細書において、表面修飾シリカ粒子の平均一次粒子径は、シリカの真比重を2.2として、2727/BET比表面積(m/g)により算出される。
 表面修飾シリカ粒子の平均二次粒子径は、研磨レートをより高くする観点から、6nm以上が好ましく、12nm以上がより好ましく、18nm以上がさらに好ましい。また、表面修飾シリカ粒子の平均二次粒子径は、研磨対象である金属の傷の発生を抑制する観点から、400nm以下が好ましく、350nm以下がより好ましく、300nm以下がさらに好ましい。
 本明細書において、表面修飾シリカ粒子の平均二次粒子径は、コロイダルシリカを0.05質量%ドデシル硫酸ナトリウム(SDS)水溶液に加えて均一化したものをサンプルとし、当該サンプルを用いて動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により測定される。
 表面修飾シリカ粒子の会合比は、研磨レートをより高くする観点から、1.2以上が好ましく、1.4以上がより好ましく、1.6以上が更に好ましい。また、表面修飾シリカ粒子の会合比は、研磨対象である金属の傷の発生を抑制する観点から、5.5以下が好ましく、5.0以下がより好ましく、4.0以下が更に好ましい。
 本明細書において、表面修飾シリカ粒子の会合比は、平均二次粒子径/平均一次粒子径により算出される。
 表面修飾シリカ粒子は、異形化粒子であってもよい。すなわち、表面修飾シリカ粒子は、屈曲構造及び/又は分岐構造を有することが好ましい。「屈曲構造」とは、3つ以上の一次粒子が一列に結合してできた二次粒子で直線ではないものである。「分岐構造」とは、4つ以上の一次粒子が結合した二次粒子であって一列ではない(枝を有する)ものである。
 表面修飾シリカ粒子は、真比重が1.50以上が好ましく、1.65以上がより好ましく、1.80以上が更に好ましい。真比重の下限が前記範囲であると、本発明のコロイダルシリカの研磨性がより一層向上する。また、上記真比重は、2.30以下が好ましく、2.20以下がより好ましく、2.16以下が更に好ましい。真比重の上限が上記範囲であると、被研磨物の傷の発生がより一層低減される。
 真比重は、試料を150℃のホットプレート上で乾固後、300℃炉内で1時間保持した後、エタノールを用いた液相置換法で測定する測定方法により測定することができる。
 コロイダルシリカは、表面修飾シリカ粒子が分散媒に分散されたものである。
 分散媒としては、例えば、水、有機溶媒、これらの混合溶媒が挙げられる。
 有機溶媒は、通常、親水性の有機溶媒であり、その例としては、アルコール(例:メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール)、ケトン(例:アセトン、メチルエチルケトン)、エステル(例:酢酸エチル)が挙げられる。これらの有機溶媒は単独で又は二種以上組み合わせて使用することができる。
 分散媒は、好ましくは水及び/又はアルコールであり、さらに好ましくは水及び/又はメタノールである。
 コロイダルシリカ中の表面修飾シリカ粒子の含有量は、例えば、0.1~30質量%、好ましくは0.3~20質量%である。
 表面修飾シリカ粒子を含むコロイダルシリカの製造方法としては、ゾルゲル法を利用した方法が挙げられる。ゾルゲル法を利用した方法は、例えば、
(1)アルコキシシラン、アルカリ触媒、水又は/及び有機溶媒を含む混合物(以下、「シリカゾル」ともいう。)を調製する工程、及び
(2)前記混合物を、少なくとも1個のカルボキシル基又はその前駆基を含む官能基を有する化合物(表面修飾化剤)と反応させる工程
を含む、方法である。
<工程(1)>
 アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランなどのテトラC1-8アルコキシシランが挙げられる。これらは単独で又は二種以上組み合わせて使用することができる。これらのうち、テトラC1-4アルコキシシランが好ましく、テトラメトキシシラン及び/又はテトラエトキシシランがさらに好ましい。
 アルカリ触媒の種類は、特に限定されない。アルカリ触媒としては、金属不純物の混入を回避する点で、金属成分を含まない有機塩基触媒が好ましく、中でも窒素を含有する有機塩基触媒が好ましい。このような有機系塩基触媒としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラメチルグアニジン、3-エトキシプロピルアミン、ジプロピルアミン、トリエチルアミンなどが挙げられる。これらは単独で又は二種以上組み合わせて使用することができる。触媒作用に優れるとともに、揮発性が高く後工程で容易に除去することができる点からは、アンモニアが好ましい。シリカ粒子の真比重を高くする観点からは、反応温度を高くしても揮発しにくいように、沸点が90℃以上の有機系塩基触媒を選択することが好ましく、テトラメチルアンモニウムヒドロキシド及び3-エトキシプロピルアミンから選択される少なくとも一種がより好ましい。
 有機溶媒としては、「コロイダルシリカ」で例示した有機溶媒と同様のものを使用することができる。有機溶媒としては、アルコールが好ましく、メタノールがさらに好ましい。
 シリカゾルの調製方法は、例えば、各成分を逐次又は同時に混合する方法であってもよく、アルコキシシラン、アルカリ触媒、水又は/及び有機溶媒のうち、2種又は3種の混合物を残余の成分と混合する方法であってもよく、2種又は3種の混合物同士を混合する方法であってもよい。
 シリカゾルの調製方法は、典型的には、アルコキシシラン及び必要により有機溶媒を含む第1の混合物を、アルカリ触媒、水、及び必要により有機溶媒を含む第2の混合物と混合する方法である。
 アルコキシシランの含有量は、第1の混合物を100質量%とするとき、例えば、70~100質量%、好ましくは75~100質量%である。
 アルカリ触媒の含有量は、第2の混合物を100質量%とするとき、例えば、0.001~3.0質量%、好ましくは0.002~1.5質量%である。
 第1の混合物と第2の混合物の混合比(質量比)は、例えば、5:95~50:50、好ましくは10:90~45:55である。
 第1の混合物と第2の混合物の混合温度は、特に制限されないが、例えば、0~100℃、好ましくは0~90℃である。
 シリカゾル中のシリカ粒子の含有量は、特に制限されないが、例えば、5~35質量%、好ましくは10~30質量%である。シリカ粒子の含有量を上記範囲に調整するため、シリカゾルは必要により濃縮してもよい。
 なお、シリカゾルの製造方法は、例えば、特開2005-60217号公報、特開2010-269985号公報などを参照することができる。
<工程(2)>
 工程(2)は、例えば、以下の工程(2A)又は(2B)のいずれであってもよい。
 工程(2A):シリカゾルを、少なくとも1個のカルボキシル基の前駆基を有する表面修飾化剤と反応させ、該反応生成物においてカルボキシル基の前駆基をカルボキシル基に変換する工程
 工程(2B):シリカゾルを、少なくとも1個のカルボキシル基を有する表面修飾化剤(カルボキシル基の前駆基がカルボキシル基に変換された表面修飾化剤を含む)と反応させる工程。
 工程(2A)及び工程(2B)において、カルボキシル基の前駆基からカルボキシル基への変換は、常法により行うことができ、例えば、カルボン酸エステル基又はカルボン酸無水物基からカルボキシル基への変換は、加水分解により行うことができる。
 これらのうち、工程(2B)が好ましい。
 表面修飾化剤としては、「表面修飾シリカ粒子」で例示したものと同様のものを使用することができる。
 表面修飾化剤の使用量は、表面修飾前のシリカ粒子1gに対して、例えば、5~750μmol、好ましくは10~500μmolである。
 シリカゾルと表面修飾化剤との混合温度は、例えば、0~150℃、好ましくは0~120℃、さらに好ましくは10~90℃である。
 前記コロイダルシリカは、金属の研磨用に好適に使用することができる。当該研磨は、例えば、化学機械的研磨(CMP)であることができる。研磨条件は、公知又は慣用の条件を採用することができる。
 金属研磨用組成物は、前記コロイダルシリカを含む限り、特に制限されないが、さらに添加剤を含んでいてもよい。添加剤としては、例えば、希釈剤、酸化剤、pH調整剤、防食剤、安定化剤、界面活性剤などが挙げられる。これらは単独で又は二重以上組み合わせて使用することができる。
 金属研磨用組成物中の表面修飾シリカ粒子(又は砥粒)の含有量は、例えば、0.1~30質量%、好ましくは0.3~20質量%、さらに好ましくは0.5~10質量%である。本発明では、表面修飾シリカ粒子の含有量が少なくても、高研磨レートを実現することができる。
 研磨対象の金属としては、特に制限されるものではないが、例えば、遷移金属が挙げられる。遷移金属としては、コバルト、ルテニウム、銅、タングステン、タンタル、チタンが好ましく挙げられる。これらのうち、コバルト、ルテニウム、及び銅から選択される少なくとも一種がより好ましい。
 研磨対象は、通常、金属膜である。
 本発明のコロイダルシリカを用いることにより、金属膜の研磨レートを高くすることができる。また、シリコン酸化膜の研磨レートに対する金属膜の研磨レートの比率を高くすることができ、金属膜を選択的に研磨することができる。
 金属は、各種用途に用いられるものであり、例えば、半導体用の金属膜(例:電極配線用金属膜、バリア金属膜)などであってもよい。
 以下、実施例を参照して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 純水2212.7g、26質量%アンモニア水567.3g、メタノール12391gの混合液に、テトラメトキシシラン1522.2g及びメタノール413.0gの混合液を、液温を20℃に保ちつつ25分かけ滴下し、シリカゾルメタノール分散液1を得た。 得られたシリカゾルメタノール分散液1を常圧下にて仕込み、容量を一定に保ちつつシリカゾルメタノール分散液1を滴下し、シリカ濃度20質量%まで濃縮したシリカゾルメタノール分散液2を得た。
 1Lのフラスコにシリカゾルメタノール分散液2を800g取り、純水で有効成分10質量%となるように希釈した(3-トリメトキシシリルプロピル)コハク酸無水物の加水分解物21.6gを添加し、分散液中のメタノールを系外留去するために容量を一定に保ちつつ純水1300mLを滴下した。続けて(3-トリメトキシシリルプロピル)コハク酸無水物の加水分解物と反応させるために100℃で加熱還流を行った。加熱還流を、溶媒置換と加熱還流の合計時間が24時間となるまで行うことでシリカ粒子濃度19.5質量%のコロイダルシリカS1を得た。
[実施例2]
 純水7500g、3-エトキシプロピルアミン1.93gの混合液に、テトラメトキシシラン2740gを、液温を85℃に保ちつつ60分かけ滴下した。滴下終了15分後に3-エトキシプロピルアミン50.14gを添加することでシリカゾルメタノール分散液3を得た。
 純水5537gと、2452gのシリカゾルメタノール分散液3の混合液に、テトラメトキシシラン1762.7gを、液温を80℃に保ちつつ360分かけ滴下し、シリカゾルメタノール分散液4を得た。
 得られたシリカゾルメタノール分散液4を常圧下にて仕込み、容量を一定に保ちつつシリカゾルメタノール分散液4を滴下し、シリカ濃度20質量%まで濃縮したシリカゾルメタノール分散液5を得た。
 1Lのフラスコにシリカゾルメタノール分散液5を900g取り、3-エトキシプロピルアミン1.550gを混合した。このときの混合液のpHは9.5であった。続けて純水で有効成分10質量%となるように希釈した(3-トリメトキシシリルプロピル)コハク酸無水物の加水分解物21.6gを添加し、分散液中のメタノールを系外留去するために容量を一定に保ちつつ純水450mLを滴下した。続けて(3-トリメトキシシリルプロピル)コハク酸無水物の加水分解物と反応させるために100℃で加熱還流を行った。加熱還流を、溶媒置換と加熱還流の合計時間が24時間となるまで行うことでシリカ粒子濃度20.0質量%のコロイダルシリカS2を得た。
[比較例1]
 実施例1に記載のシリカゾルメタノール分散液2に対して、メタノールを系外留去するために容量を一定に保ちつつ純水1300mLを滴下することでシリカ粒子濃度19.5質量%のコロイダルシリカS3を得た。
[比較例2]
 実施例1に記載のシリカゾルメタノール分散液2に、3-メルカプトプロピルトリメトキシシラン1.84g、及び30質量%過酸化水素水4.25gを添加し、分散液中のメタノールを系外留去するために容量を一定に保ちつつ純水1300mLを滴下することでシリカ粒子濃度19.5質量%のコロイダルシリカS4を得た。
[比較例3]
 比較例1で作製したコロイダルシリカS3にマレイン酸1.064gを添加することでマレイン酸含有コロイダルシリカS5を得た。
 得られた実施例及び比較例のコロイダルシリカについて、以下のとおり、BET比表面積、一次粒子径、二次粒子径、会合比、真比重、及び表面修飾量を評価した。
<BET比表面積>
 コロイダルシリカをホットプレートの上で予備乾燥後、800℃で1時間熱処理して測定用サンプルを調製した。調製した測定用サンプルを用いて、BET比表面積を測定した。
<一次粒子径>
 2727/比表面積(m/g)により算出された値をコロイダルシリカの一次粒子径(nm)とした。
<二次粒子径>
 動的光散乱法の測定用サンプルとして、コロイダルシリカを0.05質量%ドデシル硫酸ナトリウム(SDS)水溶液に加えて均一化したものを調製した。当該測定用サンプルを用いて、動的光散乱法(大塚電子株式会社製「ELSZ-2000S」)により二次粒子径を測定した。
<会合比>
 二次粒子径/一次粒子径により算出される値を会合比とした。
<真比重>
 真比重は、試料を150℃のホットプレート上で乾固後、300℃炉内で1時間保持した後、エタノールを用いた液相置換法で測定する測定方法により測定した。
<表面修飾量>
 コロイダルシリカ溶液を77,000G、5℃、90分遠心分離した。得られた沈殿物を60℃で12時間乾燥させた後、シリカを粉砕し60℃、減圧下で2時間乾燥させ測定用サンプルを作製した。当該測定用サンプルを用いて、以下の条件のX線光電子分光法により表面のカルボキシル基量を測定した。
測定機器:Thermo Fisher Scientific社製 K-Alpa+照射X線:単結晶分光Al Kα
X線スポット径:400μm
なお、C-C、C-Hの結合エネルギーを284.6eVとして基準化した値を用い、結合エネルギー289.4~289.8eVの状態比率を粒子表面のカルボキシル基量として算出した。状態比率は、装置付属の相対感度係数(RSF)を用いて算出した。
 実施例及び比較例のコロイダルシリカの物性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例及び比較例のコロイダルシリカについて、次のようにゼータ電位を評価した。
<ゼータ電位>
 コロイダルシリカのゼータ電位は、超音波減衰法を利用した測定装置を用いて測定した。
 実施例及び比較例のコロイダルシリカのゼータ電位測定結果を図1に示す。
<研磨試験1> Coの研磨試験
 実施例及び比較例のコロイダルシリカをシリカ粒子濃度8wt%に調整し、以下の条件で研磨試験を行った。
 研磨機:株式会社ナノファクター製NF-300CMP
 研磨パッド:ニッタ・ハース製IC1000TMPad
 スラリー供給速度:100 mL/min
 ヘッド回転速度:46 rpm
 プラテン回転速度:120 rpm
 研磨圧:Co膜…2 psi、TEOS膜…3 psi
 研磨時間:Co膜…0.5 min、TEOS膜…2 min
 膜厚測定機:Co膜…電気抵抗式膜厚測定機、TEOS膜…光干渉式膜厚測定機
 研磨試験1の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 研磨試験1の結果からは、実施例1で得られたコロイダルシリカS1を用いた場合(実施例3)、コバルト(Co)に対する研磨速度が2000Å/min以上であるの対し、非修飾コロイダルシリカS3及びスルホン酸修飾コロイダルシリカS4を用いた場合(比較例4及び5)は、研磨速度が1000Å未満であった。
 また、コバルト(Co)とシリコン酸化膜(TEOS)の研磨速度比から算出した選択比に関しても、実施例のS1を用いた場合、9.0以上であるのに対し、比較例のS3及びS4を用いた場合は8.0未満であった。
<研磨試験2> Coの研磨試験
 実施例及び比較例のコロイダルシリカをシリカ粒子濃度5wt%に調整し、以下の条件で研磨試験を行った。
 研磨機:株式会社ナノファクター製NF-300CMP
 研磨パッド:ニッタ・ハース製IC1000TMPad
 スラリー供給速度:50 mL/min
 ヘッド回転速度:90 rpm
 プラテン回転速度:90 rpm
 研磨圧:Co膜…4 psi、TEOS膜…4 psi
 研磨時間:Co膜…0.5 min、TEOS膜…1 min
 膜厚測定機:Co膜…電気抵抗式膜厚測定機、TEOS膜…光干渉式膜厚測定機
 研磨試験2の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000008
 研磨試験2の結果からは、コロイダルシリカS1を用いた場合、コバルト(Co)に対する研磨速度が1600Å/min以上であるの対し、非修飾コロイダルシリカにカルボキシル基を有するマレイン酸を添加したS5を用いた場合は、研磨速度が1200Å未満であった。
 また、コバルト(Co)とシリコン酸化膜(TEOS)の研磨速度比から算出した選択比に関しても、S1を用いた場合、8.0以上であるのに対し、比較例のS3及びS4を用いた場合は3.0未満であった。
<研磨試験3> Ruの研磨試験
 実施例1及び比較例3のコロイダルシリカをシリカ粒子濃度2wt%に調整した後、以下のように酸化剤濃度、pH及び電気伝導度を調整し、研磨試験に供した。
酸化剤濃度:過よう素酸ナトリウム濃度0.25wt%(対研磨スラリー重量)
pH調整:1mol/L水酸化ナトリウム、10wt%硝酸を使用
研磨スラリーの電気伝導度:25mS/cmとなるように塩化ナトリウムを添加
研磨試験条件
 研磨機:株式会社ナノファクター製NF-300CMP
 研磨パッド:ニッタ・ハース製IC1000TMPad
 スラリー供給速度:50 mL/min
 ヘッド回転速度:32 rpm
 プラテン回転速度:32 rpm
 研磨圧:Ru膜…6 psi
 研磨時間:Ru膜…1 min
 膜厚測定機:Ru膜…電気抵抗式膜厚測定機
 研磨試験3の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000009
 研磨試験3の結果からは、コロイダルシリカS1を用いた場合、ルテニウム(Ru)に対しても、研磨速度は380Å/min以上であり、非修飾コロイダルシリカにカルボキシル基を有するマレイン酸を添加したS5を用いた場合に比べて、研磨速度は1.2倍以上であった。
 また、<研磨試験2>の結果から、ルテニウム(Ru)とシリコン酸化膜(TEOS)の選択比に関しては1.8以上であると見積もることが出来る。
<研磨試験4> Cuの研磨試験
 実施例1及び比較例3のコロイダルシリカをシリカ粒子濃度3wt%に調整した後、以下のように酸化剤濃度及びpHを調整し、研磨試験に供した。
酸化剤濃度:過酸化水素濃度0.25wt%(対研磨スラリー重量)
pH調整:60%過塩素酸を使用
研磨試験条件
 研磨機:株式会社ナノファクター製NF-300CMP
 研磨パッド:ニッタ・ハース製IC1000TMPad
 スラリー供給速度:50 mL/min
 ヘッド回転速度:32 rpm
 プラテン回転速度:32 rpm
 研磨圧:Cu膜…1.5 psi
 研磨時間:Cu膜…1 min
 膜厚測定機:Cu膜…電気抵抗式膜厚測定機
 研磨試験4の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
 研磨試験4の結果からは、コロイダルシリカS1を用いた場合、銅(Cu)に対しても、研磨速度は1900Å/min以上であり、非修飾コロイダルシリカにカルボキシル基を有するマレイン酸を添加したS5を用いた場合に比べて、研磨速度は13倍以上であった。
 また、<研磨試験2>の結果から、銅(Cu)とシリコン酸化膜(TEOS)の選択比に関しては9.5以上であると見積もることが出来る。

Claims (5)

  1.  少なくとも1個のカルボキシル基を含む官能基が共有結合を介して表面に固定されたシリカ粒子を含有する、金属研磨用コロイダルシリカ。
  2.  前記シリカ粒子が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、少なくとも1個のカルボキシル基を有する有機官能基であり、R及びRは、同一又は異なって、水素原子、炭化水素基、又は-OR(Rは、水素原子、炭化水素基、又はケイ素含有基である。)である。]
    で表される基を表面に有する、請求項1に記載のコロイダルシリカ。
  3.  前記シリカ粒子が、少なくとも1個のカルボキシル基又はその前駆基を含む官能基を有するシランカップリング剤又はその加水分解縮合物で表面修飾されたシリカ粒子である、請求項1又は2に記載のコロイダルシリカ。
  4.  前記金属が、遷移金属である、請求項1~3のいずれか一項に記載のコロイダルシリカ。
  5.  前記遷移金属が、コバルト、ルテニウム、銅、タングステン、タンタル、及びチタンから選択される少なくとも一種である、請求項4に記載のコロイダルシリカ。
PCT/JP2020/016437 2019-04-22 2020-04-14 金属研磨用コロイダルシリカ WO2020218089A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217037482A KR20220002384A (ko) 2019-04-22 2020-04-14 금속 연마용 콜로이달 실리카
US17/605,304 US20220228001A1 (en) 2019-04-22 2020-04-14 Colloidal silica for metal polishing
CN202080030757.9A CN113727945A (zh) 2019-04-22 2020-04-14 金属研磨用胶态二氧化硅

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-080611 2019-04-22
JP2019080611A JP7254603B2 (ja) 2019-04-22 2019-04-22 金属研磨用コロイダルシリカ

Publications (1)

Publication Number Publication Date
WO2020218089A1 true WO2020218089A1 (ja) 2020-10-29

Family

ID=72936194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016437 WO2020218089A1 (ja) 2019-04-22 2020-04-14 金属研磨用コロイダルシリカ

Country Status (6)

Country Link
US (1) US20220228001A1 (ja)
JP (3) JP7254603B2 (ja)
KR (1) KR20220002384A (ja)
CN (1) CN113727945A (ja)
TW (1) TW202043426A (ja)
WO (1) WO2020218089A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202323463A (zh) * 2021-08-24 2023-06-16 日商Jsr股份有限公司 化學機械研磨用組成物及研磨方法
TW202323464A (zh) * 2021-08-24 2023-06-16 日商Jsr股份有限公司 化學機械研磨用組成物及研磨方法
CN116768220B (zh) * 2023-07-04 2023-12-29 山东科翰硅源新材料有限公司 一种快速合成高浓度非球形二氧化硅溶胶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069622A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
WO2018168206A1 (ja) * 2017-03-14 2018-09-20 株式会社フジミインコーポレーテッド 研磨用組成物、その製造方法ならびにこれを用いた研磨方法および基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014813A (ja) * 2002-06-07 2004-01-15 Showa Denko Kk 金属研磨組成物、それを用いた研磨方法及びそれを用いた基板の製造方法
JP5333744B2 (ja) 2008-02-18 2013-11-06 Jsr株式会社 化学機械研磨用水系分散体、化学機械研磨方法および化学機械研磨用水系分散体の製造方法
US10217645B2 (en) 2014-07-25 2019-02-26 Versum Materials Us, Llc Chemical mechanical polishing (CMP) of cobalt-containing substrate
JP2016069535A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 研磨用組成物及びその製造方法並びに研磨方法
JP7319190B2 (ja) 2017-09-29 2023-08-01 株式会社フジミインコーポレーテッド 研磨用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069622A (ja) * 2014-09-30 2016-05-09 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
WO2018168206A1 (ja) * 2017-03-14 2018-09-20 株式会社フジミインコーポレーテッド 研磨用組成物、その製造方法ならびにこれを用いた研磨方法および基板の製造方法

Also Published As

Publication number Publication date
CN113727945A (zh) 2021-11-30
JP7254603B2 (ja) 2023-04-10
KR20220002384A (ko) 2022-01-06
JP2023086743A (ja) 2023-06-22
JP2020178083A (ja) 2020-10-29
US20220228001A1 (en) 2022-07-21
JP2023086744A (ja) 2023-06-22
TW202043426A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2020218089A1 (ja) 金属研磨用コロイダルシリカ
JP6893261B2 (ja) 変性コロイダルシリカおよびその製造方法、並びにこれを用いた研磨剤
JP6757259B2 (ja) 研磨用組成物
US7077880B2 (en) Surface modified colloidal abrasives, including stable bimetallic surface coated silica sols for chemical mechanical planarization
JP5650786B2 (ja) 疎水性シリカの調製方法
TW202026376A (zh) 用於金屬化學機械拋光之組合物及方法
JP2019522896A (ja) 化学−機械的研磨用スラリー組成物
JP2024008946A (ja) 研磨用組成物、研磨用組成物の製造方法、研磨方法および半導体基板の製造方法
JP7119209B2 (ja) コロイダルシリカ及びその製造方法
JP2019182687A (ja) コロイダルシリカ
TW202106849A (zh) 磨粒及化學機械研磨用組成物
TWI826498B (zh) 化學機械研磨用水系分散體
TWI837319B (zh) 膠質氧化矽及其製造方法
TWI842954B (zh) 化學機械研磨用組成物以及化學機械研磨方法
TWI821357B (zh) 化學機械研磨用氧化鋁研磨粒及其製造方法
JP4819322B2 (ja) 金属酸化物微粒子分散体及びその製造方法
TW202338030A (zh) 使用胺基-聚有機矽氧烷-塗佈的研磨料的化學機械平坦化
JP5413568B2 (ja) 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
US20230313011A1 (en) Sulfonic acid-modified colloidal silica
TW202124661A (zh) 化學機械研磨用組成物、化學機械研磨方法及化學機械研磨用粒子的製造方法
TW202208276A (zh) 陰離子改質膠態二氧化矽的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037482

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20794444

Country of ref document: EP

Kind code of ref document: A1