WO2020217375A1 - ステータ、モータ、送風機、空気調和装置およびステータの製造方法 - Google Patents

ステータ、モータ、送風機、空気調和装置およびステータの製造方法 Download PDF

Info

Publication number
WO2020217375A1
WO2020217375A1 PCT/JP2019/017596 JP2019017596W WO2020217375A1 WO 2020217375 A1 WO2020217375 A1 WO 2020217375A1 JP 2019017596 W JP2019017596 W JP 2019017596W WO 2020217375 A1 WO2020217375 A1 WO 2020217375A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
teeth
axis
stator
maximum thickness
Prior art date
Application number
PCT/JP2019/017596
Other languages
English (en)
French (fr)
Inventor
貴也 下川
洋樹 麻生
諒伍 ▲高▼橋
直己 田村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/602,702 priority Critical patent/US20220166279A1/en
Priority to JP2021515403A priority patent/JP7109658B2/ja
Priority to CN201980095553.0A priority patent/CN113826308A/zh
Priority to EP19925819.5A priority patent/EP3961870A4/en
Priority to PCT/JP2019/017596 priority patent/WO2020217375A1/ja
Priority to AU2019442093A priority patent/AU2019442093B2/en
Publication of WO2020217375A1 publication Critical patent/WO2020217375A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator, a motor, a blower, an air conditioner, and a method for manufacturing a stator.
  • the stator has a stay core, an insulator, and a coil that is wound around the stator core via the insulator.
  • the insulator is made of resin and is integrally molded with the stator core (see, for example, Patent Document 1).
  • the present invention has been made to solve the above problems, and an object of the present invention is to reduce the thickness of the insulator.
  • the stator of the present invention has a stator core having a yoke extending in the circumferential direction centered on the axis, teeth extending from the yoke toward the axis, an insulator having a winding portion surrounding the teeth, and an insulator winding portion. It has a coil wound around it.
  • the insulator winding portion is located on one side of the teeth in the axial direction, a second end located on one side of the teeth, and a second end located on the other side of the teeth. It has a side part to be used.
  • the first end has a maximum thickness T1 in the axial direction and the second end has a maximum thickness T2 in the axial direction.
  • the side portion has a maximum thickness T3 in the circumferential direction.
  • the maximum thicknesses T1, T2 and T3 satisfy T3 ⁇ T1 ⁇ T2.
  • the insulator has a gate mark on the same side as the first end in the axial direction.
  • the thickness of the first portion of the winding portion of the insulator that is, the portion near the gate of the molding die and where the resin has high fluidity is thin, the thickness of the insulator can be effectively reduced. it can.
  • FIG. It is a partial cross-sectional view which shows the motor of Embodiment 1.
  • FIG. It is sectional drawing which shows the motor of Embodiment 1.
  • FIG. It is a perspective view which shows the stator of Embodiment 1.
  • FIG. It is a top view which shows the stator of Embodiment 1.
  • It is a perspective view which shows the insulator of Embodiment 1.
  • FIG. It is sectional drawing which shows the tooth, the insulator and the coil of Embodiment 1.
  • FIG. It is sectional drawing which shows the molding die for forming the insulator of Embodiment 1.
  • FIG. It is sectional drawing of the molding die in the line segment VIII-VIII shown in FIG. It is sectional drawing which shows the molding die for molding the mold resin part of Embodiment 1.
  • FIG. 1 It is a flowchart which shows the manufacturing process of the motor of Embodiment 1. It is a graph which shows the relationship between the thickness of an insulator and the motor efficiency. It is a graph which shows the relationship between the resin temperature at the time of molding, melt viscosity and fluidity. It is a graph which shows the relationship between a forming pressure and a flow length. The relationship between the maximum thicknesses T1, T2, and T3 of the first end portion, the second end portion, and the side portion of the insulator is shown in comparison between the first embodiment (A) and the comparative example (B). is there. It is sectional drawing which shows the tooth, the insulator and the coil of Embodiment 2. FIG. FIG. FIG.
  • FIG 3A is a cross-sectional view showing a tooth, an insulator and a coil of the third embodiment
  • FIGS. (B) and (C) are enlarged views of a corner portion of the insulator.
  • FIG. 1 is a vertical sectional view showing a motor 100 according to the first embodiment of the present invention.
  • the motor 100 is, for example, a brushless DC motor used in a blower of an air conditioner and driven by an inverter. Further, the motor 100 is an IPM (Interior Permanent Magnet) motor in which a magnet 55 is embedded in a rotor 5.
  • IPM Interior Permanent Magnet
  • the motor 100 has a rotor 5 having a shaft 7 and a mold stator 4 surrounding the rotor 5.
  • the mold stator 4 has an annular stator 1 that surrounds the rotor 5 and a mold resin portion 40 that covers the stator 1.
  • the shaft 7 is a rotation shaft of the rotor 5.
  • the direction of the central axis C1 of the shaft 7 is referred to as "axial direction”.
  • the circumferential direction centered on the central axis C1 of the shaft 7 is referred to as a “circumferential direction”, and is indicated by an arrow S in FIG. 2 and the like.
  • the radial direction centered on the central axis C1 of the shaft 7 is referred to as "diameter direction”.
  • a cross-sectional view in a cross section parallel to the axial direction is referred to as a vertical cross-sectional view.
  • the shaft 7 projects from the mold stator 4 to the left side in FIG. 1, and an impeller 505 of a blower (FIG. 17 (A)) is attached to the attachment portion 7a formed on the protrusion. Therefore, the protruding side (left side in FIG. 1) of the shaft 7 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as "counter-load side”.
  • FIG. 2 is a cross-sectional view showing a portion of the motor 100 excluding the mold resin portion 40 (FIG. 1).
  • the rotor 5 includes a shaft 7 which is a rotation shaft, a rotor core 50 provided at a distance outward in the radial direction from the shaft 7, a plurality of magnets 55 embedded in the rotor core 50, and the shaft 7 and the rotor core 50. It has a resin portion 6 provided between the two.
  • the rotor core 50 is an annular member centered on the central axis C1, and the inner circumference of the rotor core 50 faces the shaft 7 at a distance.
  • the rotor core 50 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by caulking, welding, or bonding.
  • the laminated element is, for example, an electromagnetic steel plate, and has a thickness of 0.2 mm to 0.5 mm.
  • the rotor core 50 has a plurality of magnet insertion holes 51 in the circumferential direction.
  • the magnet insertion holes 51 are arranged equidistantly in the circumferential direction and equidistant from the central axis C1.
  • the number of magnet insertion holes 51 is 10 here.
  • the magnet insertion hole 51 is formed along the outer circumference of the rotor core 50, and extends the rotor core 50 from one end to the other end in the axial direction.
  • the magnet 55 is inserted into each magnet insertion hole 51.
  • the magnet 55 is also referred to as a main magnet.
  • the magnet 55 has a flat plate shape, has a thickness in the radial direction, and is magnetized in the thickness direction.
  • Each magnet 55 constitutes a magnetic pole.
  • the number of magnets 55 is 10, and therefore the number of poles of the rotor 5 is 10.
  • the number of poles of the rotor 5 is not limited to 10 poles, and may be 2 poles or more.
  • the circumferential center of the magnet insertion hole 51 is the pole center, and the space between the adjacent magnet insertion holes 51 is the pole.
  • the magnet 55 is a rare earth magnet, and more specifically, a neodymium magnet containing Nd (neodymium), Fe (iron) and B (boron), or a samarium cobalt magnet containing Sm (samarium) and Co (cobalt). is there.
  • a ferrite magnet containing Fe may be used instead of the rare earth magnet.
  • one magnet 55 is arranged in one magnet insertion hole 51 here, two or more magnets 55 may be arranged in one magnet insertion hole 51.
  • Flux barriers 52 which are voids, are formed at both ends of the magnet insertion hole 51 in the circumferential direction.
  • the flux barrier 52 suppresses a short circuit of magnetic flux between adjacent magnets 55.
  • a core hole 54 is formed inside the rotor core 50 in the radial direction with respect to the magnet insertion hole 51.
  • the core hole 54 is formed here at a position corresponding to the polar center.
  • the core hole 54 is formed in order to reduce the core material of the rotor core 50, but it does not necessarily have to be formed.
  • the rotor core 50 has a so-called flower-round outer circumference in which the outer diameter is the largest at the pole center of each magnetic pole and the outer diameter is the smallest between the poles in a cross section orthogonal to the axial direction.
  • the outer circumference of the rotor core 50 is not limited to such a flower circle shape, and may be a circular shape.
  • a resin portion 6 is provided between the shaft 7 and the rotor core 50.
  • the resin portion 6 holds the shaft 7 and the rotor core 50 in a state of being separated from each other, and is formed of a non-magnetic material.
  • the resin portion 6 is formed of a thermoplastic resin such as PBT (polybutylene terephthalate).
  • the core hole 54 of the rotor core 50 is also filled with the same resin as the resin portion 6 to form the filling portion 61.
  • the resin portion 6 also covers both ends in the axial direction of the rotor core 50.
  • the resin portion 6 holds the sensor magnet 56 on the opposite load side of the rotor core 50.
  • the sensor magnet 56 is an annular magnet centered on the axis C1 and has the same number of magnetic poles as the magnet 55.
  • the sensor magnet 56 is magnetized in the axial direction. The magnetic flux of the sensor magnet 56 is detected by the magnetic sensor 44 described later.
  • the shaft 7 may be fitted into the center hole of the rotor core 50 without providing the resin portion 6.
  • IPM Inner Permanent Magnet
  • SPM Surface Permanent Magnet
  • the mold stator 4 has the stator 1 and the mold resin portion 40.
  • the mold resin portion 40 is formed of a thermosetting resin such as BMC (bulk molding compound).
  • BMC bulk molding compound
  • the mold resin portion 40 has an opening 41 on the load side and a bearing support portion 42 on the non-load side.
  • the rotor 5 is inserted through the opening 41 into the hollow portion inside the mold stator 4.
  • a metal bracket 73 is attached to the opening 41 of the mold resin portion 40.
  • the bracket 73 holds one bearing 71 that supports the shaft 7.
  • a cap 74 is attached to the outside of the bracket 73.
  • the bearing support portion 42 of the mold resin portion 40 has a cylindrical inner peripheral surface, and the other bearing 72 that supports the shaft 7 is held on the inner peripheral surface.
  • the circuit board 43 is held on the opposite load side of the stator 1.
  • the circuit board 43 is a printed circuit board on which a drive circuit such as a power transistor for driving the motor 100 is mounted, and a lead wire 45 is wired.
  • the lead wire 45 of the circuit board 43 is pulled out from the lead wire lead-out component 46 attached to the outer peripheral portion of the mold resin portion 40 to the outside of the motor 100.
  • a magnetic sensor 44 is attached to the surface of the circuit board 43 on the stator 1 side so as to face the sensor magnet 56 in the axial direction.
  • the magnetic sensor 44 is composed of, for example, a Hall effect element, an MR (Magnet Resistive) element, a GMR (Giant Magneto Resistive) element, or a magnetic impedance element.
  • the magnetic sensor 44 outputs a binary signal when it faces the north pole of the sensor magnet 56 and when it corresponds to the south pole. From the output signal of the magnetic sensor 44, the position of the magnet 55, that is, the rotation position of the rotor 5 is detected.
  • sensorless control may be performed without providing the sensor magnet 56 and the magnetic sensor 44 to estimate the rotational position of the rotor 5 based on the current or voltage flowing through the coil 3.
  • the bracket 73 is press-fitted into the annular portion provided on the outer peripheral edge of the opening 41 of the mold resin portion 40.
  • the bracket 73 is made of a conductive metal, for example, a galvanized steel sheet.
  • the cap 74 is attached to the outside of the bracket 73 to prevent water or the like from entering the bearing 71.
  • the periphery of the stator 1 is covered with a mold resin portion 40, but instead of providing the mold resin portion 40, the outer circumference of the stator 1 is fitted inside a cylindrical shell made of metal. May be good.
  • the stator 1 surrounds the rotor 5 from the outside in the radial direction.
  • the stator 1 has a stator core 10, an insulator 2 provided on the stator core 10, and a coil 3 wound around the stator core 10 via the insulator 2.
  • the stator core 10 is formed by laminating a plurality of laminated elements in the axial direction and fixing them by caulking, welding, or bonding.
  • the laminated element is, for example, an electromagnetic steel plate.
  • the thickness of the laminated steel sheet is, for example, 0.2 mm to 0.5 mm.
  • the stator core 10 has a yoke 11 extending annularly in the circumferential direction about the central axis C1 and a plurality of teeth 12 extending radially inward from the yoke 11 (toward the central axis C1).
  • a slot 13 is formed between adjacent teeth 12.
  • the radial inner tip surface (tip surface 12e shown in FIG. 3) of the teeth 12 faces the outer peripheral surface of the rotor 5.
  • the number of teeth 12 is 9 here. However, the number of teeth 12 is not limited to 9, and may be 2 or more.
  • the yoke 11 and the teeth 12 are provided with caulking portions 18 and 19 for fixing the plurality of laminated elements described above.
  • the arrangement of the caulking portion is not limited to these positions.
  • the laminated element is not limited to caulking, and may be fixed by welding or adhesion.
  • the stator core 10 has a configuration in which each tooth 12 is divided into a plurality of connecting cores 10A.
  • the connecting core 10A is divided by a dividing surface 14 formed on the yoke 11.
  • the dividing surface 14 extends radially outward from the inner peripheral surface of the yoke 11.
  • a plastically deformable thin-walled portion is formed between the end of the dividing surface 14 and the outer peripheral surface of the yoke 11.
  • the stator core 10 can be expanded in a strip shape by the plastic deformation of the thin portion.
  • the stator core 10 is not limited to a combination of the connecting cores 10A, and may be an annular laminated steel plate laminated in the axial direction.
  • a resin insulator 2 is provided so as to surround the teeth 12 of the stator core 10.
  • the coil 3 is composed of a magnet wire and is wound around the teeth 12 via an insulator 2.
  • the coil 3 is housed in a slot 13 between adjacent teeth 12.
  • ⁇ Structure of insulator 2> 3 and 4 are a perspective view and a top view showing the stator core 10 and the insulator 2.
  • the insulator 2 is formed of an insulating resin, for example, a thermoplastic resin such as PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), LCP (liquid crystal polymer), PET (polyethylene terephthalate) and the like.
  • the insulator 2 is formed by integrally molding the resin with the stator core 10 or by assembling the resin molded body to the stator core 10.
  • stator core 10 is composed of the connecting core 10A (FIG. 2) as described above, the insulator 2 is integrally molded with the teeth 12 in a state where the stator core 10 is spread out in a strip shape, and the insulator 2 is formed into the teeth 12 via the insulator 2.
  • the coil 3 can be wound.
  • FIG. 5 is a perspective view showing one tooth 12 of the stator core 10 and an insulator 2 surrounding the tooth 12.
  • the insulator 2 includes a winding portion 21 that surrounds the teeth 12 from both sides in the circumferential direction and both sides in the axial direction, an inner side wall portion 22 adjacent to the radial inner side of the winding portion 21, and an outer wall portion adjacent to the radial outer side of the winding portion 21. It has 23 and.
  • the inner side wall portion 22 is provided at the tip portion on the inner side in the radial direction of the teeth 12.
  • the outer side wall portion 23 is provided so as to straddle the root portion on the outer side in the radial direction of the tooth 12 and the yoke 11.
  • the inner side wall portion 22 and the outer wall portion 23 face each other in the radial direction.
  • a coil 3 (FIG. 3) is wound around the winding portion 21.
  • the inner side wall portion 22 and the outer wall portion 23 guide the coil 3 from both sides in the radial direction.
  • the winding portion 21 has a first end portion 21a located on one side of the teeth 12 in the axial direction, a second end portion 21b located on the other side of the teeth 12 in the axial direction, and the teeth 12 in the circumferential direction. It has a pair of side portions 21c located on both sides of the.
  • the inner side wall portion 22 has a first wall portion 22a located on one side of the teeth 12 in the axial direction, a second wall portion 22b located on the other side of the teeth 12 in the axial direction, and teeth in the circumferential direction. It has a pair of side wall portions 22c located on both sides of the twelve.
  • the outer side wall portion 23 includes a first wall portion 23a located on one side of the teeth 12 in the axial direction, a second wall portion 23b located on the other side of the teeth 12 in the axial direction, and teeth in the circumferential direction. It has a pair of side wall portions 23c located on both sides of the twelve.
  • the first end 21a of the winding portion 21, the first wall portion 22a of the inner side wall portion 22, and the first wall portion 23a of the outer wall portion 23 are on the same side in the axial direction. Further, the second end portion 21b of the winding portion 21, the second wall portion 2b of the inner side wall portion 22, and the second wall portion 23b of the outer wall portion 23 are on the same side in the axial direction.
  • a gate mark G is formed on the first wall portion 22a of the inner side wall portion 22.
  • the gate mark G is a portion corresponding to the gate 313 of the molding die used for molding the insulator 2.
  • the gate mark G is formed as, for example, a concave portion or a convex portion on the radial inner surface of the first wall portion 22a of the inner side wall portion 22.
  • FIG. 6 is a cross-sectional view showing the teeth 12, the winding portion 21 of the insulator 2, and the coil 3.
  • FIG. 6 is a cross-sectional view of a plane orthogonal to the extending direction of the teeth 12.
  • the teeth 12 has a rectangular cross-sectional shape in a cross section orthogonal to the extending direction thereof.
  • the axial end faces 12a and 12b of the teeth 12 are covered with the first end portion 21a and the second end portion 21b of the winding portion 21.
  • the circumferential end surface 12c of the teeth 12 is covered with the side portion 21c of the winding portion 21.
  • the first end 21a of the winding portion 21 has a maximum thickness T1 in the axial direction. That is, the first end portion 21a of the winding portion 21 has an outer peripheral surface 211 on the side opposite to the end surface 12a of the teeth 12. The maximum distance from the end surface 12a of the teeth 12 to the outer peripheral surface 211 is the maximum thickness T1.
  • the outer peripheral surface 211 of the first end portion 21a is shown as a curved surface that is convex on the side opposite to the teeth 12 in the axial direction, but may be a flat surface.
  • the second end 21b of the winding portion 21 has a maximum thickness T2 in the axial direction. That is, the second end portion 21b of the winding portion 21 has an outer peripheral surface 212 on the side opposite to the end surface 12b of the teeth 12. The maximum distance from the end surface 12b of the teeth 12 to the outer peripheral surface 212 is the maximum thickness T2.
  • the outer peripheral surface 212 of the second end portion 21b is shown as a curved surface that is convex on the side opposite to the teeth 12 in the axial direction, but may be a flat surface.
  • the side portion 21c of the winding portion 21 has a maximum thickness T3 in the circumferential direction.
  • the thickness of the side portion 21c is constant in the axial direction, but it does not necessarily have to be constant.
  • the maximum thicknesses T1, T2, and T3 of each portion 21a, 21b, and 21c of the winding portion 21 satisfy T3 ⁇ T1 ⁇ T2.
  • the maximum thickness T1 of the first end portion 21a on the same side as the gate mark G in the axial direction is larger than the maximum thickness T2 of the second end portion 21b on the side opposite to the gate mark G. thin. Further, the maximum thickness T3 of the side portion 21c is further thinner than the maximum thicknesses T1 and T2.
  • FIG. 7 is a diagram showing a molding die 30 for molding the insulator 2.
  • the molding die 30 has an upper mold 31 which is a movable mold and a lower mold 32 which is a fixed mold, and a cavity 33 is formed between them.
  • the stator core 10 is installed in the cavity 33 in a strip-shaped state.
  • a molding space 34 is formed for each tooth 12 of the stator core 10.
  • a core 38 for securing a space for arranging the coil 3 (FIG. 6) is arranged on both sides of each tooth 12 in the cavity 33.
  • stator core 10 spread in a band shape is installed in the cavity 33 here, an annular stator core 10 may be installed.
  • the upper mold 31 has a spool 311 for injecting resin into the cavity 33, a runner 312, and a gate 313.
  • the spool 311 is a flow path through which the molten resin flows from the cylinder 315, which is an injection device.
  • the gate 313 is an injection port provided corresponding to each tooth 12 in the cavity 33.
  • the runner 312 is a flow path that branches from the spool 311 and connects to each gate 313.
  • FIG. 8 is a cross-sectional view of the line segment VIII-VIII shown in FIG. 7 in the direction of the arrow.
  • the cavity 33 has a winding portion area 35 for forming the winding portion 21 of the insulator 2, an inner side wall portion area 36 for forming the inner side wall portion 22, and an outer wall portion area for forming the outer wall portion 23. It has 37 and.
  • the gate 313 described above is open to a portion 361 forming the first wall portion 22a (FIG. 5) of the inner side wall portion 22 in the inner side wall portion area 36 of the cavity 33.
  • the resin injected into the cavity 33 from the gate 313 has a second end 21b and a second wall 22b from the side forming the first end 21a and the first wall 22a, 23a (FIG. 5). , 23b (FIG. 5) flows toward the forming side.
  • FIG. 9 is a cross-sectional view showing a molding die 80 used when the stator 1 and the shaft 7 are integrally molded with the molding resin.
  • the molding die 80 includes an upper mold 81 which is a movable mold and a lower mold 82 which is a fixed mold, and a cavity 83 is formed between them.
  • the lower mold 82 is formed with a gate 84 for injecting resin into the cavity 83.
  • the lower mold 82 is formed with a columnar core 85 projecting into the cavity 83.
  • the core 85 is a portion that engages with the inside of the stator core 10.
  • a large diameter portion 86 is formed so as to project radially outward from the core 85.
  • the large diameter portion 86 is a portion corresponding to the opening 41 (FIG. 1) of the mold stator 4.
  • FIG. 10 is a flowchart showing a manufacturing process of the motor 100. First, a plurality of laminated elements are laminated in the axial direction and fixed by caulking or the like to form the stator core 10 (step S101).
  • step S102 the insulator 2 is integrally molded with the stator core 10 (step S102). That is, the upper mold 31 of the molding die 30 shown in FIGS. 7 and 8 is moved upward to open the cavity 33, and the stator core 10 is installed in the cavity 33. After that, the upper mold 31 is moved downward to close the cavity 33. In this state, a molten resin such as PBT is injected from the cylinder 315 into the cavity 33 via the spool 311 and the runner 312 and the gate 313.
  • the resin in the cavity 33 is cured by cooling the molding die 30.
  • the resin cured in the winding portion area 35 becomes the winding portion 21
  • the resin cured in the inner side wall portion area 36 becomes the inner side wall portion 22
  • the resin cured in the outer wall portion area 37 becomes the outer wall portion 23.
  • the upper mold 31 of the molding mold 30 is moved upward to open the cavity 33, and the stator core 10 in which the insulator 2 is integrally molded is taken out.
  • the coil 3 is wound around the stator core 10 via the insulator 2 (step S103). At this stage, since the stator core 10 is spread out in a strip shape, the coil 3 can be easily wound.
  • stator core 10 After winding the coil 3, the stator core 10 is bent in an annular shape and welded at both ends to form the stator 1 shown in FIG.
  • step S104 the circuit board 43 is attached to the stator 1 and these are installed in the molding die 80 to form the mold resin portion 40 (step S104). That is, the upper mold 81 of the molding die 80 shown in FIG. 9 is moved upward to open the cavity 83, and the stator 1 is installed in the cavity 83. After that, the upper mold 81 is moved downward to close the cavity 83, and a mold resin such as BMC is injected into the cavity 83 from the gate 84. The mold resin injected into the cavity 83 covers the outer peripheral side and the unloaded side of the stator 1.
  • the mold resin in the cavity 83 is cured by injecting the mold resin into the cavity 83 and then heating the molding mold 80. As a result, the production of the mold stator 4 in which the stator 1 is covered with the mold resin portion 40 is completed.
  • the rotor 5 is formed separately from steps S101 to S104. That is, a plurality of laminated elements are laminated in the axial direction and fixed by caulking or the like to form the rotor core 50, and the magnet 55 is inserted into the magnet insertion hole 51. Further, the shaft 7, the rotor core 50, the magnet 55, and the sensor magnet 56 are integrally molded with the resin to be the resin portion 6. As a result, the rotor 5 is formed.
  • step S106 the bearings 71 and 72 are attached to the shaft 7 of the rotor 5 and inserted into the inner portion of the stator 1 through the opening 41 of the mold stator 4 (step S106). Further, the bracket 73 is attached to the opening 41 of the mold stator 4, and the cap 74 is attached to the outside of the bracket 15. As a result, the production of the motor 100 shown in FIG. 1 is completed.
  • steps S101 to S104 correspond to the manufacturing process of the stator 1 (manufacturing method of the stator 1).
  • the resistance R of the coil 3 is represented by ⁇ ⁇ L / S using the resistivity ⁇ of the coil 3, the length L, and the cross-sectional area S. That is, the resistance R of the coil 3 increases in proportion to the length L of the coil 3. Therefore, the shorter the length per circumference of the coil 3 wound around the teeth 12 (hereinafter referred to as the winding length), the smaller the resistance R becomes.
  • the smaller the resistance R the smaller the copper loss, which is one of the motor losses, and the higher the motor efficiency. In order to shorten the winding length of the coil 3, it is effective to reduce the thickness of the winding portion 21 of the insulator 2 around which the coil 3 is wound.
  • the number of turns of the coil 3 affects the maximum output of the motor 100, in general, after determining the number of turns of the coil 3, the wire diameter as large as possible within the range that can be accommodated in the slot 13 is selected.
  • reducing the maximum thicknesses T1 and T2 of the first end 21a and the second end 21b of the winding portion 21 only contributes to shortening the winding length of the coil 3. That is, the maximum thickness T3 in the circumferential direction contributes more to the improvement of motor efficiency than the maximum thickness T1 and T2 in the axial direction of the winding portion 21.
  • FIG. 11 shows the simulation results regarding the contribution of the maximum thicknesses T1, T2, and T3 to the improvement of motor efficiency.
  • the motor efficiency is the ratio (%) of the output (rotation speed x torque) to the electric power input to the motor 100.
  • the line segment E1 shows a change in motor efficiency when the maximum thicknesses T1 and T2 are fixed at 1 mm and the maximum thickness T3 is changed.
  • the line segment E2 shows a change in motor efficiency when the maximum thickness T3 is constant at 0.4 mm and the maximum thicknesses T1 and T2 are changed.
  • the line segment E3 shows a change in motor efficiency when the maximum thickness T2 is 1 mm and the maximum thickness T3 is 0.4 mm, respectively, and the maximum thickness T1 is changed.
  • the line segment E4 shows a change in motor efficiency when the maximum thickness T1 is 1 mm and the maximum thickness T3 is 0.4 mm, respectively, and the maximum thickness T2 is changed.
  • the maximum thickness T3 of the side portion 21c is made the thinnest, that is, T3 ⁇ T1, T2.
  • the maximum thickness T3 of the side portion 21c of the winding portion 21 is affected by the positional accuracy of the stator core 10 installed in the molding die 30, there is a limit to reducing the maximum thickness T3. Therefore, in addition to the maximum thickness T3, it is necessary to reduce the maximum thickness T1 of the first end portion 21a or the maximum thickness T2 of the second end portion 21b.
  • thermoplastic resin is heated by the cylinder 315 to be in a molten state, and is injected from the spool 311 into the cavity 33 via the runner 312 and the gate 313. Cylinder.
  • the temperature of the molding die 30 is significantly lower than the temperature of the cylinder 315, and the temperature of the stator core 10 is lower than the temperature of the molding die 30. Therefore, the temperature of the resin decreases as the resin flows through the spool 311 and the runner 312 and the gate 313.
  • FIG. 12 shows the relationship between the temperature of the thermoplastic resin and the viscosity and fluidity. From FIG. 12, it can be seen that the viscosity and fluidity decrease as the temperature of the resin decreases.
  • FIG. 13 shows the relationship between the molding pressure and the flow length for the three resin thicknesses Ta, Tb, and Tc (Ta ⁇ Tb ⁇ Tc). From FIG. 13, it can be seen that the higher the molding pressure, the longer the flow length, but when the resin thickness is thin, the rate of increase in the flow length due to the molding pressure is small.
  • the gate 313 is open in the cavity 33 to the portion 361 forming the first wall portion 22a (FIG. 5) of the inner side wall portion 22.
  • the thickness of the side portion 21c is the narrowest. Therefore, when the resin passes through the portion of the cavity 33 that forms the side portion 21c of the winding portion 21, the heat of the resin is taken away by the molding die 30 and the stator core 10, the temperature is lowered, and the resin is partially removed. There is a possibility of hardening, and it is difficult for the molding pressure to be uniformly transmitted to the entire area of the cavity 33.
  • the gate 313 side of the cavity 33 has a higher fluidity of the resin than the side opposite to the gate 313 and is suitable for thinning.
  • the maximum thickness T1 of the first end portion 21a near the gate 313 is made thinner than the maximum thickness T2 of the second end portion 21b far from the gate 313. That is, the maximum thicknesses T1, T2, and T3 satisfy T3 ⁇ T1 ⁇ T2, and the insulator 2 is thinned.
  • FIG. 14 shows a first embodiment in which the maximum thicknesses T1, T2, and T3 of the insulator 2 satisfy T3 ⁇ T1 ⁇ T2, and a comparative example in which the maximum thicknesses T3 ⁇ T2 ⁇ T1 are satisfied. It is a schematic diagram which shows how thin T3 can be made.
  • the second end 21b of the winding portion 21 is far from the gate 313, and the fluidity of the resin is low. Therefore, if an attempt is made to reduce the maximum thickness T2 of the second end portion 21b, the resin does not sufficiently spread to the second end portion 21b, resulting in molding defects.
  • the maximum thickness T1 of the first end portion 21a can be effectively reduced.
  • the gate 313 is formed as a concave or convex gate mark G on the surface of the first wall portion 22a (FIG. 5) of the inner side wall portion 22 of the insulator 2.
  • the gate mark G is not limited to the first wall portion 22a of the inner side wall portion 22, and may be formed on the first wall portion 23a of the outer wall portion 23.
  • the winding portion 21 of the insulator 2 has a first end portion 21a located on one side in the circumferential direction of the teeth 12 and a second end located on the other side. It has a portion 21b and a side portion 21c located on one side of the teeth 12 in the circumferential direction.
  • the maximum thickness T1 in the axial direction of the first end portion 21a, the maximum thickness T2 in the axial direction of the second end portion 21b, and the maximum thickness T3 in the circumferential direction of the side portion 21c are T3 ⁇ T1 ⁇ . Satisfy T2.
  • the insulator 2 has a gate mark G on the same side as the first end portion 21a in the axial direction. Therefore, the thickness of the insulator 2 can be effectively reduced, and as a result, the winding density of the coil 3 can be improved and the motor efficiency can be improved.
  • FIG. 15 is a cross-sectional view showing the teeth 12 in the second embodiment, the winding portion 21 of the insulator 2A, and the coil 3.
  • the winding portion 21 of the insulator 2A has a first end portion 21a, a second end portion 21b, and a side portion 21c, as in the first embodiment.
  • the maximum thicknesses T1, T2, and T3 of the first end portion 21a, the second end portion 21b, and the side portion 21c of the winding portion 21 of the insulator 2A are T3 ⁇ T1 ⁇ T2.
  • the gate mark G (FIG. 5) is on the same side as the first end portion 21a in the axial direction.
  • the outer peripheral surface 211 of the first end portion 21a is a curved surface that is convex on the side opposite to the teeth 12 in the axial direction.
  • the outer peripheral surface 211 is also an arcuate surface having a radius of curvature RT1 in a plane orthogonal to the extending direction of the teeth 12.
  • the outer peripheral surface 212 of the second end portion 21b is a curved surface that is convex on the side opposite to the teeth 12 in the axial direction.
  • the outer peripheral surface 212 is also an arcuate surface having a radius of curvature RT2 in a plane orthogonal to the extending direction of the teeth 12.
  • the radius of curvature RT1 of the outer peripheral surface 211 of the first end 21a and the radius of curvature RT2 of the outer peripheral surface 212 of the second end 21b satisfy RT1> RT2.
  • the thickness of the corner 213 between the first end 21a and the side 21c may be too thin. is there. Therefore, the resin does not spread over the entire insulator 21A during molding, and molding defects may occur.
  • the radius of curvature RT1 of the outer peripheral surface 211 of the first end 21a is larger than the radius of curvature RT2 of the outer peripheral surface 212 of the second end 21b. Therefore, even if the maximum thickness T1 of the first end portion 21a of the winding portion 21 is thinned, the corner portion 213 is not too thin and the occurrence of molding defects is suppressed.
  • the motor of the second embodiment is configured in the same manner as the motor 100 of the first embodiment except for the above-mentioned points.
  • the radius of curvature RT1 of the outer peripheral surface 211 of the first end 21a of the winding portion 21 of the insulator 2A and the radius of curvature RT2 of the outer peripheral surface 212 of the second end 21b RT1> RT2 is satisfied. Therefore, the maximum thickness T1 of the first end portion 21a of the winding portion 21 of the insulator 2A can be further reduced without causing molding defects. As a result, the winding density of the coil 3 can be improved and the motor efficiency can be improved.
  • outer peripheral surface 211 of the first end portion 21a and the outer peripheral surface 212 of the second end portion 21b are arcuate curved surfaces, but if the curved surface has a radius of curvature defined, it is not necessarily arcuate. It does not have to be.
  • the maximum thicknesses T1, T2, and T3 of the winding portion 21 of the insulator 2A satisfy T3 ⁇ T1 ⁇ T2, but in the second embodiment, if RT1> RT2 and T1 ⁇ T2 are satisfied, the maximum thickness is satisfied.
  • the effect of thinning T1 can be obtained.
  • FIG. 16A is a cross-sectional view showing the teeth 12 in the third embodiment, the winding portion 21 of the insulator 2B, and the coil 3.
  • the winding portion 21 of the insulator 2B has a first end portion 21a, a second end portion 21b, and a side portion 21c, as in the first embodiment.
  • the maximum thicknesses T1, T2, and T3 of the first end portion 21a, the second end portion 21b, and the side portion 21c of the winding portion 21 of the insulator 2B are T3 ⁇ T1 ⁇ T2.
  • the gate mark G (FIG. 5) is on the same side as the first end portion 21a in the axial direction.
  • the insulator 2B of the third embodiment has a corner portion 213 as a first corner portion between the first end portion 21a and the side portion 21c. As shown enlarged in FIG. 16C, the corner portion 213 is an arcuate surface having a radius of curvature R1 in a plane orthogonal to the extending direction of the teeth 12.
  • the insulator 2B also has a corner portion 214 as a second corner portion between the second end portion 21b and the side portion 21c. As shown enlarged in FIG. 16B, the corner portion 214 is an arcuate surface having a radius of curvature R2 in a plane orthogonal to the extending direction of the teeth 12.
  • the radius of curvature R1 of the corner portion 213 and the radius of curvature R2 of the corner portion 214 satisfy R1 ⁇ R2.
  • the corner portions 213 and 214 of the winding portion 21 are all curved surfaces due to the limitation of the mold shape.
  • the teeth 12 is composed of a laminated body of punched laminated steel plates, all four corners in the cross section of the teeth 12 are at right angles.
  • the thickness of the corner portion 213 covering the corner portion of the teeth 12 may become too thin when the maximum thickness T1 of the first end portion 21a is thinned. There is sex. That is, there is a possibility that the resin does not spread over the entire insulator 2B during molding.
  • the radius of curvature R1 of the corner portion 213 on the first end portion 21a side is smaller than the radius of curvature R2 of the corner portion 214 on the second end portion 21b side. Therefore, the thickness of the corner portion 213 covering the corner portion of the tooth 12 does not become too thin, and the occurrence of molding defects can be suppressed.
  • radius of curvature R1 of the corner portion 213 and the maximum thickness T1 of the first end portion 21a satisfy R1 ⁇ T1.
  • the thickness of the portion 213 may be thinner than the thickness of the side portion 21c. That is, there is a possibility that the resin does not spread over the entire insulator 2B during molding.
  • the radius of curvature R1 of the corner portion 213 is equal to or less than the maximum thickness T1 of the first end portion 21a. Therefore, even when the outer peripheral surface 211 of the first end portion 21a is close to a flat surface, the thickness of the corner portion 213 can be maintained at a thickness capable of resin molding.
  • the outer peripheral surfaces 211 and 212 of the first end portion 21a and the second end portion 21b may be formed into an arcuate curved surface, and the respective radii of curvature RT1 and RT2 (FIG. 15). ) May satisfy RT1> RT2.
  • the motor of the third embodiment is configured in the same manner as the motor 100 of the first embodiment except for the above-mentioned points.
  • the radius of curvature R1 of the corner portion 213 between the first end portion 21a and the side portion 21c is the angle between the second end portion 21b and the side portion 21c. It is smaller than the radius of curvature R2 of the portion 214. Therefore, the maximum thickness T1 of the first end portion 21a of the winding portion 21 of the insulator 2B can be further reduced while suppressing the occurrence of molding defects. As a result, the winding density of the coil 3 can be improved and the motor efficiency can be improved.
  • FIG. 17A is a diagram showing a configuration of an air conditioner 500 to which the motor 100 of the first embodiment is applied.
  • the air conditioner 500 includes an outdoor unit 501, an indoor unit 502, and a refrigerant pipe 503 connecting them.
  • the outdoor unit 501 includes, for example, an outdoor blower 510 that is a propeller fan
  • the indoor unit 502 includes, for example, an indoor blower 520 that is a cross-flow fan.
  • the outdoor blower 510 has an impeller 505 and a motor 100 for driving the impeller 505.
  • the indoor blower 520 has an impeller 521 and a motor 100 for driving the impeller 521.
  • Each of the motors 100 has the configuration described in the first embodiment.
  • FIG. 17A also shows a compressor 504 that compresses the refrigerant.
  • FIG. 17B is a cross-sectional view of the outdoor unit 501.
  • the motor 100 is supported by a frame 509 arranged in the housing 508 of the outdoor unit 501.
  • An impeller 505 is attached to the shaft 7 of the motor 100 via a hub 506.
  • the impeller 505 attached to the shaft 7 rotates due to the rotation of the rotor 5 of the motor 100, and blows air to the outside.
  • the heat released when the refrigerant compressed by the compressor 504 is condensed by the condenser (not shown) is released to the outside by the blower of the outdoor blower 510.
  • the impeller 521 is rotated by the rotation of the rotor 5 of the motor 100, and the air deprived of heat by the evaporator (not shown) is blown into the room. ..
  • the motor 100 of the first embodiment described above has high motor efficiency due to the improvement of the winding density of the coil 3, the operating efficiency of the air conditioner 500 can be improved.
  • the motors of the second and third embodiments may be used instead of the motor 100 of the first embodiment. Further, here, the motor 100 is used as the drive source of the outdoor blower 510 and the drive source of the indoor blower 520, but the motor 100 may be used as at least one of the drive sources.
  • the motor 100 of each embodiment can be mounted on an electric device other than the blower of the air conditioner.
  • stator 1, 2A, 2B insulator, 3 coil, 4 mold stator, 5 rotor, 6 resin part, 7 shaft, 10 stator core, 10A connection core, 11 yoke, 12 teeth, 13 slot, 21 winding part, 21a 1st End, 21b second end, 21c side, 22 inner side wall, 22a first wall, 22b second wall, 22c side wall, 23 outer wall, 23a first wall, 23b 2nd wall part, 23c side wall part, 30 molding mold, 31 upper mold, 32 lower mold, 33 cavity, 40 mold resin part, 41 opening, 42 bearing support part, 43 circuit board, 44 magnetic sensor , 50 rotor core, 51 magnet insertion hole, 55 magnet, 56 sensor magnet, 80 molding mold, 81 upper mold, 82 lower mold, 83 cavity, 100 motor, 211 curved surface, 212 curved surface, 311 spool, 312 runner, 313 Gate, 315 cylinder, 500 air conditioner, 501 outdoor unit, 502 indoor unit, 503 refrigerant pipe, 504 compressor, 50

Abstract

ステータは、軸線を中心とする周方向に延在するヨークと、ヨークから軸線に向かって延在するティースとを有するステータコアと、ティースを囲む巻き付け部を有するインシュレータと、インシュレータの巻き付け部に巻き付けられたコイルとを有する。インシュレータの巻き付け部は、軸線の方向においてティースの一方の側に位置する第1の端部と、ティースの他方の側に位置する第2の端部と、周方向においてティースの一方の側に位置する側部を有する。第1の端部は、軸線の方向に最大厚さT1を有し、第2の端部は、軸線の方向に最大厚さT2を有し、側部は、周方向に最大厚さT3を有する。最大厚さT1,T2,T3は、T3<T1<T2を満足する。インシュレータは、軸線の方向において第1の端部と同じ側に、ゲート痕を有する。

Description

ステータ、モータ、送風機、空気調和装置およびステータの製造方法
 本発明は、ステータ、モータ、送風機、空気調和装置およびステータの製造方法に関する。
 ステータは、ステーコアと、インシュレータと、インシュレータを介してステータコアに巻き付けられるコイルとを有する。インシュレータは樹脂で構成され、ステータコアと一体に成形される(例えば、特許文献1参照)。
特開昭50-158805号公報(第3図~第7図)
 ここで、ステータコアにコイルを高密度に巻き付けるためには、インシュレータの厚さを薄くすることが望ましい。そのため、インシュレータの厚さをより薄くすることが望まれている。
 本発明は、上記の課題を解決するためになされたものであり、インシュレータの厚さを薄くすることを目的とする。
 本発明のステータは、軸線を中心とする周方向に延在するヨークと、ヨークから軸線に向かって延在するティースとを有するステータコアと、ティースを囲む巻き付け部を有するインシュレータと、インシュレータの巻き付け部に巻き付けられたコイルとを有する。インシュレータの巻き付け部は、軸線の方向においてティースの一方の側に位置する第1の端部と、ティースの他方の側に位置する第2の端部と、周方向においてティースの一方の側に位置する側部とを有する。第1の端部は、軸線の方向に最大厚さT1を有し、第2の端部は、軸線の方向に最大厚さT2を有する。側部は、周方向に最大厚さT3を有する。最大厚さT1,T2,T3は、T3<T1<T2を満足する。インシュレータは、軸線の方向において第1の端部と同じ側に、ゲート痕を有する。
 本発明によれば、インシュレータの巻き付け部の第1の部分、すなわち成形金型のゲートに近く樹脂の流動性が高い部分の厚さが薄いため、インシュレータの厚さを効果的に薄くすることができる。
実施の形態1のモータを示す部分断面図である。 実施の形態1のモータを示す断面図である。 実施の形態1のステータを示す斜視図である。 実施の形態1のステータを示す上面図である。 実施の形態1のインシュレータを示す斜視図である。 実施の形態1のティース、インシュレータおよびコイルを示す断面図である。 実施の形態1のインシュレータを形成するための成形金型を示す断面図である。 図7に示した線分VIII-VIIIにおける成形金型の断面図である。 実施の形態1のモールド樹脂部を成形するための成形金型を示す断面図である。 実施の形態1のモータの製造工程を示すフローチャートである。 インシュレータの厚さとモータ効率との関係を示すグラフである。 成形時の樹脂温度と溶融粘度および流動性との関係を示すグラフである。 成形圧力と流動長との関係を示すグラフである。 インシュレータの第1の端部、第2の端部および側部の最大厚さT1,T2,T3の関係を、実施の形態1(A)と比較例(B)とで対比して示す図である。 実施の形態2のティース、インシュレータおよびコイルを示す断面図である。 実施の形態3のティース、インシュレータおよびコイルを示す断面図(A)およびインシュレータの角部を拡大して示す図(B)、(C)である。 各実施の形態のモータが適用可能な空気調和装置の構成例を示す図(A)および室外機を示す断面図(B)である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
<モータ100の構成>
 図1は、本発明の実施の形態1におけるモータ100を示す縦断面図である。モータ100は、例えば空気調和装置の送風機に用いられ、インバータで駆動されるブラシレスDCモータである。また、モータ100は、ロータ5にマグネット55が埋め込まれたIPM(Interior Permanent Magnet)モータである。
 モータ100は、シャフト7を有するロータ5と、ロータ5を囲むモールドステータ4とを有する。モールドステータ4は、ロータ5を囲む環状のステータ1と、ステータ1を覆うモールド樹脂部40とを有する。シャフト7は、ロータ5の回転軸である。
 以下の説明では、シャフト7の中心軸線C1の方向を「軸方向」と称する。また、シャフト7の中心軸線C1を中心とする周方向を「周方向」と称し、図2等に矢印Sで示す。シャフト7の中心軸線C1を中心とする半径方向を「径方向」と称する。また、軸方向に平行な断面における断面図を、縦断面図と称する。           
 シャフト7は、モールドステータ4から図1における左側に突出しており、その突出部に形成された取付け部7aには、例えば送風機の羽根車505(図17(A))が取り付けられる。そのため、シャフト7の突出側(図1における左側)を「負荷側」と称し、反対側(図1における右側)を「反負荷側」と称する。
<ロータ5の構成>
 図2は、モータ100のモールド樹脂部40(図1)を除く部分を示す断面図である。ロータ5は、回転軸であるシャフト7と、シャフト7に対して径方向外側に距離を開けて設けられたロータコア50と、ロータコア50に埋め込まれた複数のマグネット55と、シャフト7とロータコア50との間に設けられた樹脂部6とを有する。
 ロータコア50は、中心軸線C1を中心とする環状の部材であり、ロータコア50の内周はシャフト7に距離を開けて対向している。ロータコア50は、複数の積層要素を軸方向に積層し、カシメ、溶接または接着によって固定したものである。積層要素は、例えば電磁鋼板であり、厚さは0.2mm~0.5mmである。
 ロータコア50は、周方向に複数の磁石挿入孔51を有する。磁石挿入孔51は、周方向に等間隔で、且つ中心軸線C1から等距離に配置されている。磁石挿入孔51の数は、ここでは10である。磁石挿入孔51は、ロータコア50の外周に沿って形成され、ロータコア50を軸方向の一端から他端まで延在している。
 各磁石挿入孔51には、マグネット55が一つずつ挿入されている。マグネット55は、メインマグネットとも称する。マグネット55は平板状であり、径方向に厚さを有し、厚さ方向に着磁されている。
 各マグネット55は、磁極を構成する。ここではマグネット55の数が10であり、従ってロータ5の極数は10極である。但し、ロータ5の極数は10極に限らず、2極以上であればよい。磁石挿入孔51の周方向中心は極中心となり、隣り合う磁石挿入孔51の間は極間となる。
 マグネット55は、希土類磁石であり、より具体的には、Nd(ネオジム)、Fe(鉄)およびB(ホウ素)を含むネオジム磁石、あるいはSm(サマリウム)およびCo(コバルト)を含むサマリウムコバルト磁石である。なお、希土類磁石の代わりに、Feを含むフェライト磁石を用いてもよい。
 なお、ここでは1つの磁石挿入孔51に1つのマグネット55を配置しているが、1つの磁石挿入孔51に2つ以上のマグネット55を配置してもよい。
 磁石挿入孔51の周方向の両端には、空隙であるフラックスバリア52が形成されている。フラックスバリア52は、隣り合うマグネット55の間の磁束の短絡を抑制する。
 ロータコア50の磁石挿入孔51よりも径方向内側には、コア穴54が形成されている。コア穴54は、ここでは極中心に対応する位置に形成されている。コア穴54は、ロータコア50のコア材料を少なくするために形成されるが、必ずしも形成しなくても良い。
 ロータコア50は、軸方向に直交する断面において、各磁極の極中心で外径が最大となり、極間で外径が最小となる、いわゆる花丸形状の外周を有する。但し、ロータコア50の外周は、このような花丸形状に限らず、円形状であってもよい。
 シャフト7とロータコア50との間には、樹脂部6が設けられている。樹脂部6は、シャフト7とロータコア50とを互いに離間させた状態で保持するものであり、非磁性体で形成される。樹脂部6は、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂で形成される。なお、ロータコア50の上記のコア穴54にも、樹脂部6と同様の樹脂が充填され、充填部61を構成している。
 図1に示すように、樹脂部6は、ロータコア50の軸方向両端も覆っている。樹脂部6は、ロータコア50の反負荷側に、センサマグネット56を保持している。センサマグネット56は、軸線C1を中心とする環状のマグネットであり、マグネット55と同様の磁極数を有する。センサマグネット56は、軸方向に着磁されている。センサマグネット56の磁束は、後述する磁気センサ44によって検出される。
 なお、ここでは、シャフト7とロータコア50との間に樹脂部6を設けているが、樹脂部6を設けずに、ロータコア50の中心孔にシャフト7を嵌合させてもよい。
 また、ここでは、ロータコア50にマグネット55を埋め込んだIPM(Inner Permanent Magnet)ロータについて説明したが、シャフト7の表面にマグネット55を取り付けたSPM(Surface Permanent Magnet)モータであってもよい。
<モールドステータ4の構成>
 モールドステータ4は、上記の通り、ステータ1とモールド樹脂部40とを有する。モールド樹脂部40は、BMC(バルクモールディングコンパウンド)等の熱硬化性樹脂で形成される。モールド樹脂部40は、負荷側に開口部41を有し、反負荷側に軸受支持部42を有する。ロータ5は、開口部41からモールドステータ4の内部の中空部分に挿入される。
 モールド樹脂部40の開口部41には、金属製のブラケット73が取り付けられている。このブラケット73には、シャフト7を支持する一方の軸受71が保持される。また、ブラケット73の外側には、キャップ74が取り付けられている。モールド樹脂部40の軸受支持部42は、円筒状の内周面を有し、この内周面には、シャフト7を支持するもう一方の軸受72が保持される。
 モールド樹脂部40において、ステータ1の反負荷側には、回路基板43が保持されている。回路基板43は、モータ100を駆動するためのパワートランジスタ等の駆動回路が実装されたプリント基板であり、リード線45が配線されている。回路基板43のリード線45は、モールド樹脂部40の外周部分に取り付けられたリード線口出し部品46から、モータ100の外部に引き出される。
 回路基板43のステータ1側の面には、センサマグネット56に軸方向に対向するように、磁気センサ44が取り付けられている。磁気センサ44は、例えば、ホール効果素子、MR(Magneto Resistive)素子、GMR(Giant Magneto Resistive)素子、または磁気インピーダンス素子で構成される。
 磁気センサ44は、センサマグネット56のN極に対向しているときと、S極に対応しているときとで、2値信号を出力する。磁気センサ44の出力信号から、マグネット55の位置、すなわちロータ5の回転位置が検出される。
 なお、センサマグネット56および磁気センサ44を設けずに、コイル3に流れる電流または電圧に基づいてロータ5の回転位置を推定するセンサレス制御を行ってもよい。
 ブラケット73は、モールド樹脂部40の開口部41の外周縁に設けられた環状部分に圧入される。ブラケット73は、導電性を有する金属、例えば亜鉛メッキ鋼板で形成される。キャップ74は、ブラケット73の外側に取り付けられ、軸受71への水等の侵入を防止する。
 なお、ここではステータ1の周囲をモールド樹脂部40で覆っているが、モールド樹脂部40を設ける代わりに、ステータ1の外周を、金属で形成された円筒状のシェルの内側に嵌合させてもよい。
 図2に示すように、ステータ1は、ロータ5を径方向外側から囲んでいる。ステータ1は、ステータコア10と、ステータコア10に設けられたインシュレータ2と、インシュレータ2を介してステータコア10に巻き付けられたコイル3とを有する。
 ステータコア10は、複数の積層要素を軸方向に積層し、カシメ、溶接または接着によって固定したものである。積層要素は、例えば電磁鋼板である。積層鋼板の板厚は、例えば0.2mm~0.5mmである。ステータコア10は、中心軸線C1を中心とする周方向に環状に延在するヨーク11と、ヨーク11から径方向内側に(中心軸線C1に向かって)延在する複数のティース12とを有する。
 隣り合うティース12の間には、スロット13が形成されている。ティース12の径方向内側の先端面(図3に示す先端面12e)は、ロータ5の外周面に対向する。ティース12の数は、ここでは9である。但し、ティース12の数は9に限定されるものではなく、2以上であればよい。
 ヨーク11およびティース12には、上述した複数の積層要素を固定するカシメ部18,19が設けられている。但し、カシメ部の配置は、これらの位置に限定されるものではない。また、積層要素は、カシメに限らず、溶接または接着によって固定してもよい。
 ステータコア10は、ティース12毎に複数の連結コア10Aに分割された構成を有する。連結コア10Aは、ヨーク11に形成された分割面14で分割されている。分割面14は、ヨーク11の内周面から径方向外側に延在する。分割面14の終端とヨーク11の外周面との間には、塑性変形可能な薄肉部が形成される。薄肉部の塑性変形により、ステータコア10を帯状に広げることができる。
 なお、ステータコア10は、連結コア10Aを組み合わせたものには限定されず、環状の積層鋼板を軸方向に積層したものであってもよい。
 ステータコア10のティース12を囲むように、樹脂製のインシュレータ2が設けられている。コイル3は、マグネットワイヤで構成され、インシュレータ2を介してティース12に巻き付けられる。コイル3は、隣り合うティース12の間のスロット13に収容される。
<インシュレータ2の構成>
 図3および図4は、ステータコア10とインシュレータ2とを示す斜視図および上面図である。インシュレータ2は、絶縁性の樹脂、例えば、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)、LCP(液晶ポリマー)、PET(ポリエチレンテレフタレート)等の熱可塑性樹脂で形成される。インシュレータ2は、樹脂をステータコア10と一体成形するか、あるいは樹脂の成形体をステータコア10に組み付けることによって形成される。
 上記のようにステータコア10が連結コア10A(図2)で構成されているため、ステータコア10を帯状に広げた状態で、インシュレータ2をティース12と一体に成形し、インシュレータ2を介してティース12にコイル3を巻き付けることができる。
 図5は、ステータコア10の一つのティース12とこれを囲むインシュレータ2とを示す斜視図である。インシュレータ2は、ティース12を周方向両側および軸方向両側から囲む巻き付け部21と、巻き付け部21の径方向内側に隣接する内側壁部22と、巻き付け部21の径方向外側に隣接する外側壁部23とを有する。
 内側壁部22は、ティース12の径方向内側の先端部に設けられている。外側壁部23は、ティース12の径方向外側の根元部と、ヨーク11とに跨って設けられている。内側壁部22と外側壁部23とは、径方向に互いに対向している。巻き付け部21には、コイル3(図3)が巻き付けられる。内側壁部22および外側壁部23は、コイル3を径方向両側からガイドする。
 巻き付け部21は、軸方向においてティース12の一方の側に位置する第1の端部21aと、軸方向においてティース12の他方の側に位置する第2の端部21bと、周方向においてティース12の両側に位置する一対の側部21cとを有する。
 内側壁部22は、軸方向においてティース12の一方の側に位置する第1の壁部22aと、軸方向においてティース12の他方の側に位置する第2の壁部22bと、周方向においてティース12の両側に位置する一対の側壁部22cとを有する。
 外側壁部23は、軸方向においてティース12の一方の側に位置する第1の壁部23aと、軸方向においてティース12の他方の側に位置する第2の壁部23bと、周方向においてティース12の両側に位置する一対の側壁部23cとを有する。
 巻き付け部21の第1の端部21aと、内側壁部22の第1の壁部22aと、外側壁部23の第1の壁部23aとは、軸方向において互いに同じ側にある。また、巻き付け部21の第2の端部21bと、内側壁部22の第2の壁部2bと、外側壁部23の第2の壁部23bとは、軸方向において互いに同じ側にある。
 また、図5に示すように、内側壁部22の第1の壁部22aには、ゲート痕Gが形成されている。ゲート痕Gは、インシュレータ2の成形に用いる成形金型のゲート313に対応する部分である。ゲート痕Gは、例えば、内側壁部22の第1の壁部22aの径方向内側の面に、凹部または凸部として形成されている。
 図6は、ティース12と、インシュレータ2の巻き付け部21と、コイル3とを示す断面図である。この図6は、ティース12の延在方向に直交する面における断面図である。
 ティース12は、その延在方向に直交する断面において、長方形の断面形状を有する。ティース12の軸方向の端面12a,12bは、巻き付け部21の第1の端部21aと第2の端部21bに覆われている。ティース12の周方向の端面12cは、巻き付け部21の側部21cに覆われている。
 巻き付け部21の第1の端部21aは、軸方向に最大厚さT1を有する。すなわち、巻き付け部21の第1の端部21aは、ティース12の端面12aと反対側に、外周面211を有する。ティース12の端面12aから外周面211までの最大距離が、最大厚さT1である。
 なお、図6では、第1の端部21aの外周面211は、軸方向においてティース12と反対側に凸となる曲面として示されているが、平坦面であってもよい。
 巻き付け部21の第2の端部21bは、軸方向に最大厚さT2を有する。すなわち、巻き付け部21の第2の端部21bは、ティース12の端面12bと反対側に、外周面212を有する。ティース12の端面12bから外周面212までの最大距離が、最大厚さT2である。
 なお、図6では、第2の端部21bの外周面212は、軸方向においてティース12と反対側に凸となる曲面として示されているが、平坦面であってもよい。
 巻き付け部21の側部21cは、周方向に最大厚さT3を有する。なお、図6では、側部21cの厚さは軸方向に亘って一定であるが、必ずしも一定でなくてもよい。
 巻き付け部21の各部21a,21b,21cの最大厚さT1,T2,T3は、T3<T1<T2を満足する。
 すなわち、巻き付け部21では、軸方向においてゲート痕Gと同じ側の第1の端部21aの最大厚さT1が、ゲート痕Gと反対側の第2の端部21bの最大厚さT2よりも薄い。また、側部21cの最大厚さT3は、最大厚さT1,T2よりもさらに薄い。
 インシュレータ2の成形工程では、樹脂の注入口であるゲートに近いほど樹脂の流動性が高い。そのため、巻き付け部21の第2の端部21bよりも、第1の端部21aの方が薄肉化に適している。これについては、後述する。
<モータ100の製造方法>
 次に、モータ100の製造工程について説明する。図7は、インシュレータ2を成形するための成形金型30を示す図である。成形金型30は、可動金型である上金型31と、固定金型である下金型32とを有し、両者の間にキャビティ33が形成される。
 キャビティ33には、ステータコア10が帯状に広げられた状態で設置される。キャビティ33内では、ステータコア10のティース12毎に、成形空間34が形成される。キャビティ33内の各ティース12の両側には、コイル3(図6)の配置スペースを確保するための中子38が配置されている。
 なお、ここでは、キャビティ33内に帯状に広げたステータコア10を設置しているが、環状のステータコア10を設置しても良い。
 上金型31は、キャビティ33に樹脂を注入するためのスプール311、ランナ312およびゲート313を有する。スプール311は、注入装置であるシリンダ315から溶融状態の樹脂が流れ込む流路である。ゲート313は、キャビティ33内の各ティース12に対応して設けられた注入口である。ランナ312は、スプール311から分岐して各ゲート313につながる流路である。
 図8は、図7に示した線分VIII-VIIIにおける矢視方向の断面図である。キャビティ33は、インシュレータ2の巻き付け部21を形成するための巻き付け部エリア35と、内側壁部22を形成するための内側壁部エリア36と、外側壁部23を形成するための外側壁部エリア37とを有する。
 上述したゲート313は、キャビティ33の内側壁部エリア36において、内側壁部22の第1の壁部22a(図5)を形成する部分361に開口している。ゲート313からキャビティ33に注入された樹脂は、第1の端部21aおよび第1の壁部22a,23a(図5)を形成する側から、第2の端部21bおよび第2の壁部22b,23b(図5)を形成する側に向かって流れる。
 図9は、ステータ1とシャフト7とをモールド樹脂で一体に成形する際に用いる成形金型80を示す断面図である。
 成形金型80は、可動金型である上金型81と、固定金型である下金型82とを備え、両者の間にキャビティ83が形成される。下金型82には、キャビティ83に樹脂を注入するゲート84が形成されている。
 下金型82には、キャビティ83内に突出する円柱状の中芯85が形成されている。中芯85は、ステータコア10の内側に係合する部分である。中芯85の下端部には、中芯85よりも径方向外側に張り出した大径部86が形成されている。この大径部86は、モールドステータ4の開口部41(図1)に対応する部分である。
 図10は、モータ100の製造工程を示すフローチャートである。まず、複数の積層要素を軸方向に積層し、カシメ等によって固定して、ステータコア10を形成する(ステップS101)。
 次に、インシュレータ2をステータコア10と一体に成形する(ステップS102)。すなわち、図7および図8に示した成形金型30の上金型31を上方に移動させてキャビティ33を開放し、キャビティ33内にステータコア10を設置する。その後、上金型31を下方に移動させてキャビティ33を閉じる。この状態で、PBT等の溶融状態の樹脂を、シリンダ315から、スプール311、ランナ312およびゲート313を介して、キャビティ33に注入する。
 その後、成形金型30を冷却することにより、キャビティ33内の樹脂を硬化させる。キャビティ33内では、巻き付け部エリア35で硬化した樹脂が巻き付け部21となり、内側壁部エリア36で硬化した樹脂が内側壁部22となり、外側壁部エリア37で硬化した樹脂が外側壁部23となる。
 キャビティ33内で樹脂が硬化したのち、成形金型30の上金型31を上方に移動させてキャビティ33を開放し、インシュレータ2が一体に成形されたステータコア10を取り出す。
 次に、ステータコア10に、インシュレータ2を介してコイル3を巻き付ける(ステップS103)。この段階では、ステータコア10が帯状に広げられているため、コイル3の巻き付けを簡単に行うことができる。
 コイル3の巻き付け後、ステータコア10を環状に折り曲げて両端で溶接することにより、図4に示したステータ1が形成される。
 次に、ステータ1に回路基板43を取り付け、これらを成形金型80内に設置して、モールド樹脂部40を形成する(ステップS104)。すなわち、図9に示した成形金型80の上金型81を上方に移動させてキャビティ83を開放し、キャビティ83内にステータ1を設置する。その後、上金型81を下方に移動してキャビティ83を閉じ、BMC等のモールド樹脂をゲート84からキャビティ83に注入する。キャビティ83に注入されたモールド樹脂は、ステータ1の外周側および反負荷側を覆う。
 モールド樹脂として熱硬化性樹脂を用いた場合には、キャビティ83にモールド樹脂を注入したのち、成形金型80を加熱することにより、キャビティ83内のモールド樹脂を硬化させる。これにより、ステータ1をモールド樹脂部40で覆ったモールドステータ4の製造が完了する。
 また、ステップS101~S104とは別に、ロータ5を形成する。すなわち、複数の積層要素を軸方向に積層し、カシメ等によって固定してロータコア50を形成し、磁石挿入孔51にマグネット55を挿入する。さらに、シャフト7、ロータコア50、マグネット55およびセンサマグネット56を、樹脂部6となる樹脂で一体成形する。これにより、ロータ5が形成される。
 その後、ロータ5のシャフト7に軸受71,72を取り付け、モールドステータ4の開口部41から、ステータ1の内側部分に挿入する(ステップS106)。また、ブラケット73をモールドステータ4の開口部41に取り付け、ブラケット15の外側にキャップ74を取り付ける。これにより、図1に示したモータ100の製造が完了する。
 図10に示したモータ100の製造工程において、ステップS101~S104は、ステータ1の製造工程(ステータ1の製造方法)に相当する。
<作用>
 コイル3の抵抗Rは、コイル3の抵抗率ρと長さLと断面積Sとを用いて、ρ×L/Sで表される。すなわち、コイル3の抵抗Rは、コイル3の長さLに比例して増加する。そのため、ティース12に巻かれるコイル3の一周当たりの長さ(以下、巻き長と称する)が短いほど、抵抗Rが小さくなる。抵抗Rが小さいほど、モータ損失の一つである銅損が減少し、モータ効率が向上する。コイル3の巻き長を短くする上では、コイル3が巻き付けられるインシュレータ2の巻き付け部21の厚さを薄くすることが有効である。
 また、コイル3の巻き数が同じであれば、コイル3の線径が大きいほど断面積Sが大きくなるため、抵抗Rが小さくなる。コイル3の巻数はモータ100の最大出力に影響するため、一般に、コイル3の巻数を決定した後で、スロット13に収容可能な範囲でできるだけ大きな線径が選定される。
 また、インシュレータ2の巻き付け部21の側部21cの最大厚さT3が薄いほど、スロット13を大きくすることができる。すなわち、巻き付け部21の側部21cの最大厚さT3を薄くすることは、コイル3の巻き長を短くし、なお且つコイル3の断面積を大きくする効果がある。
 一方、巻き付け部21の第1の端部21aおよび第2の端部21bの最大厚さT1,T2を薄くすることは、コイル3の巻き長の短縮に寄与するだけである。つまり、巻き付け部21の軸方向の最大厚さT1,T2よりも、周方向の最大厚さT3の方が、モータ効率改善への寄与度が大きい。
 図11には、最大厚さT1,T2,T3のモータ効率改善への寄与度に関するシミュレーション結果を示す。モータ効率は、モータ100に入力された電力に対する出力(回転数×トルク)の比(%)である。
 図11において、線分E1は、最大厚さT1,T2を1mmで一定とし、最大厚さT3を変化させた場合のモータ効率の変化を示す。線分E2は、最大厚さT3を0.4mmで一定とし、最大厚さT1,T2を変化させた場合のモータ効率の変化を示す。
 線分E3は、最大厚さT2を1mm、最大厚さT3を0.4mmでそれぞれ一定とし、最大厚さT1を変化させた場合のモータ効率の変化を示す。線分E4は、最大厚さT1を1mm、最大厚さT3を0.4mmでそれぞれ一定とし、最大厚さT2を変化させた場合のモータ効率の変化を示す。
 図11から、線分E1で示されているように、最大厚さT3を薄くした場合に、モータ効率が最も改善されていることが分かる。
 インシュレータ2の巻き付け部21の最大厚さT1,T2,T3を全て薄くすることは難しいため、この実施の形態1では、側部21cの最大厚さT3を最も薄くする、すなわちT3<T1,T2を成立させることにより、モータ効率の改善効果を高めている。
 但し、巻き付け部21の側部21cの最大厚さT3は、成形金型30内に設置されるステータコア10の位置精度に影響されるため、最大厚さT3を薄くすることには限界がある。そのため、最大厚さT3に加えて、第1の端部21aの最大厚さT1または第2の端部21bの最大厚さT2を薄くする必要がある。
 インシュレータ2の成形工程では、図7を参照して説明したように、熱可塑性樹脂がシリンダ315で加熱されて溶融状態となり、スプール311からランナ312およびゲート313を経由して、キャビティ33に注入される。
 一般に、成形金型30の温度はシリンダ315の温度よりも大幅に低く、ステータコア10の温度は成形金型30の温度以下である。そのため、樹脂がスプール311、ランナ312、ゲート313と流れるにつれて樹脂の温度が低下する。
 図12に、熱可塑性樹脂の温度と、粘度および流動性との関係を示す。図12から、樹脂の温度が低下するにつれて、粘度および流動性が低下することが分かる。
 また、シリンダ315から成形金型30に樹脂を注入する際には、樹脂に成形圧力が加えられる。図13には、3通りの樹脂厚さTa,Tb,Tc(Ta<Tb<Tc)について、成形圧力と流動長との関係を示す。図13から、成形圧力が高いほど流動長が長くなるものの、樹脂厚さが薄い場合には、成形圧力による流動長の増加率が小さいことが分かる。
 図8に示したように、ゲート313は、キャビティ33において、内側壁部22の第1の壁部22a(図5)を形成する部分361に開口している。キャビティ33内では、ゲート313に近いほど樹脂の温度が高く、成形圧力も高いため、樹脂の流動性が高い。
 一方、巻き付け部21では側部21cの厚さが最も狭い。そのため、キャビティ33において巻き付け部21の側部21cを形成する部分を樹脂が通過する際に、樹脂の熱が成形金型30およびステータコア10に奪われて温度が低下し、また樹脂が部分的に硬化する可能性もあり、成形圧力がキャビティ33の全域に均一に伝わりにくい。
 以上から、キャビティ33のゲート313側は、ゲート313と反対の側と比較して樹脂の流動性が高く、薄肉化に適していると言うことができる。
 そこで、この実施の形態1では、ゲート313に近い第1の端部21aの最大厚さT1を、ゲート313から遠い第2の端部21bの最大厚さT2よりも薄くしている。すなわち、最大厚さT1,T2,T3がT3<T1<T2を満足するようにし、インシュレータ2の薄肉化を実現している。
 図14は、インシュレータ2の最大厚さT1,T2,T3がT3<T1<T2を満足する実施の形態1と、T3<T2<T1を満足する比較例とで、最大厚さT1,T2,T3をどれだけ薄くできるかを示す模式図である。
 上記の通り、巻き付け部21の第2の端部21bはゲート313から遠く、樹脂の流動性が低い。そのため、第2の端部21bの最大厚さT2を薄くしようとすると、第2の端部21bに十分に樹脂が行き渡らず、成形不良が生じる。
 これに対し、巻き付け部21の第1の端部21aはゲート313に近く、樹脂の流動性が高いため、第1の端部21aの最大厚さT1を薄くしても成形不良が生じない。従って、第1の端部21aの最大厚さT1を効果的に薄くすることができる。
 ゲート313は、インシュレータ2の内側壁部22の第1の壁部22a(図5)の表面に、凹部または凸部であるゲート痕Gとして形成されている。但し、ゲート痕Gは、内側壁部22の第1の壁部22aに限らず、外側壁部23の第1の壁部23aに形成されていてもよい。
<実施の形態の効果>
 以上説明したように、実施の形態1では、インシュレータ2の巻き付け部21が、ティース12の周方向の一方の側に位置する第1の端部21aと、他方の側に位置する第2の端部21bと、ティース12の周方向の一方の側に位置する側部21cとを有する。第1の端部21aの軸方向の最大厚さT1と、第2の端部21bの軸方向の最大厚さT2と、側部21cの周方向の最大厚さT3とは、T3<T1<T2を満足する。また、インシュレータ2は、軸方向において第1の端部21aと同じ側に、ゲート痕Gを有する。そのため、インシュレータ2の厚さを効果的に薄くすることができ、その結果、コイル3の巻き付け密度を向上し、モータ効率を向上することができる。
実施の形態2.
 次に、実施の形態2について説明する。図15は、実施の形態2におけるティース12と、インシュレータ2Aの巻き付け部21と、コイル3とを示す断面図である。インシュレータ2Aの巻き付け部21は、実施の形態1と同様、第1の端部21aと、第2の端部21bと、側部21cとを有する。
 実施の形態1のインシュレータ2と同様、インシュレータ2Aの巻き付け部21の第1の端部21a、第2の端部21bおよび側部21cの最大厚さT1,T2,T3は、T3<T1<T2を満足し、ゲート痕G(図5)は軸方向において第1の端部21aと同じ側にある。
 この実施の形態2では、第1の端部21aの外周面211は、軸方向においてティース12と反対側に凸となる曲面である。この外周面211は、また、ティース12の延在方向に直交する面内において、曲率半径RT1を有する円弧状の面である。
 第2の端部21bの外周面212は、軸方向においてティース12と反対側に凸となる曲面である。この外周面212は、また、ティース12の延在方向に直交する面内において、曲率半径RT2を有する円弧状の面である。
 第1の端部21aの外周面211の曲率半径RT1と、第2の端部21bの外周面212の曲率半径RT2とは、RT1>RT2を満足する。
 第1の端部21aの最大厚さT1を薄くする場合、曲率半径RT1が小さいと、第1の端部21aと側部21cとの間の角部213の厚さが薄くなり過ぎる可能性がある。そのため、成形時に樹脂がインシュレータ21Aの全体に行き渡らず、成形不良が発生する可能性がある。
 実施の形態2では、第1の端部21aの外周面211の曲率半径RT1が、第2の端部21bの外周面212の曲率半径RT2よりも大きい。そのため、巻き付け部21の第1の端部21aの最大厚さT1を薄くしても、角部213が薄くなり過ぎることがなく、成形不良の発生が抑制される。
 実施の形態2のモータは、上述した点を除き、実施の形態1のモータ100と同様に構成されている。
 以上説明したように、実施の形態2では、インシュレータ2Aの巻き付け部21の第1の端部21aの外周面211の曲率半径RT1と、第2の端部21bの外周面212の曲率半径RT2とが、RT1>RT2を満足する。そのため、成形不良を生じさせることなく、インシュレータ2Aの巻き付け部21の第1の端部21aの最大厚さT1をさらに薄くすることができる。これにより、コイル3の巻き付け密度を向上し、モータ効率を向上することができる。
 なお、第1の端部21aの外周面211および第2の端部21bの外周面212は、円弧状の曲面であると説明したが、曲率半径が規定される曲面であれば、必ずしも円弧状でなくてもよい。 
 また、インシュレータ2Aの巻き付け部21の最大厚さT1,T2,T3がT3<T1<T2を満足すると説明したが、実施の形態2では、RT1>RT2およびT1<T2が成立すれば最大厚さT1を薄くする効果が得られる。
実施の形態3.
 次に、実施の形態3について説明する。図16(A)は、実施の形態3におけるティース12と、インシュレータ2Bの巻き付け部21と、コイル3とを示す断面図である。インシュレータ2Bの巻き付け部21は、実施の形態1と同様、第1の端部21aと、第2の端部21bと、側部21cとを有する。
 実施の形態1のインシュレータ2と同様、インシュレータ2Bの巻き付け部21の第1の端部21a、第2の端部21bおよび側部21cの最大厚さT1,T2,T3は、T3<T1<T2を満足し、ゲート痕G(図5)は軸方向において第1の端部21aと同じ側にある。
 この実施の形態3のインシュレータ2Bは、第1の端部21aと側部21cとの間に、第1の角部としての角部213を有する。図16(C)に拡大して示すように、角部213は、ティース12の延在方向に直交する面内において、曲率半径R1を有する円弧状の面である。
 インシュレータ2Bは、また、第2の端部21bと側部21cとの間に、第2の角部としての角部214を有する。図16(B)に拡大して示すように、角部214は、ティース12の延在方向に直交する面内において、曲率半径R2を有する円弧状の面である。
 角部213の曲率半径R1と、角部214の曲率半径R2とは、R1<R2を満足する。
 インシュレータ2Bは成形金型30(図7)によって成形されるため、巻き付け部21の角部213,214は、金型形状の制約のためいずれも曲面となる。一方、ティース12は、打ち抜かれた積層鋼板の積層体で構成されるため、ティース12の断面における4つの角部はいずれも直角である。
 そのため、インシュレータ2Bの角部213の曲率半径が大きいと、第1の端部21aの最大厚さT1を薄くした場合に、ティース12の角部を覆う角部213の厚さが薄くなり過ぎる可能性がある。すなわち、成形時に樹脂がインシュレータ2Bの全体に樹脂が行き渡らない可能性がある。
 この実施の形態3では、第1の端部21a側の角部213の曲率半径R1が、第2の端部21b側の角部214の曲率半径R2よりも小さい。そのため、ティース12の角部を覆う角部213の厚さが薄くなり過ぎることがなく、成形不良の発生を抑制することができる。
 また、角部213の曲率半径R1と、第1の端部21aの最大厚さT1とは、R1≦T1を満足する。
 角部213の曲率半径R1が第1の端部21aの最大厚さT1よりも大きいと、第1の端部21aの外周面211が平坦面に近い場合に、ティース12の角部を覆う角部213の厚さが側部21cの厚さよりも薄くなる可能性がある。すなわち、成形時に樹脂がインシュレータ2Bの全体に樹脂が行き渡らない可能性がある。
 この実施の形態3では、角部213の曲率半径R1が、第1の端部21aの最大厚さT1以下である。そのため、第1の端部21aの外周面211が平坦面に近い場合であっても、角部213の厚さを樹脂成形が可能な厚さに保つことができる。
 なお、実施の形態2で説明したように、第1の端部21aおよび第2の端部21bの外周面211,212を円弧状の曲面としてもよく、それぞれの曲率半径RT1,RT2(図15)がRT1>RT2を満足するようにしてもよい。
 実施の形態3のモータは、上述した点を除き、実施の形態1のモータ100と同様に構成されている。
 以上説明したように、実施の形態3では、第1の端部21aと側部21cとの間の角部213の曲率半径R1が、第2の端部21bと側部21cとの間の角部214の曲率半径R2よりも小さい。そのため、成形不良の発生を抑制しながら、インシュレータ2Bの巻き付け部21の第1の端部21aの最大厚さT1をさらに薄くすることができる。これにより、コイル3の巻き付け密度を向上し、モータ効率を向上することができる。
<空気調和装置>
 次に、上述した各実施の形態のモータが適用可能な空気調和装置について説明する。図17(A)は、実施の形態1のモータ100を適用した空気調和装置500の構成を示す図である。空気調和装置500は、室外機501と、室内機502と、これらを接続する冷媒配管503とを備える。
 室外機501は、例えばプロペラファンである室外送風機510を備え、室内機502は、例えばクロスフローファンである室内送風機520を備える。室外送風機510は、羽根車505と、これを駆動するモータ100とを有する。室内送風機520は、羽根車521と、これを駆動するモータ100とを有する。モータ100は、いずれも実施の形態1で説明した構成を有する。なお、図17(A)には、冷媒を圧縮する圧縮機504も示されている。
 図17(B)は、室外機501の断面図である。モータ100は、室外機501のハウジング508内に配置されたフレーム509によって支持されている。モータ100のシャフト7には、ハブ506を介して羽根車505が取り付けられている。
 室外送風機510では、モータ100のロータ5の回転により、シャフト7に取り付けられた羽根車505が回転し、室外に送風する。冷房運転時には、圧縮機504で圧縮された冷媒が凝縮器(図示せず)で凝縮する際に放出された熱を、室外送風機510の送風によって室外に放出する。同様に、室内送風機520(図17(A))では、モータ100のロータ5の回転により、羽根車521が回転し、蒸発器(図示せず)で熱が奪われた空気を室内に送風する。
 上述した実施の形態1のモータ100は、コイル3の巻き付け密度の向上により、高いモータ効率を有するため、空気調和装置500の運転効率を向上することができる。
 なお、実施の形態1のモータ100の代わりに、実施の形態2,3のモータを用いてもよい。また、ここでは、室外送風機510の駆動源および室内送風機520の駆動源にモータ100を用いたが、少なくとも何れか一方の駆動源にモータ100を用いればよい。
 また、各実施の形態のモータ100は、空気調和装置の送風機以外の電気機器に搭載することもできる。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
 1 ステータ、 2,2A,2B インシュレータ、 3 コイル、 4 モールドステータ、 5 ロータ、 6 樹脂部、 7 シャフト、 10 ステータコア、 10A 連結コア、 11 ヨーク、 12 ティース、 13 スロット、 21 巻き付け部、 21a 第1の端部、 21b 第2の端部、 21c 側部、 22 内側壁部、 22a 第1の壁部、 22b 第2の壁部、 22c 側壁部、 23 外側壁部、 23a 第1の壁部、 23b 第2の壁部、 23c 側壁部、 30 成形金型、 31 上金型、 32 下金型、 33  キャビティ、 40 モールド樹脂部、 41 開口部、 42 軸受支持部、 43 回路基板、 44 磁気センサ、 50 ロータコア、 51 磁石挿入孔、 55  マグネット、 56 センサマグネット、 80 成形金型、 81 上金型、 82 下金型、 83 キャビティ、 100 モータ、 211 曲面、 212 曲面、 311 スプール、 312 ランナ、 313 ゲート、 315 シリンダ、 500 空気調和装置、 501 室外機、 502 室内機、 503 冷媒配管、 504 圧縮機、 505 羽根車、 510 室外送風機、 520 室内送風機、 521 羽根車。

Claims (13)

  1.  軸線を中心とする周方向に延在するヨークと、前記ヨークから軸線に向かって延在するティースとを有するステータコアと、
     前記ティースを囲む巻き付け部を有するインシュレータと、
     前記インシュレータの前記巻き付け部に巻き付けられたコイルと
     を有し、
     前記インシュレータの前記巻き付け部は、前記軸線の方向において前記ティースの一方の側に位置する第1の端部と、前記ティースの他方の側に位置する第2の端部と、前記周方向において前記ティースの一方の側に位置する側部とを有し、
     前記第1の端部は、前記軸線の方向に最大厚さT1を有し、
     前記第2の端部は、前記軸線の方向に最大厚さT2を有し、
     前記側部は、前記周方向に最大厚さT3を有し、
     前記最大厚さT1,T2,T3が、T3<T1<T2を満足し、
     前記インシュレータは、前記軸線の方向において前記第1の端部と同じ側に、ゲート痕を有する
     ステータ。
  2.  軸線を中心とする周方向に延在するヨークと、前記ヨークから軸線に向かって延在するティースとを有するステータコアと、
     前記ティースを囲む巻き付け部を有するインシュレータと、
     前記インシュレータの前記巻き付け部に巻き付けられたコイルと
     を有し、
     前記インシュレータの前記巻き付け部は、前記軸線の方向において前記ティースの一方の側に位置する第1の端部と、前記ティースの他方の側に位置する第2の端部と、前記周方向において前記ティースの一方の側に位置する側部とを有し、
     前記第1の端部は、前記軸線の方向に最大厚さT1を有し、前記第2の端部は、前記軸線の方向に最大厚さT2を有し、
     前記第1の端部は、前記ティースとは反対側に凸となる曲率半径RT1の曲面を有し、前記第2の端部は、前記ティースとは反対側に凸となる曲率半径RT2の曲面を有し、
     前記最大厚さT1,T2,T3が、T1<T2を満足し、
     前記曲率半径RT1,RT2が、RT1>RT2を満足し、
     前記インシュレータは、前記軸線の方向において前記第1の端部と同じ側に、ゲート痕を有する
     ステータ。
  3.  前記側部は、前記周方向に最大厚さT3を有し、
     前記最大厚さT1,T2,T3が、T3<T1<T2を満足する
     請求項2のステータ。
  4.  前記インシュレータの前記巻き付け部は、
     前記第1の端部と前記側部との間に、曲率半径R1を有する角部を有し、
     前記第2の端部と前記側部との間に、曲率半径R2を有する角部を有し、
     前記曲率半径R1,R2が、R1<R2を満足する
     請求項1から3までの何れか1項に記載のステータ。
  5.  前記曲率半径R1と前記最大厚さT1とが、R1≦T1を満足する
     請求項4に記載のステータ。
  6.  前記インシュレータは、前記軸線を中心とする径方向において前記ティースの内側端部に位置する内側壁部と、前記径方向において前記ティースの外側端部に位置する外側壁部とを有し、
     前記ゲート痕は、前記内側壁部に形成されている
     請求項1から5までの何れか1項に記載のステータ。
  7.  前記インシュレータは、熱可塑性樹脂で形成される
     請求項1から6までの何れか1項に記載のステータ。
  8.  前記ステータを覆うモールド樹脂部をさらに備えた
     請求項1から7までの何れか1項に記載のステータ。
  9.  請求項1から8までの何れか1項に記載のステータと、
     前記ステータに囲まれ、前記軸線を中心として回転可能なロータと
     を備えたモータ。
  10.  請求項9に記載のモータと、
     前記モータによって回転駆動される羽根車と
     を備えた送風機。
  11.  室外機と、前記室外機に冷媒配管で連結された室内機とを備え、
     前記室外機と前記室内機の少なくとも一方は、
     請求項10に記載の送風機を有する
     空気調和装置。
  12.  軸線を中心とする周方向に延在するヨークと、前記ヨークから軸線に向かって延在するティースとを有するステータコアを用意する工程と、
     成形金型を用いて、前記ティースを囲む巻き付け部を有するインシュレータを形成する工程と、
     前記巻き付け部にコイルを巻き付ける工程と
     を有し、
     前記インシュレータを形成する工程では、前記軸線の方向において前記ティースの一方の側に前記巻き付け部の第1の端部を形成し、前記ティースの他方の側に前記巻き付け部の第2の端部を形成し、前記周方向において前記ティースの一方の側に前記巻き付け部の側部を形成し、
     前記第1の端部は、前記軸線の方向に最大厚さT1を有し、
     前記第2の端部は、前記軸線の方向に最大厚さT2を有し、
     前記側部は、前記周方向に最大厚さT3を有し、
     前記最大厚さT1,T2,T3が、T3<T1<T2を満足し、
     前記成形金型は、前記軸線の方向において、前記第1の端部を形成する部分と同じ側に、ゲートを有する
     ステータの製造方法。
  13.  軸線を中心とする周方向に延在するヨークと、前記ヨークから軸線に向かって延在するティースとを有するステータコアを用意する工程と、
     成形金型を用いて、前記ティースを囲む巻き付け部を有するインシュレータを形成する工程と、
     前記巻き付け部にコイルを巻き付ける工程と
     を有し、
     前記インシュレータを形成する工程では、前記軸線の方向において前記ティースの一方の側に前記巻き付け部の第1の端部を形成し、前記ティースの他方の側に前記巻き付け部の第2の端部を形成し、前記周方向において前記ティースの一方の側に前記巻き付け部の側部を形成し、
     前記第1の端部は、前記軸線の方向に最大厚さT1を有し、前記第2の端部は、前記軸線の方向に最大厚さT2を有し、
     前記第1の端部は、前記ティースとは反対側に凸となる曲率半径RT1の曲面を有し、前記第2の端部は、前記ティースとは反対側に凸となる曲率半径RT2の曲面を有し、
     前記最大厚さT1,T2,T3が、T1<T2を満足し、
     前記曲率半径RT1,RT2が、RT1>RT2を満足し、
     前記成形金型は、前記軸線の方向において、前記第1の端部を形成する部分と同じ側に、ゲートを有する
     ステータの製造方法。
PCT/JP2019/017596 2019-04-25 2019-04-25 ステータ、モータ、送風機、空気調和装置およびステータの製造方法 WO2020217375A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/602,702 US20220166279A1 (en) 2019-04-25 2019-04-25 Stator, motor, fan, air conditioner, and manufacturing method of stator
JP2021515403A JP7109658B2 (ja) 2019-04-25 2019-04-25 ステータ、モータ、送風機、空気調和装置およびステータの製造方法
CN201980095553.0A CN113826308A (zh) 2019-04-25 2019-04-25 定子、马达、送风机、空气调节装置及定子的制造方法
EP19925819.5A EP3961870A4 (en) 2019-04-25 2019-04-25 STATOR, MOTOR, FAN, AIR CONDITIONER DEVICE AND STATOR MANUFACTURING METHOD
PCT/JP2019/017596 WO2020217375A1 (ja) 2019-04-25 2019-04-25 ステータ、モータ、送風機、空気調和装置およびステータの製造方法
AU2019442093A AU2019442093B2 (en) 2019-04-25 2019-04-25 Stator, motor, fan, air conditioner, and manufacturing method of stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017596 WO2020217375A1 (ja) 2019-04-25 2019-04-25 ステータ、モータ、送風機、空気調和装置およびステータの製造方法

Publications (1)

Publication Number Publication Date
WO2020217375A1 true WO2020217375A1 (ja) 2020-10-29

Family

ID=72941138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017596 WO2020217375A1 (ja) 2019-04-25 2019-04-25 ステータ、モータ、送風機、空気調和装置およびステータの製造方法

Country Status (6)

Country Link
US (1) US20220166279A1 (ja)
EP (1) EP3961870A4 (ja)
JP (1) JP7109658B2 (ja)
CN (1) CN113826308A (ja)
AU (1) AU2019442093B2 (ja)
WO (1) WO2020217375A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241999A (zh) * 2018-01-18 2022-10-25 美蓓亚三美株式会社 定子构造以及旋转变压器
JP7109573B2 (ja) * 2018-10-23 2022-07-29 三菱電機株式会社 回転電機の絶縁構造体および回転電機の絶縁構造体の製造方法
US11750047B2 (en) * 2019-05-29 2023-09-05 Mitsubishi Electric Corporation Motor and compressor including the same
CN112564371A (zh) * 2019-09-26 2021-03-26 日本电产株式会社 马达及送风装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158805A (ja) 1974-06-03 1975-12-23
JP2006180698A (ja) * 2006-03-17 2006-07-06 Mitsubishi Electric Corp 電動機、冷凍・空調装置、電動機の製造方法、電動機の金型装置
JP2013233016A (ja) * 2012-04-27 2013-11-14 Nifco Inc ステーター用インシュレーター
JP2016135023A (ja) * 2015-01-20 2016-07-25 トヨタ自動車株式会社 インシュレータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698923A (en) * 1996-05-24 1997-12-16 Alliedsignal Inc. Exciter stator insulating bobbin
JP3679305B2 (ja) * 2000-03-23 2005-08-03 東芝キヤリア株式会社 冷媒圧縮機
JP3801132B2 (ja) * 2002-12-26 2006-07-26 三菱電機株式会社 電動機、冷凍・空調装置、電動機の製造方法
JP2009112141A (ja) * 2007-10-31 2009-05-21 Nissan Motor Co Ltd 回転機の固定子
JP5306411B2 (ja) * 2011-05-23 2013-10-02 三菱電機株式会社 回転電機
JP5773164B2 (ja) * 2012-01-31 2015-09-02 日本電産株式会社 電機子およびモータ
JP5858001B2 (ja) * 2013-06-05 2016-02-10 株式会社デンソー モータ、及び、それを用いた燃料ポンプ
JP2014238927A (ja) * 2013-06-06 2014-12-18 日立金属株式会社 絶縁電線
JP5846224B2 (ja) * 2014-01-22 2016-01-20 トヨタ自動車株式会社 ステータ
DE102015208251A1 (de) * 2015-05-05 2016-11-24 Robert Bosch Gmbh Elektromotor mit einem Isolierelement mit Führungsmittel
KR102410397B1 (ko) * 2015-06-30 2022-06-17 엘지이노텍 주식회사 인슐레이터 및 이를 포함하는 모터
JP6461381B2 (ja) * 2016-02-18 2019-01-30 三菱電機株式会社 回転電機の固定子、回転電機、および、回転電機の固定子の製造方法
JP6742402B2 (ja) * 2016-04-12 2020-08-19 三菱電機株式会社 電動機、圧縮機、及び冷凍サイクル装置
DE102018219819A1 (de) * 2018-11-19 2020-05-20 Mahle International Gmbh Elektrische Maschine, insbesondere für ein Fahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158805A (ja) 1974-06-03 1975-12-23
JP2006180698A (ja) * 2006-03-17 2006-07-06 Mitsubishi Electric Corp 電動機、冷凍・空調装置、電動機の製造方法、電動機の金型装置
JP2013233016A (ja) * 2012-04-27 2013-11-14 Nifco Inc ステーター用インシュレーター
JP2016135023A (ja) * 2015-01-20 2016-07-25 トヨタ自動車株式会社 インシュレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961870A4

Also Published As

Publication number Publication date
AU2019442093A1 (en) 2021-11-18
CN113826308A (zh) 2021-12-21
EP3961870A1 (en) 2022-03-02
US20220166279A1 (en) 2022-05-26
JPWO2020217375A1 (ja) 2021-10-14
JP7109658B2 (ja) 2022-07-29
AU2019442093B2 (en) 2022-10-27
EP3961870A4 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
JP6964672B2 (ja) ロータ、電動機、送風機および空気調和装置
WO2020217375A1 (ja) ステータ、モータ、送風機、空気調和装置およびステータの製造方法
US11394260B2 (en) Rotor, motor, fan, and air conditioning apparatus
JP7038819B2 (ja) 電動機、送風機および空気調和装置
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
US11047603B2 (en) Rotor, motor, and air conditioning apparatus
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
AU2020431615B2 (en) Motor, fan, and air conditioner
JP7090740B2 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法
JP7219331B2 (ja) 電動機、送風機、空気調和装置および電動機の製造方法
JP7062089B2 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法
JP7012878B2 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法
WO2022190308A1 (ja) ロータ、電動機、送風機、空気調和装置およびロータの製造方法
AU2020431621B2 (en) Stator, Motor, Fan, Air Conditioner, and Manufacturing Method of Stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019442093

Country of ref document: AU

Date of ref document: 20190425

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019925819

Country of ref document: EP

Effective date: 20211125