WO2020217858A1 - スチールコード、ベルト積層体、タイヤ - Google Patents

スチールコード、ベルト積層体、タイヤ Download PDF

Info

Publication number
WO2020217858A1
WO2020217858A1 PCT/JP2020/014279 JP2020014279W WO2020217858A1 WO 2020217858 A1 WO2020217858 A1 WO 2020217858A1 JP 2020014279 W JP2020014279 W JP 2020014279W WO 2020217858 A1 WO2020217858 A1 WO 2020217858A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cord
tire
belt layer
steel
belt
Prior art date
Application number
PCT/JP2020/014279
Other languages
English (en)
French (fr)
Inventor
松岡 映史
Original Assignee
栃木住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栃木住友電工株式会社 filed Critical 栃木住友電工株式会社
Priority to JP2021515907A priority Critical patent/JP7419644B2/ja
Priority to CN202080021694.0A priority patent/CN113574223A/zh
Priority to DE112020002051.7T priority patent/DE112020002051T5/de
Publication of WO2020217858A1 publication Critical patent/WO2020217858A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0057Reinforcements comprising preshaped elements, e.g. undulated or zig-zag filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0014Surface treatments of steel cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2007Wires or filaments characterised by their longitudinal shape
    • D07B2201/2008Wires or filaments characterised by their longitudinal shape wavy or undulated
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/201Wires or filaments characterised by a coating
    • D07B2201/2011Wires or filaments characterised by a coating comprising metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2022Strands coreless
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3085Alloys, i.e. non ferrous
    • D07B2205/3089Brass, i.e. copper (Cu) and zinc (Zn) alloys

Definitions

  • This disclosure relates to steel cords, belt laminates, and tires.
  • Patent Document 1 for rubber reinforcement obtained by twisting 3 to 5 steel filaments having a tensile strength of 300 kgf / mm 2 or more and a diameter of 0.20 to 0.30 mm with a metal plating on the surface.
  • a method for manufacturing a steel cord has been proposed.
  • the steel cord of the present disclosure has a 1 ⁇ n structure in which n strands are twisted together.
  • the number n of the strands is 4 or more and 6 or less.
  • the wire diameter of the wire is 0.40 mm or more and 0.55 mm or less.
  • FIG. 1 is an explanatory diagram of a steel cord having a 1 ⁇ 4 structure according to one aspect of the present disclosure.
  • FIG. 2 is a cross-sectional view of the steel cord of FIG. 1 in a plane perpendicular to the longitudinal direction.
  • FIG. 3 is a cross-sectional view of a steel cord having a 1 ⁇ 5 structure according to one aspect of the present disclosure in a plane perpendicular to the longitudinal direction.
  • FIG. 4 is a cross-sectional view of a steel cord having a 1 ⁇ 6 structure according to another aspect of the present disclosure in a plane perpendicular to the longitudinal direction.
  • FIG. 5 is an explanatory view of a corrugated strand in which a bent portion and a non-bent portion are repeatedly formed along the longitudinal direction.
  • FIG. 6 is an explanatory diagram of a method for manufacturing a corrugated strand in which a bent portion and a non-bent portion are repeatedly formed along the longitudinal direction.
  • FIG. 7 is a cross-sectional view of the belt structure according to one aspect of the present disclosure in a plane perpendicular to the longitudinal direction.
  • FIG. 8 is a cross-sectional view of the tire according to one aspect of the present disclosure.
  • FIG. 9 is an explanatory diagram of a method for measuring flexural rigidity.
  • FIG. 10 is an explanatory diagram of a method for measuring adhesive durability characteristics.
  • Patent Document 1 As a measure for reducing the weight of a tire, it has been conventionally practiced to improve the strength of the steel filament constituting the steel cord used in the tire and reduce the filament diameter to reduce the weight of the cord. It has been done.
  • the steel cord according to one aspect of the present disclosure has a 1 ⁇ n structure in which n strands are twisted together.
  • the number n of the strands is 4 or more and 6 or less.
  • a steel cord having a wire diameter of 0.40 mm or more and 0.55 mm or less can be used.
  • the steel cord is broken by a predetermined wire by making the wire diameter 0.40 mm or more, which is thicker than the wire used for the conventional steel cord for the purpose of reducing the weight of the tire. It is possible to suppress the number of strands required to make a load. Therefore, the cord diameter of the steel cord can be suppressed as compared with the conventional steel cord having the same breaking load for the purpose of reducing the weight of the tire.
  • the steel cord can be placed on the belt layer of the tire, for example.
  • the belt layer has a steel cord and rubber, and the thickness of the belt layer can be selected so that the steel cord can be embedded in the rubber of the belt layer.
  • the thickness of the belt layer can be obtained by adding a predetermined value predetermined so that the steel cord can be embedded to the cord diameter of the steel cord. Therefore, the thickness of the belt layer is mainly selected according to the cord diameter of the steel cord used for the belt layer. Then, by setting the wire diameter to 0.40 mm or more, the cord diameter of the steel cord can be suppressed as described above, so that the thickness of the belt layer can be suppressed.
  • the amount of rubber used in the belt layer can be reduced and the weight of the belt layer can be reduced. Therefore, the weight of the tire using the steel cord according to one aspect of the present disclosure can be reduced, and the tire is mounted. The fuel efficiency of the car can be improved.
  • the tires attached to the car are deformed by receiving external forces such as vehicle body load.
  • the size of the tire mounted on the car is smaller in the direction of receiving the vehicle body load, that is, in the direction perpendicular to the ground, and larger in the direction horizontal to the ground, as compared with before mounting. Since the tires rotate when the car is running, the tires are repeatedly deformed while changing the deformed parts.
  • the amount of deformation of a tire mounted on a car can be controlled by the tire pressure and the rubber or steel cord contained in the tire.
  • the tire pressure and the rubber or steel cord contained in the tire For example, by using a steel cord that is not easily deformed, it is possible to suppress the amount of deformation of the tire when an external force is applied to the tire when the vehicle is running. For this reason, by using a steel cord that is hard to deform, the amount of deformation of the rubber used in the tire can be suppressed, damage to the rubber that has a large effect on the durability of the tire can be reduced, and the durability of the tire can be improved. be able to.
  • the bending rigidity of the steel cord can be increased by setting the wire diameter to 0.40 mm or more.
  • the flexural rigidity is an index indicating the difficulty of bending deformation of a member, and when the bending rigidity is high, it means that the bending deformation is difficult.
  • the steel cord according to one aspect of the present disclosure is less likely to be bent and deformed by setting the wire diameter to 0.40 mm or more, and the amount of deformation of the tire using the steel cord can be suppressed. The durability of the tire can be increased.
  • the cord diameter By setting the wire diameter to 0.55 mm or less, the cord diameter can be suppressed and the weight of the steel cord can also be suppressed. Therefore, when the steel cord according to one aspect of the present disclosure is used for the tire, the thickness of the belt layer described above can be suppressed, the weight of the tire can be reduced, and the fuel consumption of the vehicle using the tire can be reduced. Can be improved.
  • the thickness of the belt layer can be suppressed and the amount of rubber used can be suppressed as described above, so that the total cost of the tire can be reduced. ..
  • At least one of the n wires may be a wavy wire having a bent portion and a non-bent portion repeatedly along the longitudinal direction.
  • the wire may have a brass plating film containing Cu and Zn on its surface.
  • Cu copper and Zn means zinc.
  • the brass plating film may further contain one or more elements selected from Co and Ni.
  • Co cobalt and Ni means nickel.
  • the first belt layer, the second belt layer, the third belt layer, and the fourth belt layer are laminated in that order.
  • the first belt layer has a plurality of first steel cords and a first coating rubber for embedding the first steel cords.
  • the second belt layer has a plurality of second steel cords and a second coating rubber for embedding the second steel cords.
  • the third belt layer has a plurality of third steel cords and a third coating rubber for embedding the third steel cords.
  • the fourth belt layer has a plurality of fourth steel cords and a fourth covering rubber in which the fourth steel cord is embedded.
  • the second steel cord and the third steel cord are the steel cords according to any one of (1) to (4).
  • a belt laminate in which the bending rigidity of the first steel cord and the fourth steel cord is 20% or more and 90% or less of the bending rigidity of the second steel cord can be used.
  • the tire according to one aspect of the present disclosure includes the belt laminate according to (5), and the belt laminate is outside the carcass in the radial direction of the tire and is above the tread portion. Can be placed inside the tire in the radial direction.
  • the steel cord according to this embodiment has a 1 ⁇ n structure in which n wires, also called filaments, are spirally twisted.
  • FIG. 1 shows a configuration example of the steel cord 10 of the present embodiment.
  • the steel cord 10 shown in FIG. 1 has a structure in which four strands 11 are twisted together.
  • the 1 ⁇ n structure means a structure in which n strands are twisted so as to be a single layer (1 layer).
  • a single layer is a single layer (one layer) along the circumferential direction of a circle with one strand in a cross section perpendicular to the longitudinal direction of the steel cord, as shown in FIGS. 2, 3 and 4, which will be described later. It means a structure arranged so as to be.
  • the steel cord 10 shown in FIG. 1 has a 1 ⁇ 4 structure in which four strands 11 are twisted so as to form a single layer.
  • FIG. 2 shows a cross-sectional view of the steel cord 10 shown in FIG. 1 in a plane perpendicular to the longitudinal direction.
  • the longitudinal direction of the steel cord 10 is the Y-axis direction in FIG.
  • the plane perpendicular to the longitudinal direction is a plane parallel to the XZ plane in FIG.
  • the steel cord 10 is twisted along the circumscribed circle C1 so that the four strands 11 form a single layer, and the center is surrounded by the four strands 11. Part gap 12 is formed.
  • the circumscribed circle C1 corresponds to the outer shape of the steel cord 10, and the diameter of the circumscribed circle C1 may be referred to as the cord diameter of the steel cord 10.
  • FIG. 2 shows an example in which adjacent strands 11 are in contact with each other in a cross section perpendicular to the longitudinal direction, but some or all of the adjacent strands 11 do not contact and a gap is formed between the strands 11. It may be formed.
  • FIG. 3 shows a configuration example of a cross-sectional view of a steel cord 30 having a 1 ⁇ 5 structure in a plane perpendicular to the longitudinal direction.
  • FIG. 4 shows a configuration example of a cross-sectional view of the steel cord 40 having a 1 ⁇ 6 structure in a plane perpendicular to the longitudinal direction.
  • the steel cord 30 having a 1 ⁇ 5 structure shown in FIG. 3 five strands 11 are twisted along the circumscribed circle C2 so as to form a single layer, and the five strands 11 are in the center. A central void 12 surrounded by is formed.
  • the circumscribed circle C2 corresponds to the outer shape of the steel cord 30, and the diameter of the circumscribed circle C2 may be referred to as the cord diameter of the steel cord 30.
  • the steel cord 40 having a 1 ⁇ 6 structure shown in FIG. 4 six strands 11 are twisted together so as to form a single layer along the circumscribed circle C3, and the six strands 11 are formed in the center. An enclosed central void 12 is formed.
  • the circumscribed circle C3 corresponds to the outer shape of the steel cord 40, and the diameter of the circumscribed circle C3 may be referred to as the cord diameter of the steel cord 40.
  • the wire diameter D means the diameter in the cross section perpendicular to the longitudinal direction of the wire 11.
  • the steel cord is defined by making the wire diameter 0.40 mm or more, which is thicker than the wire used for the conventional steel cord for the purpose of reducing the weight of the tire. It is possible to suppress the number of strands required to obtain the breaking load of. Therefore, the cord diameter of the steel cord can be suppressed as compared with the conventional steel cord having the same breaking load for the purpose of reducing the weight of the tire.
  • the steel cord can be placed on the belt layer of the tire, for example.
  • the belt layer has a steel cord and rubber, and the thickness of the belt layer can be selected so that the steel cord can be embedded in the rubber of the belt layer.
  • the thickness of the belt layer can be obtained by adding a predetermined value predetermined so that the steel cord can be embedded to the cord diameter of the steel cord. Therefore, the thickness of the belt layer is mainly selected according to the cord diameter of the steel cord used for the belt layer. Then, by setting the wire diameter to 0.40 mm or more, the cord diameter of the steel cord can be suppressed as described above, so that the thickness of the belt layer can be suppressed.
  • the amount of rubber used in the belt layer can be reduced and the weight of the belt layer can be reduced. Therefore, the weight of the tire using the steel cord of the present embodiment can be reduced, and the fuel consumption of the vehicle equipped with the tire can be reduced. Can be improved.
  • the tires attached to the car are deformed by receiving external forces such as vehicle body load.
  • the size of the tire mounted on the car is smaller in the direction of receiving the vehicle body load, that is, in the direction perpendicular to the ground, and larger in the direction horizontal to the ground, as compared with before mounting. Since the tires rotate when the car is running, the tires are repeatedly deformed while changing the deformed parts.
  • the amount of deformation of a tire mounted on a car can be controlled by the tire pressure and the rubber or steel cord contained in the tire.
  • the tire pressure and the rubber or steel cord contained in the tire For example, by using a steel cord that is not easily deformed, it is possible to suppress the amount of deformation of the tire when an external force is applied to the tire when the vehicle is running. For this reason, by using a steel cord that is hard to deform, the amount of deformation of the rubber used in the tire can be suppressed, damage to the rubber that has a large effect on the durability of the tire can be reduced, and the durability of the tire can be improved. be able to.
  • the bending rigidity of the steel cord can be increased by setting the wire diameter to 0.40 mm or more.
  • the flexural rigidity is an index indicating the difficulty of bending deformation of a member, and when the bending rigidity is high, it means that the bending deformation is difficult.
  • the steel cord of the present embodiment is less likely to be bent and deformed by setting the wire diameter to 0.40 mm or more, and the amount of deformation of the tire using the steel cord can be suppressed. Therefore, the durability of the tire Can be enhanced.
  • the cord diameter can be suppressed and the weight of the steel cord can also be suppressed. Therefore, when the steel cord of the present embodiment is used for the tire, the thickness of the belt layer described above can be suppressed, the weight of the tire can be reduced, and the fuel efficiency of the vehicle using the tire can be improved. Can be done.
  • the thickness of the belt layer can be suppressed and the amount of rubber used can be suppressed as described above, so that the total cost of the tire can be reduced.
  • the steel cord according to the present embodiment preferably has 4 or more and 6 or less strands n as in the steel cords shown in FIGS. 1 to 4. That is, it is preferable that the steel cord of the present embodiment has a structure in which 4 or more and 6 or less strands are twisted together.
  • the breaking load of the steel cord can be sufficiently increased even if the number of wires included in the steel cord of the present embodiment is reduced. Therefore, even if the number of strands is 6 or less, a sufficient breaking load can be obtained, and the durability of the tire using the steel cord can be sufficiently enhanced. Further, by reducing the number of strands to 6 or less, the cord diameter and weight of the steel cord can be suppressed, and the weight of the tire using the steel cord can be reduced.
  • the breaking load of the steel cord can be sufficiently increased, and the durability of the tire can be increased when used in a tire. it can.
  • At least one of the n strands of the steel cord of the present embodiment may be a corrugated strand having a bent portion and a non-bent portion repeatedly along the longitudinal direction.
  • the tire is formed by using the steel cord of the present embodiment.
  • the rubber penetration into the inside of the steel cord can be increased.
  • the area of the wire contained in the steel cord in contact with the rubber is increased, and the adhesion between the wire and the rubber is improved. Can be done.
  • the number of corrugated strands is not particularly limited. Since the steel cord of the present embodiment may not have the wavy strands, the number of wavy strands among the strands of the steel cord of the present embodiment is 0, that is, the steel cord of the present embodiment
  • the strands having the strands may be composed of the strands having no bent portion. However, as described above, from the viewpoint of particularly enhancing the durability of the tire using the steel cord of the present embodiment, at least one of the strands of the steel cord of the present embodiment may be a wavy strand. preferable.
  • the strands of the steel cord of the present embodiment it is more preferable that 25% or more and 50% or less of the strands are corrugated strands. Of the strands of the steel cord, 25% or more of the strands is a wavy strand.
  • the number n of the strands of the steel cord is 4, one or more is the number of strands.
  • n is 5 or 6, it means that two or more wires are used as wavy strands, respectively.
  • the upper limit of the number of wavy strands included in the steel cord of the present embodiment is not particularly limited, and for example, all the strands included in the steel cord may be corrugated strands. However, if the number of corrugated strands is large, the steel cord may be easily untwisted at the end portion in the longitudinal direction of the steel cord, and it may be difficult to maintain the outer shape. Therefore, as described above, it is preferable that 50% or less of the strands of the steel cord of the present embodiment is the strands with waves. Of the strands of the steel cord, 50% or less of the strands is a wavy strand. When the number n of the strands of the steel cord is 4 or 5, 2 or less are the strands. When the number n of the above is 6, it means that 3 or less are used as wavy strands.
  • FIG. 5 schematically shows a wavy wire 50 having a bent portion and a non-bent portion repeatedly along the longitudinal direction.
  • the corrugated strand 50 shown in FIG. 5 has bent portions 51 and non-bent portions 52 alternately and repeatedly along the longitudinal direction.
  • FIG. 5 shows an example in which the wavy wire 50 is bent at an angle close to 90 degrees at the bent portion 51, but the present invention is not limited to this, and the bent portion 51 is, for example, less than 90 degrees or 90 degrees. It may be bent at a larger angle.
  • the specific wavy shape of the wavy wire is not particularly limited.
  • the bending height h of the wavy wire is preferably 230% or more and 250% or less, and more preferably 240% or more and 250% or less of the wire diameter of the wavy wire.
  • the height from the plane S to the bent portion 51B on the side far from the plane S when the corrugated wire 50 is placed on the plane S is defined as the bending height h.
  • the corrugated wire 50 is arranged so that the surface passing through the bent portion 51 and the non-bending portion 52 of the corrugated wire 50 is perpendicular to the plane S as shown in FIG. To do.
  • the wavy wire has a sufficient bending height with respect to the wire diameter. .. Therefore, a particularly sufficient gap can be formed between the wavy wire and another wire that is not the wavy wire, and the rubber penetration can be increased.
  • the steel cord is untwisted at the end in the longitudinal direction of the steel cord, and the outer shape is deformed. Is preferable because it can prevent the above. Further, by setting the bending height h to 250% or less with respect to the wire diameter of the wavy wire, the toughness of the wavy wire can be increased.
  • the repeating pitch between the bent portion and the non-bent portion is not particularly limited, but is preferably 5.0 mm or more and 30.0 mm or less, and 5.0 mm or more and 20.0 mm or less. It is more preferable to do so.
  • the repeating pitch between the bent portion and the non-bent portion means the distance between the bent portions having the same shape, and is the length in the longitudinal direction of the steel cord from the reference bent portion to the adjacent bent portion. means. Therefore, in the example shown in FIG. 5, the repeating pitch P between the bent portion and the non-bent portion means, for example, the distance from the bent portion 51A to the adjacent bent portion 51C.
  • the repeating pitch between the bent portion and the non-bent portion is 5.0 mm or more because the bent portion and the non-bent portion can be easily formed on the wire and it is easy to control accurately. Further, by setting the repeating pitch between the bent portion and the non-bent portion to 30.0 mm or less, the bent portion and the non-bent portion can be manufactured by a relatively simple device, and the manufacturing cost can be suppressed. preferable.
  • a plurality of preforms 61 are arranged, and a plurality of preforms 61 are arranged along the direction of the block arrow in the drawing. It can be formed by passing it in between.
  • the preform 61 can have, for example, a pin type (cylindrical type) or a gear type.
  • the material of the wire of the steel cord of the present embodiment is not particularly limited, and may be, for example, a steel wire. Further, the wire of the steel cord of the present embodiment may have, for example, a steel wire and a plating film arranged on the surface of the steel wire.
  • High carbon steel wire can be preferably used as the steel wire.
  • the plating film for example, it is preferable to use a brass plating film having Cu (copper) and Zn (zinc) as metal components.
  • the brass plating film may be composed of only Cu and Zn, but may further contain a metal component other than Cu and Zn.
  • the brass plating film can further contain, for example, one or more elements selected from Co (cobalt) and Ni (nickel) as metal components.
  • the wire of the steel cord of the present embodiment can have a brass plating film 111 containing, for example, Cu and Zn on the surface. Further, the brass plating film 111 may further contain one or more elements selected from Co and Ni.
  • the brass plating film 111 can be arranged on the surface of, for example, the steel wire 112 as described above.
  • FIG. 2 shows the boundary line between the steel wire 112 and the brass plating film 111, but the composition continuously changes from the surface of the steel wire 112 toward the brass plating film 111, and the boundary between the two is not clear. You may. For convenience of explanation, in FIG.
  • the brass plating film is shown only on one wire 11A, but all the wires 11 of the steel cord 10 also have the brass plating film 111 on the surface of the steel wire 112. You may. The same applies to the steel cords 30 and 40 of the other configuration examples shown in FIGS. 3 and 4.
  • the wire of the steel cord of the present embodiment includes a brass plating film containing Cu and Zn and the steel cord is covered with rubber to form a tire
  • the wire and rubber contained in the steel cord It is possible to increase the adhesive strength of the tire and make the tire particularly durable. Further, by further containing one or more elements selected from Co and Ni in the brass plating film, the adhesive force between the wire and the rubber of the steel cord is further enhanced, and the durability of the tire is further enhanced. Can be done.
  • the belt laminate in this embodiment will be described with reference to FIG.
  • FIG. 7 is a diagram schematically showing the belt laminate of the present embodiment.
  • FIG. 7 shows a cross-sectional view of the belt laminate 70 in a plane perpendicular to the longitudinal direction.
  • the belt laminate 70 of the present embodiment can have a first belt layer 71A, a second belt layer 71B, a third belt layer 71C, and a fourth belt layer 71D. It can be stacked in the order listed above.
  • the first belt layer 71A can have a plurality of first steel cords 72A and a first covering rubber 73A in which the first steel cords 72A are embedded.
  • the second belt layer 71B can have a plurality of second steel cords 72B and a second coating rubber 73B in which the second steel cord 72B is embedded.
  • the third belt layer 71C can have a plurality of third steel cords 72C and a third coating rubber 73C in which the third steel cord 72C is embedded.
  • the fourth belt layer 71D can have a plurality of fourth steel cords 72D and a fourth covering rubber 73D in which the fourth steel cord 72D is embedded. As shown in FIG. 7, in each belt layer, the steel cords are arranged in a row, and the entire circumference of each steel cord is embedded in the first coating rubber 73A to the fourth coating rubber 73D, respectively. There is.
  • the steel cords described above can be used as the second steel cord 72B and the third steel cord 72C arranged in the second belt layer 71B and the third belt layer 71C.
  • the durability of the tire including the belt laminate can be improved and the weight of the tire can be reduced.
  • the belt laminate can be arranged between the inner liner or carcass of the tire and the tread portion. Therefore, it is preferable that the belt laminate is deformed according to a change in the air pressure inside the tire, but when the belt laminate using only the steel cord described above is used, the belt laminate is inside the tire. There is a possibility that it cannot be deformed by following changes in air pressure.
  • the flexural rigidity of the first steel cord 72A used for the first belt layer 71A and the fourth steel cord 72D used for the fourth belt layer 71D, which are the outermost layers of the belt laminate 70, is the flexural rigidity of the second steel cord 72B. It is preferably lower than the flexural rigidity.
  • the bending rigidity of the first steel cord 72A and the fourth steel cord 72D is preferably 20% or more and 90% or less, and more preferably 30% or more and 80% or less of the bending rigidity of the second steel cord 72B. ..
  • the belt laminate can be subjected to changes in the air pressure inside the tire and unevenness of the road surface. It can be deformed according to the above. Therefore, it is possible to improve the riding comfort of a vehicle equipped with tires including the belt laminate.
  • the durability of the belt laminate and the tire including the belt laminate can be improved. Especially can be enhanced.
  • the first steel cord 72A and the fourth steel cord 72D may be the same steel cord, but may be steel cords having different configurations. Therefore, the first steel cord 72A and the fourth steel cord 72D do not have to have the same flexural rigidity, and may be different. However, from the viewpoint of productivity and the like, it is preferable that the first steel cord 72A and the fourth steel cord 72D are the same steel cord.
  • the specific means for adjusting the bending rigidity of the first steel cord 72A and the fourth steel cord 72D is not particularly limited.
  • the first steel cord 72A and the fourth steel cord 72D can be a steel cord containing a wire having a smaller diameter than the wire contained in the second steel cord 72B.
  • the steel cords described above can be used.
  • the second steel cord 72B and the third steel cord 72C may be the same steel cord, but may be steel cords having different configurations. However, from the viewpoint of productivity and the like, it is preferable that the second steel cord 72B and the third steel cord 72C are the same steel cord.
  • the first coating rubber 73A to the fourth coating rubber 73D which are the coating rubbers for each belt layer included in the belt laminate 70 of the present embodiment, are not particularly limited, and various rubbers used for the belt layer of the tire are used. Can be used.
  • As the first coating rubber 73A to the fourth coating rubber for example, various tire rubbers containing at least one type selected from natural rubber and synthetic rubber can be used.
  • the composition of the first coating rubber 73A to the fourth coating rubber 73D of each belt layer included in the belt laminate 70 may be the same or different. However, from the viewpoint of productivity, it is preferable that the compositions of the first coating rubber 73A to the fourth coating rubber 73D of each belt layer are the same.
  • the belt laminate of the present embodiment can be suitably used as a belt laminate for tires.
  • the tire of this embodiment can include the steel cord described above. Further, the tire of the present embodiment preferably includes the above-mentioned belt laminate.
  • FIG. 8 shows a cross-sectional view of the tire 80 according to the present embodiment in a plane perpendicular to the circumferential direction. Although only the portion on the left side of the CL (center line) is shown in FIG. 8, the same structure is continuously provided on the right side of the CL with the CL as the axis of symmetry.
  • the tire 80 includes a tread portion 81, a sidewall portion 82, and a bead portion 83.
  • the tread portion 81 is a portion in contact with the road surface.
  • the bead portion 83 is provided on the inner diameter side of the tire 80 with respect to the tread portion 81.
  • the bead portion 83 is a portion in contact with the rim of the wheel of the vehicle.
  • the sidewall portion 82 connects the tread portion 81 and the bead portion 83. When the tread portion 81 receives an impact from the road surface, the sidewall portion 82 elastically deforms and absorbs the impact.
  • the tire 80 includes an inner liner 84, a carcass 85, a belt laminate 70, and a bead wire 86.
  • the inner liner 84 is made of rubber and seals the space between the tire 80 and the wheel.
  • the carcass 85 forms the skeleton of the tire 80.
  • the carcass 85 is composed of organic fibers such as polyester, nylon and rayon, a steel cord, and rubber.
  • the bead wire 86 is provided in the bead portion 83.
  • the bead wire 86 receives the pulling force acting on the carcass.
  • the belt laminate 70 tightens the carcass 85 to increase the rigidity of the tread portion 81.
  • the belt laminate 70 can be arranged between the carcass 85 of the tire 80 and the tread portion 81. That is, the belt laminate 70 can be arranged outside the carcass 85 in the radial direction of the tire and inside the tread portion 81 in the radial direction of the tire.
  • the radial direction of the tire means the direction along the straight line shown as CL in FIG. 8, that is, the vertical direction in FIG.
  • the belt laminate 70 can be arranged so that the stacking direction of each belt layer is the same as the radial direction of the tire 80.
  • the belt laminate 70 has the first belt layer to the fourth belt layer as described above, for example, the first belt layer, the second belt layer, and the first belt layer are in order from the carcass 85 side along the radial direction of the tire.
  • the belt laminate 70 can be arranged in the tire 80 so that the three belt layers and the fourth belt layer are located.
  • the tire 80 has the belt laminate 70 described above, but is not limited to the above-described form, and has a configuration different from that of the belt laminate 70 including the steel cord described above.
  • a belt laminate can also be used.
  • the steel cord described above is included as the steel cord. Therefore, the tire of the present embodiment can be a tire having durability and light weight. Further, the tire of the present embodiment may include the belt laminate described above. When the tire of the present embodiment includes the belt laminate described above, the belt laminate is more likely to be deformed by following changes in the air pressure inside the tire, unevenness of the road surface, etc., and the tire of the present embodiment is mounted. It is also possible to improve the riding comfort of a tired car.
  • one end 901 of the test body 90 which is the steel cord produced in each experimental example, was attached to the grip jig 91 of the testing machine.
  • the other end portion 902 of the test body 90 was attached so that the distance L from the fixed end was 5 cm.
  • the obtained test piece 100 was applied to the first roller 1011, the second roller 1012, and the third roller 1013 having a roller diameter of 25 mm.
  • the test piece 100 located between the first roller 1011 and the second roller 1012, and the second roller 1012 and the third roller as shown in FIG.
  • the position of each roller was adjusted so that it would be parallel to the test piece 100 located between 1013.
  • a load of 29.4 N is applied to the test body 100 applied to the first roller 1011 to the third roller 1013 along the longitudinal direction. Then, the first roller 1011 to the third roller 1013 are rotated, the test piece 100 is moved in the direction of the arrow A in FIG.
  • a copper layer and a zinc layer were formed by plating on the surface of the steel wire.
  • copper pyrophosphate was used as the plating solution, and a film was formed with a current density of 22 A / dm 2 and a treatment time of 14 seconds.
  • the zinc layer was formed by using zinc sulfate as a plating solution and setting a current density of 20 A / dm 2 and a treatment time of 7 seconds.
  • heat treatment was performed by heating at 600 ° C. for 9 seconds in an air atmosphere to diffuse the metal components and form a plating film.
  • the bending height h is 245% of the wire diameter and the repeating pitch P between the bent portion and the non-bent portion is 10 mm for one of the four strands. Therefore, a corrugated wire in which a bent portion and a non-bent portion were repeatedly formed along the longitudinal direction was used. For the remaining three strands, the strands that did not form a bent portion were used.
  • the cord diameter and flexural rigidity of the steel cord of Experimental Example 1 were evaluated. The results are shown in Table 1.
  • the belt laminate 70 shown in FIG. 7 was produced by the following procedure. (1) 2nd belt layer, 3rd belt layer A rubber composition containing a rubber component and an additive was prepared.
  • the rubber composition contains 100 parts by mass of natural rubber as a rubber component.
  • As an additive the rubber composition contains 60 parts by mass of carbon black, 6 parts by mass of sulfur, 1 part by mass of vulcanization accelerator, 10 parts by mass of zinc oxide, and 1 part by mass of cobalt stearate with respect to 100 parts by mass of the rubber component. It is contained in a proportion of parts by mass.
  • the second belt layer 71B and the third belt layer 71C were prepared using the steel cord of Experimental Example 1 and the rubber composition. By vulcanizing and molding the rubber composition, the second coating rubber 73B and the third coating rubber 73C, which are coating rubbers arranged around the steel cord, are obtained.
  • the ECU (Equivalent Cure Unit: equivalent vulcanization amount) can be calculated by the following formula (1).
  • ECU exp ((-E / R) x (1 / T-1 / T0)) ...
  • E the activation energy
  • R the general gas constant
  • T0 the reference temperature
  • T the vulcanization temperature.
  • T0 141.7 ° C.
  • the time in ECU ⁇ time means the vulcanization time, and the unit is minutes.
  • (2) 1st belt layer, 4th belt layer A wire having a plating film was produced in the same manner as in the case of the steel cord of Experimental Example 1 except that the wire was drawn so that the wire diameter was 0.38 mm. Then, the strands having the plating film were twisted by a twisting machine to prepare a steel cord having a 1 ⁇ 5 structure shown in FIG. 3, which was used as a first steel cord 72A and a fourth steel cord 72D. The cord diameter and flexural rigidity of the obtained first steel cord 72A and fourth steel cord 72D were evaluated. The flexural rigidity is shown as a relative value with the steel cord of Experimental Example 5 as 100. The results are shown in Table 2.
  • Table 3 shows the ratio of the bending rigidity of the first steel cord 72A and the fourth steel cord 72D to the bending rigidity of the second steel cord 72B which is the steel cord of Experimental Example 1.
  • the first belt layer 71A and the fourth belt layer 71D were produced by using the first steel cord 72A or the fourth steel cord 72D and the same rubber composition as in the case of the second belt layer and the third belt layer. ..
  • the vulcanization conditions were the same as those for the second belt layer 71B and the third belt layer 71C.
  • the first belt layer 71A, the second belt layer 71B, the third belt layer 71C, and the fourth belt layer 71D were laminated in the order listed to prepare the belt laminate 70.
  • the thickness of each belt layer was selected so that the steel cord contained in each belt layer could be embedded in the rubber.
  • the thickness of each belt layer of the first belt layer 71A to the fourth belt layer 71D was made so as to be the cord diameter of the steel cord used for each belt layer + 0.5 mm. Therefore, the entire belt laminate 70, which is a laminate of four belt layers, has a thickness obtained by adding 2 mm to the total cord diameter of the steel cords used for each belt layer.
  • steel cords were placed in each belt layer so that the number of ends was 24/5 cm.
  • the end means the number of steel cords existing per 5 cm width of each belt layer in the cross section perpendicular to the extending direction of the cords, that is, the cross section shown in FIG.
  • the steel cord weight per unit area, the rubber weight per unit area, and the total weight of the steel cord and rubber per unit area were calculated.
  • the cost ratio was calculated from the weight of the steel cord and rubber contained in the belt laminate. Table 3 shows the relative values of each parameter, where the result of Experimental Example 5 is 100.
  • the weight of the steel cord per unit area is the weight of the belt laminated body per unit area on the surface of the belt laminated body perpendicular to the laminating direction of each belt layer, for example, the upper surface of the fourth belt layer 71D in FIG. It means the weight of the steel cord.
  • the rubber weight per unit area and the total weight of the steel cord and rubber per unit area the rubber of the belt laminate per unit area on the plane perpendicular to the lamination direction of each belt layer of the belt laminate, Or it means the total weight of the steel cord and rubber.
  • Example 2 (Steel cord) After forming a plating film on the surface of the steel wire, wire drawing was performed so that the wire diameter was 0.49 mm, and the wire with the obtained plating film was twisted with a twisting machine.
  • the steel cord of Experimental Example 2 was produced in the same manner as in Experimental Example 1 except that the steel cord having a 1 ⁇ 5 structure shown in FIG. 3 was produced.
  • the bending height h is 245% of the wire diameter, and the repeating pitch P between the bent portion and the non-bent portion is set for two of the five strands.
  • a corrugated strand in which a bent portion and a non-bent portion were repeatedly formed along the longitudinal direction was used so as to have a length of 10 mm.
  • the strands that did not form a bent portion were used.
  • the wire diameter and number of wires used for the steel cord of Experimental Example 2 are selected so that the breaking load of the obtained steel cord is the same as that of the steel cord of Experimental Example 1. The same applies to the steel cords of Experimental Examples 3 to 5 below.
  • the cord diameter and flexural rigidity of the steel cord of Experimental Example 2 were evaluated. The results are shown in Table 1.
  • the belt laminate is the same as in Experimental Example 1 except that the steel cord of Experimental Example 2 is used as the second steel cord 72B and the third steel cord 72C used for the second belt layer 71B and the third belt layer 71C.
  • the breaking load of the second belt layer 71B and the third belt layer 71C produced in this experimental example is the same as the breaking load of the second belt layer 71B and the third belt layer 71C used for the belt laminate of Experimental Example 1. It has become. The same applies to the following Experimental Examples 3 to 5.
  • Example 3 (Steel cord) After forming a plating film on the surface of the steel wire, wire drawing was performed so that the wire diameter was 0.44 mm, and the wire with the obtained plating film was twisted with a twisting machine. , Experimental Example 3 steel cord was produced in the same manner as in Experimental Example 1 except that the steel cord having the 1 ⁇ 6 structure shown in FIG. 4 was produced. When manufacturing the steel cord of Experimental Example 3, the bending height h is 245% of the wire diameter, and the repeating pitch P between the bent portion and the non-bent portion is set for two of the six strands.
  • a corrugated strand in which a bent portion and a non-bent portion were repeatedly formed along the longitudinal direction was used so as to have a length of 10 mm.
  • the strands that did not form a bent portion were used.
  • the cord diameter and flexural rigidity of the steel cord of Experimental Example 3 were evaluated. The results are shown in Table 1. (Belt laminate)
  • the belt laminate is the same as in Experimental Example 1 except that the steel cord of Experimental Example 3 is used as the second steel cord 72B and the third steel cord 72C used for the second belt layer 71B and the third belt layer 71C. was prepared and evaluated.
  • Example 4 (Steel cord) When forming a plating film on the surface of a steel wire, an experiment was conducted except that a cobalt layer was further formed on the zinc layer and wire drawing was performed so that the wire diameter would be 0.55 mm after heat treatment.
  • the steel cord of Experimental Example 4 was prepared in the same manner as in Example 1.
  • a steel cord having a 1 ⁇ 4 structure shown in FIGS. 1 and 2 was used as in the case of Experimental Example 1. Further, as in the case of Experimental Example 1, for one of the four strands, the bending height h is 245% of the wire diameter, and the repeating pitch P between the bent portion and the non-bent portion is 10 mm. As described above, a corrugated strand in which a bent portion and a non-bent portion were repeatedly formed along the longitudinal direction was used. For the remaining three strands, the strands that did not form a bent portion were used.
  • the cord diameter and flexural rigidity of the steel cord of Experimental Example 4 were evaluated. The results are shown in Table 1. (Belt laminate)
  • the belt laminate is the same as in Experimental Example 1 except that the steel cord of Experimental Example 4 is used as the second steel cord 72B and the third steel cord 72C used for the second belt layer 71B and the third belt layer 71C. was prepared and evaluated.
  • Example 5 (Steel cord) After forming a plating film on the surface of the steel wire, wire drawing was performed so that the wire diameter was 0.37 mm, and the wire with the obtained plating film was twisted with a twisting machine. A steel cord of Experimental Example 5 was produced in the same manner as in Experimental Example 1 except that a steel cord having a 1 ⁇ 9 structure was produced. When manufacturing the steel cord of Experimental Example 5, the bending height h is 245% of the wire diameter, and the repeating pitch P between the bent portion and the non-bent portion is set for 3 out of 9 strands.
  • a corrugated strand in which a bent portion and a non-bent portion were repeatedly formed along the longitudinal direction was used so as to have a length of 10 mm.
  • the strands that did not form a bent portion were used.
  • the obtained steel cord was evaluated for cord diameter and flexural rigidity. The results are shown in Table 1.
  • the 1 ⁇ 9 structure has a structure in which nine strands are spirally twisted along the longitudinal direction so as to form a single layer.
  • the belt laminate is the same as in Experimental Example 1 except that the steel cord of Experimental Example 5 is used as the second steel cord 72B and the third steel cord 72C used for the second belt layer 71B and the third belt layer 71C. Was prepared and evaluated.
  • the steel cords of Experimental Examples 1 to 4 having a 1 ⁇ n structure in which 4 or more and 6 or less strands are twisted and having a wire diameter of 0.40 mm or more and 0.55 mm or less are used. It was confirmed from Table 1 that the cord diameter was smaller than that of the steel cord of Experimental Example 5, which had the smallest wire diameter.
  • the thickness of the tire belt layer can be selected so that the steel cord can be embedded in the rubber of the belt layer.
  • the thickness of each belt layer of the first belt layer to the fourth belt layer constituting the belt laminate is determined.
  • the cord diameter of the steel cord used was +0.5 mm. Since the steel cords of Experimental Examples 1 to 4 have a smaller cord diameter than that of Experimental Example 5, the thickness of the belt layer containing the steel cords of Experimental Examples 1 to 4 can be suppressed, and the steel cords can be suppressed.
  • the weight of the belt layer, the belt laminate including the belt layer, and the tire can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Ropes Or Cables (AREA)

Abstract

n本の素線が撚り合わされた1×n構造を有し、 前記素線の本数nが4以上6以下であり、 前記素線の素線径が0.40mm以上0.55mm以下であるスチールコード。

Description

スチールコード、ベルト積層体、タイヤ
 本開示は、スチールコード、ベルト積層体、タイヤに関する。
 本出願は、2019年4月24日出願の日本出願第2019-083169号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 例えば特許文献1には、表面に金属めっきを施した引張り強さが300kgf/mm2 以上あり、直径が0.20~0.30mmのスチールフィラメントを3~5本撚り合わせて得られるゴム補強用スチールコードの製造方法が提案されている。
特開平7-238480号公報
 本開示のスチールコードは、n本の素線が撚り合わされた1×n構造を有し、
 前記素線の本数nが4以上6以下であり、
 前記素線の素線径が0.40mm以上0.55mm以下である。
図1は、本開示の一態様に係る1×4構造のスチールコードの説明図である。 図2は、図1のスチールコードの長手方向と垂直な面での断面図である。 図3は、本開示の一態様に係る1×5構造のスチールコードの長手方向と垂直な面での断面図である。 図4は、本開示の他の態様に係る1×6構造のスチールコードの長手方向と垂直な面での断面図である。 図5は、長手方向に沿って屈曲部と非屈曲部とが繰り返し形成されている波付き素線の説明図である。 図6は、長手方向に沿って屈曲部と非屈曲部とが繰り返し形成されている波付き素線の製造方法の説明図である。 図7は、本開示の一態様に係るベルト構造体の長手方向と垂直な面での断面図である。 図8は、本開示の一態様に係るタイヤの断面図である。 図9は、曲げ剛性の測定方法についての説明図である。 図10は、接着耐久特性の測定方法についての説明図である。
[本開示が解決しようとする課題]
 特許文献1に開示されているように、タイヤの軽量化対策として、タイヤに用いられるスチールコードを構成するスチールフィラメントの強度を向上させ、フィラメント径を細くしてコード重量を軽減することが従来からなされている。
 しかしながら、近年ではタイヤ性能の向上が求められており、さらなるタイヤの軽量化と、耐久性の向上とが求められていた。
 このため、本開示は、タイヤに用いた場合に、該タイヤを軽量化し、かつ耐久性を高めることができるスチールコードを提供することを目的とする。
[本開示の効果]
 本開示によれば、タイヤに用いた場合に、該タイヤを軽量化し、かつ耐久性を高めることができるスチールコードを提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1)本開示の一態様に係るスチールコードは、n本の素線が撚り合わされた1×n構造を有し、
 前記素線の本数nが4以上6以下であり、
 前記素線の素線径が0.40mm以上0.55mm以下であるスチールコードとすることができる。
 本発明の発明者の検討によれば、素線径を0.40mm以上と、タイヤの軽量化を目的とした従来のスチールコードに用いる素線よりも太くすることで、スチールコードを所定の破断荷重にするために要する素線の本数を抑制できる。このため、同じ破断荷重を有する、タイヤの軽量化を目的とした従来のスチールコードよりも、スチールコードのコード径を抑制することができる。
 スチールコードは例えばタイヤのベルト層に配置することができる。ベルト層はスチールコードと、ゴムとを有し、ベルト層の厚みは、ベルト層のゴム内にスチールコードを埋め込めるように選択できる。具体的には例えば、スチールコードのコード径に、スチールコードを埋め込めるように予め定めた所定の値を加えたものを、ベルト層の厚みとすることができる。このため、ベルト層の厚みは、主に該ベルト層に用いるスチールコードのコード径に応じて選択される。そして、素線径を0.40mm以上とすることで上述のようにスチールコードのコード径を抑制できるため、ベルト層の厚みを抑制できる。その結果、ベルト層でのゴムの使用量を低減し、ベルト層を軽量化できるため、本開示の一態様に係るスチールコードを用いたタイヤの軽量化を図ることができ、該タイヤを装着した車の燃費を向上できる。
 車に装着したタイヤは、車体荷重等の外力を受けて変形する。車に装着したタイヤのサイズは、装着前と比較して、車体荷重を受ける方向、すなわち地面と垂直な方向で小さくなり、地面と水平な方向で大きくなる。車の走行時にはタイヤが回転するため、タイヤは変形する部分を変えながら、繰り返し変形することになる。
 タイヤが変形する際に、タイヤに使用されているゴムも変形することになるため、タイヤに使用されているゴムに負荷が加わり、該ゴムはダメージを受ける。このため、車に装着し、走行させた際のタイヤの変形量が大きいと、タイヤに使用されているゴムに加わるダメージが大きくなり、タイヤの耐久性が低下することになる。
 通常、車に装着したタイヤの変形量は、タイヤの空気圧や、タイヤに含まれるゴムやスチールコードによりコントロールすることができる。例えば変形しにくいスチールコードを用いることで、車の走行時等にタイヤに外力が加わった際のタイヤの変形量を抑制することができる。このため、変形しにくいスチールコードを用いることで、タイヤに使用されているゴムの変形量も抑制し、タイヤの耐久性に与える影響の大きいゴムに加わるダメージを低減でき、タイヤの耐久性を高めることができる。
 そして、本発明の発明者の検討によれば、素線径を0.40mm以上とすることで、スチールコードの曲げ剛性を高くすることができる。曲げ剛性は部材の曲げ変形のしにくさを示す指標であり、曲げ剛性が高い場合、曲げ変形しにくいことを意味する。このように、本開示の一態様に係るスチールコードは、素線径を0.40mm以上とすることで曲げ変形しにくくなり、該スチールコードを用いたタイヤの変形量も抑制できるため、該タイヤの耐久性を高めることができる。
 トラックや、バス等の大型車両は車体重量や積載量が大きいため、トラックやバス等の大型車両用のタイヤには常に高荷重が加えられることになる。このため、大型車両用のタイヤにおいては、特に耐久性が重要であり、耐久性を高めることが求められる。中でもトラックは、悪路を走行する場合や、積載量が非常に多くなる場合があるが、安定して走行するために装着するタイヤには特に高い耐久性が求められている。そして、素線径を0.40mm以上とした本開示の一態様に係るスチールコードを用いたタイヤは特に耐久性に優れることから、上述のように特に高い耐久性が求められるトラックやバス等の大型車両用のタイヤとしても好適に用いることができる。
 素線径を0.55mm以下とすることで、コード径を抑制し、スチールコードの重量も抑制できる。このため、本開示の一態様に係るスチールコードをタイヤに用いた場合に、既述のベルト層の厚みを抑制し、タイヤの軽量化を図ることができ、該タイヤを用いた車の燃費を向上することができる。
 また、本開示の一態様に係るスチールコードを用いたタイヤにおいては、上述のようにベルト層の厚みを抑制し、ゴムの使用量を抑制できるため、該タイヤのトータルコストを低減することもできる。
 (2)n本の前記素線のうち少なくとも1本の前記素線が、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付き素線であっても良い。
 (3)前記素線が、表面にCuおよびZnを含むブラスめっき膜を有していても良い。
 Cuは銅を、Znは亜鉛をそれぞれ意味する。
 (4)前記ブラスめっき膜は、さらにCo、およびNiから選択された1種類以上の元素を含有していても良い。
 Coはコバルトを、Niはニッケルをそれぞれ意味する。
 (5)また、本開示の一態様に係るベルト積層体は、第1ベルト層と、第2ベルト層と、第3ベルト層と、第4ベルト層とがその順に積層されており、
 前記第1ベルト層は、複数の第1スチールコードと、前記第1スチールコードを埋設する第1被覆用ゴムとを有し、
 前記第2ベルト層は、複数の第2スチールコードと、前記第2スチールコードを埋設する第2被覆用ゴムとを有し、
 前記第3ベルト層は、複数の第3スチールコードと、前記第3スチールコードを埋設する第3被覆用ゴムとを有し、
 前記第4ベルト層は、複数の第4スチールコードと、前記第4スチールコードを埋設する第4被覆用ゴムとを有し、
 前記第2スチールコード、および前記第3スチールコードは、(1)から(4)のいずれかに記載のスチールコードであり、
 前記第1スチールコード、および前記第4スチールコードの曲げ剛性が、前記第2スチールコードの曲げ剛性の20%以上90%以下であるベルト積層体とすることができる。
(6)本開示の一態様に係るタイヤは、(5)に記載のベルト積層体を含み、前記ベルト積層体を、カーカスよりも前記タイヤの半径方向の外側であり、かつトレッド部よりも前記タイヤの半径方向の内側に配置できる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係るスチールコード、ベルト積層体、タイヤの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 〔スチールコード〕
 以下、本実施形態に係るスチールコードについて図1~図6に基づき説明する。
 本実施形態に係るスチールコードはフィラメントとも呼ばれる素線をn本、螺旋状に撚り合わせた1×n構造を有している。
 ここで、図1に本実施形態のスチールコード10の一構成例を示す。図1に示したスチールコード10は、4本の素線11を撚り合わせた構造を有している。
 そして、1×n構造とは、n本の素線を単層(1層)となるように撚り合わせた構造を意味する。単層とは、後述する図2や、図3、図4に示すようにスチールコードの長手方向と垂直な断面において、素線が1つの円の円周方向に沿って単層(1層)となるように配列されている構造を意味する。
 図1に示したスチールコード10は、4本の素線11を単層となるように撚り合わせており1×4構造となる。図1に示したスチールコード10の長手方向と垂直な面での断面図を図2に示す。なお、スチールコード10の長手方向は図1中のY軸方向となる。また、長手方向と垂直な面は、図1中のXZ平面と平行な面になる。
 図2に示すように、スチールコード10は、外接円C1に沿って、4本の素線11が単層となるように撚り合わされ、中心部には4本の素線11で囲まれた中心部空隙12が形成されている。外接円C1は、スチールコード10の外形に相当し、外接円C1の直径を、スチールコード10のコード径という場合もある。
 図2では、長手方向と垂直な断面において、隣り合う素線11が接している例を示しているが、一部または全ての隣り合う素線11が接触せず、素線11間に隙間が形成されていてもよい。
 図3に1×5構造のスチールコード30の長手方向と垂直な面での断面図の構成例を示す。また、図4に1×6構造のスチールコード40の長手方向と垂直な面での断面図の構成例を示す。
 図3に示した1×5構造のスチールコード30は、外接円C2に沿って、5本の素線11が、単層となるように撚り合わせており、中心部に5本の素線11で囲まれた中心部空隙12が形成されている。外接円C2は、スチールコード30の外形に相当し、外接円C2の直径を、スチールコード30のコード径という場合もある。
 図4に示した1×6構造のスチールコード40は、外接円C3に沿って、6本の素線11を単層となるように撚り合わせており、中心部に6本の素線11で囲まれた中心部空隙12が形成されている。外接円C3は、スチールコード40の外形に相当し、外接円C3の直径を、スチールコード40のコード径という場合もある。
 本実施形態のスチールコードには、素線径が0.40mm以上0.55mm以下の素線を用いることが好ましく、素線径が0.42mm以上0.55mm以下の素線を用いることがより好ましい。図2~図4の図中に示したように、素線径Dとは、素線11の長手方向と垂直な断面における直径を意味する。
 従来は、タイヤの軽量化を目的とする場合、スチールコードに用いる素線の素線径を細くすることが好ましいと考えられてきた。
 しかし、本発明の発明者の検討によれば、素線径を0.40mm以上と、タイヤの軽量化を目的とした従来のスチールコードに用いる素線よりも太くすることで、スチールコードを所定の破断荷重にするために要する素線の本数を抑制できる。このため、同じ破断荷重を有する、タイヤの軽量化を目的とした従来のスチールコードよりも、スチールコードのコード径を抑制することができる。
 スチールコードは例えばタイヤのベルト層に配置することができる。ベルト層はスチールコードと、ゴムとを有し、ベルト層の厚みは、ベルト層のゴム内にスチールコードを埋め込めるように選択できる。具体的には例えば、スチールコードのコード径に、スチールコードを埋め込めるように予め定めた所定の値を加えたものを、ベルト層の厚みとすることができる。このため、ベルト層の厚みは、主に該ベルト層に用いるスチールコードのコード径に応じて選択される。そして、素線径を0.40mm以上とすることで上述のようにスチールコードのコード径を抑制できるため、ベルト層の厚みを抑制できる。その結果、ベルト層でのゴムの使用量を低減し、ベルト層を軽量化できるため、本実施形態のスチールコードを用いたタイヤの軽量化を図ることができ、該タイヤを装着した車の燃費を向上できる。
 車に装着したタイヤは、車体荷重等の外力を受けて変形する。車に装着したタイヤのサイズは、装着前と比較して、車体荷重を受ける方向、すなわち地面と垂直な方向で小さくなり、地面と水平な方向で大きくなる。車の走行時にはタイヤが回転するため、タイヤは変形する部分を変えながら、繰り返し変形することになる。
 タイヤが変形する際に、タイヤに使用されているゴムも変形することになるため、タイヤに使用されているゴムに負荷が加わり、該ゴムはダメージを受ける。このため、車に装着し、走行させた際のタイヤの変形量が大きいと、タイヤに使用されているゴムに加わるダメージが大きくなり、タイヤの耐久性が低下することになる。
 通常、車に装着したタイヤの変形量は、タイヤの空気圧や、タイヤに含まれるゴムやスチールコードによりコントロールすることができる。例えば変形しにくいスチールコードを用いることで、車の走行時等にタイヤに外力が加わった際のタイヤの変形量を抑制することができる。このため、変形しにくいスチールコードを用いることで、タイヤに使用されているゴムの変形量も抑制し、タイヤの耐久性に与える影響の大きいゴムに加わるダメージを低減でき、タイヤの耐久性を高めることができる。
 そして、本発明の発明者の検討によれば、素線径を0.40mm以上とすることで、スチールコードの曲げ剛性を高くすることができる。曲げ剛性は部材の曲げ変形のしにくさを示す指標であり、曲げ剛性が高い場合、曲げ変形しにくいことを意味する。このように、本実施形態のスチールコードは、素線径を0.40mm以上とすることで曲げ変形しにくくなり、該スチールコードを用いたタイヤの変形量も抑制できるため、該タイヤの耐久性を高めることができる。
 トラックや、バス等の大型車両は車体重量や積載量が大きいため、トラックやバス等の大型車両用のタイヤには常に高荷重が加えられることになる。このため、大型車両用のタイヤにおいては、特に耐久性が重要であり、耐久性を高めることが求められる。中でもトラックは、悪路を走行する場合や、積載量が非常に多くなる場合があるが、安定して走行するために装着するタイヤには特に高い耐久性が求められている。そして、素線径を0.40mm以上とした本実施形態のスチールコードを用いたタイヤは特に耐久性に優れることから、上述のように特に高い耐久性が求められるトラックやバス等の大型車両用のタイヤとしても好適に用いることができる。
 一方、素線径を0.55mm以下とすることで、コード径を抑制し、スチールコードの重量も抑制できる。このため、本実施形態のスチールコードをタイヤに用いた場合に、既述のベルト層の厚みを抑制し、タイヤの軽量化を図ることができ、該タイヤを用いた車の燃費を向上することができる。
 また、本実施形態のスチールコードを用いたタイヤにおいては、上述のようにベルト層の厚みを抑制し、ゴムの使用量を抑制できるため、該タイヤのトータルコストを低減することもできる。
 本実施形態に係るスチールコードは、図1~図4に示したスチールコードの様に、素線の本数nが4以上6以下であることが好ましい。すなわち、本実施形態のスチールコードは、4本以上6本以下の素線を撚り合せた構成を有することが好ましい。
 上述のように、素線径を0.40mm以上とすることで、本実施形態のスチールコードに含まれる素線の本数を少なくしても、スチールコードの破断荷重を十分に高めることができる。このため、素線の本数を6本以下としても十分な破断荷重とすることができ、該スチールコードを用いたタイヤの耐久性を十分に高めることができる。さらに、素線の本数を6本以下とすることでスチールコードのコード径や、重量を抑制し、該スチールコードを用いたタイヤの軽量化を図ることができる。
 また、本実施形態のスチールコードが有する素線の本数を4本以上とすることで、該スチールコードの破断荷重を十分に高め、タイヤに用いた場合に該タイヤの耐久性を高くすることができる。
 本実施形態のスチールコードが有するn本の素線のうち少なくとも1本の素線を、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付き素線とすることもできる。
 本実施形態のスチールコードが有する素線のうち少なくとも1本の素線を波付き素線とすることで、素線間に十分な隙間を形成し、本実施形態のスチールコードを用いてタイヤを形成する際に、スチールコード内部へのゴム浸透度を高められる。このようにタイヤを形成する際のスチールコード内部へのゴム浸透度を高めることで、スチールコードに含まれる素線のゴムと接している面積を高め、素線とゴムとの密着性を高めることができる。
 タイヤを車等に装着して使用していると、水分等がゴムを透過し、タイヤ内部に浸入してくる場合があるが、上述のように、素線のゴムと接している面積を高めることで、素線表面が水分と接触、反応することを抑制できる。このため、タイヤ内部でのゴムと素線との密着性を高く維持することができ、タイヤの耐久性をさらに高めることが可能になる。
 本実施形態のスチールコードが有する素線のうち、波付き素線の本数は特に限定されない。本実施形態のスチールコードは波付き素線を有しないこともできるため、本実施形態のスチールコードが有する素線のうち、波付き素線の本数は0本、すなわち本実施形態のスチールコードが有する素線を、屈曲部を有しない素線から構成することもできる。ただし、上述のように本実施形態のスチールコードを用いたタイヤの耐久性を特に高める観点から、本実施形態のスチールコードが有する素線のうち、少なくとも1本を波付き素線とすることが好ましい。本実施形態のスチールコードが有する素線のうち、本数の割合で25%以上50%以下を波付き素線とすることがより好ましい。スチールコードが有する素線のうち、本数の割合で25%以上を波付き素線とするとは、該スチールコードが有する素線の本数nが4の場合には1本以上を、素線の本数nが5または6の場合には2本以上をそれぞれ波付き素線とすることを意味する。
 本実施形態のスチールコードに含まれる波付き素線の本数の上限は特に限定されず、例えばスチールコードに含まれる全ての素線を波付き素線とすることもできる。ただし、波付き素線の本数が多いと、スチールコードの長手方向の端部等において、スチールコードの撚りが解け易くなり、外形形状を維持しにくくなる恐れもある。そこで、上述のように本実施形態のスチールコードが有する素線のうち、本数の割合で50%以下を波付き素線とすることが好ましい。スチールコードが有する素線のうち、本数の割合で50%以下を波付き素線とするとは、該スチールコードが有する素線の本数nが4または5の場合には2本以下を、素線の本数nが6の場合には3本以下をそれぞれ波付き素線とすることを意味する。
 図5に、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付き素線50を模式的に示す。図5に示した波付き素線50は、長手方向に沿って屈曲部51と、非屈曲部52とを交互に繰り返し有している。
 図5では波付き素線50が、屈曲部51において90度に近い角度で屈曲した例を示しているが、係る形態に限定されるものではなく、屈曲部51において例えば90度未満もしくは90度より大きい角度で屈曲していても良い。
 波付き素線の具体的な波型形状は特に限定されるものではない。ただし、波付き素線の屈曲高さhが、波付き素線の素線径の230%以上250%以下であることが好ましく、240%以上250%以下であることがより好ましい。
 図5に示す様に、波付き素線50を平面Sに置いた時の、平面Sから、平面Sから遠い側の屈曲部51Bまでの高さを屈曲高さhと定義する。屈曲高さhを評価する際、波付き素線50は、図5に示すように波付き素線50の屈曲部51、および非屈曲部52を通る面が平面Sと垂直になるように配置する。
 係る屈曲高さhを、波付き素線の素線径に対して230%以上とすることで、波付き素線は素線径に対して十分な屈曲高さを有していることになる。このため、波付き素線と、波付き素線ではない他の素線との間に特に十分な隙間を形成することができ、ゴム浸透度を高めることができる。
 屈曲高さhを、波付き素線の素線径に対して250%以下とすることで、スチールコードの長手方向の端部等においてスチールコードの撚りが解け、外形形状にくずれ等が生じることをより確実に防ぐことができるため好ましい。また、屈曲高さhを、波付き素線の素線径に対して250%以下とすることで、該波付き素線の靱性を高めることができる。
 波付き素線において、屈曲部と、非屈曲部との間の繰り返しピッチは、特に限定されないが、例えば5.0mm以上30.0mm以下とすることが好ましく、5.0mm以上20.0mm以下とすることがより好ましい。
 屈曲部と非屈曲部との間の繰り返しピッチとは、同じ形状の屈曲部間の距離を意味し、基準となる屈曲部から2つ隣の屈曲部までのスチールコードの長手方向の長さを意味する。このため、図5に示した例では、屈曲部と非屈曲部との間の繰り返しピッチPとは例えば屈曲部51Aから、2つ隣の屈曲部51Cまでの距離を意味する。
 屈曲部と非屈曲部との間の繰り返しピッチを5.0mm以上とすることで素線に屈曲部と、非屈曲部とを形成し易く、正確に制御し易いため好ましい。また、屈曲部と非屈曲部との間の繰り返しピッチを30.0mm以下とすることで、屈曲部と非屈曲部とを比較的簡易な装置で製造することができ、製造コストを抑制できるため好ましい。
 波付き素線は、例えば図6に示すように、プリフォーム61を複数個配置しておき、波付き素線とする素線62を図中のブロック矢印の方向に沿って複数のプリフォーム61間に通すことで形成することができる。プリフォーム61の配置や、大きさ、形状を変更することで、屈曲部の形状や、非屈曲部の長さ等を選択することができる。プリフォーム61は、例えばピン型(円柱型)や、歯車型の形状を有することができる。
 本実施形態のスチールコードが有する素線の材料は特に限定されず、例えば鋼線とすることもできる。また、本実施形態のスチールコードが有する素線は、例えば鋼線と、鋼線の表面に配置しためっき膜とを有することもできる。
 鋼線としては高炭素鋼線を好適に用いることができる。
 めっき膜としては、例えば金属成分としてCu(銅)と、Zn(亜鉛)とを有するブラスめっき膜とすることが好ましい。ブラスめっき膜はCuおよびZnのみから構成することもできるが、CuおよびZn以外の金属成分をさらに含有することもできる。ブラスめっき膜は例えば、金属成分としてCo(コバルト)およびNi(ニッケル)から選択された1種類以上の元素をさらに含むこともできる。
 このため、図2に示した素線11Aの様に、本実施形態のスチールコードが有する素線は、表面に例えばCuおよびZnを含むブラスめっき膜111を有することができる。また、係るブラスめっき膜111は、さらにCoおよびNiから選択された1種類以上の元素を含有することもできる。ブラスめっき膜111は上述のように例えば鋼線112の表面に配置することができる。図2では鋼線112と、ブラスめっき膜111との境界線を示しているが、鋼線112の表面からブラスめっき膜111に向かって組成が連続的に変化し、両者の境界が明確でなくても良い。説明の便宜上、図2では1本の素線11Aにのみブラスめっき膜を示したが、スチールコード10が有する全ての素線11が同様に鋼線112の表面にブラスめっき膜111を有していても良い。図3、図4に示した他の構成例のスチールコード30、40でも同様である。
 本実施形態のスチールコードが有する素線が、CuおよびZnを含むブラスめっき膜を備えることで、該スチールコードをゴムにより被覆してタイヤとした場合に、スチールコードに含まれる素線とゴムとの接着力を高め、特に耐久性に優れたタイヤとすることができる。また、該ブラスめっき膜がCoおよびNiから選択された1種類以上の元素をさらに含有することで、スチールコードが有する素線とゴムとの接着力をさらに高め、タイヤの耐久性をさらに高めることができる。
[ベルト積層体]
 次に本実施形態におけるベルト積層体について図7に基づき説明する。
 図7は、本実施形態のベルト積層体を模式的に示した図である。図7は、ベルト積層体70の長手方向と垂直な面での断面図を示している。
 図7に示すように、本実施形態のベルト積層体70は、第1ベルト層71Aと、第2ベルト層71Bと、第3ベルト層71Cと、第4ベルト層71Dとを有することができ、上記列挙した順に積層することができる。
 そして、第1ベルト層71Aは、複数の第1スチールコード72Aと、第1スチールコード72Aを埋設する第1被覆用ゴム73Aとを有することができる。 
 第2ベルト層71Bは、複数の第2スチールコード72Bと、第2スチールコード72Bを埋設する第2被覆用ゴム73Bとを有することができる。 
 第3ベルト層71Cは、複数の第3スチールコード72Cと、第3スチールコード72Cを埋設する第3被覆用ゴム73Cとを有することができる。 
 第4ベルト層71Dは、複数の第4スチールコード72Dと、第4スチールコード72Dを埋設する第4被覆用ゴム73Dとを有することができる。 
 図7に示すように、各ベルト層において、スチールコードは一列に並列されており、個々のスチールコードの全周はそれぞれ第1被覆用ゴム73A~第4被覆用ゴム73Dの中に埋め込まれている。
 そして、第2ベルト層71B、および第3ベルト層71Cに配置した、第2スチールコード72Bおよび第3スチールコード72Cとして、既述のスチールコードを用いることができる。第2ベルト層71B、第3ベルト層71Cに既述のスチールコードを用いることで該ベルト積層体を含むタイヤの耐久性を高め、かつタイヤの軽量化を図ることができる。
 ただし、スチールコードとして、既述のスチールコードのみを用いたベルト積層体とした場合、該ベルト積層体は、路面の凹凸に追従して変形できず、該ベルト積層体を含むタイヤを装着した車の乗り心地が低下する恐れがある。
 また、タイヤに関する説明の中で後述するようにベルト積層体は、タイヤのインナーライナーや、カーカスと、トレッド部との間に配置することができる。このため、ベルト積層体は、タイヤ内部の空気圧の変化等に追従して変形することが好ましいが、既述のスチールコードのみを用いたベルト積層体とした場合、該ベルト積層体がタイヤ内部の空気圧の変化等に追従して変形できない恐れがある。
 このため、ベルト積層体70の最外層である、第1ベルト層71Aに用いる第1スチールコード72A、および第4ベルト層71Dに用いる第4スチールコード72Dの曲げ剛性は、第2スチールコード72Bの曲げ剛性よりも低いことが好ましい。特に第1スチールコード72Aおよび第4スチールコード72Dの曲げ剛性は、第2スチールコード72Bの曲げ剛性の20%以上90%以下であることが好ましく、30%以上80%以下であることがより好ましい。
 第1スチールコード72Aおよび第4スチールコード72Dとして、曲げ剛性が第2スチールコード72Bの90%以下のスチールコードを用いることで、該ベルト積層体を、タイヤ内部の空気圧の変化や、路面の凹凸等に追従して変形させることができる。このため、該ベルト積層体を含むタイヤを装着した車の乗り心地を向上させることができる。
 第1スチールコード72Aおよび第4スチールコード72Dとして、曲げ剛性が第2スチールコード72Bの20%以上のスチールコードを用いることで、該ベルト積層体や、該ベルト積層体を含むタイヤの耐久性を特に高めることができる。
 第1スチールコード72Aと、第4スチールコード72Dとは同じスチールコードであってもよいが、異なる構成のスチールコードであっても良い。このため、第1スチールコード72Aと、第4スチールコード72Dとは同じ曲げ剛性を有する必要はなく、異なっていても良い。ただし、生産性等の観点からは、第1スチールコード72Aと、第4スチールコード72Dとは同じスチールコードであることが好ましい。
 第1スチールコード72Aと、第4スチールコード72Dの曲げ剛性を調整する具体的な手段は特に限定されない。例えば、第1スチールコード72Aおよび第4スチールコード72Dは、第2スチールコード72Bに含まれる素線よりも、素線径が細い素線を含むスチールコードとすることができる。
 第2スチールコード72Bと、第3スチールコード72Cとしては、既述のスチールコードを用いることができる。第2スチールコード72Bと、第3スチールコード72Cとについても同じスチールコードであってもよいが、異なる構成のスチールコードであっても良い。ただし、生産性等の観点からは第2スチールコード72Bと、第3スチールコード72Cとは同じスチールコードであることが好ましい。
 本実施形態のベルト積層体70に含まれる各ベルト層の被覆用ゴムである第1被覆用ゴム73A~第4被覆用ゴム73Dについては特に限定されず、タイヤのベルト層に用いられる各種ゴムを用いることができる。第1被覆用ゴム73A~第4被覆用ゴムとしては、例えば天然ゴムと、合成ゴムとから選択された1種類以上を含有する各種タイヤ用ゴムを用いることができる。なお、ベルト積層体70に含まれる各ベルト層の第1被覆用ゴム73A~第4被覆用ゴム73Dの組成は同じであっても良く、異なっていても良い。ただし、生産性の観点から各ベルト層の第1被覆用ゴム73A~第4被覆用ゴム73Dの組成は同じであることが好ましい。
 本実施形態のベルト積層体を含むタイヤとすることで、該タイヤを軽量化し、かつ耐久性を高めることができ、該タイヤを装着した車の乗り心地を向上させることもできる。このため、本実施形態のベルト積層体は、タイヤ用のベルト積層体として好適に用いることができる。
 〔タイヤ〕
 本実施形態におけるタイヤについて図8に基づき説明する。
 本実施形態のタイヤは、既述のスチールコードを含むことができる。また、本実施形態のタイヤは、既述のベルト積層体を含むことが好ましい。
 図8は、本実施形態に係るタイヤ80の周方向と垂直な面での断面図を示している。図8ではCL(センターライン)よりも左側部分のみを示しているが、CLを対称軸として、CLの右側にも連続して同様の構造を有している。
 図8に示すように、タイヤ80は、トレッド部81と、サイドウォール部82と、ビード部83とを備えている。
 トレッド部81は、路面と接する部位である。ビード部83は、トレッド部81よりタイヤ80の内径側に設けられている。ビード部83は、車両のホイールのリムに接する部位である。サイドウォール部82は、トレッド部81とビード部83とを接続している。トレッド部81が路面から衝撃を受けると、サイドウォール部82が弾性変形し、衝撃を吸収する。
 タイヤ80は、インナーライナー84と、カーカス85と、ベルト積層体70と、ビードワイヤー86とを備えている。
 インナーライナー84は、ゴムで構成されており、タイヤ80とホイールとの間の空間を密閉する。
 カーカス85は、タイヤ80の骨格を形成している。カーカス85はポリエステル、ナイロン、レーヨンなどの有機繊維あるいはスチールコードと、ゴムと、により構成されている。
 ビードワイヤー86は、ビード部83に設けられている。ビードワイヤー86は、カーカスに作用する引っ張り力を受け止める。
 ベルト積層体70は、カーカス85を締め付けて、トレッド部81の剛性を高めている。ベルト積層体70は、タイヤ80のカーカス85とトレッド部81との間に配置できる。すなわち、ベルト積層体70は、カーカス85よりもタイヤの半径方向の外側であり、かつトレッド部81よりもタイヤの半径方向の内側に配置できる。なお、タイヤの半径方向とは図8中、CLとして示した直線に沿った方向、すなわち図8の上下方向を意味する。ベルト積層体70は、各ベルト層の積層方向が、タイヤ80の半径方向と同じになるように配置することができる。ベルト積層体70が既述の様に第1ベルト層~第4ベルト層を有する場合には、例えばカーカス85側からタイヤの半径方向に沿って順に、第1ベルト層、第2ベルト層、第3ベルト層、第4ベルト層が位置するように、タイヤ80内にベルト積層体70を配置できる。
 図8に示した例では、タイヤ80は既述のベルト積層体70を有しているが、係る形態に限定されず、既述のスチールコードを含む、上記ベルト積層体70とは異なる構成のベルト積層体を用いることもできる。
 本実施形態のタイヤによれば、スチールコードとして既述のスチールコードを含んでいる。このため、本実施形態のタイヤは、耐久性と、軽量性とを備えたタイヤとすることができる。また、本実施形態のタイヤは、既述のベルト積層体を含むこともできる。本実施形態のタイヤが既述のベルト積層体を含む場合、さらに該ベルト積層体がタイヤ内部の空気圧の変化や、路面の凹凸等に追従して変形しやすくなり、本実施形態のタイヤを装着した車の乗り心地を高めることもできる。
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
(1)スチールコードの評価方法
 以下の実験例において作製したスチールコードの評価方法について説明する。
(1-1)素線径
 素線径はマイクロメーターを用いて測定した。
(1-2)コード径
 評価を行うスチールコードを透明樹脂に埋め込み、スチールコードの長手方向と垂直な面(断面)が露出するように試料を切り出した。
 そして、投影機を用いて係る断面に含まれる複数本の素線の最外接円の直径を測定し、コード径とした。
(1-3)曲げ剛性
 曲げ剛性の評価は、TABER社製のV-5剛性試験機(150-B型)を用いて実施した。
 具体的にはまず図9に示すように、各実験例で作製したスチールコードである試験体90の一方の端部901を該試験機の掴み治具91に取付けた。試験体90を掴み治具91に取付ける際、試験体90の他方の端部902の、固定端からの距離Lが5cmとなるように取り付けた。
 そして、試験体90の他方の端部902に力を付加し、先端の開き角度θが15°となった時の曲げモーメントの値(N・cm)を測定し、曲げ剛性を算出した。各実験例の結果は、実験例5の結果を100として、相対値で示している。
(2)ベルト積層体の評価方法
(2-1)曲げ剛性
 以下の各実験例で作製したベルト積層体を試験体として用いた点以外は、上記スチールコードの場合と同様にして曲げ剛性を評価した。各実験例の結果は、実験例5の結果を100として、相対値で示している。
(2-2)接着耐久特性
 以下の各実験例で作製したゴム積層体の内、第2ベルト層からカッターナイフでスチールコードを含む断面形状が厚み5mm、幅10mmである紐状の試験体を取出した。
 そして、図10に示すように、得られた試験体100をローラー径が25mmである第1のローラー1011、第2のローラー1012、および第3のローラー1013にかけた。上記3つのローラーに試験体100をかける際、図10に示すように第1のローラー1011と第2のローラー1012との間に位置する試験体100と、第2のローラー1012と第3のローラー1013の間に位置する試験体100とが平行になるように、各ローラーの位置を調整した。また、第1のローラー1011~第3のローラー1013にかけられた試験体100には、長手方向に沿って29.4Nの荷重を加えている。そして、第1のローラー1011~第3のローラー1013を回転させ、図10中の矢印Aの方向に試験体100を移動させた後、第1のローラー1011~第3のローラー1013を逆回転させ、図中の矢印Aとは反対の方向に試験体100を移動させる操作を1セットとして、係る動作を繰り返し実施した。各ローラーは、上記往復移動を1分間に100セットできるように回転速度を設定した。そして、試験体が破断するまでの試験体の上記往復移動のセットの回数を数えた。
 各実験例の結果は、実験例5の結果を100として相対値で示している。
 以下に各実験例におけるスチールコード、およびベルト積層体の製造条件を説明する。実験例1~4が実施例、実験例5が比較例になる。
[実験例1]
(スチールコード)
 以下の手順により、スチールコードを製造した。
 鋼製の素線の表面に銅層、および亜鉛層をめっきにより形成した。銅層は、めっき液としてピロリン酸銅を用い、電流密度を22A/dm、処理時間を14秒として成膜した。亜鉛層は、めっき液として硫酸亜鉛を用い、電流密度を20A/dm、処理時間を7秒として成膜した。
 めっき処理後、大気雰囲気下で、600℃で、9秒間加熱することで熱処理を行い、金属成分を拡散させ、めっき被膜を形成した。
 得られためっき被膜を形成した素線について伸線加工を行うことで、素線径が0.55mmのめっき被膜を有する素線を得た。
 そして、得られためっき被膜を有する素線について、撚線機で撚り合せ、図1、図2に示した1×4構造を有する実験例1のスチールコードを製造した。1×4構造については既に説明したため、ここでは説明を省略する。
 上記実験例1のスチールコードを製造する際、4本中1本の素線について、屈曲高さhが素線径の245%、屈曲部と非屈曲部との間の繰り返しピッチPが10mmとなるように、長手方向に沿って繰り返し屈曲部と非屈曲部とを形成した波付き素線を用いた。残りの3本の素線については屈曲部を形成していない素線を用いた。
 実験例1のスチールコードについて、コード径、および曲げ剛性を評価した。結果を表1に示す。
(ベルト積層体)
 以下の手順により、図7に示したベルト積層体70を作製した。
(1)第2ベルト層、第3ベルト層 
 ゴム成分と、添加剤とを含むゴム組成物を用意した。ゴム組成物は、ゴム成分として天然ゴムを100質量部含む。ゴム組成物は添加剤として、ゴム成分100質量部に対して、カーボンブラックを60質量部、硫黄を6質量部、加硫促進剤として1質量部、酸化亜鉛10質量部、ステアリン酸コバルトを1質量部の割合で含有する。
 上記実験例1のスチールコード、およびゴム組成物を用いて第2ベルト層71B、および第3ベルト層71Cを作製した。なお、上記ゴム組成物を加硫成形することで、スチールコードの周囲に配置される被覆用ゴムである、第2被覆用ゴム73B、第3被覆用ゴム73Cとなる。
 上記第2ベルト層71B、第3ベルト層71Cを作製する際、加硫は、温度が160℃、圧力が25kgf/cm、ECU×時間が58となるようにして実施した。
 上記ECU(Equivalent Cure Unit:等価加硫量)は、以下の式(1)により算出することができる。 
 ECU=exp((-E/R)×(1/T-1/T0))・・・(1)
 式(1)中のEは活性化エネルギー、Rは一般ガス定数、T0は基準温度、Tは加硫温度となり、それぞれE=20kcal/mol、R=1.987×0.001kcal/mol・deg、T0=141.7℃となる。
 ECU×時間における時間は、加硫時間を意味しており、単位は分となる。
(2)第1ベルト層、第4ベルト層 
 素線径が0.38mmとなるように伸線加工を行った点以外は、上記実験例1のスチールコードの場合と同様にして、めっき被膜を有する素線を作製した。そして、該めっき被膜を有する素線を撚線機で撚り合せて図3に示した1×5構造のスチールコードを作製し、第1スチールコード72A、第4スチールコード72Dとした。得られた第1スチールコード72A、第4スチールコード72Dについて、コード径、および曲げ剛性の評価を行った。曲げ剛性は実験例5のスチールコードを100として相対値で示している。結果を表2に示す。
 表3に、実験例1のスチールコードである第2スチールコード72Bの曲げ剛性に対する、第1スチールコード72A、第4スチールコード72Dの曲げ剛性の割合を示す。
 上記第1スチールコード72A、または第4スチールコード72Dと、第2ベルト層、第3ベルト層の場合と同じ上記ゴム組成物とを用いて第1ベルト層71Aおよび第4ベルト層71Dを作製した。加硫の条件は第2ベルト層71B、第3ベルト層71Cの場合と同じ条件とした。
 そして、上記第1ベルト層71Aと、第2ベルト層71Bと、第3ベルト層71Cと、第4ベルト層71Dとを、列挙した順に積層し、ベルト積層体70を作製した。
 上記第1ベルト層71A~第4ベルト層71Dを作製する際、各ベルト層に含まれるスチールコードが、ゴム内に埋設できるように、各ベルト層の厚みを選択した。具体的には、第1ベルト層71A~第4ベルト層71Dの各ベルト層の厚みが、各ベルト層に用いたスチールコードのコード径+0.5mmとなるように作製した。このため、4層のベルト層の積層体である、ベルト積層体70全体は、各ベルト層に用いたスチールコードのコード径の合計に2mmを加えた厚みとなる。
 また、エンズが24本/5cmとなるように各ベルト層内にスチールコードを配置した。エンズとはコードの延在方向に垂直な断面、すなわち図7に示した断面における、各ベルト層の5cmの幅あたりに存在するスチールコードの本数を意味する。
 得られたベルト積層体について、既述の曲げ剛性の評価を行った。また、第2ベルト層について、既述の接着耐久特性の試験を実施した。結果を表3に示す。
 さらに、得られたベルト積層体について、単位面積当たりのスチールコード重量、単位面積当たりのゴム重量、および単位面積当たりのスチールコードとゴムの合計重量を算出した。また、ベルト積層体に含まれるスチールコードとゴムとの重量からコスト比を算出した。実験例5の結果を100として、各パラメータの相対値を表3に示す。
 なお、上記単位面積当たりのスチールコード重量とは、ベルト積層体が有する各ベルト層の積層方向と垂直な面、例えば図7における第4ベルト層71Dの上面における単位面積当たりの、ベルト積層体のスチールコードの重量を意味する。単位面積当たりのゴム重量、単位面積当たりのスチールコードとゴムの合計重量についても同様に、ベルト積層体が有する各ベルト層の積層方向と垂直な面における単位面積当たりの、ベルト積層体のゴム、またはスチールコードとゴムとの合計の重量を意味する。
[実験例2]
(スチールコード)
 鋼製の素線の表面にめっき被膜を形成後、素線径が0.49mmとなるように伸線加工を行った点、および得られためっき被膜を有する素線を撚線機で撚り合せ、図3に示した1×5構造のスチールコードを製造した点以外は実験例1と同様にして実験例2のスチールコードを作製した。なお、上記実験例2のスチールコードを製造する際、5本中2本の素線について、屈曲高さhが素線径の245%、屈曲部と非屈曲部との間の繰り返しピッチPが10mmとなるように、長手方向に沿って繰り返し屈曲部と非屈曲部とを形成した波付き素線を用いた。残りの3本の素線については屈曲部を形成していない素線を用いた。
 実験例2のスチールコードに用いた素線の素線径、本数は、得られるスチールコードの破断荷重が実験例1のスチールコードと同じになるように選択している。以下の実験例3~実験例5のスチールコードも同様である。
 実験例2のスチールコードについて、コード径、および曲げ剛性を評価した。結果を表1に示す。
(ベルト積層体)
 第2ベルト層71B、第3ベルト層71Cに用いる第2スチールコード72B、第3スチールコード72Cとして、上記実験例2のスチールコードを用いた点以外は実験例1と同様にして、ベルト積層体を作製し、評価を行った。なお、本実験例で作製した第2ベルト層71B、第3ベルト層71Cの破断荷重は、実験例1のベルト積層体に用いた第2ベルト層71B、第3ベルト層71Cの破断荷重と同じになっている。以下の実験例3~実験例5においても同様である。
 評価結果を表3に示す。
[実験例3]
(スチールコード)
 鋼製の素線の表面にめっき被膜を形成後、素線径が0.44mmとなるように伸線加工を行った点、および得られためっき被膜を有する素線を撚線機で撚り合せ、図4に示した1×6構造を有するスチールコードを製造した点以外は実験例1と同様にして実験例3スチールコードを作製した。なお、上記実験例3のスチールコードを製造する際、6本中2本の素線について、屈曲高さhが素線径の245%、屈曲部と非屈曲部との間の繰り返しピッチPが10mmとなるように、長手方向に沿って繰り返し屈曲部と非屈曲部とを形成した波付き素線を用いた。残りの4本の素線については屈曲部を形成していない素線を用いた。
 実験例3のスチールコードについて、コード径、および曲げ剛性を評価した。結果を表1に示す。
(ベルト積層体)
 第2ベルト層71B、第3ベルト層71Cに用いる第2スチールコード72B、第3スチールコード72Cとして、上記実験例3のスチールコードを用いた点以外は実験例1と同様にして、ベルト積層体を作製し、評価を行った。
 評価結果を表3に示す。
[実験例4]
(スチールコード)
 鋼製の素線の表面にめっき被膜を形成する際、亜鉛層の上にさらにコバルト層を形成し、熱処理後に素線径が0.55mmとなるように伸線加工を行った点以外は実験例1と同様にして実験例4のスチールコードを作製した。
 素線を撚り合せる際、実験例1の場合と同様に図1、図2に示した1×4構造のスチールコードとした。また、実験例1の場合と同様に、4本中1本の素線について、屈曲高さhが素線径の245%、屈曲部と非屈曲部との間の繰り返しピッチPが10mmとなるように、長手方向に沿って繰り返し屈曲部と非屈曲部とを形成した波付き素線を用いた。残りの3本の素線については屈曲部を形成していない素線を用いた。
 実験例4のスチールコードについて、コード径、および曲げ剛性を評価した。結果を表1に示す。
(ベルト積層体)
 第2ベルト層71B、第3ベルト層71Cに用いる第2スチールコード72B、第3スチールコード72Cとして、上記実験例4のスチールコードを用いた点以外は実験例1と同様にして、ベルト積層体を作製し、評価を行った。
 評価結果を表3に示す。
[実験例5]
(スチールコード)
 鋼製の素線の表面にめっき被膜を形成後、素線径が0.37mmとなるように伸線加工を行った点、および得られためっき被膜を有する素線を撚線機で撚り合せ、1×9構造を有するスチールコードを製造した点以外は実験例1と同様にして実験例5のスチールコードを作製した。なお、上記実験例5のスチールコードを製造する際、9本中3本の素線について、屈曲高さhが素線径の245%、屈曲部と非屈曲部との間の繰り返しピッチPが10mmとなるように、長手方向に沿って繰り返し屈曲部と非屈曲部とを形成した波付き素線を用いた。残りの6本の素線については屈曲部を形成していない素線を用いた。
 得られたスチールコードについて、コード径、および曲げ剛性を評価した。結果を表1に示す。
 なお、1×9構造は、9本の素線を単層となるように、長手方向に沿って螺旋状に撚り合せた構造を有する。
(ベルト積層体)
 第2ベルト層71B、第3ベルト層71Cに用いる第2スチールコード72B、第3スチールコード72Cとして、上記実験例5のスチールコードを用いた点以外は実験例1と同様にして、ベルト積層体を作製し、評価を行った。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 4本以上6本以下の素線が撚り合わされた1×n構造を有し、素線径が0.40mm以上0.55mm以下である実験例1~実験例4のスチールコードは、用いた素線の素線径が最も細い実験例5のスチールコードよりもコード径が小さくなることが表1から確認できた。
 既述の様に、タイヤのベルト層の厚みは、ベルト層のゴム内にスチールコードを埋め込めるように選択できる。具体的には、既述の様に上記実験例1~実験例5においてベルト積層体を作製する際、ベルト積層体を構成する第1ベルト層~第4ベルト層の各ベルト層の厚みが、用いたスチールコードのコード径+0.5mmとなるようにした。実験例1~実験例4のスチールコードは、実験例5よりもコード径が小さくなっていることから、実験例1~実験例4のスチールコードを含むベルト層の厚みを抑制でき、該スチールコードを用いたベルト層や、該ベルト層を含むベルト積層体、タイヤを軽量化できる。実験例5の場合と比較して、ベルト積層体や、該ベルト積層体を含むタイヤを軽量化できることは、表3に示した単位面積当たりのスチールコードとゴムの合計重量の結果からも確認できる。また、実験例1~実験例4のスチールコードを含むベルト層を形成する際、上述のようにベルト層の厚みを抑制でき、ゴムの使用量を抑制できる。このため、表3に示したように、実験例1~実験例4のベルト積層体は、実験例5のベルト積層体と比較してコスト比を低減できることも確認できた。
 また、表1から、実験例1~実験例4のスチールコードにおいては、実験例5のスチールコードよりも曲げ剛性が高くなることを確認できた。その結果、表3に示すようにベルト積層体の曲げ剛性も実験例5の場合よりも高くなることを確認できた。従って、該ベルト積層体を含むタイヤの耐久性が高くなることを確認できた。
 また、素線のめっき被膜として、銅、亜鉛に加えてコバルトを添加した実験例4では接着耐久性試験の結果が、他の実験例よりもさらに高くなることが確認できた。従って、めっき被膜にコバルトを添加することで、スチールコードと、ゴムとの密着性を高め、ベルト層や、該ベルト層を含むベルト積層体、タイヤの耐久性を高められることが確認できた。
10、30、40       スチールコード
11、11A、62      素線
111            ブラスめっき膜
112            鋼線
12             中心部空隙
C1、C2、C3       外接円
D              素線径
50             波付き素線
51、51A、51B、51C 屈曲部
52             非屈曲部
P              ピッチ
S              平面
h              屈曲高さ
61             プリフォーム
70             ベルト積層体
71A            第1ベルト層
71B            第2ベルト層
71C            第3ベルト層
71D            第4ベルト層
72A            第1スチールコード
72B            第2スチールコード
72C            第3スチールコード
72D            第4スチールコード
73A            第1被覆用ゴム
73B            第2被覆用ゴム
73C            第3被覆用ゴム
73D            第4被覆用ゴム
80             タイヤ
81             トレッド部
82             サイドウォール部
83             ビード部
84             インナーライナー
85             カーカス
90、100         試験体
91             掴み治具
901            一方の端部
902            他方の端部
θ              開き角度
L              距離
1011           第1のローラー
1012           第2のローラー
1013           第3のローラー

Claims (6)

  1.  n本の素線が撚り合わされた1×n構造を有し、
     前記素線の本数nが4以上6以下であり、
     前記素線の素線径が0.40mm以上0.55mm以下であるスチールコード。
  2.  n本の前記素線のうち少なくとも1本の前記素線が、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付き素線である請求項1に記載のスチールコード。
  3.  前記素線が、表面にCuおよびZnを含むブラスめっき膜を有する請求項1または請求項2に記載のスチールコード。
  4.  前記ブラスめっき膜は、さらにCoおよびNiから選択された1種類以上の元素を含有する請求項3に記載のスチールコード。
  5.  第1ベルト層と、第2ベルト層と、第3ベルト層と、第4ベルト層とがその順に積層されており、
     前記第1ベルト層は、複数の第1スチールコードと、前記第1スチールコードを埋設する第1被覆用ゴムとを有し、
     前記第2ベルト層は、複数の第2スチールコードと、前記第2スチールコードを埋設する第2被覆用ゴムとを有し、
     前記第3ベルト層は、複数の第3スチールコードと、前記第3スチールコードを埋設する第3被覆用ゴムとを有し、
     前記第4ベルト層は、複数の第4スチールコードと、前記第4スチールコードを埋設する第4被覆用ゴムとを有し、
     前記第2スチールコード、および前記第3スチールコードは、請求項1から請求項4のいずれか1項に記載のスチールコードであり、
     前記第1スチールコード、および前記第4スチールコードの曲げ剛性は、前記第2スチールコードの曲げ剛性の20%以上90%以下であるベルト積層体。
  6.  タイヤであって、
     請求項5に記載のベルト積層体を含み、
     前記ベルト積層体が、カーカスよりも前記タイヤの半径方向の外側であり、かつトレッド部よりも前記タイヤの半径方向の内側に配置されたタイヤ。
PCT/JP2020/014279 2019-04-24 2020-03-27 スチールコード、ベルト積層体、タイヤ WO2020217858A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021515907A JP7419644B2 (ja) 2019-04-24 2020-03-27 ベルト積層体、タイヤ
CN202080021694.0A CN113574223A (zh) 2019-04-24 2020-03-27 钢丝帘线、带层叠体、轮胎
DE112020002051.7T DE112020002051T5 (de) 2019-04-24 2020-03-27 Stahlkabel, Bandstapel und Reifen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019083169 2019-04-24
JP2019-083169 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020217858A1 true WO2020217858A1 (ja) 2020-10-29

Family

ID=72942031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014279 WO2020217858A1 (ja) 2019-04-24 2020-03-27 スチールコード、ベルト積層体、タイヤ

Country Status (4)

Country Link
JP (1) JP7419644B2 (ja)
CN (1) CN113574223A (ja)
DE (1) DE112020002051T5 (ja)
WO (1) WO2020217858A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175503A (ja) * 1987-12-28 1989-07-12 Bridgestone Corp コード・ゴム複合体
JP2000045189A (ja) * 1998-07-29 2000-02-15 Sumitomo Rubber Ind Ltd 金属コード及びそれを用いた空気入りタイヤ
JP2016075003A (ja) * 2014-10-07 2016-05-12 栃木住友電工株式会社 スチールコードおよびその製造方法
JP2017101360A (ja) * 2015-12-03 2017-06-08 住友ゴム工業株式会社 ゴム・コード複合体、及びそれを用いた空気入りタイヤ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238480A (ja) 1994-02-21 1995-09-12 Sumitomo Electric Ind Ltd ゴム補強用スチールコードの製造方法及び製造装置
JP2920469B2 (ja) * 1994-05-16 1999-07-19 東京製綱株式会社 ラジアルタイヤ
JP3907440B2 (ja) * 2001-10-26 2007-04-18 横浜ゴム株式会社 重荷重用空気入りラジアルタイヤ
KR100550287B1 (ko) * 2003-12-23 2006-02-08 홍덕스틸코드주식회사 타이어 카카스 보강용 초극세선 스틸 코드 및 이를 적용한승용차용 래디얼 타이어
JP5847990B2 (ja) * 2008-11-14 2016-01-27 株式会社ブリヂストン ゴム物品補強用スチールコードおよび空気入りタイヤ
EP2390407B1 (en) * 2009-01-19 2016-08-03 Bridgestone Corporation Steel cord for reinforcing a tire, and pneumatic tire
JP5799594B2 (ja) * 2011-06-07 2015-10-28 横浜ゴム株式会社 乗用車用空気入りラジアルタイヤ
JP2017074921A (ja) * 2015-10-16 2017-04-20 栃木住友電工株式会社 タイヤ
JP6659302B2 (ja) * 2015-10-16 2020-03-04 栃木住友電工株式会社 スチールコードの製造方法
CN205347861U (zh) * 2015-12-02 2016-06-29 江苏宝钢精密钢丝有限公司 一种用于轮胎带束层的超高强度钢帘线
JP6980965B2 (ja) * 2017-04-20 2021-12-15 栃木住友電工株式会社 スチールコード、タイヤ
JP6885593B2 (ja) 2017-10-31 2021-06-16 株式会社落雷抑制システムズ 落雷抑制型避雷器および避雷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175503A (ja) * 1987-12-28 1989-07-12 Bridgestone Corp コード・ゴム複合体
JP2000045189A (ja) * 1998-07-29 2000-02-15 Sumitomo Rubber Ind Ltd 金属コード及びそれを用いた空気入りタイヤ
JP2016075003A (ja) * 2014-10-07 2016-05-12 栃木住友電工株式会社 スチールコードおよびその製造方法
JP2017101360A (ja) * 2015-12-03 2017-06-08 住友ゴム工業株式会社 ゴム・コード複合体、及びそれを用いた空気入りタイヤ

Also Published As

Publication number Publication date
DE112020002051T5 (de) 2022-01-27
CN113574223A (zh) 2021-10-29
JPWO2020217858A1 (ja) 2020-10-29
JP7419644B2 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5657777B2 (ja) ゴム物品補強用スチールコードおよびそれを用いた空気入りラジアルタイヤ
WO2012081624A1 (ja) ゴム物品補強用スチールコードおよびそれを用いた空気入りタイヤ
JP6516952B2 (ja) 空気入りタイヤ
WO2007083761A1 (ja) ゴム-スチールコード複合体およびこれを用いたタイヤ
JP6109558B2 (ja) 空気入りラジアルタイヤ
WO2018100961A1 (ja) ゴム-コード複合体、タイヤ用補強部材およびこれを用いたタイヤ
JP2013199193A (ja) 空気入りラジアルタイヤ
WO2020217858A1 (ja) スチールコード、ベルト積層体、タイヤ
JP6849703B2 (ja) タイヤ
CN108883663B (zh) 轮胎
JP3964495B2 (ja) ゴムとスチ−ル補強材との複合体、及びこれをベルト部に使用した空気入りラジアルタイヤ
JP5945139B2 (ja) 空気入りラジアルタイヤ
JP7142680B2 (ja) スチールコード、タイヤ
JP2007314012A (ja) 空気入りラジアルタイヤ
JP2007031890A (ja) スチールコード及び空気入りラジアルタイヤ
JP2637516B2 (ja) 空気入りラジアルタイヤ
JP6109559B2 (ja) 空気入りタイヤ
JP5280426B2 (ja) 空気入りタイヤ
JP2011025798A (ja) 空気入りタイヤ
US20220307197A1 (en) Steel cord and tire
JP2018086984A (ja) ゴム−コード複合体、タイヤ用補強部材およびこれを用いたタイヤ
JP2561672B2 (ja) 改良されたラジアルタイヤ
JP2020062968A (ja) タイヤ
JP2012106568A (ja) 空気入りタイヤ
JP2020062970A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515907

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20794916

Country of ref document: EP

Kind code of ref document: A1