WO2020216417A1 - Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure - Google Patents

Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure Download PDF

Info

Publication number
WO2020216417A1
WO2020216417A1 PCT/DE2020/100338 DE2020100338W WO2020216417A1 WO 2020216417 A1 WO2020216417 A1 WO 2020216417A1 DE 2020100338 W DE2020100338 W DE 2020100338W WO 2020216417 A1 WO2020216417 A1 WO 2020216417A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
acid
lubricating grease
composition according
grease composition
Prior art date
Application number
PCT/DE2020/100338
Other languages
English (en)
French (fr)
Inventor
Thomas Litters
Florian Hahn
Rolf Luther
Markus Urban
Angela ROBBEN
Original Assignee
Fuchs Petrolub Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020217034619A priority Critical patent/KR20220002920A/ko
Priority to CN202080031288.2A priority patent/CN113748188B/zh
Priority to PL20725070.5T priority patent/PL3959296T3/pl
Priority to EP20725070.5A priority patent/EP3959296B1/de
Application filed by Fuchs Petrolub Se filed Critical Fuchs Petrolub Se
Priority to HRP20230066TT priority patent/HRP20230066T1/hr
Priority to MX2021013093A priority patent/MX2021013093A/es
Priority to JP2021563384A priority patent/JP2022530618A/ja
Priority to BR112021021093A priority patent/BR112021021093A2/pt
Priority to ES20725070T priority patent/ES2934988T3/es
Priority to RS20230042A priority patent/RS63900B1/sr
Priority to AU2020263515A priority patent/AU2020263515A1/en
Priority to US17/604,189 priority patent/US11591537B2/en
Priority to CA3134723A priority patent/CA3134723A1/en
Publication of WO2020216417A1 publication Critical patent/WO2020216417A1/de
Priority to ZA2021/07375A priority patent/ZA202107375B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M117/00Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof
    • C10M117/02Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
    • C10M117/04Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • C10M2201/056Metals; Alloys used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • C10M2201/0876Boron oxides, acids or salts used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/102Silicates
    • C10M2201/103Clays; Mica; Zeolites
    • C10M2201/1036Clays; Mica; Zeolites used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • C10M2201/1056Silica used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • C10M2207/1225Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • C10M2207/1236Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1256Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • C10M2207/1265Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • C10M2207/1276Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • C10M2207/1285Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • C10M2207/2865Esters of polymerised unsaturated acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0626Polytetrafluoroethylene [PTFE] used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • C10M2217/0456Polyureas; Polyurethanes used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/026Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • C10N2040/046Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • Lubricating greases including metal soaps and metal complex soaps based on R-10-hydroxyoctadecanoic acid
  • the invention relates to lubricating greases based on alkali and / or alkaline earth metal soaps and metal complex soaps based on R-10-hydroxyoctadecanoic acid and their use.
  • Lubricating oils have a liquid and flowable consistency
  • lubricating greases have a semi-solid to solid - often gel-like - consistency.
  • the characteristic of a lubricating grease is that a liquid oil component is absorbed and retained by a thickener component.
  • Lubricating greases contain a thickener that is homogeneously distributed in a base oil. Additional auxiliaries, such as emulsifiers, are often used so that the thickener is stably dispersed in the base oil. A wide variety of substances are known as base oils5. Organic and inorganic compounds are used as thickeners. In addition, additives are often added to the lubricating grease to improve wear protection, friction behavior, aging stability and corrosion protection. 0 The most important viscoelastic properties of a lubricating grease include the flow limit and the shear viscosity. Both have a major influence on the efficiency of grease-lubricated drives or bearings, especially when elastohydrodynamic lubrication (EHL) is present at high sliding speeds or speeds.
  • EHL elastohydrodynamic lubrication
  • the viscoelastic behavior of lubricating greases also has disadvantages, which can be seen in particular when lubricated components are operated at very low temperatures.
  • the "breakaway torque" is particularly noticeable when grease-lubricated vehicle components such as steering, sunroofs, window lifters, side mirror adjusters or door locks have to be operated manually or with a lower servo-electric drive can be operated.
  • lubricating greases therefore generally have to function reliably down to a temperature of at least -40 ° C.
  • lubricating greases In aviation, lubricating greases have to work reliably at temperatures down to -54 ° C, sometimes even down to -73 ° C.
  • the grease in the landing gear wheel bearings must not fail during landing, even if the aircraft has been at high altitude for a long time and the landing gear has been exposed to very low temperatures.
  • the "breakaway torque" of aviation grease must not exceed a certain value.
  • Hydroxyoctadecanoic acid in particular 12-hydroxyoctadecanoic acid (12-hydroxy stearic acid) is a fatty acid that has been used for some time for the production of metal soap fats, in particular lithium soap fats and lithium complex soap fats.
  • the starting product for 12-hydroxyoctadecanoic acid or its esters or triglycerides is ricinoleic acid ((9Z, 12R) -12-hydroxy-9-octadecenoic acid) and its triglyceride, the so-called castor oil, which is mainly obtained from the castor plant.
  • the unsaturated hydroxy fatty acid ricinoleic acid or its triglyceride is converted into a saturated hydroxy fatty acid by hydrogenation in order to make it stable in storage and more thermally stable.
  • other hydroxyoctadecane fatty acids such as 10-hydroxyoctadecanoic acid, have hardly any technical significance, even if they are repeatedly cited incidentally in property rights, but without actually being used.
  • the grease composition according to the invention contains
  • the at least one thickener is or comprises a metal soap and / or metal complex soap, which is formed from at least one alkali and / or alkaline earth metal ion and at least one carboxylate, the carboxylate from a CI 6- to C18 fatty acid, the C16 to C18 fatty acid comprising at least one 10-hydroxyoctadecanoic acid (R-10-hydroxy stearic acid) and the 10-hydroxyoctadecanoic acid having an enantiomeric purity in relation to the R isomer of greater than 80 wt.
  • the at least one thickener is or comprises a metal soap and / or metal complex soap, which is formed from at least one alkali and / or alkaline earth metal ion and at least one carboxylate, the carboxylate from a CI 6- to C18 fatty acid, the C16 to C18 fatty acid comprising at least one 10-hydroxyoctadecanoic acid (R-10-hydroxy stearic acid) and the 10-hydroxyo
  • % preferably greater than 90% by weight and in particular greater than 98% by weight, wherein if a metal complex soap is used, this comprises a complexing agent (hereinafter referred to as the metal soap and / or metal complex soap used according to the invention for short).
  • a metal complex soap this comprises a complexing agent (hereinafter referred to as the metal soap and / or metal complex soap used according to the invention for short).
  • 10-Hydroxyocatadecanoic acid (10-Hydroxy Stearic acid, CAS 638-26-6) can be produced enzymatically, as already published by G. Schroepfer in Biological Chemistry (1966), 241 (22). Both the R and S shapes can be used for grease production.
  • the structural form of the R form is:
  • the substrate for the enzymatic conversion is predominantly (9Z) -octadeca-9-enoic acid (oleic acid), this can be obtained from domestic "high-oleic" sunflower oil, e.g. with a purity of greater than 92% (9Z) -octadeca-9-enoic acid, but also of technical quality with a purity of greater than 60% (9Z) -Octadeca-9-enoic acid.
  • By-products of the qualities are for example hexadecanoic acid (palmitic acid), hexadecenoic acid (palmitoleic acid), octadecanoic acid (stearic acid) or polyunsaturated fatty acids such as linoleic acid ((9Z, 12Z) - octadeca- 9,12-dienoic acid) or linolenic acid ((9Z, 12Z, 15Z) - Octadeca- 9, 12, 15-trienoic acid).
  • linoleic acid ((9Z, 12Z) - octadeca- 9,12-dienoic acid)
  • linolenic acid ((9Z, 12Z, 15Z) - Octadeca- 9, 12, 15-trienoic acid).
  • high-oleic sunflower oil
  • carbon-rich waste streams can be used on the one hand as a nutrient for enzyme production and on the other hand as a "feedstock" for the representation of the target products.
  • base materials for material use for example, used cooking fats and oils, residues from biodiesel production (eg glycerine, fatty acids, methyl esters) and other industrial side streams can be used.
  • 12-Hydroxyocatadecanoic acid (12-Hydroxystearic acid, CAS 106-14-9) is commercially available e.g. at Sigma-Aldrich, or at Nidera B.V. available. 12-Hydroxyoctadecanoic acid is chemically produced from castor oil through hydrolysis and hydrogenation. Castor oil is mainly produced in India, Brazil and China. The purity of the commercially available 12-hydroxyocatadecanoic acid is usually at 80-98% by weight.
  • R-10-hydroxyoctadecanoic acid is e.g. also given if other fatty acids with a chain length of C16 to C18 such as hexadecanoic acid (palmitic acid) (CI 6: 0), 9-hydroxyhexadecanoic acid, octadecanoic acid (stearic acid), (9Z) -octadeca-9-enoic acid (oleic acid) or polyunsaturated fatty acids such as Linoleic acid ((9Z, 12Z) - octadeca- 9,12-dienoic acid) or linolenic acid ((9Z, 12Z, 15Z) - octadeca- 9,12,15- trienoic acid) can continue to be used in unhydroxylated or hydroxylated form in metal soap production, in particular together with R-10-hydroxy octadecanoic acid.
  • other fatty acids with a chain length of C16 to C18 such as
  • the CI 6 to C 18 fatty acids for producing the metal soap and / or metal complex soaps used according to the invention are preferably further identified individually or together as follows:
  • the CI 6 to C18 fatty acids consist of more than 50% by weight, preferably more than 80% by weight and in particular more than 95% by weight of 10-hydroxy stearic acid.
  • the CI 6 to C18 fatty acid contains hexadecanoic acid, in particular greater than 0.5% by weight, preferably greater than 1.0% by weight, and particularly preferably 1 to 10% by weight.
  • the C 16 to C 18 fatty acid contains hydroxyhexadecanoic acid, in particular 9-hydroxyhexadecanoic acid, in particular greater than 0.2% by weight, preferably greater than 0.5% by weight, and particularly preferably 1 to 10.0% by weight.
  • the CI 6 to C18 fatty acid contains octadecanoic acid, in particular greater than 0.2% by weight, preferably greater than 0.5% by weight, and particularly preferably 1 to 10.0% by weight.
  • the CI 6 to C18 fatty acid contains octadecenoic acid, in particular (9Z) octadeca-9-enoic acid, in particular greater than 0.2% by weight, preferably greater than 0.5% by weight, and preferably 1.0 to 10% by weight. %.
  • the C16 to C18 fatty acid contains octadecadienoic acid, in particular (9Z, 12Z) octadeca- 9,12-dienoic acid, in particular greater than 0.2% by weight, preferably greater than 0.5% by weight, and particularly preferably 1 to 10 Weight%.
  • the C16 to C18 fatty acid contains less than 1% by weight of 12-hydroxy-9-octadecenoic acid, in particular (9Z, 12f?) - 12-hydroxy-9-octadecenoic acid, preferably less than 0.2% by weight .
  • the C16 to C18 fatty acid contains less than 1% by weight of 12-hydroxy octadecanoic acid, in particular less than 0.2% by weight.
  • the hydroxy-substituted C16 to C18 fatty acids are available from an enzymatic conversion of the corresponding unsaturated C16 to C18 fatty acids.
  • the CI 6 to C18 fatty acids can be obtained from edible fats, in particular used edible fats and / or biodiesel, comprising at least one enzymatic conversion.
  • the metal soap and / or metal complex soap used according to the invention are in particular a lithium soap or lithium complex soap or
  • lubricating greases based on R-10-hydroxy octadecanoic acid have significantly lower thickener contents with the same consistency and preferably require at least 30% by weight less thickener and at least 30% by weight less lithium hydroxide monohydrate for production.
  • Lubricating greases produced in this way have significantly lower flow pressures, flow limits and significantly lower starting torques in Gleitla like, rolling bearings and gears, especially at low temperatures.
  • production costs can be saved by reducing the use of lithium hydroxide monohydrate.
  • the use of R-10-hydroxyoctadecanoic acid instead of 12-hydroxyoctadecanoic acid can significantly reduce the costs of using Li salts, because up to 62% less lithium hydroxide monohydrate is required to form the lithium hydroxyoctadecanoate soap . This is an important cost factor for lubricating grease manufacturers, particularly against the background of increasing lithium demand for battery production and for electromobility.
  • lithium R-10 hydroxy octadecanate soap in situ, i. produced by reaction of lithium hydroxide monohydrate with R-10-hydroxyoctadecanoic acid, but lithium 10-hydroxyoctadecanoate produced in a separate step can also be mixed into a base oil and thickened by subsequent thermal and mechanical processing.
  • composition according to the invention comprises at least:
  • a base oil or a base oil mixture preferably from 55 to 98% by weight and in particular from 70 to 97% by weight
  • preferred base oils are e.g. Polyalphaolefins, mineral oils and / or esters,
  • b) additives preferably from 0.5 to 40% by weight and in particular from 2 to 20% by weight.
  • c) thickener the thickener being or comprising a metal soap or a metal complex soap which is a metal R-10-hydroxyoctadecanate soap comprises, and the metal soap used according to the invention or the metal complex soap used according to the invention (then with complexing agent) preferably 1.5 to 25% by weight, preferably 3 to 10% by weight (in relation to the metal soap) or 1.5 to 40% by weight in relation to the metal complex soap, comprising 0.1 to 20% by weight complexing agent, preferably comprising 0.1 to 10% by weight complexing agent, and the metal soap salt used for the production is a metal hydroxide from alkali and / or alkaline earth metal hydroxides (metal soaps used according to the invention).
  • the percentages by weight relate to the overall composition and apply independently of one another.
  • Customary lubricating oils which are liquid at room temperature are suitable as base oils.
  • the base oil has a kinematic viscosity of 14 to 2500 mm 2 / s, preferably 30 to 500 mm 2 / s, in each case at 40 ° C.
  • the base oils can be classified as mineral oils or synthetic oils.
  • Mineral oils are considered to be naphthenic mineral oils and paraffin-based mineral oils, according to classification according to API Group I. Chemically modified, aromatic and low-sulfur mineral oils with a low proportion of saturated compounds and improved viscosity / temperature behavior compared to Group I oils, classified according to API Group II III, Group III + and synthetic oils (GTL oils) made from natural gas using the so-called gas-to-liquid process are also suitable.
  • Synthetic oils which may be mentioned are di- or polyethers, esters, polyalphaolefins, polyglycols and alkyl aromatics and mixtures thereof.
  • the di-ether compound can be a compound having aliphatic groups and / or aromatic groups (e.g. alkylated diphenyl ethers).
  • the polyether compound can have free hydroxyl groups, but it can also be completely etherified or end groups esterified and / or be produced from a starter compound with one or more hydroxyl and / or carboxyl groups (-COOH).
  • Diphenyl ethers or polyphenyl ethers, optionally alkylated are also possible as sole components or, better still, as mixed components.
  • Esters of an aromatic di-, tri- or tetracarboxylic acid with one or in a mixture of C2 to C30 alcohols, esters of adipic acid, sebacic acid, trimethylolopropane, neopentyl glycol, pentaerythritol or dipentaerythritol with aliphatic branched or unbranched, saturated or can be used unsaturated C2 to C22 carboxylic acids, C18 dimer acid esters with C2 to C22 alcohols, complex esters, as individual components or in any mixture.
  • LAO linear alpha-olefin
  • fatty acids in addition to the C16 to C18 fatty acids, as described above, other fatty acids can also be reacted with metal salts, such as metal hydroxides, to obtain further metal soaps.
  • metal salts such as metal hydroxides
  • It can be alkali or alkaline earth salts of one or more saturated or unsaturated monocarboxylic acids with 10 to 15 and / or 19 to 24 carbon atoms, optionally substituted as preferred corresponding hydroxycarboxylic acids.
  • Suitable carboxylic acids are e.g. Lauric acid, myristic acid, or behenic acid.
  • saturated or unsaturated branched-chain fatty acids can also be used. Naphthenic acids, neodecanoic acids or comparable neo acids can also be used.
  • metal soaps simple, mixed or complex soaps based on Al, Bi, Ti salts and carboxylic acids or on Li, Na, Mg, Ca, Al, Bi, Ti salts and Sulphonic acids, during the base fat production or later as an additive.
  • these soaps can also be formed in situ during the production of the Me tallseifen used according to the invention.
  • corresponding lower alcohol esters can also be used with saponification in the production of the respective metal soaps, e.g. corresponding triglycerides and the methyl, ethyl, propyl, isopropyl or sec-butyl esters of the acid / hydroxy acid in order to achieve a better dispersion.
  • metal soaps e.g. corresponding triglycerides and the methyl, ethyl, propyl, isopropyl or sec-butyl esters of the acid / hydroxy acid in order to achieve a better dispersion.
  • complexing agents are used during manufacture in addition to the metal soaps already described.
  • Complexing agents in the context of the present invention are:
  • the complexing agent (a) is preferred.
  • Particularly suitable monocarboxylic acids are acetic acid and propionic acid.
  • hydroxybenzoic acids such as parahydroxybenzoic acid, salicylic acid, 2-hydroxy-4-hexylbenzoic acid, metahydroxybenzoic acid, 2,5-dihydroxybenzoic acid (gentisic acid), 2,6-dihydroxybenzoic acid (gammaresorcylic acid) or 4-hydroxy-4-methoxybenzoic acid .
  • dicarboxylic acids are adipic acid (C6H10O4), sebacic acid (C10H18O4), azelaic acid (C9H16O4) and / or 3 - / cvV.-butyl-adipic acid (C10H18O4).
  • Metaborate, diborate, tetraborate or orthoborate, such as, for example, monolithium orthoborate, can be used as borate (b).
  • the phosphates are alkali (preferably lithium) and alkaline earth (preferably calcium) dihydrogen phosphate . hydrogen phosphate or pyrophosphate in question or calcium or lithium hydroxyapatite.
  • the esters of boric acid and phosphoric acid which can be used are those having unbranched or branched alkyl groups of 2 to 32, preferably 8 to 32, carbon atoms.
  • bentonites such as montmorillonite (the sodium ions of which may be replaced or partially replaced by organically modified ammonium ions), aluminosilicates, clays, hydrophobic and hydrophilic silica, oil-soluble polymers (e.g. polyolefins, poly (meth)) can also be used as co-thickeners. acrylates, polyisiobutylenes, polybutenes or polystyrene copoly mers), polyurea or polyurea-polyurethane or PTFE can be used.
  • the Ben tonites, aluminosilicates, clays, silicic acid and / or oil-soluble polymers can be added for the manufacture of the base fat or added later as an additive in the second step.
  • lignin derivatives can also be added as co-thickeners or as additives.
  • Lignin derivatives are effective components in lubricating greases and can be used to improve the wear protection properties and scuff properties.
  • the lignin derivatives can represent multifunctional components. Due to their high number of polar groups and aromatic structures, their polymeric structure and their low solubility in all types of lubricating oils, powdered lignins and / or ligninsulfonates are also suitable as solid lubricants in lubricating greases and lubricating pastes.
  • the phenolic hydroxyl groups contained in lignin and lignin sulfonates also have an aging-inhibiting effect.
  • the sulfur content in ligninsulfonates promotes the EP / AW effect in lubricating greases.
  • Lignins and / or calcium and / or sodium ligninsulphonate or mixtures thereof are preferably used.
  • Kraft lignins, soda lignins or Organosolv lignins can also be used. It is also possible to add bio-based oligomers or polymers as solid lubricants or co-thickeners such as triterpenes, cellulose or modified cellulose, chitin and / or chitosan.
  • the thickener metal soaps according to the invention, further metal soaps and co-thickeners
  • the composition contains so much thickener that a cone penetration value (worked penetration) of 210 to 475 mm / 10 (at 25 ° C.), preferably 230 to 385 mm / 10 (at 25 ° C.) is obtained (determined according to DIN ISO 2137 or ASTM D 0217-97).
  • compositions according to the invention may also contain additives as additives.
  • additives for the purposes of the invention are antioxidants, anti-wear agents, anti-corrosion agents, detergents, dyes, lubricity improvers, adhesion improvers, viscosity additives, friction reducers, extreme pressure additives and metal deactivators.
  • Primary antioxidants such as amine compounds (e.g. alkylamines or 1-phenylaminonaphthalene), aromatic amines such as Phenylnaphthylamines or diphenylamines or polymeric hydroxyquinolines (e.g. TMQ), phenol compounds (e.g. 2,6-di-tert-butyl-4-methylphenol), zinc dithiocarbamate or zinc dithiophosphate;
  • amine compounds e.g. alkylamines or 1-phenylaminonaphthalene
  • aromatic amines such as Phenylnaphthylamines or diphenylamines or polymeric hydroxyquinolines (e.g. TMQ)
  • phenol compounds e.g. 2,6-di-tert-butyl-4-methylphenol
  • zinc dithiocarbamate or zinc dithiophosphate e.g. 2,6-di-tert-butyl-4-methylphenol
  • Secondary antioxidants such as phosphites, e.g. Tris (2,4-di-tert-butylphenyl phosphite) or bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite;
  • High pressure additives such as organic chlorine compounds, sulfur or organic sulfur compounds, phosphorus compounds, inorganic or organic boron compounds, zinc dithiophosphate, organic bismuth compounds; • Active ingredients that improve "oiliness” such as C2 to C6 polyols, fatty acids, fatty acid esters or animal or vegetable oils;
  • Anti-corrosion agents such as Petroleum sulfonate, dinonyl naphthalene sulfonate or sorbitan ester; Disodium sebacate, neutral or overbased calcium sulfonates, magnesium sulfonates, sodium sulfonates, calcium and sodium naphthalene sulfonates, calcium salicylates, amine phosphates, succinates, metal deactivators such as e.g. Benzotriazole or sodium nitrite;
  • Viscosity improvers such as Polymethacrylate, polyisobutylene, oligo dec-l-ene, poly styrenes;
  • L are independently selected ligands having organo groups with carbon atoms, as disclosed in US 6172013 B1, in order to make the compound soluble or dispersible in the oil, where n ranges from 1 to 4, k from 4 to 7, Q is selected from the group of neutral electron donor compounds consisting of amines, alcohols, phosphines and ethers, and z is in the range from 0 to 5 and comprises non-stoichiometric values (cf. DE 102007048091);
  • friction reducers such as functional polymers such as Oleylamides, organic compounds based on polyether and amide, e.g. Alkyl polyethylene glycol tetradecylene glycol ethers, polyisobutylene succinimides, polyisobutylene succinic acid imide (PIBSI) or polyisobutylene succinic acid anhydride (PIB SA);
  • functional polymers such as Oleylamides, organic compounds based on polyether and amide, e.g. Alkyl polyethylene glycol tetradecylene glycol ethers, polyisobutylene succinimides, polyisobutylene succinic acid imide (PIBSI) or polyisobutylene succinic acid anhydride (PIB SA);
  • the lubricating grease compositions according to the invention contain the usual additives against corrosion, oxidation and for protection against metal influences, which act as chelate compounds, radical scavengers, UV converters, reaction layer formers and the like. Also additives that improve the hydrolysis resistance of ester base oils, e.g. Carbodiimides or epoxides can be added;
  • Polymer powders such as polyamides, polyimides or PTFE, melamine cyanurate, graphite, metal oxides, boron nitride, silicates, for example magnesium silicate hydrate (talc), sodium tetraborate, potassium tetraborate, metal sulfides such.
  • Lignin derivatives can also be used as a thickener component or solid lubricant.
  • Bio-based oligomers or polymers such as triterpenes, modified cellulose, chitin, chitosan or polypeptides are also possible.
  • the lubricating greases according to the invention are particularly suitable for use in plain and roller bearings, transmissions and / or constant velocity universal joint shafts in industrial and automotive applications. It is a special aspect of the present invention to achieve low-friction lubricating greases, especially at low temperatures, where low breakaway torques and running torques are required and where a low yield point and shear viscosity are advantageous. In the special case of the lubrication of plain and roller bearings and gears and constant velocity universal joint shafts in automotive engineering, smaller and lighter drives can be used and efficiency benefits can be achieved.
  • Lubricating greases that were produced according to the present invention have up to 43% lower flow limits, especially at -35 ° C, measured with the oscillation rheometer according to DIN 51810-2 and up to 50% lower shear viscosities determined with the shear viscosity meter according to DIN 51810-1 than comparable lubricating greases.
  • the lubricating greases at -40 ° C, produced according to the present invention show values that are at least 50% lower than comparable lubricating greases.
  • the lubricating greases according to the invention have sliding friction coefficients with steel / steel contact that are up to 37% lower than with a comparable lubricating grease based on 12-hydroxyoctadecanoic acid.
  • Various laboratory test methods are available for testing the flow limits and the shear viscosity of lubricating greases.
  • One method for determining the yield point using an oscillation rheometer is DIN 51810-2.
  • the flow pressure method according to DIN 51805-2 is also used to determine the lower usage temperature of lubricating greases.
  • the flow pressure is the pressure difference to atmospheric pressure that is required to press a line of grease out of a test nozzle under the conditions specified in this standard. It is a measure of the stiffness of a lubricating grease at the respective test temperature and can be used in addition to the test according to DIN 51810-2 as a measure of the flow limit.
  • IP 186 and ASTM D 1478 describe the determination of the starting and running torque of ball bearings. These test methods can be used to test the functionality of lubricating greases at low temperatures, e.g. -40 ° C or -73 ° C. These test methods are therefore part of numerous specifications in the automotive and aerospace industries (civil and military aviation) as well as in user specifications. They have proven to be useful testing methods over the years.
  • the DIN 51805-2, flow pressure method is mainly used in Germany as a national method to determine the lower service temperature of lubricating greases.
  • the manufacture of the greases can e.g. take place as follows: Mixing the salt / metal compound into the carboxylic acid compound, which can optionally be extended with the base oil component, plus possibly the complexing agent and possibly simultaneous heating of the mixture to a temperature above 100 ° C, in particular above 170 ° C , to form a thickened grease product, cool the grease product and optionally add water, apply shear forces to the mixture, e.g. with a toothed colloid mill, a high pressure homogenizer and / or a three-roller mill.
  • the thickener is synthesized in situ in the base oil under pressure and at elevated temperature in a closed reaction vessel such as an autoclave.
  • the lubricating grease composition can be used for the lubrication of gears, constant velocity universal joint shafts, plain and roller bearings, sliding guides, spindle drives, linear drives, ball drives, in particular with a lower operating temperature of less than -20 ° C and / or in automobiles, aircraft, drones or helicopters will. Further applications are the lubrication of steering systems, sunroofs, window regulators, side mirror adjusters, door locks, wheel bearings, especially in automobiles, aircraft, drones or helicopters.
  • the lubricating grease composition is also suitable for the lubrication of electric motor bearings, in particular in hybrid vehicles or purely electric vehicles.
  • Lithium 12-hydroxyocatdecanoic acid grease with polyalphaolefin Lithium 12-hydroxyocatdecanoic acid grease with polyalphaolefin
  • the lubricating greases produced in this way had thickener proportions of 4.64% by weight (B1), 4.97% by weight (B2) and 5.06% by weight (B3) and worked penetrations of 339 0.1 mm (B1), 332 0 , 1mm (B2) and 320 0.1mm (B3).
  • Lithium 12-hydroxyocatdecanoic acid complex grease with polyalphaolefin Lithium 12-hydroxyocatdecanoic acid complex grease with polyalphaolefin
  • Lubricating grease had a thickener content of 10.52% and a worked penetration of 328 0.1 mm and a dropping point of> 300 ° C.
  • Lubricating grease had a thickener content of 4.68% by weight and a worked penetration of 335 0.1 mm and a dropping point of 293 ° C.
  • the lubricating grease thus produced had a thickener content of 4.21% by weight and a
  • the lubricating greases according to the invention produced with R-10-hydroxyoctadecanoic acid showed a thickening effect of up to 62% better than a 12-hydroxyoctadecanoic acid.

Abstract

Gegenstand der Erfindung sind Schmierfette auf Basis von Alkali- und/oder Erdalkali-Metallseifen und Metallkomplexseifen auf Basis von R-10-Hydroxyoctadecansäure und deren Verwendung.

Description

Schmierfette umfassend Metallseifen und Metallkomplexseifen auf Basis von R-10- Hydroxyoctadecansäure
Gegenstand der Erfindung sind Schmierfette auf Basis von Alkali- und/oder Erdalkali- 5 Metallseifen und Metallkomplexseifen auf Basis von R-lO-Hydroxyoctadecansäure und deren Verwendung.
Hintergrund der Erfindung 0 Für viele technische Anwendungen bzw. Tribosysteme ist es zur Verringerung der Rei bung und des Verschleißes an den Kontaktflächen beweglicher Teile wichtig, Schmierstoffe einzusetzen. Dabei können je nach Einsatzgebiet Schmierstoffe unterschiedlicher Konsistenz eingesetzt werden. Schmieröle weisen eine flüssige und fließfähige Konsis tenz auf, während Schmierfette eine halbfeste bis feste - oft gelartige - Konsistenz haben.:5 Kennzeichen eines Schmierfettes ist, dass eine flüssige Öl-Komponente von einer Verdi cker-Komponente aufgenommen und festgehalten wird. Die pastöse Beschaffenheit eines Schmierfettes und seine Eigenschaft, streichfähig und plastisch leicht verformbar zu sein, sorgt zusammen mit der Eigenschaft, haftfähig zu sein dafür, dass das Schmierfett die Schmierstelle benetzt und sich die Schmierwirkung an den tribologisch beanspruchten0 Oberflächen entfaltet.
Schmierfette enthalten ein Verdickungsmittel, das in einem Basisöl homogen verteilt wird. Häufig werden zusätzliche Hilfsstoffe, wie Emulgatoren, eingesetzt, damit sich das Verdickungsmittel im Basisöl stabil dispergiert. Verschiedenste Stoffe sind als Basisöle5 bekannt. Als Verdickungsmittel werden organische und anorganische Verbindungen ein gesetzt. Oft werden dem Schmierfett darüber hinaus noch Additive u.a. zur Verbesserung des Verschleißschutzes, des Reibungsverhaltens, der Alterungsstabilität und der Korrosi onsschutz zugesetzt. 0 Zu den wichtigsten viskoelastischen Eigenschaften eines Schmierfettes zählen die Fließgrenze sowie die Scherviskosität. Beide nehmen großen Einfluss auf den Wirkungsgrad fettgeschmierter Antriebe oder Lagerungen, insbesondere wenn elastohydrodynamische Schmierung (EHL) bei hohen Gleitgeschwindigkeiten oder Drehzahlen vorliegen. Besonders bei tiefen Anwendungstemperaturen nehmen Fließgrenze und Scherviskosität einen5 großen Einfluss auf das sogenannte Losbrechdrehmoment und Laufdrehmoment von fett geschmierten Bauteilen und Aggregaten. Fette sind für Schmierzwecke in der Automobil- und Luftfahrtindustrie weit verbreitet. Im Vergleich zu Ölen haben sie zahlreiche Vorteile in Bezug auf Design und Wartung. Daher werden sie verwendet, um eine große Anzahl beweglicher Teile in Personenkraft wagen und Flugzeugen zu schmieren, wo Ölschmierung versagt.
Das viskoelastische Verhalten von Schmierfetten weist auch Nachteile auf, was insbeson dere beim Betrieb von geschmierten Bauteilen bei sehr niedrigen Temperaturen zu erken nen ist. Beim Anfahren eines weitgehend abgekühlten Fahrzeugs (Winter, arktische Re gionen) ist das "Losbrechmoment" besonders dann spürbar, wenn fettgeschmierte Fahr zeugbauteile wie Lenkungen, Schiebedächer, Fensterheber, Seitenspiegelversteller oder Türschlösser manuell bedient werden müssen oder mit niedriger servo-elektrischer An trieb sl ei stung betätigt werden. In der Automobilindustrie müssen Schmierfette daher in der Regel bis zu einer Temperatur von mindestens -40 ° C zuverlässig funktionieren. In der Luftfahrt müssen Schmierfette bei Temperaturen bis -54 ° C, teilweise sogar bis -73 ° C, zuverlässig arbeiten. Das Schmierfett in den Fahrwerksradlagern darf während der Lan dung nicht ausfallen, auch wenn das Flugzeug lange Zeit in großer Höhe war und das Fahrwerk sehr niedrigen Temperaturen ausgesetzt war. Das "Losbrechmoment" von Flug zeugschmierfetten darf einen bestimmten Wert nicht überschreiten.
Oft hängt dabei die Auslegung der Maximaldrehmomente fettgeschmierter Bauteile wie Getriebe, Gleit- oder Wälzlager sowie alle anderen Arten von Gleitpaarungen von der Beschaffenheit des zur Schmierung verwendeten Schmierfettes ab. Niedrige Fließgrenze und Scherviskosität bei tiefen Temperaturen führen zu reduzierten Losbrech- und Lauf momenten und ermöglichen es den Konstrukteuren Aggregate mit vergleichsweise gerin ger Antriebsleistung auszuwählen. Dies spielt insbesondere eine große Rolle bei Fahrzeu gen, bei denen elektrische Antriebe verwendet werden, z.B. in Hybridfahrzeugen oder reinen Elektrofahrzeugen. Durch die Verwendung von besonderes haft- und gleitreibungs armen Schmierfetten bei unterer Anwendungstemperatur, zum Beispiel -40°C, führen re duzierte Start- und Laufdrehmomente zu einem geringeren Bedarf an elektrischer An trieb sl ei stung und Strombedarf, was zum einen die Reichweite batteriegetriebener Fahr zeuge verlängert und zum anderen es ermöglicht, Stromleitungen mit geringerer uer- schnittfläche zu verwenden und somit eine Gewichtseinsparung beim Bordnetz zu erzie len. Um in Abhängigkeit von den Schmier- und Geräteanforderungen ein Schmierfett von ho hem Gebrauchswert zu schaffen, bedarf es eines hohen Maßes an praktischen Erfahrun gen.
Hydroxyoctadecansäure, insbesondere 12-Hydroxyoctadecansäure (12-Hydroxy Stearin säure) ist eine seit geraumer Zeit eingesetzte Fettsäure zur Herstellung von Metallseifen fetten, insbesondere von Lithiumseifenfetten und Lithiumkomplexseifenfetten. Ausgangs produkt für die 12-Hydroxyoctadecansäure bzw. deren Ester oder Triglyceride ist Rici- nolsäure ((9Z, 12R)-12-Hydroxy-9-octadecensäure) und deren Triglycerid, das sogenannte Rizinusöl, welches überwiegend aus der Rizinuspflanze gewonnen wird. Dazu wird die ungesättigte Hydroxyfettsäure Ricinolsäure bzw. deren Triglycerid durch Hydrierung in eine gesättigte Hydroxyfettsäure umgewandelt, um sie lagerstabil und thermisch stabiler zu machen. Bis heute haben andere Hydroxyoctadecanfettsäuren wie zum Beispiel 10- Hydroxyoctadecansäure kaum eine technische Bedeutung, auch wenn diese immer wieder in Schutzrechten beiläufig zitiert werden, ohne dass diese jedoch tatsächlich eingesetzt wurden.
Nachteile des Standes der Technik und Aufgabe der Erfindung
Insbesondere bei der Herstellung von Lithiumfetten aber auch bei anderen Metallseifen fetten auf Basis von 12-Hydroxyoctadecansäure benötigt man vergleichsweise hohe Ge halte an Metallseife als Verdicker, um die gewünschte Konsistenz zu erhalten. Dies führt dazu, dass derartige Schmierfette in Wälzlager- und Getriebeanwendungen oder sonstigen fettgeschmierten Tribosystemen zu erhöhten Reibungsverlusten führen können. Aufgabe der Erfindung ist es, die oben beschriebenen Nachteile beim Wirkungsgrad- und des Tief temperaturverhaltens zu minimieren.
Zusammenfassung der Erfindung
Die Aufgabe wird gelöst durch den Gegenstand der unabhängigen Ansprüche. Bevorzugte Aus führungsformen sind Gegenstand der Unteransprüche oder nachfolgend beschrieben
Die erfindungsgemäße Schmierfett-Zusammensetzung enthält
a) zumindest ein Basisöl,
b) zumindest ein Additiv, c) zumindest einen Verdicker, wobei der zumindest eine Verdicker eine Metallseife und/oder Metallkomplexseife ist oder umfasst, die aus zumindest einem Alkali- und/oder Erdalkalime- tall-Ion und zumindest einem Carboxylat gebildet ist, wobei das Carboxylat aus einer CI 6- bis C18-Fettsäure aufgebaut ist, wobei die C16- bis C18-Fettsäure zumindest eine 10-Hydro- xyoctadecansäure (R-10-Hydroxy Stearinsäure) umfasst und die 10-Hydroxyoctadecansäure eine Enantiomerenreinheit in Bezug auf das R-Isomer von größer 80 Gew.%, vorzugsweise größer 90 Gew.% und insbesondere größer 98 Gew.% hat, wobei wenn eine Metallkomplex seife eingesetzt wird, diese ein Komplexierungsmittel umfasst (nachfolgend kurz die erfin dungsgemäß eingesetzte Metallseife und/oder Metallkomplexseife).
Es wurde überraschenderweise gefunden, dass eine enzymatisch hergestellte R-10-Hydro- xyocatadecansäure mit einer Enantiomerenreinheit von größer 80% besonders gute Verdi ckerleistung zeigt (100% = Summe aus R und S Isomer). In gleicher Grundöl- und Addi tivmatrix zeigte eine derartig hergestellte 10-Hydroxyoctadecansäure mit hohem R- Anteil im Vergleich zu einer 12-Hydroxyoctadecansäure eine deutlich, z.B. um mehr als 50%, bessere Verdickungswirkung.
10-Hydroxyocatadecansäure (10-Hydroxy Stearin säure, CAS 638-26-6) kann enzymatisch hergestellt werden, wie es bereits G. Schroepfer in Biological Chemistry (1966), 241 (22) veröffentlicht hat. Für die Schmierfettherstellung können sowohl die R als auch S Form eingesetzt werden.
Die Strukturform der R-Form lautet:
Figure imgf000005_0001
Substrat für die enzymatische Umsetzung ist vorwiegend (9Z)-Octadeca-9-ensäure (Öl säure), diese kann aus heimischem„high-oleic“ Sonnenblumenöl, z.B. mit einer Reinheit von größer 92% (9Z)-Octadeca-9-ensäure, aber auch aus technischer Qualität mit einer Reinheit von größer 60% (9Z)-Octadeca-9-ensäure hergestellt werden. Nebenprodukte bei den Qualitäten sind beispielsweise Hexadecansäure (Palmitinsäure), Hexadecensäure (Palmitoleinsäure), Octadecansäure (Stearinsäure) oder mehrfach ungesättigte Fettsäuren wie z.B. Linolsäure ((9Z,12Z)- Octadeca- 9,12-diensäure) oder Linolensäure ((9Z,12Z,15Z)- Octadeca- 9, 12, 15- triensäure). Ein Vorteil dieses enzymatischen Verfahrens liegt darin, heimische Einsatzrohstoffe zu nutzen und damit die Lieferkette auf einheimische Ausgangsrohstoffe zu erweitern. Neben z.B.„high-oleic“ Sonnenblumenöl bietet es sich an, kohlenstoffreiche Abfallströme ent haltend ungesättigte C18 Säuren bzw. Ester zur Herstellung von 10-Hydroxyocatadecan- säure einzusetzen. Konkret können kohlenstoffreiche Abfallströme einerseits als Nähr stoff für die Enzymproduktion, andererseits als "Feedstock" für die Darstellung der Ziel produkte genutzt werden. Als Grundstoffe für die stoffliche Nutzung können z.B. Altspei sefette und - öle, Reste aus der Biodieselproduktion (z.B. Glycerin, Fettsäuren, Methyles ter) und andere industrielle Nebenströme eingesetzt werden.
12-Hydroxyocatadecansäure (12-Hydroxystearinsäure, CAS 106-14-9) ist kommerziell z.B. bei Sigma-Aldrich, beziehungsweise bei Nidera B.V. erhältlich. 12-Hydroxyoctade- cansäure wird chemisch aus Rizinusöl durch Hydrolyse und Hydrierung hergestellt. Rizi nusöl wird vorwiegend in Indien, Brasilien und China hergestellt. Die Reinheit der kom merziell verfügbaren 12-Hydroxyocatadecansäure liegt i.d.R. bei 80-98 Gew.%.
Die gute Verdickungswirkung der R-10-Hydroxyoctadecansäure ist z.B. auch gegeben, wenn andere Fettsäuren mit der Kettenlänge C16 bis C18 wie zum Beispiel Hexadecan- säure (Palmitinsäure) (CI 6:0), 9-Hydroxyhexadecansäure, Octadecansäure (Stearin säure), (9Z)-Octadeca-9-ensäure (Ölsäure) oder mehrfach ungesättigte Fettsäuren wie z.B. Linolsäure ((9Z,12Z)- Octadeca- 9,12-diensäure) oder Linolensäure ((9Z,12Z,15Z)- Octadeca- 9,12,15- triensäure) in unhydroxylierter oder hydroxylierter Form weiterhin bei der Metallseifenherstellung eingesetzt werden, insbesondere zusammen mit R-10-Hydro- xyoctadecansäure.
Die CI 6- bis C18-Fettsäure zur Herstellung der erfindungsgemäß eingesetzten Metallseife und/oder Metallkomplexseifen sind vorzugsweise weiter einzeln oder gemeinsam wie folgt gekennzeichnet:
- Die CI 6- bis C18-Fettsäure bestehen zu größer 50 Gew.%, vorzugsweise größer 80 Gew.% und insbesondere größer 95 Gew.% aus 10-Hydroxy Stearinsäure.
- Die CI 6- bis C18-Fettsäure enthält Hexadecansäure, insbesondere größer 0,5 Gew.%, bevorzugt größer 1,0 Gew.%, und besonders bevorzugt 1 bis 10 Gew.%.
- Die C 16- bis C 18-Fettsäure enthält Hydroxyhexadecansäure, insbesondere 9-Hydro xyhexadecansäure, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und besonders bevorzugt 1 bis 10,0 Gew.%. - Die CI 6- bis C18-Fettsäure enthält Octadecansäure, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und besonders bevorzugt 1 bis 10,0 Gew.%.
- Die CI 6- bis C18-Fettsäure enthält Octadecensäure, insbesondere (9Z)-Octadeca-9- ensäure, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und bevorzugt 1,0 bis 10 Gew.%.
- Die C16- bis C18-Fettsäure enthält Octadecadiensäure, insbesondere (9Z,12Z)- Octadeca- 9,12-diensäure, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und besonders bevorzugt 1 bis 10 Gew.%.
- Die C16- bis C18-Fettsäure enthält weniger als 1 Gew.% 12-Hydroxy-9-Octadecen- säure, insbesondere (9Z,12f?)-12-Hydroxy-9-Octadecensäure, bevorzugt weniger als 0,2 Gew.%.
- Die C16- bis C18-Fettsäure enthält weniger als 1 Gew.% 12-Hydroxy octadecansäure, insbesondere weniger als 0,2 Gew.%.
- Die Hydroxy-substituierten C16- bis C18-Fettsäuren sind erhältlich aus einer enzyma tischen Umwandlung der korrespondierenden ungesättigten C16- bis C18-Fettsäure.
- Die CI 6- bis C18-Fettsäure sind aus Speisefetten, insbesondere Alt-Speisefetten und/ oder Biodiesel, erhältlich umfassend zumindest eine enzymatische Umwandlung.
Die erfindungsgemäß eingesetzte Metallseife und/oder Metallkomplexseife sind insbesondere eine Lithiumseife oder Lithiumkomplexseife oder
eine Lithium-/Calciumseife oder Lithium-/Calciumkomplexseife, oder
eine Calciumseife oder Calciumkomplexseife.
Überraschenderweise wurde also gefunden, dass Schmierfette auf Basis von R-10-Hydro- xyoctadecansäure bei gleicher Konsistenz deutlich geringere Verdickergehalte aufweisen und vorzugsweise zumindest 30 Gew.% weniger Verdicker sowie zumindest 30 Gew.% weniger Lithiumhydroxyd-Monohydrat zur Herstellung benötigen.
Derart hergestellte Schmierfette weisen insbesondere bei tiefen Temperaturen deutlich niedrigere Fließdrücke, Fließgrenzen sowie deutlich niedrigere Startmomente in Gleitla gern, Wälzlagern und Getrieben auf. Im besonderen Falle der Lithiumseifen- und Lithi- umkomplexseifen-Fette können durch verminderten Einsatz von Lithiumhydroxid Mono hydrat Herstellungskosten eingespart werden. Im Falle von Lithiumseifen verdickten Schmierfetten lassen sich zudem beim Einsatz von R-10-Hydroxyoctadecansäure anstelle von 12-Hydroxyoctadecansäure die Kosten für den Einsatz von Li-Salzen deutlich reduzieren, weil um bis 62% weniger Lithiumhydroxid Monohydrat zur Bildung der Lithium-Hydroxyoctadecanatseife erforderlich ist. Dies ist insbesondere vor dem Hintergrund eines steigenden Lithiumbedarfs für die Batterieher stellung sowie für die Elektromobilität ein wichtiger Kostenfaktor für Schmierfettherstel ler.
Bevorzugt ist es, die Lithium-R-10-Hydroxyoctadecanatseife in situ, d.h. durch Reaktion von Lithiumhydroxid Monohydrat mit R-10-Hydroxyoctadecansäure herzustellen, es kann aber auch in einem separaten Schritt hergestelltes Lithium- 10-hydroxyoctadecanat in ein Basisöl eingemischt und durch anschließende thermische und mechanische Bearbeitung zur Verdi ckung gebracht werden.
Auch konnte nachgewiesen werden, dass bei Stahl/Stahl-Kontakt der Gleitreibkoeffizient eines Schmierfettes auf Basis von R-10-Hydroxyoctadecansäure niedriger ist als ein ver gleichbares Schmierfett auf Basis von 12-Hydroxyoctadecansäure, z.B. um bis zu 37%.
Detaillierte Darstellung der Erfindung
Die erfindungsgemäße Zusammensetzung umfasst zumindest:
a) ein Basisöl oder eine Basisölmischung, vorzugsweise von 55 bis 98 Gew.% und insbeson dere 70 bis 97 Gew.%, bevorzugte Basisöle sind z.B. Polyalphaolefine, Mineralöle und/o- der Ester,
b) Additive, vorzugsweise von 0,5 bis 40 Gew.% und insbesondere 2 bis 20 Gew.%., c) Verdicker, wobei der Verdicker eine Metallseife oder eine Metallkomplexseife ist bzw. umfasst, die eine Metall-R-10-Hydroxyoctadecanatseife umfasst, und die erfindungsge mäß eingesetzte Metallseife oder die erfindungsgemäß eingesetzte Metall-Komplexseife (dann mit Komplexierungsmittel) vorzugsweise zu 1,5 bis 25 Gew.%, bevorzugt 3 bis 10 Gew.% (in Bezug auf die Metallseife) oder 1,5 bis 40 Gew.% in Bezug auf die Metallkom plexseife, umfassend 0,1 bis 20 Gew.% Komplexierungsmittel, bevorzugt umfassend 0,1 bis 10 Gew.% Komplexierungsmittel, enthalten ist, und das zur Herstellung verwendete Metallseifen-Salz ein Metallhydroxid aus Alkali- und/oder Erdalkalihydroxiden ist (erfin- dungsgemäß eingesetzte Metall seifen). Die Gew.% - Angaben beziehen sich auf die Gesamtzusammensetzung und gelten jeweils un abhängig voneinander.
Als Basisöle sind übliche bei Raumtemperatur flüssige Schmieröle geeignet. Das Basisöl weist insbesondere eine kinematische Viskosität von 14 bis 2500 mm2/s, bevorzugt von 30 bis 500 mm2/s, jeweils bei 40 °C, auf.
Die Basisöle können als Mineralöle oder Syntheseöle klassifiziert werden. Als Mineralöle wer den betrachtet naphthenbasische Mineralöle und paraffinbasische Mineralöle, gemäß Klassifi zierung nach API Group I. Chemisch modifizierte aromaten- und schwefelarme Mineralöle mit geringem Anteil an gesättigten Verbindungen und gegenüber Group I - Ölen verbessertem Vis kositäts/Temperatur-Verhalten, klassifiziert nach API Group II III, Group III+ und im soge nannten Gas-to-Liquid-Verfahren aus Erdgas hergestellte Syntheseöle (GTL-Öle) sind eben falls geeignet.
Als Syntheseöle genannt seien Di- oder Polyether, Ester, Polyalphaolefine, Polyglykole und Alkylaromaten und deren Mischungen. Die Di-Etherverbindung kann eine Verbindung mit aliphatischen Resten und/oder aromatischen Resten (z.B. alkylierte Diphenylether) sein. Die Polyether- Verbindung kann freie Hydroxylgruppen aufweisen, aber auch vollständig verethert oder Endgruppen verestert sein und/oder aus einer Startverbindung mit einer oder mehreren Hydroxy- und/oder Carboxylgruppen (-COOH) hergestellt sein. Möglich sind auch Diphe nylether oder Polyphenylether, ggf. alkyliert, als alleinige Komponenten oder besser noch als Mischkomponenten. Geeignet einsetzbar sind Ester einer aromatischen Di-, Tri- oder Tetracar bonsäure, mit einem oder in Mischung vorliegenden C2- bis C30-Alkoholen, Ester von Adipin säure, Sebacinsäure, Trimethylolopropan, Neopentylglykol, Pentaerythrit oder Dipentaerythrit mit aliphatischen verzweigten oder unverzweigten, gesättigten oder ungesättigten C2 bis C22- Carbonsäuren, C18-Dimersäureestern mit C2- bis C22 -Alkoholen, Komplexester, als Einzel komponenten oder in beliebiger Mischung.
Besonders geeignete Basisöle sind oder enthalten Polyalphaolefine, z.B. solche erhältlich aus der Polymerisation, ggf. unter Verwendung von Matallocen-Katalysatoren, von C4- und 04- LAO (LAO = lineares Alpha-01efin),C6- und C16-LAO; C8-, CIO- und C12-LAO; C8- und C14-LAO; C6, CIO und C14-LAO; C4- und C12-LAO als Copolymere oder als Mischungen der jeweiligen Homopolymere. Es ist weiterhin gefunden worden, dass im Unterschied zu herkömmlichen Metall- 12-Hydro- xyoctadecanatfetten Schmierfette auf Basis von Metall-R-10-Hydroxyoctadecanat, insbeson dere in Basisölen enthaltend oder bestehend aus Polyalphaolefmen, einen unerwarteten Vorteil beim Tieftemperaturverhalten und Wirkungsgrad aufweisen. In diesen Eigenschaften unter scheiden sich die erfindungsgemäß eingesetzten Seifen deutlich von herkömmlichen 12-Hyd- roxyoctadecanatseifen.
Fakultativ können neben den C16- bis C18- Fettsäuren wie oben beschrieben auch andere Fett säuren mit Metallsalzen, wie Metallhydroxiden umgesetzt werden zum Erhalt weiterer Metall seifen. Es kann sich dabei um Alkali- oder Erdalkali salze einer oder mehrerer gesättigter oder ungesättigter Mono-Carbonsäuren mit 10 bis 15 und/oder 19 bis 24 Kohlenstoffatomen han deln, ggf. substituiert wie bevorzugt entsprechende Hydroxycarbonsäuren. Geeignete Carbon säuren sind z.B. Laurinsäure, Myristinsäure, oder Behensäure. Neben den genannten geradket tigen Fettsäuren können auch gesättigte oder ungesättigte verzweigtkettige Fettsäuren einge setzt werden. Auch Naphthensäuren, Neodecansäuren oder vergleichbare Neosäuren können verwendet werden.
Als weitere Metallseifen können auch einfache, gemischte oder Komplex-Seifen auf Basis von Al-, Bi-, Ti-Salzen und Carbonsäuren oder von Li-, Na-, Mg-, Ca-, Al-, Bi-, Ti-Salzen und Sulfonsäuren, während der Basisfettherstellung oder später als Additiv zugesetzt werden. Diese Seifen können alternativ auch während der Herstellung der erfindungsgemäß eingesetzten Me tallseifen in situ gebildet werden.
Anstelle der Fettsäuren mit freien Säuregruppe können bei der Herstellung der jeweiligen Me tallseifen auch entsprechende niedere Alkoholester unter Verseifung eingesetzt werden, z.B. entsprechende Triglyceride sowie die Methyl-, Ethyl-, Propyl-, Isopropyl- oder sec.-Butylester der Säure/Hydroxysäure, um eine bessere Dispersion zu erzielen.
Bei der Ausführungsform als Metallkomplexseife werden zusätzlich zu den bereits beschriebe nen Metallseifen Komplexierungsmittel während der Herstellung eingesetzt. Komplexierungs mittel im Sinne der vorliegenden Erfindung sind:
(a) das Alkali- und/oder Erdalkalisalz einer gesättigten oder ungesättigten Mono-Carbon säure oder auch Hydroxycarbonsäuren mit 2 bis 8, insbesondere 2 bis 4 Kohlenstoff atomen oder Alkali- und/oder Erdalkali salze einer Di-Carbonsäure mit 2 bis 16, ins besondere 2 bis 12 Kohlenstoffatomen, jeweils ggf. substituiert, und/oder (b) das Alkali- oder Erdalkalisalz der Borsäure und/oder Phosphorsäure, insbesondere Umsetzungsprodukte mit LiOH und/oder Ca(OH)2 oder das Umsetzungsprodukt aus Alkali- oder Erdalkalihydroxid insbesondere LiOH und/oder Ca(OH)2 mit Estern der Borsäure oder Phosphorsäure und/oder
(c) Ester der Borsäure und Phosphorsäure mit unverzweigten oder verzweigten Alkyl gruppen mit 2 bis 32 Kohlenstoffatomen, vorzugsweise 8 bis 32 Kohlenstoffatomen.
Bevorzugt ist das Komplexierungsmittel (a).
Als Mono-Carbonsäuren sind insbesondere geeignet Essigsäure und Propionsäure. Ebenfalls geeignet sind auch Hydroxybenzoesäuren wie Parahydroxybenzoesäure, Salicylsäure, 2-Hyd- roxy-4-hexylbenzoesäure, Metahydroxybenzoesäure, 2,5-Dihydroxybenzoesäure (Gentisin säure), 2,6-Dihydroxybenzoesäure (Gammaresorcylsäure) oder 4-Hydroxy-4-methoxybenzoe- säure. Als Dicarbonsäuren sind insbesondere geeignet Adipinsäure (C6H10O4), Sebacinsäure (C10H18O4), Azelainsäure (C9H16O4) und/oder 3 -/cvV.-Butyl -Adipinsäure (C10H18O4).
Als Borat (b) kann beispielsweise Metaborat, Diborat, Tetraborat oder Orthoborat, wie z.B. Monolithiumorthoborat eingesetzt werden. Als Phosphate kommen Alkali- (bevorzugt Li thium-) sowie Erdalkali- (bevorzugt Calcium-) dihydrogenphosphat. -hydrogenphosphat, oder -pyrophosphat in Frage oder Calcium- oder Lithiumhydroxyapatit. Als Ester der Borsäure und Phosphorsäure können solche mit unverzweigten oder verzweigten Alkylgruppen von 2 bis 32, vorzugsweise 8 bis 32 Kohlenstoffatome eingesetzt werden.
Fakultativ können zusätzlich als Co-Verdicker Bentonite, wie Montmorillonit (deren Natrium- Ionen ggf. durch organisch modifizierte Ammonium-Ionen ausgetauscht bzw. teilausgetauscht sind), Aluminosilikate, Tonerden, hydrophobe und hydrophile Kieselsäure, öllösliche Polymere (z.B. Polyolefine, Poly(meth)acrylate, Polyisiobutylene, Polybutene oder Polystyrol-Copoly mere), Polyharnstoff oder Polyharnstoff-Polyurethan oder PTFE eingesetzt werden. Die Ben tonite, Aluminosilikate, Tonerden, Kieselsäure und/oder öllöslichen Polymere können zur Her stellung des Basisfetts zugegeben sein oder später als Additiv im zweiten Schritt zugegeben werden.
Während oder nach der Herstellung der Metall- oder Metallkomplexseifen können auch Lignin- Derivate als Co-Verdicker oder als Additiv hinzugefügt werden. Lignin-Derivate sind wirk same Bestandteile in Schmierfetten und können zur Verbesserung der Verschleißschutzeigen schaften und Fresslasteigenschaften eingesetzt werden. Dabei können die Lignin-Derivate multifunktionale Komponenten darstellen. Aufgrund ihrer hohen Anzahl an polaren Gruppen und aromatischen Strukturen, ihres polymeren Aufbaus und der geringen Löslichkeit in allen Arten von Schmierölen eignen sich pulverförmige Lignine und/oder Ligninsulfonate auch als Festschmierstoffe in Schmierfetten und Schmierpasten. Zu dem sorgen die in Lignin und Ligninsulfonaten enthaltenen phenolischen Hydroxylgruppen für eine alterungsinhibierende Wirkung. Im Falle von Ligninsulfonaten fördert der Schwefelanteil in Ligninsulfonaten die EP/ AW -Wirkung in Schmierfetten. Es kommen vorzugsweise Lignine und/oder Calcium- und/oder Natrium-Ligninsulfonat oder deren Mischungen zum Einsatz. Aber auch Kraft-Lignine, Soda-Lignine oder Organosolv-Lignine können eingesetzt werden. Ebenfalls möglich ist der Zusatz von biobasierten Oligomeren oder Polymeren als Festschmier stoff oder Co-Verdicker wie z.B. Triterpene, Cellulose oder modifizierte Cellulose, Chitin und/oder Chitosan.
Insbesondere wird das Verdickungsmittel (erfindungsgemäße Metallseifen, weitere Metallsei fen und Co-Verdicker) so eingesetzt, dass die Zusammensetzung so viel Verdickungsmittel enthält, dass ein Konuspenetrationswert (Walkpenetration) von 210 bis 475 mm/10 (bei 25°C), vorzugsweise 230 bis 385 mm/10 (bei 25°C), erhalten wird (bestimmt nach DIN ISO 2137 bzw. ASTM D 0217-97).
Die erfindungsgemäßen Zusammensetzungen enthalten ggf. weiterhin Additive als Zusatz stoffe. Übliche Zusatzstoffe im Sinne der Erfindung sind Antioxidationsmittel, Verschleiß schutzmittel, Korrosionsschutzmittel, Detergentien, Farbstoffe, Schmierfähigkeitsverbesserer, Haftverbesserer, Viskositätsadditive, Reibungsminderer, Hochdruckadditive und Metalldeakti vatoren.
Beispielhaft genannt seien:
• Primäre Antioxidationsmittel wie Amin- Verbindungen (z.B. Alkylamine oder 1 -Phenyla minonaphthalin), aromatische Amine, wie z.B. Phenylnaphthylamine oder Diphenylamine oder polymere Hydroxychinoline (z. B. TMQ), Phenol-Verbindungen (z.B. 2.6-Di-tert- butyl-4-methylphenol), Zinkdithiocarbamat oder Zinkdithiophosphat;
• Sekundäre Antioxidationsmittel wie Phosphite, z.B. Tris(2,4-ditert-butylphenylphosphit) oder Bis(2,4-ditert-butylphenyl)-pentaerythritoldiphosphit;
• Hochdruckadditive wie organische Chlorverbindungen, Schwefel oder organische Schwe felverbindungen, Phosphorverbindungen, anorganische oder organische Borverbindungen, Zinkdithiophosphat, organische Bismuthverbindungen; • Die "Öligkeit" verbessernde Wirkstoffe wie C2- bis C6- Polyole, Fettsäuren, Fettsäureester oder tierische oder pflanzliche Öle;
• Antikorrosionsmittel wie z.B. Petrol eumsulfonat, Dinonylnaphtalinsulfonat oder Sorbita- nester; Dinatriumsebacat, neutrale oder überbasische Calciumsulfonate, Magnesiumsulfo- nate, Natriumsulfonate, Calcium- und Natrium-Naphthalinsulfonate, Calcium-Salicylate, Aminphosphate, Succinate, Metalldeaktivatoren wie z.B. Benzotriazol oder Natriumnitrit;
• Viskositätsverbesserer wie z.B. Polymethacrylat, Polyisobutylen, oligo Dec-l-ene, Poly styrole;
• Verschleißschutzadditive und Reibungsminderer wie Organomolybdänkomplexe (OMC), Molybdän-di-alkyl-dithiophosphate, Molybdän-di-alkyl-dithiocarbamate oder Molybdän- di-alkyl-dithiocarbamate, insbesondere Molybdän-di-n-butyldithiocarbamat und Molyb- dän-di-alkyldithiocarbamat (Mo2mSn(dialkylcarbamat)2 mit m = 0 bis 3 und n = 4 bis 1), Zinkdithiocarbamat oder Zinkdithiophosphat; oder eine dreikernige Molybdänverbindung, die der Formel:
MOsSkLnQz
entspricht, in der L unabhängig ausgewählte Liganden sind, die Organogruppen mit Koh lenstoffatomen aufweisen, wie sie in der US 6172013 Bl offenbart sind, um die Verbin dung in dem Öl löslich oder dispergierbar zu machen, wobei n von 1 bis 4 reicht, k von 4 bis 7 reicht, Q aus der Gruppe von neutralen Elektronendonator-Verbindungen, bestehend aus Aminen, Alkoholen, Phosphinen und Ethern, ausgewählt ist, und z im Bereich von 0 bis 5 liegt und nicht-stöchiometrische Werte umfasst (vergleiche DE 102007048091);
• Reibungsminderer wie z.B. funktionelle Polymere wie z.B. Oleylamide, organische Ver bindungen auf Polyether- und Amidbasis, z.B. Alkylpolyethylenglykoltetradecylenglyko- lether, Polyisobutylensuccinimide Polyisobutylenbemsteinsäureimid (PIBSI) oder Poly- isobutylenbernsteinsäureanhydrid (PIB SA);
• Darüber hinaus enthalten die erfindungsgemäßen Schmierfettzusammensetzungen übliche Additive gegen Korrosion, Oxidation und zum Schutz gegen Metalleinflüsse, die als Chelatverbindungen, Radikalfänger, UV-Umwandler, Reaktionsschichtbildner und der gleichen wirken. Auch Additive, welche die Hydrolysebeständigkeit von Esterbasisölen verbessern, wie z.B. Carbodiimide oder Epoxide, können zugesetzt werden;
• Als Festschmierstoffe können z.B. Polymerpulver wie Polyamide, Polyimide oder PTFE, Melamincyanurat, Graphit, Metalloxide, Bomitrid, Silikate, z.B. Magnesiumsilikathydrat (Talkum), Natriumtetraborat, Kaliumtetraborate, Metallsulfide wie z. B. Molybdändi Sul fid, Wolframdi sulfid oder Mischsulfide auf Basis von Wolfram, Molybdän, Bismuth, Zinn und Zink, anorganische Salze der Alkali- und Erdalkalimetalle, wie z.B. Calcium-Carbo nat, Natrium- und Calciumphosphate, eingesetzt werden. Ebenso Ruß oder andere auf Kohlenstoff basierende Festschmierstoffe wie beispielsweise Nanotubes. Auch können Lignin-Derivate als Verdickerbestandteil oder Festschmierstoff eingesetzt werden. Ebenfalls möglich sind biobasierte Oligomere oder Polymere wie z.B. Triterpene, modifizierte Cellulose, Chitin, Chitosan oder Polypeptide.
Die erfindungsgemäßen Schmierfette sind besonders geeignet zur Verwendung in Gleit- und Wälzlagern, Getrieben und/oder Gleichlaufgelenkwellen in industriellen und automotiven An wendungen. Es ist ein besonderer Aspekt der vorliegenden Erfindung, zu reibungsarmen Schmierfetten, insbesondere bei tiefen Temperaturen zu gelangen, bei denen niedrige Los brechmomente und Laufmomente gefordert sind und bei denen sich eine niedrige Fließgrenze und Scherviskosität vorteilhaft zeigt. Im besonderen Falle der Schmierung von Gleit- und Wälz lagern und Getrieben und Gleichlaufgelenkwellen in der Automobiltechnik können somit klei nere und leichtere Antriebe eingesetzt werden und Wirkungsgradvorteile erlangt werden. Schmierfette, die nach vorliegender Erfindung hergestellt wurden, weisen insbesondere bei -35°C um bis zu 43% niedrigere Fließgrenzen, gemessen mit dem Oszillationsrheometer nach DIN 51810-2 und bis zu 50% niedrigere Scherviskositäten bestimmt mit dem Scherviskosime ter nach DIN 51810-1 auf als vergleichbare Schmierfette. Bei der Prüfung des Fließdruckes nach DIN 51805-2 zeigen die Schmierfette bei -40°C, hergestellt nach vorliegender Erfindung, Werte, die um mindestens 50% niedriger liegen als vergleichbare Schmierfette. Weiterhin wei sen die erfindungsgemäßen Schmierfette bei Stahl/Stahl -Kontakt Gleitreibungskoeffi zienten auf, die um bis zu 37% niedriger liegen als bei einem vergleichbaren Schmierfett auf Basis von 12-Hydroxyoctadecansäure.
Zur Prüfung der Fließgrenzen und der Scherviskosität von Schmierfetten stehen verschie dene Laborprüfverfahren zur Verfügung. Eine Methode zur Ermittlung der Fließgrenze mittels Oszillationsrheometer ist die DIN 51810-2. Zur Ermittlung der unteren Gebrauch stemperatur von Schmierfetten wird zudem die Fließdruckmethode nach DIN 51805-2 herangezogen. Der Fließdruck ist der Differenzdruck zum atmosphärischen Druck, der erforderlich ist, um einen Schmierfettstrang unter den in dieser Norm festgelegten Bedin gungen aus einer Prüfdüse herauszupressen. Er ist ein Maß für die Steifigkeit eines Schmierfettes bei jeweiliger Prüftemperatur und kann ergänzend zur Prüfung nach DIN 51810-2 als Maß für die Fließgrenze herangezogen werden.
IP 186 und ASTM D 1478 beschreiben die Ermittlung des Start- und Laufmomentes von Kugellagern. Mit diesen Prüfverfahren kann die Funktionsfähigkeit von Schmierfetten bei niedrigen Temperaturen z.B. -40°C oder -73 ° C geprüft werden. Damit sind diese Prüfverfahren Teil zahlreicher Spezifikationen der Automobil - und Luftfahrtindustrie (zivile und militärische Luftfahrt) sowie in Anwenderspezifikationen. Sie haben sich im Laufe der Jahre als nützliche Testmethoden erwiesen. Die DIN 51805- 2, Fließdruckverfahren, wird hauptsächlich in Deutschland als nationale Methode ver wendet, um die untere Gebrauchstemperatur von Schmierfetten zu bestimmen.
Die Herstellung der Schmierfette kann z.B. wie folgt erfolgen: Einmischen der Salz-/ Metall verbindung in die Carbonsäureverbindung, die ggf. mit der Basisölkomponente gestreckt sein kann, plus ggf. den Komplexbildner und ggf. gleichzeitiges Erwärmen des Gemisches auf eine Temperatur über 100 °C, insbesondere über 170°C, zur Bildung eines eingedickten Schmierfettprodukts, Abkühlen des Schmierfettprodukts und ggf. Hinzufügen von Wasser, Einwirkenlassen von Scherkräften auf das Gemisch, z.B. mit einer Zahnkolloidmühle, einem Hochdruckhomogenisator und/oder einem Dreiwalzenstuhl. Nach einer weiteren Ausfüh rungsform der Erfindung wird der Verdicker in-situ im Basisöl synthetisiert unter Druck und unter erhöhter Temperatur in einem geschlossenem Reaktionsgefäß, wie einem Autoklaven.
Die Schmierfett-Zusammensetzung kann zur Schmierung von Getrieben, Gleichlaufgelenk- wellen Gleit- und Wälzlagern, Gleitführungen, Spindelantrieben, Linearantrieben, Kugelge windetrieben, insbesondere mit unterer Einsatztemperatur von kleiner -20°C und/oder in Au tomobilen, Flugzeugen, Drohnen oder Helikoptern eingesetzt werden. Weitere Anwendungen sind die Schmierung von Lenkungen, Schiebedächern, Fensterhebern, Seitenspiegelver- stellern, Türschlössern, Fahrwerksradlagern, insbesondere in Automobilen, Flugzeugen, Drohnen oder Helikoptern. Auch ist die Schmierfett-Zusammensetzung zur Schmierung von Elektromotorenlagern, insbesondere in Hybridfahrzeugen oder reinen Elektrofahrzeugen geeignet.
Versuchsbeispiele
Beispiel A (Referenz)
Lithium- 12-hydroxyocatdecansäurefett mit Polyalphaolefin
In einem Rührreaktor wurden 171g Polyalphaolefin (Gemisch aus PAO 6 : PAO 150 = 3: 1) und 45,25g 12-Hydroxyoctadecansäure als Racemat vorgelegt und auf 86°C erhitzt. Dann wurden 6,31g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 25g destilliertem Wasser gelöst wurden. Anschließend wurde auf 210°C erhitzt und danach über einen Zeit raum von 20 min auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schritt weise Zugabe von weiterem Polyalphaolefin auf die gewünschte Konsistenz eingestellt. Das so hergestellte Schmierfett wies einen Verdickeranteil von 12,13 Gew.% und eine Walkpenet ration von 332 0,1mm auf.
Beispiele B l, B2, B3 (Erfindung)
Lithium- 10-hydroxyocatdecansäurefette mit Polyalphaolefin
In einem Rührreaktor wurden 171g Polyalphaolefin (Gemisch aus PAO 6 (Metallocen basiert) : PAO 150 = 3 : 1) und 35, 16g R-10-Hydroxyoctadecansäure vorgelegt und auf 91°C erhitzt. Dann wurden 5,07g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 21g destil liertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und danach über einen Zeitraum von 20 min auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zu gabe von weiterem Polyalphaolefin auf die gewünschte Konsistenz eingestellt. Die so herge stellten Schmierfette wiesen Verdickeranteile von 4,64 Gew.% (Bl), 4,97 Gew.% (B2) und 5,06 Gew.% (B3) und Walkpenetrationen von 339 0,1mm (Bl), 332 0, 1mm (B2) und 320 0,1mm (B3) auf.
Beispiel C (Referenz)
Lithium- 12-hydroxyocatdecansäurekomplexfett mit Polyalphaolefin
In einem Rührreaktor wurden 171g Polyalphaolefin (Gemisch aus PAO 6 : PAO 150 = 3 : 1) und 45,25g 12-Hydroxyoctadecansäure als Racemat vorgelegt und auf 91°C erhitzt. Dann wurden 6,31g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 25g destilliertem Wasser gelöst wurden. Anschließend wurde auf 210°C erhitzt und über einen Zeitraum von 15 min auf kleiner 122°C abgekühlt. Danach wurden 1,25g (Tris(2-ethylhexyl)orthoborat zu gegeben und auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zugabe von wei terem Polyalphaolefin auf die gewünschte Konsistenz eingestellt. Das so hergestellte
Schmierfett wies einen Verdickeranteil von 10,52% und eine Walkpenetration von 328 0,1mm sowie einen Tropfpunkt von >300°C auf.
Beispiel D (Erfindung)
Lithium-R-10-hydroxyocatdecansäurekomplexfett mit Polyalphaolefin
In einem Rührreaktor wurden 171g Polyalphaolefin (Gemisch aus PAO 6 : PAO 150 = 3 : 1) und 35, 16g R-10-Hydroxyoctadecansäure vorgelegt und auf 91°C erhitzt. Dann wurden 5,07g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 21g destil liertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und über einen Zeitraum von 15 min auf kleiner 122°C abgekühlt. Danach wurden 1,19g (Tris(2-ethylhexyl)orthoborat zugegeben und auf <100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zugabe von wei terem Polyalphaolefin auf die gewünschte Konsistenz eingestellt. Das so hergestellte
Schmierfett wies einen Verdickeranteil von 4,68 Gew.% und eine Walkpenetration von 335 0,1mm sowie einen Tropfpunkt von 293°C auf.
Beispiel E (Referenz)
Lithium- 12-hydroxyocatdecansäurefett mit Mineralöl
In einem Rührreaktor wurden 107,48g Mineralöl, Group II (kinematische Viskosität = 110 mm2/s bei 40°C) und 22,08g 12-Hydroxyoctadecansäure (Racemat) vorgelegt und auf 91°C erhitzt. Dann wurden 3,18g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 15g destilliertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und danach über einen Zeitraum von 20 min auf <100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zugabe von weiterem Mineralöl, Group II SN 600 auf die gewünschte Konsistenz eingestellt. Das so her gestellte Schmierfett wies einen Verdickeranteil von 8,3% und eine Walkpenetration von 317 0,1mm auf.
Beispiel F (Erfindung)
Lithium- 10-hydroxyocatdecansäurefett mit Mineralöl
In einem Rührreaktor wurden 107,12g Mineralöl, Group II (kinematische Viskosität = 110 mm2/s bei 40C) und 22,04g R-10-Hydroxyoctadecansäure vorgelegt und auf 91°C erhitzt. Dann wurden 3,17g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 15g destil liertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und danach über einen Zeitraum von 20 min auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zu gabe von weiterem Mineralöl, Group II SN 600 auf die gewünschte Konsistenz eingestellt.
Das so hergestellte Schmierfett wies einen Verdickeranteil von 4,21 Gew.% und eine
Walkpenetration von 328 0,1mm auf.
Beispiel G (Referenz)
Lithium- 12-hydroxyocatdecansäurefett mit Esteröl
In einem Rührreaktor wurden 107,48g Pentaerythritester (mit einer Viskosität bei 40°C von 96 mm2/s) und 22,08g 12-Hydroxyoctadecansäure vorgelegt und auf 91°C erhitzt. Dann wurden 3,18g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 15g destil liertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und danach über einen Zeitraum von 20 min auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zu gabe von weiterem Pentaerythritester auf die gewünschte Konsistenz eingestellt. Das so her gestellte Schmierfett wies einen Verdickeranteil von 6,13% und eine Walkpenetration von 328 0,1mm auf.
Beispiel H (Erfindung)
Lithium-R-10-hydroxyocatdecansäurefett mit Esteröl
In einem Rührreaktor wurden 107,12g Pentaerythritester (mit einer Viskosität bei 40°C von 96 mm2/s), 22,04g R-10-Hydroxyoctadecansäure vorgelegt und auf 91°C erhitzt. Dann wur den 3,17g Lithiumhydroxid-Monohydrat zugegeben, welches vorher in 15g destilliertem Wasser gelöst wurde. Anschließend wurde auf 210°C erhitzt und danach über einen Zeitraum von 20 min auf kleiner 100°C abgekühlt und die Additive zugegeben. Danach wurde das Schmierfett mit einem 3-Walzenstuhl homogenisiert und durch schrittweise Zugabe von wei terem Pentaerythritester auf die gewünschte Konsistenz eingestellt. Das so hergestellte Schmierfett wies einen Verdickeranteil von 4,08 Gew.% und eine Walkpenetration von 335 0,1mm auf.
In gleicher Grundöl- und Additivmatrix zeigten die erfindungsgemäßen Schmierfette her gestellt mit R-10-Hydroxyoctadecansäure im Vergleich zu einer 12-Hydroxyoctadecan- säure eine um bis zu 62% bessere Verdickungswirkung.
Beispieltabelle
A B1 B2 B3 C D
Figure imgf000019_0001
) Reinheit >99% R-10-Hydroxyoctadecansäure *2) Reinheit 91,5% R-10-Hydroxyoctadecansäure, 8,5% Octadecansäure ) Reinheit 91,5% R-10-Hydroxyoctadecansäure, 8,5% Octadecensäure *4) enthält organische Verbindungen auf N- P-, S-, Zn-und Mo-Basis
E F G H
Figure imgf000020_0001
) Reinheit >99% R-10-Hydroxyoctadecansäure *2) Reinheit 91,5% R-10-Hydroxyoctadecansäure, 8,5% Octadecansäure ) Reinheit 91,5% R-10-Hydroxyoctadecansäure, 8,5% Octadecensäure *4) enthält organische Verbindungen auf N- P-, S-, Zn-und Mo-Basis
A B1 B2 B3 C
Figure imgf000021_0001
) Summe aus der zugegebenen Menge Li OH Monohydrat +Fettsäure + Komplexierungsmittel
) 12,7mm-Kugel auf 3 Flächen (Material 100Cr6). Flächenpressung im Punktkontakt 144N/mm2, Gleitgeschwindigkeit 0,057m/s
D E F G H
Figure imgf000022_0001
) Summe aus der zugegebenen Menge Li OH Monohydrat +Fettsäure + Komplexierungsmittel
) 12,7mm-Kugel auf 3 Flächen (Material 100Cr6). Flächenpressung im Punktkontakt 144N/mm2, Gleitgeschwindigkeit 0,057m/s

Claims

Patentansprüche
1. Schmierfett-Zusammensetzung umfassend
a) zumindest ein Basisöl,
b) zumindest ein Additiv,
c) zumindest einen Verdicker, wobei der zumindest eine Verdicker eine Metallseife und/oder Metallkomplexseife ist, die aus zumindest einem Alkali- und/oder Erdalkalimetall-Ion und zumindest einem Carboxylat gebildet aus einer C16- bis C18-Fettsäure aufgebaut ist, wobei die C16- bis C18-Fettsäure zumindest R-10-Hydroxy Stearinsäure umfasst und die 10-Hydro- xyoctadecansäure eine Enantiomerenreinheit in Bezug auf das R-Isomer von größer 80 Gew.%, vorzugsweise größer 90 Gew.% und insbesondere größer 98 Gew.% hat.
2. Schmierfett-Zusammensetzung nach Anspruch 1, wobei die C16- bis C18-Fettsäure zu grö ßer 50 Gew.%, vorzugsweise größer 80 Gew.% und insbesondere größer 95 Gew.% aus 10- Hydroxystearinsäure besteht.
3. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die C16- bis C18-Fettsäure Hexadecansäure enthält, insbesondere größer 0,5 Gew.%, be vorzugt größer 1,0 Gew.%, und besonders bevorzugt 1 bis 10 Gew.%.
4. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die CI 6- bis C18-Fettsäure Hydroxyhexadecansäure, insbesondere 9-Hydroxyhexadecan- säure, enthält, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und besonders bevorzugt 1 bis 10,0 Gew.%.
5. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die CI 6- bis C18-Fettsäure Octadecansäure enthält, insbesondere größer 0,2 Gew.%, be vorzugt größer 0,5 Gew.%, und besonders bevorzugt 1 bis 10,0 Gew.%.
6. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die CI 6- bis C18-Fettsäure Octadecensäure, insbesondere (9Z)-Octadeca-9-ensäure, ent hält, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und besonders bevorzugt 1,0 bis 10 Gew.%.
7. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die C16- bis C18-Fettsäure Octadecadiensäure, insbesondere (9Z,12Z)- Octadeca- 9,12- diensäure, enthält, insbesondere größer 0,2 Gew.%, bevorzugt größer 0,5 Gew.%, und beson ders bevorzugt 1 bis 10 Gew.%.
8. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die C16- bis C18-Fettsäure weniger als 1 Gew.% 12-Hydroxy-9-Octadecensäure, insbe sondere (9Z, 12R)- \ 2-Hydroxy-9-Octadecensäure, enthält, bevorzugt weniger als 0,2 Gew.%.
9. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wo bei die C16- bis C18-Fettsäure weniger als 1 Gew.% 12-Hydroxyoctadecansäure enthält, ins besondere weniger als 0,2 Gew.%.
10. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die C16- bis C18-Fettsäuren Hydroxy-substituierte C16- bis C18-Fettsäuren enthalten, erhältlich aus einer enzymatischen Umwandlung der korrespondierenden ungesättigten CI 6- bis C18-Fettsäure.
11. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die CI 6- bis C18-Fettsäure erhältlich sind aus Speisefetten, insbesondere Alt-Speisefet ten, oder Biodiesel, umfassend zumindest eine enzymatische Umwandlung.
12. Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die Me tallseife oder Metallkomplexseife
eine Lithiumseife oder Lithiumkomplexseife oder
eine Lithium-/Calciumseife oder Lithium-/Calciumkomplexseife, oder
eine Calciumseife oder Calciumkomplexseife ist.
13. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei das Komplexierungsmittel ausgewählt ist aus:
- Alkali- und/oder Erdalkalisalzen
a) einer gesättigten oder ungesättigten Mono-Carbonsäure oder auch Hydroxycarbonsäuren mit 2 bis 8, insbesondere 2 bis 4 Kohlenstoffatomen oder
b) einer Di-Carbonsäure mit 2 bis 16, insbesondere 2 bis 12 Kohlenstoffatomen, jeweils ggf. substituiert; und/oder - Alkali- oder Erdalkalisalzen der Borsäure und/oder Phosphorsäure, insbesondere Umset zungsprodukte mit LiOH und/oder Ca(OH)2 oder das Umsetzungsprodukt aus Alkali- oder Erdalkalihydroxid, insbesondere LiOH und/oder Ca(OH)2, mit Estern der Borsäure oder Phosphorsäure; und/oder
- Ester der Borsäure und Phosphorsäure mit unverzweigten oder verzweigten Alkylgruppen mit 2 bis 32 Kohlenstoffatomen, vorzugsweise 8 bis 32 Kohlenstoffatomen.
14. Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die Zu sammensetzung enthält:
a) 55 bis 98 Gew.%, insbesondere 70 bis 97 Gew.% oder 70 bis 95 Gew.%, des Basisöls, b) 0,5 bis 40 Gew.%, insbesondere 2 bis 20 Gew.%, Additive, und
cl) 1,5 bis 25 Gew.% Metallseife , bevorzugt 3 bis 10 Gew.% oder
c2) 1,5 bis 40 Gew.% Metallkomplexseife umfassend 0,1 bis 20 Gew.% Komplexierungs mittel, bevorzugt umfassend 0,1 bis 10 Gew.% Komplexierungsmittel.
15. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die Schmierfett-Zusammensetzung eine weitere Metallseife und/oder weitere Metall komplexseife aus gesättigten oder ungesättigten Mono-Carbonsäuren oder auch Hydroxy car bonsäuren mit 10 bis 15 und/oder 19 bis 24 Kohlenstoffatomen, ggf. einschließlich Komple xierungsmittel, enthält, wobei die weiteren Metallseifen vorzugsweise weniger als 50 Gew.% der gesamten Metallseifen und/oder Metallkomplexseifen ausmachen, insbesondere bevorzugt weniger 20 Gew.%.
16. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die Schmierfett-Zusammensetzung weiterhin Co-Verdicker enthält ausgewählt aus ei nem oder mehreren Mitgliedern der Gruppe: Aluminosilikate, Tonerden, hydrophobe und hydrophile Kieselsäure, Polymere, Di-/Poly-Hamstoffe, Di-/Poly-Hamstoff-Urethane und PTFE.
17. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei die Zusammensetzung einen Konuspenetrationswert (Walkpenetration) von 210 bis 475 mm/10 (bei 25°C), vorzugsweise 230 bis 385 mm/10 (bei 25°C), bestimmt nach ISO 2137, aufweist.
18. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei das Basisöl eine kinematische Viskosität von 14 bis 2500 mm2/s, vorzugsweise von 30 bis 500 mm2/s, bei 40 °C aufweist.
19. Schmierfett-Zusammensetzung nach zumindest einem der vorhergehenden Ansprüche, wobei das Additiv ein oder mehrere Mitglieder ausgewählt aus der nachfolgenden Gruppe umfasst:
- Antioxidationsmittel wie Amin- Verbindungen, Phenol-Verbindungen, Sulfurantioxi dantien, Zinkdithiocarbamat oder Zinkdithiophosphat;
- Hochdruckadditive wie organische Chlorverbindungen, Schwefel, Phosphor oder Cal ciumborat, Zinkdithiophosphat, organische Bismuth- oder Molybdänverbindungen; C2- bis C6- Polyole, Fettsäuren, Fettsäureester oder tierische oder pflanzliche Öle;
- Antikorrosionsmittel wie Petroleumsulfonat, Dinonylnaphtalonsulfonat oder Sorbita- nester;
- Metalldeaktivatoren wie Benzotriazol oder Natriumnitrit;
- Viskositätsverbesserer wie Polymethacrylat, Polyisobutylen, oligo-Dec-l-ene, und Po lystyrole;
- Verschleißschutzadditive wie Molybdän-di-alkyl-dithiocarbamate oder Molybdänsul- fid-di-alkyl-dithiocarbamate, aromatische Amine;
Reibungsminderer (Friction Modifier) wie funktionelle Polymere wie z.B. Oley- lamide, organische Verbindungen auf Polyether- und Amidbasis oder Molybdendithi- ocarbamat, und
- Festschmierstoffe wie z.B. Polymerpulver wie Polyamide, Polyimide oder PTFE, Gra phit, Metalloxide, Bornitrid, Lignin-Derivate (z.B. -Sulfonate, organosolvlignin), Me tallsulfide wie z.B. Molybdändisulfid, Wolframdisulfid oder Mischsulfide auf Basis von Wolfram, Molybdän, Bismuth, Zinn und Zink, anorganische Salze der Alkali- und Erdalkalimetalle, wie z.B. Calcium-Carbonat, Natrium- und Calciumphosphate.
20. Verwendung der Schmierfett-Zusammensetzung nach zumindest einem der Ansprüche 1 bis 19 zur Schmierung von Getrieben, Gleichlaufgelenkwellen, Gleit- und Wälzlagern, Gleit- führungen, Spindelantrieben, Linearantrieben, Kugelgewindetrieben, insbesondere jeweils mit unterer Einsatztemperatur von kleiner -20°C und/oder in Automobilen Flugzeugen, Droh nen oder Helikoptern.
21. Verwendung der Schmierfett-Zusammensetzung nach zumindest einem der Ansprüche 1 bis 19 zur Schmierung von Lenkungen, Schiebedächern, Fensterhebern, Seitenspiegelver- stellern, Türschlössern, Fahrwerksradlagern, insbesondere in Automobilen, Flugzeugen, Drohnen oder Helikoptern.
22. Verwendung der Schmierfett-Zusammensetzung nach zumindest einem der Ansprüche 1 bis 19 zur Schmierung von Elektromotorenlagern, insbesondere in Hybridfahrzeugen oder reinen Elektrofahrzeugen.
23. Verfahren zur Herstellung einer Schmierfett-Zusammensetzung nach zumindest einem der
Ansprüche 1 bis 19 durch Zusammenbringen von
a) zumindest einem Basisöl,
b) zumindest einem Additiv,
c) zumindest einen Verdicker, wobei der zumindest eine Verdicker eine Metallseife oder Me- tallkomplexseife ist, die aus Alkali- oder Erdalkalimetall-Ionen und einer R-10-Hydroxy Stea rinsäure aufgebaut ist. wobei die Metallseife oder Metallkomplexseife vorzugsweise im Basi söl unter Erhitzen auf zumindest 170°C hergestellt wird und das Additiv weiter vorzugsweise nach dem Ab kühlen auf unter 100°C zugegeben wird.
PCT/DE2020/100338 2019-04-26 2020-04-24 Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure WO2020216417A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2021013093A MX2021013093A (es) 2019-04-26 2020-04-24 Grasas lubricantes que comprenden jabones metalicos y jabones de complejos metalicos a base de acido r-10-hidroxioctadecanoico.
PL20725070.5T PL3959296T3 (pl) 2019-04-26 2020-04-24 Smary stałe zawierające mydła metaliczne i kompleksowe mydła metaliczne na bazie kwasu R-10-hydroksyoktadekanowego
EP20725070.5A EP3959296B1 (de) 2019-04-26 2020-04-24 Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure
BR112021021093A BR112021021093A2 (pt) 2019-04-26 2020-04-24 Graxas lubrificantes compreendendo sabões de metais e sabões de complexos de metais à base de ácido r-10-hidroxioctadecanóico
HRP20230066TT HRP20230066T1 (hr) 2019-04-26 2020-04-24 Masti za podmazivanje koje sadrže metalne sapune i kompleksne metalne sapune na bazi r-10-hidroksioktadekanoične kiseline
CN202080031288.2A CN113748188B (zh) 2019-04-26 2020-04-24 含有基于r-10-羟基十八烷酸的金属皂和金属络合皂的润滑脂
JP2021563384A JP2022530618A (ja) 2019-04-26 2020-04-24 R-10-ヒドロキシオクタデカン酸に基づく金属石けん及び金属複合石けんを含む潤滑グリース
KR1020217034619A KR20220002920A (ko) 2019-04-26 2020-04-24 R-10-하이드록시옥타데칸산을 기반으로 하는 금속 비누 및 금속 착물 비누를 포함한 윤활 그리스
ES20725070T ES2934988T3 (es) 2019-04-26 2020-04-24 Grasas lubricantes que comprenden jabones metálicos y jabones de complejos metálicos a base de ácido R-10-hidroxioctadecanoico
RS20230042A RS63900B1 (sr) 2019-04-26 2020-04-24 Masti za podmazivanje koje sadrže sapune metala i sapune metalnih kompleksa na bazi r-10 hidroksioktadekanske kiseline
AU2020263515A AU2020263515A1 (en) 2019-04-26 2020-04-24 Lubricating grease comprising metal soaps and metal complex soaps based on r-10-hydroxyoctadecanoic acid
US17/604,189 US11591537B2 (en) 2019-04-26 2020-04-24 Lubricating grease comprising metal soaps and metal complex soaps based on R-10-hydroxyoctadecanoic acid
CA3134723A CA3134723A1 (en) 2019-04-26 2020-04-24 Lubricating grease comprising metal soaps and metal complex soaps based on r-10-hydroxyoctadecanoic acid
ZA2021/07375A ZA202107375B (en) 2019-04-26 2021-09-30 Lubricating grease comprising metal soaps and metal complex soaps based on r-10-hydroxyoctadecanoic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110921.3 2019-04-26
DE102019110921.3A DE102019110921A1 (de) 2019-04-26 2019-04-26 Schmierfette umfassend Metallseifen und Metallkomplexseifen auf Basis von R-10-Hydroxyoctadecansäure

Publications (1)

Publication Number Publication Date
WO2020216417A1 true WO2020216417A1 (de) 2020-10-29

Family

ID=70680159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100338 WO2020216417A1 (de) 2019-04-26 2020-04-24 Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure

Country Status (18)

Country Link
US (1) US11591537B2 (de)
EP (1) EP3959296B1 (de)
JP (1) JP2022530618A (de)
KR (1) KR20220002920A (de)
CN (1) CN113748188B (de)
AU (1) AU2020263515A1 (de)
BR (1) BR112021021093A2 (de)
CA (1) CA3134723A1 (de)
DE (1) DE102019110921A1 (de)
ES (1) ES2934988T3 (de)
HR (1) HRP20230066T1 (de)
HU (1) HUE060842T2 (de)
MX (1) MX2021013093A (de)
PL (1) PL3959296T3 (de)
PT (1) PT3959296T (de)
RS (1) RS63900B1 (de)
WO (1) WO2020216417A1 (de)
ZA (1) ZA202107375B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023112511B3 (de) 2023-05-11 2024-03-14 Tunap Gmbh & Co. Kg Festschmierstoffzusammensetzung und deren Verwendung, Verfahren zum Schmieren einer Kette

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802999A (en) * 1986-04-30 1989-02-07 Shell Oil Company Lubricating grease
US6172013B1 (en) 1997-09-17 2001-01-09 Exxon Chemical Patents Inc Lubricating oil composition comprising trinuclear molybdenum compound and diester
DE102007048091A1 (de) 2006-10-07 2008-06-05 Gkn Driveline International Gmbh Fettzusammensetzung für die Verwendung in homokinetischen Gelenken, die wenigstens eine dreikernige Molybdänverbindung und ein Harnstoffderivatverdickungsmittel umfasst
EP3461901A1 (de) * 2017-09-29 2019-04-03 Technische Universität München Verfahren zur zellfreien enzymatischen herstellung von 10-hydroxystearinsäure (10-hsa) aus biobasierten ölen, und ihre verwendung als schmiermittel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2042196A1 (en) * 1991-05-09 1992-11-10 Nicolas Samman Process for preparing alkali metal and alkaline earth metal complex greases
DE10054480A1 (de) * 2000-11-03 2002-05-08 Cognis Deutschland Gmbh Verfahren zur Gewinnung von 12-Hydroxystearinsäure
WO2008119735A1 (en) * 2007-04-02 2008-10-09 Georg-August-Universität Göttingen Method of producing hydroxy fatty acids
DE102008034959A1 (de) * 2008-07-25 2010-01-28 Fuchs Petrolub Ag Calcium/Lithium-Komplexfette und gekapseltes Gleichlaufgelenk enthaltend diese sowie deren Anwendung
US9708521B2 (en) * 2010-03-08 2017-07-18 Georgetown University Systems and methods employing low molecular weight gelators for crude oil, petroleum product or chemical spill containment and remediation
US9394501B2 (en) * 2011-06-17 2016-07-19 Biosynthetic Technologies, Llc Grease compositions comprising estolide base oils
JP6717593B2 (ja) * 2015-12-10 2020-07-01 株式会社日立製作所 エレベーターロープ用グリース、エレベーターロープおよびトラクション式エレベーター
WO2017178235A1 (en) * 2016-04-13 2017-10-19 Dsm Ip Assets B.V. 10-hydroxystearic acid compositions
WO2017178236A1 (en) * 2016-04-13 2017-10-19 Dsm Ip Assets B.V. 10-hydroxystearic acid compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802999A (en) * 1986-04-30 1989-02-07 Shell Oil Company Lubricating grease
US6172013B1 (en) 1997-09-17 2001-01-09 Exxon Chemical Patents Inc Lubricating oil composition comprising trinuclear molybdenum compound and diester
DE102007048091A1 (de) 2006-10-07 2008-06-05 Gkn Driveline International Gmbh Fettzusammensetzung für die Verwendung in homokinetischen Gelenken, die wenigstens eine dreikernige Molybdänverbindung und ein Harnstoffderivatverdickungsmittel umfasst
EP3461901A1 (de) * 2017-09-29 2019-04-03 Technische Universität München Verfahren zur zellfreien enzymatischen herstellung von 10-hydroxystearinsäure (10-hsa) aus biobasierten ölen, und ihre verwendung als schmiermittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATTHIAS ENGLEDER ET AL: "Structure-Based Mechanism of Oleate Hydratase from Elizabethkingia meningoseptica", CHEMBIOCHEM, vol. 16, no. 12, 17 August 2015 (2015-08-17), pages 1730 - 1734, XP055315413, ISSN: 1439-4227, DOI: 10.1002/cbic.201500269 *

Also Published As

Publication number Publication date
MX2021013093A (es) 2022-01-24
CA3134723A1 (en) 2020-10-29
CN113748188B (zh) 2023-08-29
PT3959296T (pt) 2023-01-12
KR20220002920A (ko) 2022-01-07
AU2020263515A1 (en) 2021-12-23
RS63900B1 (sr) 2023-02-28
HUE060842T2 (hu) 2023-04-28
EP3959296A1 (de) 2022-03-02
PL3959296T3 (pl) 2023-04-03
CN113748188A (zh) 2021-12-03
HRP20230066T1 (hr) 2023-03-17
US20220186135A1 (en) 2022-06-16
US11591537B2 (en) 2023-02-28
EP3959296B1 (de) 2022-10-26
JP2022530618A (ja) 2022-06-30
ES2934988T3 (es) 2023-02-28
ZA202107375B (en) 2022-07-27
DE102019110921A1 (de) 2020-10-29
BR112021021093A2 (pt) 2021-12-14

Similar Documents

Publication Publication Date Title
EP2531587B9 (de) Schmierfette enthaltend ligninsulfonat, deren herstellung und verwendung
JP5558496B2 (ja) グリース組成物
EP2154229B1 (de) Calcium/Lithium -Komplexfette, gekapseltes Gleichlaufgelenk enthaltend derartige Schmierfette, deren Verwendung und Verfahren zu deren Herstellung
EP3559176B1 (de) Verwendung von calcium-komplex- und calcium-sulfonat-komplex-schmierfetten zur schmierung von drahtseilen
WO2009149902A1 (de) Schmierstoffzusammensetzung auf der basis natürlicher und nachwachsender rohstoffe
KR20140107486A (ko) 그리스 조성물
DE112017003959B4 (de) Schmierfettzusammensetzung und deren Verwendung
EP3959296B1 (de) Schmierfette umfassend metallseifen und metallkomplexseifen auf basis von r-10- hydroxyoctadecansäure
EP1967572A1 (de) Schmiermittel-Additiv
CN112442410B (zh) 具有改善的高温耐用性的润滑剂组合物
WO2023110001A1 (de) Verfahren zur herstellung von lithiumkomplexseifen- und lithium-calciumkomplexseifen-schmierfetten
EP4176027B1 (de) Polyharnstoff-schmierfette enthaltend carbonate und deren verwendung
DE102018133586B4 (de) Mineralölfreies Schmierfett und Verfahren zur Herstellung eines mineralölfreien Schmierfetts
DE102011108575A1 (de) Schmierfette enthaltend Ligninsulfonat, deren Herstellung und Verwendung, insbesondere in Gleichlaufgelenkwellen
DE102020008047A1 (de) Polyharnstoff-Schmierfette enthaltend Carbonate und deren Verwendung
WO2020038737A1 (de) Schmiermittelzusammensetzung
RU2021134512A (ru) Пластичные смазки, содержащие металлические мыла и металлокомплексные мыла на основе r-10-гидроксиоктадекановой кислоты

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20725070

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3134723

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021563384

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021093

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020725070

Country of ref document: EP

Effective date: 20211126

ENP Entry into the national phase

Ref document number: 112021021093

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211021

ENP Entry into the national phase

Ref document number: 2020263515

Country of ref document: AU

Date of ref document: 20200424

Kind code of ref document: A