WO2020216396A1 - Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und mehreren ventilen; sowie hydrauliksystem - Google Patents

Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und mehreren ventilen; sowie hydrauliksystem Download PDF

Info

Publication number
WO2020216396A1
WO2020216396A1 PCT/DE2020/100237 DE2020100237W WO2020216396A1 WO 2020216396 A1 WO2020216396 A1 WO 2020216396A1 DE 2020100237 W DE2020100237 W DE 2020100237W WO 2020216396 A1 WO2020216396 A1 WO 2020216396A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pump
volume flow
hydraulic
threshold
Prior art date
Application number
PCT/DE2020/100237
Other languages
English (en)
French (fr)
Inventor
Yunfan Wei
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US17/605,318 priority Critical patent/US11703094B2/en
Priority to CN202080020817.9A priority patent/CN113767224A/zh
Publication of WO2020216396A1 publication Critical patent/WO2020216396A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D48/0206Control by fluid pressure in a system with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/14Fluid pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/565Control of a downstream pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0272Two valves, where one valve is supplying fluid to the cylinder and the other valve is for draining fluid to the sump

Definitions

  • the invention relates to a method for controlling a hydraulic system for an actuating device of a motor vehicle, such as a car, truck, bus or other utility vehicle.
  • the actuating device is preferably a coupling actuating device which has an actuating effect on a clutch of a drive train of the motor vehicle.
  • the invention also relates to a hydraulic system which is designed to carry out this method.
  • a power pack system T which is primarily to be recognized here, has a pressure accumulator which is kept at a relatively high pressure level during operation via a hysteresis control. Activation of the pump can be implemented in a relatively simple manner using a so-called two-position controller and activation of the individual valves can be decoupled from the pump activation.
  • this system has the disadvantage that due to the existing pressure accumulator, a relatively high pressure is provided even in those operating states in which this high pressure is not required, since the individual hydraulic consumers KO, K1, K2 would manage with significantly lower pressure. As a result, a relatively large part of the energy previously fed into the pressure accumulator is lost again at a valve edge of the valve.
  • a method for controlling a hydraulic system for an actuating device of a motor vehicle having a pump and a plurality of valves, which valves are each arranged between a system rail connected to a pump output and a hydraulic consumer.
  • the pump is switched between normal operation and extended operation as a function of an existing (determined at regular time intervals) total power requirement of the hydraulic consumers.
  • an existing system pressure in the system rail is determined at regular time intervals and a target pressure of the system rail is calculated; an upper pressure threshold and a lower pressure threshold are also set based on the target pressure, the pump being driven when the system pressure is below the lower pressure threshold and is switched off when the system pressure is above the upper pressure threshold.
  • the pump is permanently driven and each of the valves designed as pressure regulating valves is operated at least temporarily as a function of an individual power requirement of the respective hydraulic consumer as soon as the system pressure increases
  • the total power requirement (all hydraulic consumers) that determines a switchover between normal operation and extended operation corresponds to a total volume flow requirement of all consumers, with extended operation being activated when the total flow requirement is above an upper volume flow threshold and normal operation is activated if the total volume flow requirement is below a lower volume flow threshold. This results in an even easier controllability of the hydraulic system.
  • the upper volume flow threshold value and / or the lower volume flow threshold value are / is formed by a fixed constant or a temperature-dependent and / or system pressure-dependent variable.
  • control method is kept particularly simple.
  • the total volume flow requirement is calculated on the basis of a sum of a first partial volume flow requirement determined by a first hydraulic consumer and a second partial volume flow requirement determined by at least one further second hydraulic consumer, the respective partial volume flow requirement using a pressure value stored in software. Volume function is determined.
  • the target pressure is a maximum value from the group of target consumer pressures required at the respective individual consumer.
  • the upper pressure threshold is calculated using a first surcharge factor based on the target pressure and / or the lower pressure threshold is calculated using a second surcharge factor based on the target pressure, the at least one surcharge factor being a fixed one Represents constant or a temperature-dependent and / or system pressure-dependent variable.
  • the invention further relates to a hydraulic system, the hydraulic system being designed to carry out a method according to the invention according to at least one of the embodiments described above.
  • a control method for a hydraulic arrangement with a pump and several valves is proposed.
  • the basic idea is to identify an "event" with a high performance requirement and to react to it in a targeted manner.
  • normal operation the pump is controlled by means of a hysteresis control so that the system pressure is constantly kept at a sufficient level.
  • the set pressure of the system rail is calculated in a first sub-step a).
  • an upper threshold and a lower threshold are calculated from the setpoint pressure.
  • a third sub-step c) the pump is not driven when the system pressure is above the upper threshold, and driven when the system pressure is below the lower threshold.
  • the valve control is decoupled from the pump control.
  • Each control is based only on the target requirements of individual consumers, e.g. B. the target pressure of a coupling lung.
  • the pump is constantly driven. The valve control initially remains unchanged. This means that the valve power supply or the applied valve voltage remains at the same level as at the time when the "Event intervention" mode was activated. Only after the system pressure has reached a threshold value are these valves activated depending on the target requirements of individual consumers.
  • FIG. 1 shows a representation of a state machine to illustrate a
  • FIG. 2 shows a basic illustration of a hydraulic system according to the invention according to a first exemplary embodiment which is implemented with the control strategy according to FIG.
  • Fig. 3 is a schematic diagram of a hydraulic system according to the invention according to a second embodiment, which is also controllable with the An Kunststoffstrate gie according to FIG. 1 and compared to the first personssbei is equipped with a pressure relief valve, and game
  • FIG. 4 shows a basic illustration of a hydraulic system with a pressure accumulator designed according to the prior art.
  • a hydraulic system 1 according to the invention which is designed to carry out a method according to the invention, has the structure shown in FIG. 2 according to a first exemplary embodiment.
  • valves 3a to 3c assigned to the individual consumers 6a to 6c are each implemented as pressure control valves / pressure reducers. Also, in a typical manner, as can be seen in connection with a further hydraulic system 1 according to the invention according to a second embodiment in FIG. 3, in a system rail 5 connected to an output 4 of a pump 2, a pressure relief valve 11, not shown here for the sake of clarity, is shown brought in.
  • the hydraulic system 1 is equipped with a pump 2 driven by an electric motor 7.
  • the pump 2 is thus operated / controlled via the electric motor 7.
  • the pump 2 is connected to a tank 9 by its input 8.
  • the output 4 of the pump 2 is directly connected to the system rail 5.
  • the branches 10a to 10c run from the system rail 5 to the valves 3a to 3c.
  • the respective branch 10a to 10c is coupled to a hydraulic consumer 6a to 6c depending on the position of the valve 3a to 3c.
  • a first branch 10a branching off from the system rail 5 can be coupled to a first hydraulic consumer 6a via a first valve 3a.
  • Another second junction 10b arranged along the system rail 5 offset from the first junction 10a can be coupled to a second consumer 6b via a second valve 3b.
  • a third branch 10c which in turn is offset from the two first and second branches 10a and 10b, can be coupled to a third consumer 6c via a third valve 3c.
  • the consumers 6a, 6b, 6c are each part of an actuating device of a clutch (K0, K1, K2) of a drive train, for example in the form of a pressure cylinder.
  • the hydraulic system 1 according to the invention shown in connection with FIG. 3 according to the second exemplary embodiment differs only in the provision of the Pressure relief valve 11, which is connected to the system rail 5, of the first embodiment.
  • the rest of the structure of the hydraulic system 1 according to FIG. 3 corresponds to the hydraulic system 1 according to FIG. 2.
  • a method for controlling the hydrau liksystems 1 according to the invention is implemented, the method also being illustrated particularly well in connection with FIG. 1.
  • the method can be implemented both with the hydraulic system according to FIG. 2 and with the hydraulic system according to FIG. 3.
  • the pump 2 can be switched between their normal operation and their extended operation depending on an existing total power requirement (total volume flow requirement Q_ provision) of the hydraulic consumers 6a, 6b, 6c.
  • Normal operation is that operation of the pump 2 in which an existing system pressure p_sys is determined / measured in the system rail 5 at regular time intervals and a setpoint pressure p_sys_soll of the system rail 5 is calculated.
  • the setpoint pressure p_sys_soll is that value which represents the highest pressure value to be set in the system.
  • the setpoint pressure p_sys_soll is thus a maximum value from the group of consumer setpoint pressures required at the respective individual consumer 6a, 6b, 6c.
  • An upper pressure threshold p_h and a lower pressure threshold p_l are defined on the basis of the setpoint pressure p_sys_soll.
  • the upper pressure threshold p_h and the lower pressure threshold p_l are calculated on the basis of an add-on factor that represents a fixed constant or a temperature-dependent variable.
  • the pump 2 is driven when the system pressure p_sys is below the lower pressure threshold p_l and switched off when the system pressure p_sys is above the upper pressure threshold p_h.
  • a certain pressure level is always kept constant in the system rail 5 (between the lower pressure threshold pj and the upper pressure threshold p_h).
  • the pump 2 is switched between its switched off and switched on state in order to maintain this pressure level.
  • an additional extended operation of the pump 2 is implemented.
  • This extended operation is activated when the total power requirement Q_ jacket exceeds a certain power requirement.
  • the total volume flow requirement Q_ collar of all consumers 6a, 6b is determined as the total power requirement.
  • the total volume flow requirement Q_ jacket is a sum of partial volume flow requirements (V_1_ jacket, V_2_ collar, ...) of all individual hydraulic consumers 6a, 6b, 6c at the respective point in time.
  • the respective partial volume flow requirement is determined using a pressure-volume function stored in software.
  • extended operation is activated / normal operation is deactivated when the total volume flow requirement Q_requirement is above an upper volume flow threshold value Q_h and normal operation is activated / extended operation is deactivated when the total volume flow requirement Q_requirement is below a lower volume flow threshold value Q_l.
  • the upper volume flow threshold Q_h and the lower volume flow threshold Q_l are each calculated / derived either by a fixed constant or a temperature-dependent and system pressure-dependent variable.
  • the pump 2 is then permanently driven.
  • the electric motor 7 is permanently driven with a fixed (maximum) voltage value (/ a system voltage) in the extended operation.
  • Each of the valves 3a, 3b, 3c designed as pressure regulating valves is operated at least temporarily depending on an individual power requirement of the respective hydraulic consumer 6a, 6b, 6c in the extended operation as soon as the system pressure p_sys reaches or exceeds a threshold value p_limit.
  • this means that the respective valve 3a, 3b, 3c is used specifically for pressure reduction when the system pressure p_sys in the system rail 5 reaches or exceeds the threshold value p_limit.
  • valves 3a, 3b, 3c are typically controlled in a completely decoupled manner / independently of an activation of the pump 2 / the electric motor 7.
  • a motor voltage is referred to in this Fi gur with U_motor.
  • a system voltage is designated with U_b.
  • a valve flow controlling the respective valve 3a, 3b, 3c is indicated by l_ventil_1 (first valve 3a), l_ventil_2 (second valve 3b). Since the respective valve 3a, 3b is implemented as a pressure regulating valve, the valve flow l_ventil_1, l_ventil_2 is controlled according to a function according to the corresponding target pressure to be implemented at the valve 3a, 3b (f (p_1_soll); f (p_2_soll)). When the limit pressure value / threshold value p_limit is reached, the activation of the valves 3a, 3b is switched accordingly in the extended mode. This results in the following mathematical relationship:
  • P_sys_soll max (p_1_soll, p_2_soll, 8)
  • p_h p_sys_soll + dp_h
  • p_l p_sys_soll + dp_l
  • dp_h and dpj are stored constants or from a function / one
  • Characteristic map depends on the operating temperature and p_sys_soll. The following applies:
  • Q_requirement Q_h and Q_l are determined mathematically:
  • V_1_requirement max [(V_1 (p_1_solli) - V_1 (p_1_solli-1)), 0]
  • V_2_requirement max [(V_2 (p_2_solli) - V_2 (p_2_solli-1)), 0]
  • Q_ collar is also determined mathematically as follows:
  • V_1_requirement max [(V_1 (p_1_solli) - V_1 (p_1_isti)), 0]
  • V_2_requirement max [(V_2 (p_2_solli) - V_2 (p_2_isti)), 0]
  • V_1 and V_2 are pressure-volume characteristics stored in software.
  • Q_h and Q_l are constants or are dependent on the operating temperature and p_sys_soll from a function / map.
  • p_1_solli is a setpoint pressure at the first hydraulic consumer 6a at a point in time i;
  • p_2_solli is a setpoint pressure at the second hydraulic consumer 6b at time i.
  • p_1_solli-1 is a setpoint pressure at the first hydraulic consumer 6a at time i-1 and p_2_solli-1 is a setpoint pressure at the second hydraulic consumer 6b at time i-1.
  • p_1_isti is an actually present (actual) pressure at the first hydraulic consumer 6a at time i and p_2_isti is an actually present (actual) pressure at the second hydraulic consumer 6b at time i.
  • the motor voltage U_b to be applied is preferably a constant, but is also calculated in further versions based on a function / map of the operating temperature and p_sys_soll.
  • the motor voltage U_b to be applied can also result directly from pressure regulation.
  • the basic idea according to the invention is to identify an event with a high power requirement and to react to it in a targeted manner. Based on this basic idea, there are two operating modes: normal operation and event intervention (expansion operation).
  • the total volume flow requirement of all consumers 6a, 6b, 6c (Q_ nurse) calculated. If the value is above an upper threshold Q_h, the "Event intervention" mode is activated. If the value is below a lower threshold Q_l, the "normal operation” mode is activated.
  • the maximum available voltage is preferably always applied to the pump motor 7 when the pump 2 is to be driven.
  • the system 1 contains, preferably on the system rail 5, a pressure relief valve 11, which avoids too high a system pressure p_sys during the event intervention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Ansteuerung eines Hydrauliksystems (1) für eine Betätigungseinrichtung eines Kraftfahrzeuges, wobei das Hydrauliksystem (1) eine Pumpe (2) und mehrere Ventile (3a, 3b, 3c) aufweist, welche Ventile (3a, 3b, 3c) jeweils zwischen einer mit einem Pumpenausgang (4) verbundenen Systemschiene (5) und einem hydraulischen Verbraucher (6a, 6b, 6c) angeordnet sind, wobei die Pumpe (2) in Abhängigkeit eines bestehenden Gesamtleistungsbedarfs der hydraulischen Verbraucher (6a, 6b, 6c) zwischen einem Normalbetrieb und einem Erweiterungsbetrieb umgeschaltet wird, wobei in dem Normalbetrieb in regelmäßigen Zeitabständen ein bestehender Systemdruck in der Systemschiene (5) ermittelt wird und ein Solldruck der Systemschiene (5) berechnet wird sowie anhand des Solldrucks eine obere Druckschwelle und eine untere Druckschwelle festgelegt werden, wobei die Pumpe (2) angetrieben wird, wenn der Systemdruck unterhalb der unteren Druckschwelle liegt und ausgeschaltet wird, wenn der Systemdruck oberhalb der oberen Druckschwelle liegt, und wobei in dem Erweiterungsbetrieb die Pumpe (2) permanent angetrieben wird und jedes der als Druckregelventile ausgebildeten Ventile (3a, 3b, 3c) zumindest zeitweise in Abhängigkeit eines Einzelleistungsbedarfs des jeweiligen hydraulischen Verbrauchers (6a, 6b, 6c) betrieben wird sobald der Systemdruck einen Schwellenwert erreicht oder diesen übersteigt. Zudem betrifft die Erfindung ein Hydrauliksystem (1).

Description

Ansteuerverfahren für ein Hydrauliksystem mit einer Pumpe und
mehreren Ventilen; sowie Hydrauliksystem
Die Erfindung betrifft ein Verfahren zur Ansteuerung eines Hydrauliksystems für eine Betätigungseinrichtung eines Kraftfahrzeuges, wie eines Pkws, Lkws, Busses oder sonstigen Nutzfahrzeuges. Die Betätigungseinrichtung ist vorzugsweise eine Kupp lungsbetätigungseinrichtung, die betätigend auf eine Kupplung eines Antriebsstranges des Kraftfahrzeuges einwirkt. Des Weiteren betrifft die Erfindung ein Hydrauliksystem, das zum Durchführen dieses Verfahrens ausgebildet ist.
Gattungsgemäße Verfahren zum Betätigen mindestens einer Kupplung sind aus dem Stand der Technik bspw. aus der DE 10 2014 208 182 A1 bekannt.
Weiterer gattungsgemäßer Stand der Technik ist in Zusammenhang mit der Fig. 4 er sichtlich. Ein hierin primär zu erkennendes Powerpack-System T weist einen Druck speicher auf, der im Betrieb über eine Hysterese-Regelung auf einem relativ hohen Druckniveau gehalten wird. Eine Ansteuerung der Pumpe kann auf relativ einfache Weise über einen so genannten Zweipunktregler umgesetzt werden und eine Ansteu erung der einzelnen Ventile von der Pumpenansteuerung abgekoppelt werden. Dieses System hat jedoch den Nachteil, dass aufgrund des vorhandenen Druckspeichers auch in jenen Betriebszuständen ein relativ hoher Druck bereitgestellt wird, in denen dieser hohe Druck nicht benötigt wird, da die einzelnen hydraulischen Verbraucher KO, K1 , K2 mit deutlich niedrigerem Druck auskommen würden. Dadurch geht ein re lativ großer Teil der in dem Druckspeicher zuvor eingespeisten Energie wieder an ei ner Ventilkante des Ventils verloren.
Zwar sind des Weiteren prinzipiell Hydraulikanordnungen ohne Druckspeicher vorhan den, diese Systeme weisen jedoch häufig den Nachteil auf, dass sie relativ aufwändig aufgebaut sind. Auch ist die Pumpenansteuerung möglichst präzise auf die Ventilan- steuerung abzustimmen, um keine Fahrbarkeitseinschränkungen zu bekommen. Es ist daher die Aufgabe der vorliegenden Erfindung, die aus dem Stand der Technik bekannten Nachteile zu beheben und eine möglichst einfache sowie robust funktionie rende Ansteuerstrategie zum möglichst einfachen Aufbau eines Hydrauliksystems zur Verfügung zu stellen.
Dies wird erfindungsgemäß durch den Gegenstand des Anspruchs 1 gelöst. Demnach ist ein Verfahren zur Ansteuerung eines Hydrauliksystems für eine Betätigungseinrich tung eines Kraftfahrzeuges beansprucht, wobei das Hydrauliksystem eine Pumpe und mehrere Ventile aufweist, welche Ventile jeweils zwischen einer mit einem Pumpen ausgang verbundenen Systemschiene und einem hydraulischen Verbraucher ange ordnet sind. Die Pumpe wird dabei in Abhängigkeit eines bestehenden (in regelmäßi gen Zeitabständen ermittelten) Gesamtleistungsbedarfs der hydraulischen Verbrau cher zwischen einem Normalbetrieb und einem Erweiterungsbetrieb umgeschaltet. In dem Normalbetrieb wird in regelmäßigen Zeitabständen ein bestehender Systemdruck in der Systemschiene ermittelt und ein Solldruck der Systemschiene berechnet; auch werden anhand des Solldrucks eine obere Druckschwelle und eine untere Druck schwelle festgelegt, wobei die Pumpe angetrieben wird, wenn der Systemdruck unter halb der unteren Druckschwelle liegt und ausgeschaltet wird, wenn der Systemdruck oberhalb der oberen Druckschwelle liegt. In dem Erweiterungsbetrieb wird die Pumpe hingegen permanent angetrieben und jedes der als Druckregelventile ausgebildeten Ventile wird zumindest zeitweise in Abhängigkeit eines Einzelleistungsbedarfs des je weiligen hydraulischen Verbrauchers betrieben sobald der Systemdruck einen
Schwellenwert erreicht oder diesen übersteigt.
Dadurch wird es einem Hydrauliksystem ermöglicht, auf einen Druckspeicher zu ver zichten sowie eine möglichst unabhängige Ansteuerung von Pumpe und Ventilen durchzuführen. Dadurch ist die Ansteuerung des Hydrauliksystems deutlich verein facht.
Weitere vorteilhafte Ausführungen sind mit den Unteransprüchen beansprucht und nachfolgend näher erläutert. Demnach ist es auch von Vorteil, wenn zumindest in dem Normalbetrieb eine Ansteu erung der Ventile von einer Ansteuerung der Pumpe (vollständig) entkoppelt ist.
Weiterhin ist es zweckmäßig, wenn der ein Umschalten zwischen dem Normalbetrieb und dem Erweiterungsbetrieb bestimmende Gesamtleistungsbedarf (aller hydrauli schen Verbraucher) einem Gesamtvolumenstrombedarf aller Verbraucher entspricht, wobei der Erweiterungsbetrieb aktiviert wird, wenn der Gesamtvolumenstrombedarf oberhalb eines oberen Volumenstromschwellwertes liegt, und der Normalbetrieb akti viert wird, wenn der Gesamtvolumenstrombedarf unterhalb eines unteren Volumen stromschwellwertes liegt. Dadurch ergibt sich eine noch einfachere Regelbarkeit des Hydrauliksystems.
Diesbezüglich ist es wiederum von Vorteil, wenn der obere Volumenstromschwellwert und/oder der untere Volumenstromschwellwert durch eine feste Konstante oder eine temperaturabhängige und/oder systemdruckabhängige Variable gebildet sind/ist.
Dadurch wird das Steuerungsverfahren besonders einfach gehalten.
Vorteilhaft ist es auch, wenn der Gesamtvolumenstrombedarf anhand einer Summe eines durch einen ersten hydraulischen Verbraucher bestimmten ersten Teilvolumen strombedarfs sowie eines durch zumindest einen weiteren zweiten hydraulischen Ver braucher bestimmten zweiten Teilvolumenstrombedarfs berechnet wird, wobei der je weilige Teilvolumenstrombedarf anhand einer in einer Software hinterlegten Druck-Vo- lumen-Funktion bestimmt wird. In weiteren Ausführungen sind auch mehr als zwei hydraulische Verbraucher, die jeweils einen Teilvolumenstrombedarf aufweisen, vor handen. Demnach wird der Gesamtvolumenstrombedarf anhand einer Summe von einzelnen Teilvolumenstrombedarfen / Teilvolumenstrombedarfsgrößen von mehr als zwei hydraulischen Verbrauchern berechnet.
Für eine möglichst einfache Pumpenansteuerung ist es weiterhin dienlich, wenn an ei nem die Pumpe antreibenden Elektromotor sowohl in dem Normalbetrieb als auch in dem Erweiterungsbetrieb eine (festgesetzte) maximal vorhandene Systemspannung anliegt. Zur Umsetzung des Erweiterungsbetriebes ist es ebenfalls zweckmäßig, wenn in der Systemschiene ein Druckbegrenzungsventil integriert / angeordnet ist.
Vorteilhaft ist es auch, wenn der Solldruck ein Maximalwert aus der Gruppe an an dem jeweiligen einzelnen Verbraucher benötigten Verbrauchersolldrücken ist.
Dadurch lässt sich der Solldruck auf einfache Weise ermitteln.
Für die Umsetzung des Normalbetriebes ist es ebenfalls zweckmäßig, wenn die obere Druckschwelle anhand eines ersten Aufschlagfaktors auf Grundlage des Solldrucks berechnet wird und/oder die untere Druckschwelle anhand eines zweiten Aufschlag faktors auf Grundlage des Solldrucks berechnet wird, wobei der zumindest eine Auf schlagfaktor eine feste Konstante oder eine temperaturabhängige und/oder system druckabhängige Variable darstellt.
Des Weiteren betrifft die Erfindung ein Hydrauliksystem, wobei das Hydrauliksystem zum Durchführen eines erfindungsgemäßen Verfahrens nach zumindest einer der zu vor beschriebenen Ausführungen ausgebildet ist.
In anderen Worten ausgedrückt, ist erfindungsgemäß ein Ansteuerverfahren für eine Hydraulikanordnung (Hydrauliksystem) mit einer Pumpe und mehreren Ventilen vor geschlagen. Die Grundidee liegt darin, ein„Event“ mit einem hohen Leistungsbedarf zu identifizieren und gezielt darauf zu reagieren. Basierend auf diesem Grundgedan ken gibt es zwei Betriebsmodi: Normalbetrieb und Event-Eingriff (Erweiterungsbe trieb). Im Normalbetrieb wird die Pumpe mittels einer Hysterese-Regelung so ange steuert, dass der Systemdruck ständig auf einem hinreichenden Niveau gehalten wird. Hierzu wird in einem ersten Teilschritt a) der Solldruck der Systemschiene berechnet. In einem zweiten Teilschritt b) wird aus dem Solldruck eine obere Schwelle und eine untere Schwelle berechnet. In einem dritten Teilschritt c) wird die Pumpe nicht ange trieben, wenn der Systemdruck über der oberen Schwelle liegt, und angetrieben, wenn der Systemdruck unter der unteren Schwelle liegt. Im Normalbetrieb ist die Ven- tilansteuerung von der Pumpenansteuerung abgekoppelt. Jede Ansteuerung orientiert sich nur an dem Sollbedarf einzelner Verbraucher, z. B. dem Solldruck einer Kupp- lung. In dem Modus„Event-Eingriff“ wird die Pumpe ständig angetrieben. Die Ventilan- steuerung bleibt aber zunächst unverändert. Das heißt, die Ventilbestromung bzw. die angelegte Ventilspannung bleibt weiterhin auf dem Niveau wie zum Zeitpunkt, wo der Modus„Event-Eingriff“ aktiviert ist. Erst nachdem der Systemdruck einen Schwellen wert erreicht hat, werden diese Ventile abhängig von dem Sollbedarf einzelner Ver braucher angesteuert.
Die Erfindung wird nun nachfolgend anhand von Figuren näher erläutert.
Es zeigen:
Fig. 1 eine Darstellung eines Zustandsautomaten zur Veranschaulichung einer
Ansteuerstrategie eines erfindungsgemäßen Flydrauliksystems,
Fig. 2 eine Prinzipdarstellung eines erfindungsgemäßen Hydrauliksystems nach einem ersten Ausführungsbeispiel, das mit der Ansteuerstrategie nach Fig.
1 ansteuerbar ist,
Fig. 3 eine Prinzipdarstellung eines erfindungsgemäßen Hydrauliksystems nach einem zweiten Ausführungsbeispiel, das ebenfalls mit der Ansteuerstrate gie nach Fig. 1 ansteuerbar ist und gegenüber dem ersten Ausführungsbei spiel mit einem Druckbegrenzungsventil ausgestattet ist, sowie
Fig. 4 eine Prinzipdarstellung eines Hydrauliksystems mit einem nach dem Stand der Technik ausgebildeten Druckspeicher.
Die Figuren sind lediglich schematischer Natur und dienen ausschließlich dem Ver ständnis der Erfindung.
Ein erfindungsgemäßes Hydrauliksystem 1 , das zur Durchführung eines erfindungsge mäßen Verfahrens ausgebildet ist, weist gemäß einem ersten Ausführungsbeispiel den in Fig. 2 dargestellten Aufbau auf. Im Vergleich zu einem nach dem Stand der Technik ausgebildeten Hydrauliksystem T nach Fig. 4 liegen folgende Unterschiede vor: Im Gegensatz zu dem Hydrauliksystem T des Standes der Technik, umfasst das Hydrauliksystem 1 der erfindungsgemäßen Ausführung keinen Druckspeicher. Von der Systemschiene 5 zweigen mehrere Abzweigungen 10a, 10b, 10c ab, die jeweils unter Zwischenschaltung eines Ventils 3a, 3b, 3c mit einem hydraulischen Verbrau cher 6a, 6b, 6c (KO, K1 , K2) verbindbar sind. Die den einzelnen Verbrauchern 6a bis 6c jeweils zugeordneten Ventile 3a bis 3c sind jeweils als Druckregelventile / Druck minderer umgesetzt. Auch ist auf typische Weise, wie in Verbindung mit einem weite ren erfindungsgemäßen Hydrauliksystem 1 nach einem zweiten Ausführungsbeispiel in Fig. 3 zu erkennen, in einer an einem Ausgang 4 einer Pumpe 2 angeschlossenen Systemschiene 5 ein hier der Übersichtlichkeit halber nicht weiter dargestelltes Druck begrenzungsventil 11 eingebracht.
Wie weiterhin in Fig. 2 zu erkennen, ist das erfindungsgemäße Hydrauliksystem 1 mit einer von einem Elektromotor 7 angetriebenen Pumpe 2 ausgestattet. Ein Betrieb / eine Steuerung der Pumpe 2 erfolgt somit über den Elektromotor 7. Die Pumpe 2 ist mit ihrem Eingang 8 mit einem Tank 9 verbunden. Die Pumpe 2 ist mit ihrem Ausgang 4 unmittelbar an der Systemschiene 5 angeschlossen. Von der Systemschiene 5 ver laufen die Abzweigungen 10a bis 10c hin zu den Ventilen 3a bis 3c. Die jeweilige Ab zweigung 10a bis 10c ist in Abhängigkeit von der Stellung des Ventils 3a bis 3c mit ei nem hydraulischen Verbraucher 6a bis 6c gekoppelt. Demnach ist in dieser Ausfüh rung eine von der Systemschiene 5 abzweigende erste Abzweigung 10a über ein ers tes Ventil 3a mit einem ersten hydraulischen Verbraucher 6a koppelbar. Eine weitere, entlang der Systemschiene 5 versetzt zu der ersten Abzweigung 10a angeordnete, zweite Abzweigung 10b ist über ein zweites Ventil 3b mit einem zweiten Verbraucher 6b koppelbar. Eine dritte Abzweigung 10c, die wiederum versetzt zu den beiden ers ten und zweiten Abzweigungen 10a und 10b angeordnet ist, ist über ein drittes Ventil 3c mit einem dritten Verbraucher 6c koppelbar. Gemäß weiteren Ausführungen ist es jedoch prinzipiell auch möglich, weniger als drei Verbraucher 6a, 6b, 6c, vorzugsweise lediglich zwei Verbraucher oder mehr als drei Verbraucher vorzusehen. Die Verbrau cher 6a, 6b, 6c sind hierbei jeweils Teil einer Betätigungseinrichtung einer Kupplung (K0, K1 , K2) eines Antriebsstranges, etwa in Form eines Druckzylinders, ausgebildet.
Das in Verbindung mit Fig. 3 dargestellte erfindungsgemäße Hydrauliksystem 1 nach dem zweiten Ausführungsbeispiel unterscheidet sich lediglich durch das Vorsehen des Druckbegrenzungsventils 11 , das an der Systemschiene 5 angeschlossen ist, von dem ersten Ausführungsbeispiel. Der übrige Aufbau des Hydrauliksystems 1 nach Fig. 3 entspricht dem Hydrauliksystem 1 nach Fig. 2.
Erfindungsgemäß ist ein Verfahren zur Ansteuerung des erfindungsgemäßen Hydrau liksystems 1 umgesetzt, wobei das Verfahren besonders gut auch in Verbindung mit Fig. 1 verdeutlicht ist. Das Verfahren ist sowohl mit dem Hydrauliksystem nach Fig. 2 als auch mit dem Hydrauliksystem nach Fig. 3 umsetzbar.
Die Pumpe 2 ist in Abhängigkeit eines bestehenden Gesamtleistungsbedarfs (Ge samtvolumenstrombedarf Q_bedarf) der hydraulischen Verbraucher 6a, 6b, 6c zwi schen ihrem Normalbetrieb und ihrem Erweiterungsbetrieb umschaltbar.
Als Normalbetrieb wird jener Betrieb der Pumpe 2 bezeichnet, in dem in regelmäßigen Zeitabständen ein bestehender Systemdruck p_sys in der Systemschiene 5 ermittelt / gemessen wird und ein Solldruck p_sys_soll der Systemschiene 5 berechnet wird. Der Solldruck p_sys_soll ist jener Wert, der den am höchsten einzustellenden Druckwert in dem System darstellt. Der Solldruck p_sys_soll ist somit ein Maximalwert aus der Gruppe an an dem jeweiligen einzelnen Verbraucher 6a, 6b, 6c benötigten Verbrau chersolldrücken. Anhand des Solldrucks p_sys_soll werden eine obere Druckschwelle p_h und eine untere Druckschwelle p_l festgelegt. Die obere Druckschwelle p_h sowie die untere Druckschwelle p_l werden anhand eines Aufschlagfaktors berechnet, der eine feste Konstante oder eine temperaturabhängige Variable darstellt. Die Pumpe 2 wird angetrieben, wenn der Systemdruck p_sys unterhalb der unteren Druckschwelle p_l liegt und ausgeschaltet, wenn der Systemdruck p_sys oberhalb der oberen Druck schwelle p_h liegt. Somit wird in dem Normalbetrieb stets ein bestimmtes Druckniveau in der Systemschiene 5 (zwischen der unteren Druckschwelle pj und der oberen Druckschwelle p_h) konstant gehalten. Die Pumpe 2 wird zwischen ihrem ausgeschal teten und eingeschalteten Zustand umgeschaltet, um dieses Druckniveau aufrecht zu erhalten.
Erfindungsgemäß ist ein zusätzlicher Erweiterungsbetrieb der Pumpe 2 umgesetzt. Dieser Erweiterungsbetrieb wird dann aktiviert, wenn der Gesamtleistungsbedarf Q_bedarf einen bestimmten Leistungsbedarf überschreitet. Als Gesamtleistungsbe darf wird der Gesamtvolumenstrombedarf Q_bedarf aller Verbraucher 6a, 6b ermittelt. Der Gesamtvolumenstrombedarf Q_bedarf ist eine Summe an Teilvolumenstrombe- darfen (V_1_bedarf, V_2_bedarf , ... ) aller einzelner hydraulischer Verbraucher 6a, 6b, 6c zu dem jeweiligen Zeitpunkt. Der jeweilige Teilvolumenstrombedarf wird anhand ei ner in einer Software hinterlegten Druck-Volumen-Funktion bestimmt. Entsprechend wird der Erweiterungsbetrieb aktiviert / der Normalbetrieb deaktiviert, wenn der Ge samtvolumenstrombedarf Q_bedarf oberhalb eines oberen Volumenstromschwellwer tes Q_h liegt und der Normalbetrieb aktiviert / der Erweiterungsbetrieb deaktiviert, wenn der Gesamtvolumenstrombedarf Q_bedarf unterhalb eines unteren Volumen strom schwellwertes Q_l liegt. Der obere Volumenstromschwellwert Q_h und der un tere Volumenstromschwellwert Q_l werden jeweils entweder durch eine feste Kon stante oder eine temperaturabhängige und systemdruckabhängige Variable berechnet / abgeleitet.
In dem Erweiterungsbetrieb wird die Pumpe 2 dann permanent angetrieben. Wie be reits bei Antreiben der Pumpe 2 in dem Normalbetrieb, wird der Elektromotor 7 in dem Erweiterungsbetrieb permanent mit einem festen (maximalen) Spannungswert (/ einer Systemspannung) angetrieben. Jedes der als Druckregelventil ausgebildeten Ventile 3a, 3b, 3c wird in dem Erweiterungsbetrieb zumindest zeitweise in Abhängigkeit eines Einzelleistungsbedarfs des jeweiligen hydraulischen Verbrauchers 6a, 6b, 6c betrie ben, sobald der Systemdruck p_sys einen Schwellenwert p_grenz erreicht oder die sen übersteigt. In anderen Worten ausgedrückt bedeutet dies, dass das jeweilige Ven til gezielt 3a, 3b, 3c zur Druckminderung eingesetzt wird, wenn der Systemdruck p_sys in der Systemschiene 5 den Schwellenwert p_grenz erreicht oder überschreitet.
Eine Ansteuerung der Ventile 3a, 3b, 3c erfolgt auf typische Weise vollständig entkop pelt / unabhängig von einer Ansteuerung der Pumpe 2 / des Elektromotors 7.
In Verbindung mit Fig. 1 wird eine typische Berechnung und Ermittlung der jeweiligen, das Umschalten bedingenden Werte aufgeführt. Eine Motorspannung ist in dieser Fi gur mit U_motor bezeichnet. Eine Systemspannung ist mit U_b bezeichnet. Ein das jeweilige Ventil 3a, 3b, 3c ansteuernder Ventilstrom ist mit l_ventil_1 (erstes Ventil 3a), l_ventil_2 (zweites Ventil 3b) bezeichnet. Da das jeweilige Ventil 3a, 3b als Druckregelventil umgesetzt ist, wird der Ventilstrom l_ventil_1 , l_ventil_2 gemäß einer Funktion nach dem entsprechenden Solldruck, der an dem Ventil 3a, 3b umzusetzen ist, gesteuert (f(p_1_soll); f(p_2_soll)). Bei Erreichen des Grenzdruckwertes / Schwell wertes p_grenz wird in dem Erweiterungsbetrieb die Ansteuerung der Ventile 3a, 3b entsprechend umgeschaltet. Somit ergibt sich folgender mathematischer Zusammen hang:
Da konventionelle Druckregelventile verwendet werden, gibt es normalerweise einen mathematischen Zusammenhang zwischen dem Solldruck (p_1 _soll; p_2_soll) nach dem Ventil und dem Ventilstrom (l_ventil_1 ; l_ventil_2). Das heißt, dass der Druck nach dem Ventil 3a, 3b, 3c durch den Ventilstrom gesteuert wird, also l_ven- til=f(P_1_soll) oder p_1_soll=f-1 (l_ventil)
Um die Ansteuerstrategie, die in Fig. 1 visualisiert ist, zu verwenden, sind bei jedem Zeitschritt i folgende Signalwerte zu ermitteln: 1 . Für die Druckschnittstellen muss p_h und p_l der Druckhysterese-Regelung folgendermaßen mathematisch ermittelt wer den:
P_sys_soll=max(p_1_soll, p_2_soll, ... )
p_h= p_sys_soll+dp_h
p_l= p_sys_soll+dp_l
Dabei sind dp_h und dpj hinterlegte Konstanten oder aus einer Funktion / einem
Kennfeld von Betriebstemperatur und p_sys_soll abhängig. Es gilt:
dp_h>dp_l>0
und folglich
p_h>p_l> p_sys_soll
Um zu wissen, ob ein Event-Eingriff, d.h. das Aktivieren des Erweiterungsbetriebs, notwendig ist, werden Q_bedarf, Q_h und Q_l mathematisch ermittelt:
Q_bedarf = (V_1_bedarf + V_2_bedarf + ... ) / (ti— ti-1 )
mit
V_1_bedarf = max[(V_1 (p_1_solli) - V_1 (p_1_solli-1 )),0] V_2_bedarf = max[(V_2(p_2_solli) - V_2(p_2_solli-1 )),0]
In einer weiteren bevorzugten erfindungsgemäßen Ausführung wird Q_bedarf auch wie folgt mathematisch ermittelt:
Q_bedarf = (V_1_bedarf + V_2_bedarf + ... ) / (ti— ti-1 )
Mit
V_1_bedarf = max[(V_1 (p_1_solli) - V_1 (p_1_isti)),0]
V_2_bedarf = max[(V_2(p_2_solli) - V_2(p_2_isti)),0]
Die Funktionen V_1 und V_2 sind dabei in einer Software abgelegte Druck-Volumen- Kennlinien. Q_h und Q_l sind Konstanten oder aus einer Funktion / einem Kennfeld von Betriebstemperatur und p_sys_soll abhängig. p_1_solli ist dabei ein Solldruck an dem ersten hydraulischen Verbraucher 6a zu einem Zeitpunkt i; p_2_solli ist dabei ein Solldruck an dem zweiten hydraulischen Verbraucher 6b zu dem Zeitpunkt i. Dem nach ist p_1_solli-1 ein Solldruck an dem ersten hydraulischen Verbraucher 6a zu ei nem Zeitpunkt i-1 und p_2_solli-1 ein Solldruck an dem zweiten hydraulischen Ver braucher 6b zu dem Zeitpunkt i-1. p_1_isti ist ein tatsächlich vorhandener (Ist-)Druck an dem ersten hydraulischen Verbraucher 6a zu dem Zeitpunkt i und p_2_isti ist ein tatsächlich vorhandener (Ist-)Druck an dem zweiten hydraulischen Verbraucher 6b zu dem Zeitpunkt i.
Die anzulegende Motorspannung U_b ist vorzugsweise eine Konstante, wird in weite ren Ausführungen jedoch auch anhand einer Funktion / eines Kennfeldes von Be triebstemperatur und p_sys_soll berechnet. Die anzulegende Motorspannung U_b kann sich auch direkt aus einer Druckregelung ergeben.
In anderen Worten ausgedrückt, liegt die erfindungsgemäße Grundidee darin, ein Event mit einem hohen Leistungsbedarf zu identifizieren und gezielt darauf zu reagie ren. Basierend auf diesem Grundgedanken gibt es zwei Betriebsmodi: Normalbetrieb und Event-Eingriff (Erweiterungsbetrieb).
Um zu bewerten, ob zwischen dem Normalbetrieb und Event-Eingriff gewechselt wer den muss, wird der Summenbedarf an Volumenstrom aller Verbraucher 6a, 6b, 6c (Q_bedarf) berechnet. Liegt der Wert über einer oberen Schwelle Q_h, wird der Mo dus„Event-Eingriff“ aktiviert. Liegt der Wert unter einer unteren Schwelle Q_l, wird der Modus„Normalbetrieb“ aktiviert. Um die Ansteuerung in dem Normalbetrieb sowie dem Erweiterungsbetrieb zu verein fachen, legt man vorzugsweise stets die maximale verfügbare Spannung an den Pum penmotor 7 an, wenn die Pumpe 2 angetrieben werden soll. Das System 1 enthält vor zugsweise auf der Systemschiene 5 ein Druckbegrenzungsventil 11 , das einen zu ho hen Systemdruck p_sys während des Event-Eingriffs vermeidet.
Bezuqszeichenliste Hydrauliksystem
Pumpe
a erstes Ventil
b zweites Ventil
c drittes Ventil
Ausgang
Systemschiene
a erster Verbraucher
b zweiter Verbraucher
c dritter Verbraucher
Elektromotor
Eingang
Tank
0a erste Abzweigung
0b zweite Abzweigung
0c dritte Abzweigung
1 Druckbegrenzungsventil

Claims

Patentansprüche
1. Verfahren zur Ansteuerung eines Hydrauliksystems (1 ) für eine Betätigungsein richtung eines Kraftfahrzeuges, wobei das Hydrauliksystem (1 ) eine Pumpe (2) und mehrere Ventile (3a, 3b, 3c) aufweist, welche Ventile (3a, 3b, 3c) jeweils zwischen einer mit einem Pumpenausgang (4) verbundenen Systemschiene (5) und einem hydraulischen Verbraucher (6a, 6b, 6c) angeordnet sind,
wobei die Pumpe (2) in Abhängigkeit eines bestehenden Gesamtleistungsbe darfs der hydraulischen Verbraucher (6a, 6b, 6c) zwischen einem Normalbetrieb und einem Erweiterungsbetrieb umgeschaltet wird,
wobei in dem Normalbetrieb in regelmäßigen Zeitabständen ein bestehender Systemdruck in der Systemschiene (5) ermittelt wird und ein Solldruck der Sys temschiene (5) berechnet wird sowie anhand des Solldrucks eine obere Druck schwelle und eine untere Druckschwelle festgelegt werden, wobei die Pumpe (2) angetrieben wird, wenn der Systemdruck unterhalb der unteren Druckschwelle liegt und ausgeschaltet wird, wenn der Systemdruck oberhalb der oberen Druck schwelle liegt,
und wobei in dem Erweiterungsbetrieb die Pumpe (2) permanent angetrieben wird und jedes der als Druckregelventile ausgebildeten Ventile (3a, 3b, 3c) zu mindest zeitweise in Abhängigkeit eines Einzelleistungsbedarfs des jeweiligen hydraulischen Verbrauchers (6a, 6b, 6c) betrieben wird sobald der Systemdruck einen Schwellenwert erreicht oder diesen übersteigt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest in dem Normalbetrieb eine Ansteuerung der Ventile (3a, 3b, 3c) von einer Ansteuerung der Pumpe (2) entkoppelt ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der ein Um schalten zwischen dem Normalbetrieb und dem Erweiterungsbetrieb bestim mende Gesamtleistungsbedarf einem Gesamtvolumenstrombedarf aller Verbrau cher (6a, 6b, 6c) entspricht, wobei der Erweiterungsbetrieb aktiviert wird, wenn der Gesamtvolumenstrombedarf oberhalb eines oberen Volumenstromschwell wertes liegt, und der Normalbetrieb aktiviert wird, wenn der Gesamtvolumen strombedarf unterhalb eines unteren Volumenstromschwellwertes liegt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der obere Volu menstromschwel Iwert und/oder der untere Volumenstromschwellwert durch eine feste Konstante oder eine temperaturabhängige und/oder systemdruckabhän gige Variable gebildet sind/ist.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Ge samtvolumenstrombedarf anhand einer Summe aus einem, durch einen ersten hydraulischen Verbraucher (6a, 6b, 6c) bestimmten ersten Teilvolumenstrombe darf und durch zumindest einen weiteren zweiten hydraulischen Verbraucher (6a, 6b, 6c) bestimmten zweiten Teilvolumenstrombedarf berechnet wird, wobei der jeweilige Teilvolumenstrombedarf anhand einer in einer Software hinterleg ten Druck-Volumen-Funktion bestimmt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass an einem die Pumpe (2) antreibenden Elektromotor (7) sowohl in dem Normalbe trieb als auch in dem Erweiterungsbetrieb eine maximal vorhandene System spannung anliegt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in der Systemschiene (5) ein Druckbegrenzungsventil (11 ) angeordnet ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Solldruck ein Maximalwert aus der Gruppe an an dem jeweiligen einzelnen Verbraucher (6a, 6b, 6c) benötigten Verbrauchersolldrücken ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die obere Druckschwelle anhand eines ersten Aufschlagfaktors auf Grundlage des Solldrucks berechnet wird und/oder die untere Druckschwelle anhand eines zweiten Aufschlagfaktors auf Grundlage des Solldrucks berechnet wird, wobei der zumindest eine Aufschlagfaktor eine feste Konstante oder eine temperatur abhängige und/oder systemdruckabhängige Variable darstellt.
10. Hydrauliksystem (1 ) für ein Kraftfahrzeug, wobei das Hydrauliksystem (1 ) zum Durchführen eines Verfahrens nach einem der Ansprüche 1 bis 9 ausgebildet ist.
PCT/DE2020/100237 2019-04-25 2020-03-25 Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und mehreren ventilen; sowie hydrauliksystem WO2020216396A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,318 US11703094B2 (en) 2019-04-25 2020-03-25 Actuation method for a hydraulic system with a pump and multiple valves, and hydraulic system
CN202080020817.9A CN113767224A (zh) 2019-04-25 2020-03-25 用于具有泵和多个阀的液压系统的致动方法以及液压系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110710.5A DE102019110710B3 (de) 2019-04-25 2019-04-25 Ansteuerverfahren für ein Hydrauliksystem mit einer Pumpe und mehreren Ventilen; sowie Hydrauliksystem
DE102019110710.5 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020216396A1 true WO2020216396A1 (de) 2020-10-29

Family

ID=70456705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/100237 WO2020216396A1 (de) 2019-04-25 2020-03-25 Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und mehreren ventilen; sowie hydrauliksystem

Country Status (4)

Country Link
US (1) US11703094B2 (de)
CN (1) CN113767224A (de)
DE (1) DE102019110710B3 (de)
WO (1) WO2020216396A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021069021A1 (de) * 2019-10-08 2021-04-15 Schaeffler Technologies AG & Co. KG Doppelkupplungsvorrichtung, hydraulikvorrichtung und verfahren zur ansteuerung einer hydraulikvorrichtung
CN113748272A (zh) * 2019-04-25 2021-12-03 舍弗勒技术股份两合公司 用于对多个消耗器及冷却和/或润滑装置进行供应的具有泵和阀的液压系统的驱动方法以及液压系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106712A (zh) * 1986-10-03 1988-09-14 履带有限公司 用来控制调节安全阀卸荷的比例阀
EP2151586A2 (de) * 2008-08-09 2010-02-10 Volkswagen Aktiengesellschaft Hydraulikkreislauf
EP2375086A2 (de) * 2010-04-07 2011-10-12 Hydac Filtertechnik Gmbh Hydraulische Anlage
DE102014208182A1 (de) 2013-05-28 2014-12-04 Schaeffler Technologies Gmbh & Co. Kg Kupplungsbetätigungssystem

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150598A1 (de) 2001-10-12 2003-04-24 Zf Sachs Ag Kupplungssystem mit wenigstens einer druckmittelbetätigbaren, für einen Betrieb unter Einwirkung eines Betriebsmediums vorgesehenen Kupplungsanordnung
DE10159519A1 (de) * 2001-12-04 2003-07-17 Zahnradfabrik Friedrichshafen Verfahren zur Ansteuerung einer Druckversorgungseinrichtung in einem Hydraulikkreis
DE10337556A1 (de) 2002-09-12 2004-03-25 Zf Sachs Ag Lamellenkupplung
DE10340993A1 (de) * 2003-09-05 2005-03-31 Wessel-Hydraulik Gmbh Verfahren und Vorrichtung zur Versorgung von zwei oder mehr hydraulischen Verbrauchern
US6959545B2 (en) * 2004-02-01 2005-11-01 Ford Global Technologies, Llc Engine control based on flow rate and pressure for hydraulic hybrid vehicle
FR2871205B1 (fr) * 2004-06-03 2007-10-05 Peugeot Citroen Automobiles Sa Element de transmission a embrayages humides pour chaine de traction de vehicule automobile, et vehicule automobile equipe d'un tel element
DE202006021143U1 (de) * 2005-07-01 2013-03-19 Schaeffler Technologies AG & Co. KG Vorrichtung zur Ansteuerung einer Fahrzeugkupplung
DE102010020002B4 (de) * 2010-05-10 2024-03-28 Zf Active Safety Gmbh Hydraulikbaugruppe für eine Fahrzeug-Bremsanlage
WO2012021101A1 (en) * 2010-08-09 2012-02-16 Parker Hannifin Manufacturing Sweden Ab Hydraulic control system
DE102011122878B4 (de) 2011-04-18 2014-12-31 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Vorrichtung zur elektrofluidischen Versorgung oder Betätigung eines Bauteils eines Antriebsstranges
CN202125581U (zh) 2011-04-29 2012-01-25 杭州前进齿轮箱集团股份有限公司 液力变速器
CN103827404B (zh) * 2011-10-04 2016-08-17 日立建机株式会社 具备废气净化装置的工程机械用液压驱动系统
US9096989B2 (en) * 2012-05-25 2015-08-04 Caterpillar Inc. On demand displacement control of hydraulic power system
JP6089533B2 (ja) 2012-09-24 2017-03-08 アイシン精機株式会社 ハイブリッド車両用クラッチ装置のクラッチ制御装置
WO2015117965A1 (en) * 2014-02-04 2015-08-13 Dana Italia Spa Controller for a series hydraulic hybrid transmission
DE102015202581A1 (de) * 2015-02-12 2016-08-18 Schaeffler Technologies AG & Co. KG Fluidanordnung
ITUB20161185A1 (it) * 2016-03-01 2017-09-01 Magneti Marelli Spa Procedimento per verificare un'eventuale riduzione del livello di olio in un sistema di attuazione idraulico, in particolare un sistema di attuazione idraulico per trasmissione di veicolo.
DE102016214367B3 (de) * 2016-08-03 2018-01-11 Audi Ag Hydrauliksystem für ein Automatikgetriebe eines Kraftfahrzeugs
DE102017209905A1 (de) * 2017-06-13 2018-12-13 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Hydrauliksystems für ein Automatikgetriebe
DE102018130700B4 (de) 2018-12-03 2020-07-02 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem
DE102019110711A1 (de) * 2019-04-25 2020-10-29 Schaeffler Technologies AG & Co. KG Ansteuerverfahren für ein Hydrauliksystem mit einer Pumpe und Ventilen zum Versorgen mehrerer Verbraucher sowie einer Kühl- und/oder Schmiereinrichtung; und Hydrauliksystem
DE102019123965A1 (de) * 2019-09-06 2021-03-11 Schaeffler Technologies AG & Co. KG Fluidversorgungsvorrichtung mit Rückschlagventilen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106712A (zh) * 1986-10-03 1988-09-14 履带有限公司 用来控制调节安全阀卸荷的比例阀
EP2151586A2 (de) * 2008-08-09 2010-02-10 Volkswagen Aktiengesellschaft Hydraulikkreislauf
EP2375086A2 (de) * 2010-04-07 2011-10-12 Hydac Filtertechnik Gmbh Hydraulische Anlage
DE102014208182A1 (de) 2013-05-28 2014-12-04 Schaeffler Technologies Gmbh & Co. Kg Kupplungsbetätigungssystem

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748272A (zh) * 2019-04-25 2021-12-03 舍弗勒技术股份两合公司 用于对多个消耗器及冷却和/或润滑装置进行供应的具有泵和阀的液压系统的驱动方法以及液压系统
US11920645B2 (en) 2019-04-25 2024-03-05 Schaeffler Technologies AG &Co. KG Actuation method for a hydraulic system having a pump and valves for supplying multiple consumers and a cooling and/or lubricating device, and hydraulic system
WO2021069021A1 (de) * 2019-10-08 2021-04-15 Schaeffler Technologies AG & Co. KG Doppelkupplungsvorrichtung, hydraulikvorrichtung und verfahren zur ansteuerung einer hydraulikvorrichtung

Also Published As

Publication number Publication date
US20220186794A1 (en) 2022-06-16
DE102019110710B3 (de) 2020-08-13
CN113767224A (zh) 2021-12-07
US11703094B2 (en) 2023-07-18

Similar Documents

Publication Publication Date Title
EP2725252B1 (de) Verfahren zur Ermittlung eines Einstellparameters für eine hydraulische Aktuatoranordnung in einem Kraftfahrzeugantriebsstrang
EP2050961B1 (de) Hydraulisches Antriebssystem
WO2020216398A1 (de) Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und ventilen zum versorgen mehrerer verbraucher sowie einer kühl- und/oder schmierein-richtung; und hydrauliksystem
EP2494175B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
EP3169887B1 (de) Verfahren zum betreiben einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine
WO2002077432A1 (de) Verfahren und vorrichtung zur ansteuerung eines piezoaktors
WO2020216396A1 (de) Ansteuerverfahren für ein hydrauliksystem mit einer pumpe und mehreren ventilen; sowie hydrauliksystem
EP1324906A1 (de) Verfahren und regelsystem zur ansteuerung eines elektronisch regelbaren bremsbetätigungssystems
WO2021083578A1 (de) Verfahren zum betreiben eines brennstoffzellensystems
DE4305573A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
EP4081871A1 (de) Steuerungsverfahren für ein teilelektronisches system
DE10137581C1 (de) Verfahren zum Steuern einer automatischen Kraftfahrzeugkupplung
EP3665377B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem einspritzsystem, einspritzsystem, eingerichtet zur durchführung eines solchen verfahrens, und brennkraftmaschine mit einem solchen einspritzsystem
WO2016096607A1 (de) Verfahren zum betrieb eines verbrennungsmotors
DE102015222988A1 (de) Verfahren und System zum Regeln einer Drehzahl
DE102015226539A1 (de) "Verfahren zur Steuerung und/oder Regelung einer nasslaufenden Kupplung eines Kraftfahrzeugs"
EP1631484B1 (de) Verfahren zur steuerung eines elektrischen pumpenantriebsmotors einer servolenkvorrichtung
EP1273780B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102014105127A1 (de) Hydraulisches Antriebssystem einer mobilen Arbeitsmaschine
DE102013200389A1 (de) Verfahren zum Einstellen eines Systemdrucks, sowie Kraftfahrzeuggetriebe
DE19644961A1 (de) Verfahren zum Steuern des Motor-Pumpe-Systems einer hydraulischen Baumaschine
EP1632690B1 (de) Verfahren zur Bestimmung eines Sollwertes für den Druck zur Ansteuerung einer hydrodynamischen Kupplung
DE102013000060B3 (de) Verfahren und Regeleinrichtung zum Betreiben einer Brennkraftmaschine
DE10142040A1 (de) Verfahren und Regelsystem zur Ansteuerung eines elektronisch regelbaren Bremsbetätigungssystems
EP2499401A1 (de) Kalibrierverfahren und hydraulischer fahrantrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20721139

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20721139

Country of ref document: EP

Kind code of ref document: A1