WO2020216240A1 - 用作血浆激肽释放酶抑制剂的双环烷类化合物 - Google Patents

用作血浆激肽释放酶抑制剂的双环烷类化合物 Download PDF

Info

Publication number
WO2020216240A1
WO2020216240A1 PCT/CN2020/086087 CN2020086087W WO2020216240A1 WO 2020216240 A1 WO2020216240 A1 WO 2020216240A1 CN 2020086087 W CN2020086087 W CN 2020086087W WO 2020216240 A1 WO2020216240 A1 WO 2020216240A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pharmaceutically acceptable
synthesis
solution
added
Prior art date
Application number
PCT/CN2020/086087
Other languages
English (en)
French (fr)
Inventor
孙广龙
沈春莉
吴成德
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202080016791.0A priority Critical patent/CN113474318A/zh
Publication of WO2020216240A1 publication Critical patent/WO2020216240A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/36Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing five carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/44Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing eight carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides

Definitions

  • This application belongs to the field of medicine, and specifically relates to a compound of formula (I), a preparation method thereof, a pharmaceutical composition containing the compound, and their use in preparing drugs for treating plasma kallikrein-mediated related diseases.
  • Plasma kallikrein also known as Fletcher factor
  • Fletcher factor Plasma kallikrein
  • PKal Plasma kallikrein
  • FXIIa acting on prokallikrein and can mediate the cleavage of kallikrein.
  • BK bradykinin
  • BK bradykinin
  • DR diabetic retinopathy
  • DME diabetic macular edema
  • the main function of plasma kallikrein inhibitors is to reduce the level of plasma kallikrein in the body, reduce the activation of bradykinin on the two receptors, thereby alleviating vascular permeability and inflammation, and achieving the treatment of diabetic retinopathy and diabetic macular
  • the plasma kallikrein inhibitor KVD001 (WO2013005045), developed by KalVista Pharmaceuticals, is in clinical phase II.
  • plasma kallikrein inhibitors In view of the important role of plasma kallikrein inhibitors, it is particularly important to develop plasma kallikrein inhibitors suitable for therapeutic drugs.
  • the present invention provides a compound of formula (I), its isomers or pharmaceutically acceptable salts thereof,
  • E 1 , E 2 and E 3 are each independently selected from -(CH 2 ) n -;
  • n is independently 0, 1 or 2;
  • Ring A is selected from
  • T 1 , T 2 and T 3 are independently selected from N and CR 6 ;
  • T 4 is selected from N and CR 7 ;
  • T 5 is selected from N and CR 8 ;
  • R 1 is selected from C 1-6 alkyl, C 4-8 cycloalkyl, 5-6 membered heteroaryl and C 6-10 aryl, the C 1-6 alkyl, C 4-8 cycloalkyl , 5-6 membered heteroaryl and C 6- 10 aryl is optionally substituted with 1, 2 or 3 R a;
  • R 2 and R 3 are each independently selected from H and C 1-3 alkyl
  • R 4 is selected from H, F, Cl, Br, I, OH, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, wherein the C 1-3 alkyl and C 1-3 alkoxy The group is optionally substituted with 1, 2 or 3 R b ;
  • R 5 is selected from H and C 1-3 alkyl
  • R 6 is each independently selected from H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R c ;
  • R 7 is selected from H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally substituted by 1, 2 or 3 R d ;
  • R 8 is selected from H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R e ;
  • R 7 and R 8 and the C atoms to which they are attached together form a phenyl group, which is optionally substituted with 1, 2 or 3 R f ;
  • R a is each independently selected from H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkyl;
  • R b is independently selected from H, F, Cl, Br, I, OH, NH 2 and C 1-3 alkoxy, wherein the C 1-3 alkoxy is optionally substituted by 1, 2 or 3 R replace;
  • R c, R d, R e and R f are each independently selected from H, F, Cl, Br, I, OH , and NH 2;
  • R is independently selected from F, Cl, Br, I, OH and NH 2 ;
  • the 5-6 membered heteroaryl group includes 1, 2, 3 or 4 heteroatoms or heteroatom groups independently selected from -NH-, -O-, -S- and N.
  • R a is independently selected from H, F, Cl, Br, I, OH, NH 2, CH 3 , and -CH 2 -CH 3, the other variables are as defined in the present invention.
  • R b is independently selected from H, F, Cl, Br, I, OH, NH 2 and -O-CH 3 , and other variables are as defined in the present invention.
  • R 1 is selected from C 1-3 alkyl
  • E 4 and E 5 are each independently selected from -(CH 2 ) m -;
  • E 6 , E 7 and E 8 are each independently selected from -(CH 2 ) j -;
  • n 0, 1 or 2;
  • j 0, 1 or 2;
  • T 6 , T 7 , T 8 , T 9 and T 10 are independently selected from N and CH;
  • R 1 is selected from CH 3 -CH 2 -, The CH 3 -CH 2 -, Optionally substituted with 1,2 or 3 substituents R a, the other variables are as defined in the present invention.
  • R 1 is selected from CH 3 -CH 2 -, Other variables are as defined in the present invention.
  • R 1 is selected from CH 3 -CH 2 -, Other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H and CH 3 , and other variables are as defined in the present invention.
  • the above-mentioned R 4 is selected from H, F, Cl, Br, I, OH, NH 2 , CH 3 , -CH 2 -CH 3 , -O-CH 3 and -O-CH 2 -CH 3 , wherein the CH 3 , -CH 2 -CH 3 , -O-CH 3 and -O-CH 2 -CH 3 are optionally substituted by 1, 2 or 3 R b , and other variables are as defined in the present invention .
  • R 4 is selected from H, F, Cl, Br, I, OH, NH 2 , CH 3 , -CH 2 -CH 3 , -O-CH 3 , -O-CH 2 -CH 3 and Other variables are as defined in the present invention.
  • R 5 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • R 6 is independently selected from H, F, Cl, Br, I, OH, and NH 2 , and other variables are as defined in the present invention.
  • R 7 is selected from H, F, Cl, Br, I, OH, and NH 2 , and other variables are as defined in the present invention.
  • R 8 is selected from H, F, Cl, Br, I, OH, and NH 2 , and other variables are as defined in the present invention.
  • the aforementioned ring A is selected from Other variables are as defined in the present invention.
  • the aforementioned ring A is selected from Other variables are as defined in the present invention.
  • the above-mentioned compound, its isomers, or pharmaceutically acceptable salts thereof are selected from compounds of formula (I'):
  • R 1 , R 2 , R 3 , R 4 , R 5 , ring A, E 1 , E 2 and E 3 are as defined in the present invention.
  • the above-mentioned compound, its isomer or pharmaceutically acceptable salt thereof is selected from the group consisting of compounds of formula (I-1) and formula (I-2):
  • R 1 , R 2 , R 3 , R 4 , R 5 and ring A are as defined in the present invention.
  • the above-mentioned compound, its isomer or pharmaceutically acceptable salt thereof is selected from the group consisting of formula (I-1A), (I-2A), (I-2B) and (I-2C) Compound:
  • R 2 , R 3 , R 4 , R 5 , T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 , T 9 and T 10 are as defined in the present invention.
  • the present invention also provides a compound of the following formula, its isomers or a pharmaceutically acceptable salt thereof,
  • the salt of the above compound is selected from hydrochloride.
  • the above-mentioned compounds, isomers thereof, or pharmaceutically acceptable salts thereof are used in the preparation of drugs for the treatment of plasma kallikrein-mediated related diseases.
  • the above-mentioned hydrochloride is used in the preparation of drugs for treating related diseases mediated by plasma kallikrein.
  • the compound of the present invention has plasma kallikrein inhibitory activity.
  • the compound of the present invention has good ocular PK properties, and has a significant effect on relieving retinal edema in mild and severe diabetic macular edema animal models induced by CA-1.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. Generally, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which a molecule has two or more chiral centers and the relationship between the molecules is not mirror images.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a solid center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dotted key Or use wavy lines Represents a straight solid line key And straight dashed key
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be transformed into each other quickly. If tautomers are possible (such as in solution), the chemical equilibrium of tautomers can be reached.
  • proton tautomers also called prototropic tautomers
  • proton migration such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence isomers include some recombination of bonding electrons to carry out mutual transformation.
  • keto-enol tautomerization is the tautomerism between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with a suitable optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which employs a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with heavy hydrogen. The bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon. Compared with undeuterated drugs, deuterated drugs have reduced toxic side effects and increased drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by substituents, and can include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are replaced. Oxygen substitution will not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When the listed substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the direction opposite to the reading order from left to right Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dotted key Or wavy line Said.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy lines in indicate that the phenyl group is connected to other groups through the 1 and 2 carbon atoms.
  • the number of atoms in a ring is generally defined as the number of ring members.
  • “5-7 membered ring” refers to a “ring” in which 5-7 atoms are arranged around.
  • 5-6 membered ring means a cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aromatic ring composed of 5 to 6 ring atoms. Group or heteroaryl.
  • the ring includes a single ring, as well as a double ring system such as a spiro ring, a fused ring and a bridged ring. Unless otherwise specified, the ring optionally contains 1, 2, or 3 heteroatoms independently selected from O, S, and N.
  • the 5-6 membered ring includes 5-membered, 6-membered ring and the like.
  • 5-6 membered ring includes, for example, phenyl, pyridyl, piperidinyl and the like; on the other hand, the term “5-6 membered heterocycloalkyl” includes piperidinyl and the like, but does not include phenyl.
  • ring also includes a ring system containing at least one ring, each of which independently meets the above definition.
  • C 1-6 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C 1- 6 alkyl includes C 1-5, C 1-4, C 1-3 , C 1-2, C 2-6, C 2-4, C 6 and C 5 alkyl groups like; which may Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-6 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1- 3 alkyl includes C 1-2 alkyl and C 2-3 and the like; which may be monovalent (e.g., methyl), divalent (e.g., methylene) or polyvalent (methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include but are not limited to methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy) and the like.
  • halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
  • C 4-8 cycloalkyl refers to a saturated cyclic hydrocarbon group composed of 4 to 8 carbon atoms, which includes monocyclic and bicyclic ring systems, wherein the bicyclic ring system includes spiro ring, fused ring and Bridge ring.
  • the C 3-8 cycloalkyl group includes C 4-8 , C 4-6 , C 4-5 , C 5-8 or C 5-6 cycloalkyl group, etc.; it can be monovalent, divalent or multivalent .
  • C 4-8 cycloalkyl groups include, but are not limited to, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, [2.2.2] dicyclooctane and the like.
  • C 6-10 aromatic ring and “C 6-10 aryl” can be used interchangeably in the present invention.
  • C 6-10 aromatic ring or “C 6-10 aryl” means A cyclic hydrocarbon group composed of 6 to 10 carbon atoms with a conjugated ⁇ -electron system, which can be a monocyclic, fused bicyclic or fused tricyclic system, in which each ring is aromatic. It can be monovalent, divalent or multivalent, and C 6-10 aryl groups include C 6-9 , C 9 , C 10 and C 6 aryl groups and the like. Examples of C 6-10 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl, 2-naphthyl, etc.).
  • 5-6 membered heteroaryl ring and “5-6 membered heteroaryl group” can be used interchangeably in the present invention.
  • the term “5-6 membered heteroaryl group” means a ring consisting of 5 to 6 ring atoms. It is composed of a monocyclic group with a conjugated ⁇ -electron system, in which 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. Where the nitrogen atom is optionally quaternized, the nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-6 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-6 membered heteroaryl group includes 5-membered and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4, C 5, C 6, C 7, C 8, C 9, C 10, C 11, and C 12, also including any one of n + m to n ranges, for example C 1- 3 comprises a C 1-12 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; in the same way, from n to n +m means the number of atoms in the ring is n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered ring , 10-membered ring, 11-member
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, a nucleophilic substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes but is not limited to "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldimethyls
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations: aq stands for water; HATU stands for O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethylurea hexafluorophosphate ; EDC stands for N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride; m-CPBA stands for 3-chloroperoxybenzoic acid; eq stands for equivalent, equivalent amount; CDI stands for Carbonyl diimidazole; DCM stands for dichloromethane; PE stands for petroleum ether; DIAD stands for diisopropyl azodicarboxylate; DMF stands for N,N-dimethylformamide; DMSO stands for dimethyl sulfoxide; EtOAc stands for ethyl acetate Esters; EtOH stands for ethanol; MeOH stands for methanol; CB
  • N,N-dimethylformamide (47mg, 640 ⁇ mol) was added to the solution of raw material 1-1 (1g, 6.4mmol) in thionyl chloride (7.62g, 64mmol), and the resulting mixture was heated to 80°C and stirred for 2 hours .
  • the reaction solution was directly concentrated under reduced pressure to obtain compound 1-2.
  • compound 1-8 (5 g, 15 mmol) was dissolved in methanol (50 mL), lithium hydroxide monohydrate (2.5 M, 25 mL) was added, and stirring was continued for 2 hours. 6M diluted hydrochloric acid was added to the reaction solution, pH was adjusted to 3, ethyl acetate (100 mL ⁇ 3) was added for extraction, and the combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain compound 1-9.
  • compound 1-12 (12g, 29mmol) in dichloromethane (300mL) and triethylamine (8.95g, 88mmol) was added dropwise to compound benzoyl chloride (4.56g, 32mmol), and the temperature was raised to React at 30°C for 1 hour.
  • 100mL of saturated sodium bicarbonate aqueous solution was added to the reaction system, stirred for 20 minutes to remove the water phase, the organic phase was washed sequentially with 100mL of water and 100mL of saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain compound 1. -13.
  • lithium hydroxide monohydrate (2.5M, 23mL) was added to the methanol (50mL) solution of raw material 2-5 (4.6g, 14mmol), the resulting mixture was stirred for 4 hours, and the reaction solution was directly concentrated to 10mL of water Phase, 1M aqueous hydrochloric acid was added to adjust the pH to less than 3, a large amount of light yellow solid precipitated out, the solid was collected and dried to obtain compound 2-6.
  • reaction solution was diluted with 10 mL of dichloromethane, and 5 mL of saturated aqueous ammonium chloride was added and stirred for 10 In minutes, the aqueous phase was removed, and the organic phase was concentrated under reduced pressure to obtain compound 3-8.
  • starting material 5-4 (0.09g, 126 ⁇ mol) was dissolved in hydrochloric acid/methanol (6M, 1mL), the resulting mixture was stirred for 2 hours, and concentrated under reduced pressure. The residue was purified by preparative HPLC (acidic system) to obtain compound 5. Hydrochloride.
  • compound 8-4 120 mg, 156 ⁇ mol was dissolved in hydrochloric acid/methanol (4M, 1 mL), and stirring was continued for 0.5 hours.
  • the reaction solution was directly concentrated under reduced pressure, and the residue was purified by preparative HPLC (acidic system) to obtain compound 8 hydrochloride.
  • iodine element 115mg, 452 ⁇ mol
  • zinc powder 592mg, 9mmol
  • N,N-dimethylformamide 5mL
  • raw material 11-5 990mg, 3mmol
  • 11-4 0.3g, 1.5mmol
  • 2-dicyclohexylphosphinylidene-2,6-dimethoxybiphenyl 124mg ,301 ⁇ mol
  • tris(dibenzylideneacetone)dipalladium 138mg,150 ⁇ mol
  • Triethylamine (284mg, 3mmol) and benzoyl chloride (236mg, 2mmol) were added to the dichloromethane (4mL) solution of raw material 11-7 (0.31g, 1mmol) at 0°C in an ice-water bath, and the resulting mixture rose naturally.
  • 2 mL of saturated sodium bicarbonate aqueous solution and 5 mL of dichloromethane were added to the reaction solution and stirred for 5 minutes, the upper aqueous phase was removed, the organic phase was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain compound 11-8.
  • N,N-diisopropyl group to the N,N-dimethylformamide (2mL) solution of raw materials 11-9 (0.1g, 321 ⁇ mol) and 11-12 (133mg, 321 ⁇ mol) at 0°C in an ice water bath Ethylamine (83mg, 642 ⁇ mol) and tri-n-propyl cyclophosphoric anhydride 50% ethyl acetate solution (409mg, 642 ⁇ mol), the resulting mixture was naturally raised to 15°C and stirred for 4 hours.
  • lithium hydroxide monohydrate (2.5M, 2mL) was added to the methanol (10mL) solution of raw material 12-4 (0.7g, 2mmol), the resulting mixture was stirred for 4 hours, and 2M lemon was added to the reaction solution.
  • the acid aqueous solution was adjusted to pH ⁇ 6, then 30 mL of ethyl acetate was added and stirred for 10 minutes, the aqueous phase was removed, and the organic phase was concentrated under reduced pressure to obtain compound 12-5.
  • compound 1-12 300 mg, 810 ⁇ mol
  • 1-naphthoic acid 14-1 167 mg, 972 ⁇ mol
  • ethyl acetate 5 mL
  • N,N-diisopropylethylamine 209mg, 2mmol
  • tri-n-propyl cyclophosphoric anhydride 50% ethyl acetate solution (1g, 1mmol)
  • the resulting mixture was stirred for 16 hours
  • 5mL ethyl acetate and 5mL water were added to the reaction solution, stirred for 5 minutes, and removed
  • the aqueous phase and the organic phase were concentrated under reduced pressure, and the residue was separated and purified by silica gel column chromatography to obtain compound 14-2.
  • compound 14-4 (134 mg, 176 ⁇ mol) was dissolved in hydrochloric acid/methanol (4M, 2 mL), the resulting mixture was stirred for 1 hour, the reaction solution was directly concentrated under reduced pressure, and the residue was subjected to preparative HPLC (acidic system) ) Purification to obtain compound 14 hydrochloride.
  • compound 15-2 (1g, 2mmol), 3-7 (510mg, 2mmol) were dissolved in N,N-dimethylformamide (10mL), and N,N-diisopropylethyl was added Amine (446mg, 3mmol), tri-n-propyl cyclic phosphoric anhydride 50% ethyl acetate solution (2.20g, 3mmol), at 10°C and under nitrogen protection, continue to stir for 16 hours, add 50mL of water and ethyl acetate to the reaction solution The ester (40 mL) was stirred for 10 minutes, the aqueous phase was removed, the organic phase was concentrated under reduced pressure, and the residue was separated and purified by silica gel column chromatography to obtain compound 15-3.
  • N,N-diisopropyl group to the N,N-dimethylformamide (8mL) solution of raw materials 21-3 (0.5g, 2mmol) and 2-6 (370mg, 2mmol) at 0°C in an ice-water bath Ethylamine (412mg, 3mmol) and tri-n-propyl cyclophosphoric anhydride 50% ethyl acetate solution (2.03g, 3mmol), the resulting mixture was heated to 15°C and stirred for 4 hours.
  • lithium hydroxide monohydrate (4M, 767 uL) was added to a methanol (5 mL) solution of raw material 21-4 (0.3 g, 614 ⁇ mol), and the resulting mixture was stirred for 16 hours.
  • a 2M aqueous citric acid solution was added to the reaction solution to adjust the pH to less than 4, and then 10 mL of ethyl acetate was added and stirred for 5 minutes, the aqueous phase was removed, the organic phase was concentrated under reduced pressure, and the residue was purified by Pre-HPLC to obtain compound 21-5.
  • N,N-diisopropyl group to the N,N-dimethylformamide (3mL) solution of raw materials 21-5 (0.14g, 295 ⁇ mol) and 3-7 (87mg, 324 ⁇ mol) at 0°C in an ice water bath Ethylamine (76 mg, 590 ⁇ mol) and tri-n-propyl cyclic phosphoric anhydride 50% ethyl acetate solution (375 mg, 590 ⁇ mol), the resulting mixture was heated to 25° C. and stirred for 16 hours.
  • PKal reaction buffer 25mM Tris-HCl, pH 8.0, 100mM NaCl, pH 8.5, 0.01% Brij35, and 1% DMSO (final concentration).
  • PKal R&D Systems Cat#2497-SE
  • Enzyme activation (1) Dilute rhPKal to 200 ⁇ g/mL activation buffer (100mM Tris, 10mM CaCl2, 150mM NaCl, pH 7.5 (TCN)); (2) Dilute thermolysin (Thermolysin) to 20 ⁇ g/mL mL of activation buffer; (3) mix rhPKal (200 ⁇ g/mL) and thermolysin (20 ⁇ g/mL) in equal volumes; (4) incubate at 37°C for 30min; (5) stop the reaction with 50 ⁇ M EDTA.
  • activation buffer 100mM Tris, 10mM CaCl2, 150mM NaCl, pH 7.5 (TCN)
  • thermolysin Thermolysin
  • Matrix (Enzo Cat#P-139): 10 ⁇ M Z-FR-AMC (AMC: 7-amino-4-methylcoumarin).
  • Reaction process (1) Prepare the designated enzyme and substrate in the newly prepared activation buffer; (2) Inject the enzyme solution into the reaction well; (3) Use acoustic technology (Echo 550, LabCyte Inc. Sunnyvale, CA) ) Inject the DMSO solution of the test substance into the reaction mixture and control it in the nanoliter range; (4) After pre-incubation for 10 minutes, inject the matrix solution into the reaction well to start the reaction; (5) The enzyme activity can be measured by fluorescence The fluorescent signal of the labeled peptide matrix increases as an indicator, and it is monitored every 5 minutes for 120 minutes at room temperature; (6) Data analysis: measure the slope of the straight line* (fluorescence signal/time), the slope can be calculated by excel, and the curve can be fitted by Prism software .
  • the test results of the inhibitory effect of the compounds on plasma kallikrein (PKal) are shown in Table 1 below.
  • the compound of the present invention has a significant inhibitory effect on plasma kallikrein (PKal).
  • the LC-MS/MS method was used to determine the drug concentration in the eye tissues at different times after single, bilateral, vitreous injection of compound 3 and 7 hydrochloride. To study the pharmacokinetic behavior of compound 3 and 7 hydrochloride in rabbit eyes after combined administration, and evaluate its pharmacokinetic characteristics.
  • the LC-MS/MS method was used to determine the content of the test compound in the ocular tissues of rabbits after intravitreal injection.
  • the linear range of the method is 2.00 ⁇ 6000nmol/L; the eye tissue concentration data is presented in Table 2, where each eye tissue concentration data is the average value of the left and right eyes of each rabbit.
  • the pharmacokinetic test results of compound 3 and 7 hydrochloride are shown in Table 2 below.
  • ND means that the data is not detected.
  • the compound of the present invention has good pharmacokinetic properties in rabbit eyes, and is mainly distributed in the retina/choroid.
  • the LC-MS/MS method was used to determine the drug concentration in the eye tissues at different times after single, bilateral, vitreous injection of the test compound. Study the pharmacokinetic behavior of the compound in the eyes of rats after combined administration, and evaluate its pharmacokinetic characteristics.
  • Test animals 6 healthy adult male rats were divided into 3 groups with 4 eyes in each group. The animals were purchased from Beijing Weitong Lihua Laboratory Animal Technology Co., Ltd., animal production license number: SCXK ( ⁇ ) 2016-0006.
  • the LC-MS/MS method was used to determine the content of the test compound in the ocular tissue of the rat after intravitreal injection.
  • the linear range of the method is 2.00 ⁇ 6000nmol/L; the eye tissue concentration data are presented in Table 3, where each eye tissue concentration data is obtained by combining the left and right eyes of two rats.
  • the pharmacokinetic test results of the compound of the present invention are shown in Table 3 below.
  • ND means that the data is not detected.
  • the compounds of the present invention have good rat ocular pharmacokinetic properties, and are mainly distributed in the retina/choroid.
  • Twenty male SD rats were selected from 25 male SD rats and divided into 5 groups according to their body weight, 4 in each group, and 1 spare animal in each group. All animals were subjected to retinal optical coherence before and 48 hours after administration. Tomography inspection. Select the appropriate scanning position to measure and mark the retinal thickness. Through the changes of retinal thickness in each group, the effects of the test products on improving retinal edema were compared and the best compound was screened. The above experimental operation of drug administration and inspection must follow the order of right eye first, then left eye.
  • G Compound Dosing volume Molding agent Dosing frequency Number of animals 1 Normal saline 5 ⁇ L - Single dose 4 2 Normal saline 5 ⁇ L 100ng CA-1 Single dose 4 3 Compound 3 Hydrochloride 5 ⁇ L ⁇ 1 ⁇ M 100ng CA-1 Single dose 4 4 Compound 7 hydrochloride 5 ⁇ L ⁇ 1 ⁇ M 100ng CA-1 Single dose 4
  • Age and weight 8-10 weeks old, weighing 300-400 grams
  • the animals were anesthetized with ketamine (30mg/kg) and xylazine (2mg/kg) to perform retinal OCT examination, and then intravitreal injection of normal saline or CA-1 (100ng) solution or CA-1 ( 100ng) mixed solution with the test product.
  • the animals were subjected to OCT examination under the same anesthesia method, and the thickness of the retina was measured before and after the injection.
  • the mydriatic agent is used to dilate the animals before anesthesia, and the anesthesia and subsequent operations are performed after the pupils are dilated.
  • OCT inspection requirements are as follows:
  • the retinas of the animals in each group were checked by OCT before modeling.
  • the retina of each group of animals was normal. 48 hours after modeling, it was observed that the retina of rats injected with saline was significantly thickened.
  • the relief rate of thick is: compound 3 hydrochloride (100%), compound 7 hydrochloride (60%).
  • animals have good tolerance to the above-mentioned test compounds.
  • Twenty-four male SD rats were selected from 30 male SD rats and divided into 6 groups according to their body weight, 4 in each group, and 1 spare animal in each group. All animals were subjected to retinal optical coherence before and 48 hours after administration. Tomography inspection. Select the appropriate scanning position to measure and mark the retinal thickness. Through the changes of retinal thickness in each group, the effects of the test products on improving retinal edema were compared, and the best compound was screened. The above experimental operation of drug administration and inspection must follow the order of right eye first, then left eye.
  • Age and weight 8-10 weeks old, weighing 300-400 grams
  • the animals were anesthetized with ketamine (30mg/kg) and xylazine (2mg/kg) to perform retinal OCT examination, and then intravitreal injection of normal saline or CA-1 (200ng) solution or CA-1 ( 200ng) mixed solution with the test product.
  • the animals were subjected to OCT examination under the same anesthesia method, and the thickness of the retina was measured before and after the injection.
  • the mydriatic agent is used to dilate the animals before anesthesia, and the anesthesia and subsequent operations are performed after the pupils are dilated.
  • OCT inspection requirements are as follows:
  • the retinas of the animals in each group were checked by OCT before modeling.
  • the retina of each group of animals was normal. 48 hours after modeling, it was observed that the retina of rats injected with saline was significantly thickened. The thickening of the retina of rats injected with the drug was relieved to varying degrees. The compound increased the retina. The remission rates of thick were: compound 8 hydrochloride (36%), compound 9 hydrochloride (24%), and compound 21 hydrochloride (24%). At the same time, animals have good tolerance to the above-mentioned test compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

属于医药领域,具体而言公开了式(I)化合物、其制备方法、含有该化合物的药物组合物、以及它们在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。

Description

用作血浆激肽释放酶抑制剂的双环烷类化合物
本申请主张如下优先权:
CN201910324376.0,申请日:2019.04.22。
技术领域
本申请属于医药领域,具体而言涉及式(I)化合物、其制备方法、含有该化合物的药物组合物、以及它们在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。
背景技术
血浆激肽释放酶(plasma kallikrein,PKal)又称Fletcher因子,特异地在肝细胞表达,是一种高分子量糖蛋白,是FXIIa作用于激肽释放酶原生成的,可介导激肽原裂解产生缓激肽(BK),激活其B1受体和B2受体,调节血管紧张性、炎症反应以及内源性血液凝固和纤维蛋白溶解过程,糖尿病患者体内PKal往往高表达,导致血管舒张及血管通透性(RVP)增加,从而引起糖尿病视网膜病变(DR)和糖尿病黄斑水肿(DME)。血浆激肽释放酶抑制剂的主要作用是降低体内血浆激肽释放酶水平,降低缓激肽对两种受体的激活作用,从而缓解血管通透性及炎症,达到治疗糖尿病视网膜病变和糖尿病黄斑水肿的重要作用。由KalVista Pharmaceuticals公司开发的血浆激肽释放酶抑制剂KVD001(WO2013005045)正在临床二期阶段。
鉴于血浆激肽释放酶抑制剂的重要作用,开发适用作治疗药物的血浆激肽释放酶抑制剂显得尤为重要。
发明内容
本发明提供了式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020086087-appb-000001
其中,
E 1、E 2和E 3分别独立地选自-(CH 2) n-;
各n独立地为0、1或2;
环A选自
Figure PCTCN2020086087-appb-000002
T 1、T 2和T 3分别独立地选自N和CR 6
T 4选自N和CR 7
T 5选自N和CR 8
R 1选自C 1-6烷基、C 4-8环烷基、5-6元杂芳基和C 6-10芳基,所述C 1-6烷基、C 4-8环烷基、5-6元杂芳基和C 6- 10芳基任选被1、2或3个R a取代;
R 2和R 3分别独立地选自H和C 1-3烷基;
R 4选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R b取代;
R 5选自H和C 1-3烷基;
R 6分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d取代;
R 8选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e取代;
或者,R 7与R 8及其它们所连接的C原子一起形成一个苯基,所述苯基任选被1、2或3个R f取代;
R a分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基;
R b分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷氧基,其中所述C 1-3烷氧基任选被1、2或3个R取代;
R c、R d、R e和R f分别独立地选自H、F、Cl、Br、I、OH和NH 2
R分别独立地选自F、Cl、Br、I、OH和NH 2
所述5-6元杂芳基包含1、2、3或4个独立选自-NH-、-O-、-S-和N的杂原子或杂原子团。
本发明的一些方案中,上述R a分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和-CH 2-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R b分别独立地选自H、F、Cl、Br、I、OH、NH 2和-O-CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自C 1-3烷基、
Figure PCTCN2020086087-appb-000003
Figure PCTCN2020086087-appb-000004
其中,
E 4和E 5分别独立地选自-(CH 2) m-;
E 6、E 7和E 8分别独立地选自-(CH 2) j-;
m为0、1或2;
j为0、1或2;
T 6、T 7、T 8、T 9和T 10分别独立地选自N和CH;
所述C 1-3烷基、
Figure PCTCN2020086087-appb-000005
任选被1、2或3个R a取代;
其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自CH 3-CH 2-、
Figure PCTCN2020086087-appb-000006
Figure PCTCN2020086087-appb-000007
所述CH 3-CH 2-、
Figure PCTCN2020086087-appb-000008
任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自CH 3-CH 2-、
Figure PCTCN2020086087-appb-000009
Figure PCTCN2020086087-appb-000010
其他变量如本发明所定义。
本发明的一些方案中,上述R 1选自CH 3-CH 2-、
Figure PCTCN2020086087-appb-000011
Figure PCTCN2020086087-appb-000012
其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H和CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H、F、Cl、Br、I、OH、NH 2、CH 3、-CH 2-CH 3、-O-CH 3和-O-CH 2-CH 3,其中,所述CH 3、-CH 2-CH 3、-O-CH 3和-O-CH 2-CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 4选自H、F、Cl、Br、I、OH、NH 2、CH 3、-CH 2-CH 3、-O-CH 3、-O-CH 2-CH 3
Figure PCTCN2020086087-appb-000013
其他变量如本发明所定义。
本发明的一些方案中,上述R 5选自H和CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2020086087-appb-000014
选自
Figure PCTCN2020086087-appb-000015
Figure PCTCN2020086087-appb-000016
其他变量如本发明所定义。
本发明的一些方案中,上述R 6分别独立地选自H、F、Cl、Br、I、OH和NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 7选自H、F、Cl、Br、I、OH和NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 8选自H、F、Cl、Br、I、OH和NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述R 7与R 8及它们所连接的C原子一起形成
Figure PCTCN2020086087-appb-000017
其他变量如本发明所定义。
本发明的一些方案中,上述环A选自
Figure PCTCN2020086087-appb-000018
Figure PCTCN2020086087-appb-000019
其他变量如本发明所定义。
本发明的一些方案中,上述环A选自
Figure PCTCN2020086087-appb-000020
Figure PCTCN2020086087-appb-000021
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2020086087-appb-000022
选自
Figure PCTCN2020086087-appb-000023
其他变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自式(Ⅰ’)化合物:
Figure PCTCN2020086087-appb-000024
其中,
R 1、R 2、R 3、R 4、R 5、环A、E 1、E 2和E 3如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自式(I-1)和式(I-2)化合物:
Figure PCTCN2020086087-appb-000025
其中,
R 1、R 2、R 3、R 4、R 5和环A如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自式(I-1A)、(I-2A)、(I-2B)和(I-2C)化合物:
Figure PCTCN2020086087-appb-000026
其中,
R 2、R 3、R 4、R 5、T 1、T 2、T 3、T 4、T 5、T 6、T 7、T 8、T 9和T 10如本发明所定义。
本发明还提供了下式化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020086087-appb-000027
Figure PCTCN2020086087-appb-000028
本发明的一些方案中,上述化合物的盐选自盐酸盐。
本发明的一些方案中,上述的化合物、其异构体或其药学上可接受的盐在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。
本发明的一些方案中,上述盐酸盐在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。
技术效果
本发明化合物具有血浆激肽释放酶抑制活性。本发明化合物具有较好的眼部PK性质,在CA-1诱导的轻度和重度糖尿病黄斑水肿动物模型上对视网膜水肿缓解效果明显。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2020086087-appb-000029
和楔形虚线键
Figure PCTCN2020086087-appb-000030
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2020086087-appb-000031
和直形虚线键
Figure PCTCN2020086087-appb-000032
表示立体中心的相对构型,用波浪线
Figure PCTCN2020086087-appb-000033
表示楔形实线键
Figure PCTCN2020086087-appb-000034
或楔形虚线键
Figure PCTCN2020086087-appb-000035
或用波浪线
Figure PCTCN2020086087-appb-000036
表示直形实线键
Figure PCTCN2020086087-appb-000037
和直形虚线键
Figure PCTCN2020086087-appb-000038
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2020086087-appb-000039
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2020086087-appb-000040
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2020086087-appb-000041
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2020086087-appb-000042
直形虚线键
Figure PCTCN2020086087-appb-000043
或波浪线
Figure PCTCN2020086087-appb-000044
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2020086087-appb-000045
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2020086087-appb-000046
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,“5-6元环”表示由5至6个环原子组成的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所述的环包括单环,也包括螺环、并环和桥环等双环体系。除非另有规定,该环任选地包含1、2或3个独立选自O、S和N的杂原子。所述5-6元环包括5元、6元环等。“5-6元环”包括例如苯基、吡啶基和哌啶基等;另一方面,术语“5-6元杂环烷基”包括哌啶基等,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1- 6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1- 3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有规定,“C 4-8环烷基”表示由4至8个碳原子组成的饱和环状碳氢基团,其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。所述C 3-8环烷基包括C 4-8、C 4-6、C 4-5、C 5-8或C 5-6环烷基等;其可以是一价、二价或者多价。C 4-8环烷基的实例包括,但不限于,环丁基、环戊基、环己基、环庚基、降冰片烷基、[2.2.2]二环辛烷等。
除非另有规定,本发明术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和 4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH 3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙 基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;本发明化合物的盐酸盐加入到适量的饱和碳酸氢钠溶液中,搅拌30分钟后,反应液用二氯甲烷萃取,合并有机相减压浓缩可得到游离碱形式。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2020086087-appb-000047
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本申请,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。本申请所使用的所有溶剂是市售的,无需进一步纯化即可使用。本申请用于合成的初始化合物原料通过市售获得,也可以通过现有技术的方法制备。
实施例1化合物1的合成
Figure PCTCN2020086087-appb-000048
1)化合物1-2的合成
Figure PCTCN2020086087-appb-000049
向原料1-1(1g,6.4mmol)的氯化亚砜(7.62g,64mmol)溶液中加入N,N-二甲基甲酰胺(47mg,640μmol),得到的混合物加热到80℃搅拌2小时。反应液直接减压浓缩后得到化合物1-2。
2)化合物1-3的合成
Figure PCTCN2020086087-appb-000050
向100mL闷罐中加入原料1-2(1.2g,6mmol)和预先通好的氨气四氢呋喃溶液(4M,60mL),封闭好闷罐加热到50℃搅拌16小时,反应液直接减压浓缩,得到化合物1-3。 1H NMR(400MHz,DMSO-d 6)δppm 6.94(br s,3H),2.01(s,6H)。
3)化合物1-4的合成
Figure PCTCN2020086087-appb-000051
冰水浴0℃及氮气保护下,向原料1-3(0.95g,6mmol)的四氢呋喃(20mL)悬浊溶液中分批加入四氢铝锂(701mg,18mmol),得到的白色混合溶液加热到65℃回流,搅拌16小时。向反应混合物中依次加入0.7mL水,0.7mL的1N氢氧化钠水溶液和2.1mL水淬灭,搅拌30分钟后过滤,滤液减压浓缩,得到化合物1-4。 1H NMR(400MHz,MeOD-d 4)δppm 2.68-2.58(m,4H),2.13(s,1H),1.88(s,1H),1.59-1.50(m,6H);LCMS(ESI)m/z:127(M+1)。
4)化合物1-5的合成
Figure PCTCN2020086087-appb-000052
在25℃下,向原料1-4(0.8g,6mmol)的甲醇(10mL)和氢氧化钠(2.5M,6mL)溶液中加入二碳酸二叔丁酯(3.46g,16mmol)。得到的混合物搅拌2小时后直接减压浓缩。残余物经纯化后得到化合物1-5。 1H NMR(400MHz,CDCl 3)δppm 4.47(br s,2H),3.18(br d,J=5.4Hz,4H),1.57(s,6H),1.44(s,18H);LCMS(ESI)m/z:171(M-100-55)。
5)化合物1-6的合成
Figure PCTCN2020086087-appb-000053
在25℃下,向原料1-5(0.65g,2mmol)中加入盐酸/乙酸乙酯(4M,3.6mL)搅拌2小时,减压浓缩后得到中间体(0.4g,粗品)。向该中间体(0.4g,2mmol)的甲醇(5mL)溶液中滴加氢氧化钠水溶液(2.5M,1.6mL),搅拌30分钟后缓慢滴加二碳酸二叔丁酯(438mg,2mmol)的甲醇(2mL)溶液,得到的混合物在25℃搅拌15分钟。反应混合物直接减压浓缩,残余物经纯化后得到化合物1-6。 1H NMR(400MHz,CDCl 3)δppm 4.85(br s,2H),3.18(br s,2H),3.08(s,2H),2.40(s,1H),1.79(s,6H),1.43(s,9H);LCMS(ESI)m/z:171(M-55)。
6)化合物1-8的合成
Figure PCTCN2020086087-appb-000054
向化合物1-7(10g,34mmol)的N,N-二甲基甲酰胺(100mL)溶液中加入碳酸铯(22g,68mmol),滴加碘乙烷(6g,41mmol),在7℃下继续搅拌12小时。向反应液加入水和乙酸乙酯各250mL搅拌5分钟,除去水相,有机相经无水硫酸钠干燥、减压浓缩得到化合物1-8。 1H NMR(400MHz,CDCl 3)δppm 8.02(s, 1H),7.02(d,J=8.53Hz,2H),6.78-6.85(m,2H),4.96(br d,J=7.78Hz,1H),4.89-5.94(m,1H),4.89-5.94(m,1H),4.48-4.63(m,1H),4.01(q,J=7.03Hz,2H),3.70(br s,1H),3.71(s,3H),2.96(s,2H),2.89(s,2H),1.42(s,9H)。7)化合物1-9的合成
Figure PCTCN2020086087-appb-000055
在7℃下,将化合物1-8(5g,15mmol)溶于甲醇(50mL)中,加入一水合氢氧化锂(2.5M,25mL),继续搅拌2小时。向反应液加入6M稀盐酸,调节pH=3,加入乙酸乙酯(100mL×3)萃取,合并后的有机相经无水硫酸钠干燥、减压浓缩,得到化合物1-9。 1H NMR(400MHz,CDCl 3)δppm 7.10(d,J=8.66Hz,2H),6.84(d,J=8.53Hz,2H),4.56(br s,1H),4.02(q,J=7.03Hz,2H),2.99-3.17(m,2H),1.38-1.46(m,12H)。
8)化合物1-11的合成
Figure PCTCN2020086087-appb-000056
在0℃下,向化合物1-9(6.9g,32mmol)的二氯甲烷(300mL)和N,N-二甲基甲酰胺(30mL)的溶液中加入化合物1-10(9g,29mmol),1-羟基苯并三氮唑(4.72g,35mmol),三乙胺(8.83g,87mmol),1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(6.13g,32mmol),混合均匀后,0℃下搅拌4小时再升温至30℃反应12小时。向反应液中加入50mL 1N盐酸和100mL水,除去水相,有机相依次用100mL水洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物1-11。 1H NMR(400MHz,CDCl 3)δppm 7.26-7.15(m,3H),7.06-6.99(m,2H),6.98-6.90(m,2H),6.86-6.70(m,2H),6.50(br d,J=7.5Hz,1H),4.99(br s,1H),4.86-4.77(m,1H),4.30(br d,J=5.3Hz,1H),3.97(q,J=7.1Hz,2H),3.65(s,3H),3.06-2.96(m,3H),1.41-1.33(m,12H);LCMS(ESI)m/z:371(M+1)。
9)化合物1-12的合成
Figure PCTCN2020086087-appb-000057
向化合物1-11(14g,29mmol)的乙酸乙酯(100mL)溶液中加入盐酸/乙酸乙酯溶液(4M,87mL),搅拌0.5小时,反应液减压浓缩得到化合物1-12。 1H NMR(400MHz,CDCl 3)δppm 7.64(br d,J=7.91Hz,1H),7.22-7.27(m,1H),7.22-7.27(m,1H),7.22-7.27(m,1H),7.22(br s,1H),7.11(br d,J=8.16Hz,4H),6.84(br d,J=8.41Hz,2H),4.82-4.91(m,1H),4.01(q,J=6.99Hz,2H),3.72(s,3H),3.51(br dd,J=4.08,9.47Hz,1H),3.04-3.23(m,3H),2.60(br dd,J=9.60,13.74Hz,1H),1.41(br t,J=6.96Hz,3H)。LCMS(ESI)m/z:371(M+1)。
10)化合物1-13的合成
Figure PCTCN2020086087-appb-000058
在0℃下,向化合物1-12(12g,29mmol)的二氯甲烷(300mL)和三乙胺(8.95g,88mmol)的溶液中滴加化合物苯甲酰氯(4.56g,32mmol),升温至30℃反应1小时。向反应体系中加入100mL饱和碳酸氢钠水溶液,搅拌20分钟除去水相,有机相依次用100mL水和100mL饱和氯化钠溶液洗涤,经无水硫酸钠干燥后,过滤,减压浓缩得到化合物1-13。 1H NMR(400MHz,CDCl 3)δppm 7.73-7.64(m,2H),7.55-7.43(m,2H),7.42-7.31(m,2H),7.22-7.13(m,3H),7.04-6.93(m,5H),6.79-6.71(m,2H),4.92-4.76(m,2H),4.00-3.88(m,2H),3.60(s,2H),3.12-2.96(m,4H),1.38-1.31(m,3H);LCMS(ESI)m/z:475(M+1)。
11)化合物1-14的合成
Figure PCTCN2020086087-appb-000059
在30℃下,向化合物1-13(12g,25mmol)的四氢呋喃(480mL)和水(48mL)的溶液加入一水合氢氧化锂(3.18g,75mmol),搅拌16小时。向反应体系中加入100mL水,用1N的盐酸调节体系pH=4,分液,水相经20mL乙酸乙酯萃取两次。有机相合并后经20mL饱和氯化钠溶液洗,无水硫酸钠干燥,过滤,减压浓缩得到粗品,再经用50mL乙酸乙酯打浆0.5小时,得到化合物1-14。 1H NMR(400MHz,DMSO-d 6)δppm 8.41(br t,J=9.4Hz,2H),7.76(d,J=7.3Hz,2H),7.56-7.36(m,3H),7.28-7.05(m,7H),6.76(d,J=8.4Hz,2H),4.71-4.60(m,1H),4.52(dt,J=4.7,8.9Hz,1H),3.92(q,J=6.8Hz,2H),3.10(br dd,J=4.5,13.6Hz,1H),2.88(br dd,J=9.6,13.6Hz,1H),2.77-2.60(m,2H),1.26(t,J=6.9Hz,3H);LCMS(ESI)m/z:461(M+1)。
12)化合物1-15的合成
Figure PCTCN2020086087-appb-000060
冰水-精制盐浴-5℃下,向原料1-14(0.2g,434μmol)的二氯甲烷(2mL)溶液中加入HATU(0.2g,526μmol)和N,N-二异丙基乙胺(0.07g,541μmol),搅拌15分钟后加入原料1-6(0.1g,442μmol)自然升至0℃继续搅拌2小时。反应液用10mL二氯甲烷稀释,倒入5mL饱和氯化铵水溶液中,搅拌10分钟,除去水相,有机相减压浓缩,得到粗品化合物1-15。LCMS(ESI)m/z:670(M+1)。
13)化合物1的合成
Figure PCTCN2020086087-appb-000061
在25℃下,向原料1-15(0.26g,389μmol)的二氯甲烷(5mL)溶液中加三氟乙酸(0.5g,4mmol),得到的混合物搅拌2小时,反应液减压浓缩,得到的褐色油状残余物溶于10mL甲醇,加入固体碳酸氢钠搅拌10分钟调节pH~8,过滤,滤液减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物1盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.27(br d,J=7.9Hz,1H),8.04(br s,1H),7.75(br d,J=7.5Hz,2H),7.54(s,1H),7.48-7.40(m,2H),7.31-7.11(m,5H),7.04(br d,J=8.4Hz,2H),6.77(br d,J=8.3Hz,2H),4.68-4.49(m,2H),3.97(br d,J=7.0Hz,2H),3.28(br s,2H),3.08(br d,J=5.4Hz,1H),2.96-2.80(m,5H),1.65(s,6H),1.41-1.28(m,3H);LCMS(ESI)m/z:570(M+1)。
实施例2化合物2的合成
Figure PCTCN2020086087-appb-000062
1)化合物2-2的合成
Figure PCTCN2020086087-appb-000063
冰水浴0℃下,向原料1-6(0.15g,386μmol)和2-1(96mg,424μmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(99mg,772μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(491mg,772μmol),得到的混合物自然升至15℃搅拌4小时,随后向反应液中加入1mL水和3mL乙酸乙酯,搅拌5分钟,除去水相,有机相减压浓缩,残余物经过柱层析纯化得到化合物2-2。LCMS(ESI)m/z:597(M+1)。
2)化合物2-3的合成
Figure PCTCN2020086087-appb-000064
在15℃下,向原料2-2(0.22g,368μmol)的二氯甲烷(2mL)溶液中加入哌啶(314mg,3mmol),得到的混合物搅拌16小时,反应液直接减压浓缩得到粗品化合物2-3。LCMS(ESI)m/z:375(M+1)。
3)化合物2-4的合成
Figure PCTCN2020086087-appb-000065
在15℃下,往单口瓶中加入原料1-8(7g,22mmol)和盐酸-乙酸乙酯(4M,70mL),得到的混合物搅拌2小时,反应液减压浓缩得到粗品化合物2-4。LCMS(ESI)m/z:224(M+1)。
4)化合物2-5的合成
Figure PCTCN2020086087-appb-000066
冰水浴0℃下,向原料2-4(5.6g,22mmol)的二氯甲烷(50mL)溶液中加入三乙胺(4.36g,43mmol)和苯甲酰氯(3.64g,26mmol),得到的混合物自然升至20℃搅拌60分钟。向反应液中加入50mL的1M盐酸水溶液搅拌10分钟,除去水相,有机相减压浓缩,残余物经过柱层析纯化得到化合物2-5。 1H NMR(400MHz,CDCl 3)δppm 7.78-7.70(m,2H),7.55-7.49(m,1H),7.47-7.40(m,2H),7.09-7.00(m,2H),6.87- 6.80(m,2H),6.57(br s,1H),5.06(br d,J=7.6Hz,1H),4.01(q,J=7.0Hz,2H),3.78(s,3H),3.30-3.13(m,2H),1.41(t,J=6.9Hz,3H);LCMS(ESI)m/z:328(M+1)。
5)化合物2-6的合成
Figure PCTCN2020086087-appb-000067
在20℃下,向原料2-5(4.6g,14mmol)的甲醇(50mL)溶液中加入一水合氢氧化锂(2.5M,23mL),得到的混合物搅拌4小时,反应液直接浓缩至10mL水相,加入1M盐酸水溶液调节至pH小于3,有大量淡黄色固体析出,收集固体,干燥得到化合物2-6。 1H NMR(400MHz,CDCl 3)δppm 7.71(d,J=7.2Hz,2H),7.56-7.50(m,1H),7.47-7.39(m,2H),7.12(d,J=8.7Hz,2H),6.85(d,J=8.5Hz,2H),6.53(br d,J=7.0Hz,1H),5.05(br d,J=7.2Hz,1H),4.01(q,J=7.0Hz,2H),3.37-3.17(m,2H),1.41(t,J=7.0Hz,3H)。
6)化合物2-7的合成
Figure PCTCN2020086087-appb-000068
冰水浴0℃下,向原料2-3(0.12g,320μmol)和2-6(100mg,320μmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(83mg,641μmol)和三正丙基环磷酸酐的50%乙酸乙酯溶液(305mg,480μmol),得到的混合物搅拌6小时,随后向反应液中加入2mL水和5mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,得到的化合物2-7。LCMS(ESI)m/z:670(M+1)。
7)化合物2的合成
Figure PCTCN2020086087-appb-000069
在20℃下,向原料2-7(0.2g,298μmol)的二氯甲烷(1mL)溶液中加入盐酸/甲醇(4M,2mL),得到的混合物搅拌3小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物2盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.75-8.64(m,2H),8.35(br d,J=8.3Hz,1H),7.96(br t,J=6.9Hz,1H),7.82 (d,J=7.7Hz,2H),7.60-7.50(m,1H),7.49-7.42(m,2H),7.12(d,J=8.4Hz,2H),6.76(d,J=8.5Hz,2H),4.70(dd,J=4.9,9.5Hz,1H),4.54(t,J=7.8Hz,1H),3.99(q,J=6.9Hz,2H),3.41-3.34(m,1H),3.01(br dd,J=4.4,7.9Hz,3H),2.92(s,2H),1.69(s,6H),1.37(t,J=7.0Hz,3H),1.09-0.99(m,1H);LCMS(ESI)m/z:570(M+1)。
实施例3化合物3的合成
Figure PCTCN2020086087-appb-000070
1)化合物3-2的合成
Figure PCTCN2020086087-appb-000071
在25℃下,向原料3-1(40g,188mmol)的四氢呋喃(400mL)溶液中加入羰基二咪唑(36.67g,226mmol),搅拌4小时后再加入氨水(355g,2mol),继续搅拌16小时,向反应液中加入200mL乙酸乙酯,搅拌30分钟,除去水相,有机相依次用100mL饱和食盐水和无水硫酸钠干燥,减压浓缩,得到化合物3-2。 1HNMR(400MHz,CDCl 3)δppm 5.57(br s,2H),3.65(s,3H),1.90-1.74(m,12H)。
2)化合物3-3的合成
Figure PCTCN2020086087-appb-000072
冰水浴0℃和氮气保护下下,向原料3-2(39.5g,187mmol)的四氢呋喃(400mL)溶液中分批加入四氢铝锂(23g,606mmol),随后得到的混合物加热到65℃搅拌16小时。冰水浴0℃下,向反应混合物中依次加入23mL水、23mL 10%氢氧化钠水溶液和69mL水,搅拌30分钟后过滤,滤液减压浓缩,得到化合物3-3。 1H NMR(400MHz,CDCl 3)δppm 5.31(br s,1H),3.27(s,2H),2.45-2.32(m,2H),1.52-1.29(m,12H);LCMS(ESI)m/z:170(M+1)。
3)化合物3-4的合成
Figure PCTCN2020086087-appb-000073
在25℃下,向原料3-3(36g,212mmol)的二氧六环(400mL)溶液中加入二碳酸二叔丁酯(69.63g,319mmol)和氢氧化钠水溶液(2.5M,127mL),得到的白色混合物搅拌16小时。向反应液中加入200mL水和300mL乙酸乙酯搅拌10分钟,除去水相,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到的残 余物经过柱层析纯化得到化合物3-4。 1H NMR(400MHz,CDCl 3)δppm 4.61-4.19(m,1H),3.26(s,2H),2.87(br d,J=6.4Hz,2H),1.42(br d,J=14.4Hz,23H);LCMS(ESI)m/z:214(M-55)。
4)化合物3-5的合成
Figure PCTCN2020086087-appb-000074
冰水浴0℃下,向原料3-4(16g,59mmol)和三乙胺(9.02g,89mmol)的二氯甲烷(100mL)溶液中滴加甲基磺酰氯(9.7g,84mmol),滴加完毕后自然升至室温搅拌1小时。反应液用100mL二氯甲烷稀释,加入50mL水搅拌10分钟,除去水相,有机相减压浓缩得到化合物3-5。LCMS(ESI)m/z:292(M-55)。
5)化合物3-6的合成
Figure PCTCN2020086087-appb-000075
在25℃下,向原料3-5(20.5g,59mmol)的N,N-二甲基甲酰胺(200mL)溶液中加入叠氮钠(6.7g,103mmol)和15-冠-5(19.49g,88mmol),得到的混合物加热到100℃搅拌16小时,向反应液中加入100mL水和200mL乙酸乙酯,搅拌10分钟,除去水相,有机相减压浓缩得到化合物3-6。 1H NMR(400MHz,CDCl 3)δppm 4.51(br s,1H),3.02-2.98(m,2H),2.86(br s,2H),1.43(s,21H)。
6)化合物3-7的合成
Figure PCTCN2020086087-appb-000076
在25℃下,向原料3-6(15g,51mmol)的甲醇(200mL)溶液中加入雷尼镍(8.73g,5mmol),氮气置换三次,氢气置换三次,氢气(40Psi)氛围下搅拌6小时。混合物直接过滤,滤液减压浓缩得到化合物3-7。 1H NMR(400MHz,CDCl 3)δppm 4.65-4.24(m,1H),2.87(br d,J=6.4Hz,2H),2.39(s,2H),1.44(s,9H),1.38(s,12H)。
7)化合物3-8的合成
Figure PCTCN2020086087-appb-000077
冰水浴0℃下,向原料1-14(0.31g,673μmol)的二氯甲烷(4mL)溶液中加入N,N-二异丙基乙胺(105mg,815μmol)和HATU(310mg,815μmol),得到的黄色溶液搅拌15分钟,再加入原料3-7(180mg,673 μmol),维持冰水浴0-5℃搅拌1.5小时,反应液用10mL二氯甲烷稀释,加入5mL饱和氯化铵水溶液搅拌10分钟,除去水相,有机相减压浓缩得到化合物3-8。LCMS(ESI)m/z:712(M+1)。
8)化合物3的合成
Figure PCTCN2020086087-appb-000078
室温25℃下,向原料3-8(0.5g,703μmol)的二氯甲烷(5mL)溶液中加入三氟乙酸(1.54g,13mmol),搅拌1小时后反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物3盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.24-8.16(m,1H),7.75(br d,J=7.5Hz,3H),7.52(br d,J=6.4Hz,1H),7.45(br d,J=7.3Hz,2H),7.29-7.12(m,5H),7.06(br d,J=8.0Hz,2H),6.79(br d,J=7.8Hz,2H),4.70-4.52(m,2H),3.97(brd,J=6.8Hz,2H),3.08-2.80(m,7H),2.58(br s,2H),1.36(br s,17H);LCMS(ESI)m/z:612(M+1)。
实施例4化合物4的合成
Figure PCTCN2020086087-appb-000079
1)化合物4-2的合成
Figure PCTCN2020086087-appb-000080
将化合物4-1(100mg,246μmol),3-7(66mg,246μmol)溶于N,N-二甲基甲酰胺(1mL)中,滴加N,N-二异丙基乙胺(63mg,493μmol),三正丙基环磷酸酐的50%乙酸乙酯溶液(314mg,493.32μmol),10℃下,继续搅拌12小时。向反应液中加入5mL水,乙酸乙酯萃取(3mL×3),有机相合并后减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化得到化合物4-2。LCMS(ESI)m/z:656(M+1)。
2)化合物4-3的合成
Figure PCTCN2020086087-appb-000081
将化合物4-2(233mg,355μmol)溶于二氯甲烷(5mL)中,加入哌啶(121mg,1mmol),20℃下,继续搅拌16小时。向反应液中加入3mL饱和氯化铵溶液,2mL水,二氯甲烷(2mL×3)萃取,有机相合并后,减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化得到化合物4-3。 1H NMR(400MHz,CDCl 3)δppm7.19(dd,J=5.4,8.5Hz,1H),7.1-7.1(m,1H),6.9-7.0(m,2H),4.48(br s,1H),3.59(dd,J=4.2,8.9Hz,1H),3.2-3.3(m,1H),3.0-3.1(m,2H),2.8-2.9(m,2H),2.73(dd,J=8.9,14.0Hz,1H),1.44(s,9H),1.37(s,12H)。
3)化合物4-4的合成
Figure PCTCN2020086087-appb-000082
0℃下,将化合物4-3(110mg,253μmol),化合物2-6(87mg,279μmol)溶于乙酸乙酯(1mL)中,加入N,N-二异丙基乙胺(65mg,507μmol),三正丙基环磷酸酐50%乙酸乙酯溶液(323mg,507μmol),自然升至20℃,继续搅拌2小时,向反应液中加入5mL水和8mL乙酸乙酯,搅拌5分钟,除去水相,有机相减压浓缩除去溶剂,残余物经制备TLC纯化得到化合物4-4。LCMS(ESI)m/z:729(M+1)。
4)化合物4的合成
Figure PCTCN2020086087-appb-000083
将化合物4-4(67mg,92μmol)溶于盐酸/甲醇(4M,2mL)中,20℃下,继续搅拌0.5小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物4盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.23(d,J=8.0Hz,1H),7.7-7.8(m,3H),7.5-7.6(m,1H),7.4-7.5(m,2H),7.14(dd,J=5.5,8.5Hz,2H),7.08(d,J=8.5Hz,2H),6.96(t,J=8.8Hz,2H),6.79(d,J=8.5Hz,2H),4.65(t,J=7.5Hz,1H),4.5-4.6(m,1H),3.98(q,J=6.9Hz,2H),2.8-3.0(m,6H),2.58(s,2H),1.3-1.4(m,15H)。
实施例5化合物5的合成
Figure PCTCN2020086087-appb-000084
1)化合物5-2的合成
Figure PCTCN2020086087-appb-000085
冰水浴0℃下,向原料5-1(0.05g,128μmol)和3-7(41mg,154μmol)的乙酸乙酯(1mL)溶液中加入N,N-二异丙基乙胺(33mg,257μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(163mg,257μmol),得到的混合溶液自然升至15℃搅拌16小时,向反应液中加入2mL水和5mL乙酸乙酯,搅拌5分钟后,除去水相,有机相减压浓缩,得到化合物5-2。LCMS(ESI)m/z:639(M+1)。
2)化合物5-3的合成
Figure PCTCN2020086087-appb-000086
室温15℃下,向原料5-2(0.45g,704μmol)的二氯甲烷(2mL)溶液中加入哌啶(600mg,7mmol),得到的混合物搅拌16小时,向反应液中加入5mL水和15mL二氯甲烷,搅拌5分钟,除去水相,有机相减压浓缩。残余物经过柱层析的纯化得到化合物5-3。LCMS(ESI)m/z:417(M+1)。
3)化合物5-4的合成
Figure PCTCN2020086087-appb-000087
冰水浴0℃下,向原料5-3(80mg,255μmol)和2-6(106mg,255μmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(66mg,510μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(325mg,511μmol),得到的淡黄色溶液搅拌4小时,向反应液中加入2mL水和5mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,残余物经制备TLC纯化得到化合物5-4。LCMS(ESI)m/z:712(M+1)。
4)化合物5的合成
Figure PCTCN2020086087-appb-000088
在15℃下,原料5-4(0.09g,126μmol)溶于盐酸/甲醇(6M,1mL),得到的混合物搅拌2小时,减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物5盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.71(d,J=5.1Hz,1H),8.49-8.41(m,1H),7.96-7.89(m,1H),7.86-7.80(m,2H),7.77-7.71(m,1H),7.55(d,J=7.4Hz,1H),7.50-7.42(m,2H),7.15(d,J=8.5Hz,2H),6.81(d,J=8.5Hz,2H),4.53(t,J=8.0Hz,1H),3.99(d,J=7.0Hz,2H),3.53(d,J=6.0Hz,1H),3.35(s,2H),3.19-3.10(m,1H),2.99(br d,J=9.0Hz,4H),2.60(s,2H),1.40(br dd,J=6.1,17.7Hz,15H);LCMS(ESI)m/z:612(M+1)。
实施例6化合物6的合成
Figure PCTCN2020086087-appb-000089
1)化合物6-2的合成
Figure PCTCN2020086087-appb-000090
在0℃下,向化合物6-1(200mg,515μmol),3-7(193mg,721μmol)的乙酸乙酯(3mL)中加入N,N-二异丙基乙胺(99mg,772μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(655mg,1mmol),继续搅拌16小时,向反应液加入5mL水和3mL乙酸乙酯,搅拌5分钟,除去水相,有机相经无水硫酸钠干燥,减压浓缩得到化合物6-2。 1H NMR(400MHz,CDCl 3)δppm 8.43(br d,J=5.02Hz,2H),7.70(d,J=7.53Hz,2H),7.47(d,J=7.40Hz,2H),7.34(t,J=7.34Hz,2H),7.21-7.28(m,2H),7.07(br s,2H),5.70(br s,1H),5.23(s,1H),4.37(br s,3H),4.01-4.16(m,2H),2.99(br s,2H),2.84(br s,2H),2.75(br d,J=6.15Hz,1H),2.69-2.78(m,1H),1.97(s,1H),1.36(s,9H),1.13-1.26(m,12H)。
2)化合物6-3的合成
Figure PCTCN2020086087-appb-000091
在10℃下,向化合物6-2(328mg,513μmol)的二氯甲烷(5mL)中加入哌啶(175mg,2mmol),继续搅拌16小时。加入5mL饱和氯化铵溶液,除去水相,有机相经无水硫酸钠干燥,减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物6-3。 1H NMR(400MHz,MeOD-d4)δppm 8.44-8.47(m,2H),7.31-7.34(m,3H),3.71(t,J=7.24Hz,1H),3.11-3.16(m,1H),2.97-3.05(m,2H),2.71-2.76(m,4H),1.42(s,12H),1.27-1.35(m,9H)。3)化合物6-4的合成
Figure PCTCN2020086087-appb-000092
将化合物6-3(100mg,240μmol),2-6(79mg,252μmol)溶于乙酸乙酯(3mL)中,加入N,N-二异丙基乙胺(62mg,480μmol,83μL),三正丙基环磷酸酐50%乙酸乙酯溶液(305mg,480μmol),10℃下搅拌3小时。向反应液中加入2mL水,2mL乙酸乙酯萃取,有机相经无水硫酸钠干燥,减压浓缩,残余物经制备TLC纯化,得到化合物6-4。LCMS(ESI)m/z:712(M+1)
4)化合物6的合成
Figure PCTCN2020086087-appb-000093
将化合物6-4(75mg,105μmol)溶于盐酸/甲醇(4M,2mL)中,10℃下继续搅拌1小时。反应液减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物6盐酸盐。 1H NMR(400MHz,CDCl 3)δppm 8.55(d,J=5.87Hz,2H),7.18(d,J=5.48Hz,2H),4.48(br s,1H),3.68(dd,J=4.21,8.90Hz,1H),3.27(dd,J=4.11,13.89Hz,1H),3.12-3.17(m,1H),3.00(d,J=6.26Hz,2H),2.87(br d,J=6.06Hz,2H),2.79(dd,J=8.90,13.60Hz,1H),1.44(s,9H),1.37(s,12H);LCMS(ESI)m/z:641(M+1)。
实施例7化合物7的合成
Figure PCTCN2020086087-appb-000094
1)化合物7-1的合成
Figure PCTCN2020086087-appb-000095
在0℃下,向原料2-1(1g,2mmol)和3-7(691mg,2mmol)的乙酸乙酯(10mL)溶液中加入N,N-二异丙基乙胺(499mg,4mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(3.28g,5.15mmol),得到的混合物搅拌2小时,向反应液中加入25mL水,20mL乙酸乙酯搅拌10分钟,除去水相,有机相经无水硫酸钠干燥,减压浓缩,得到化合物7-1。LCMS(ESI)m/z:639(M+1)。
2)化合物7-2的合成
Figure PCTCN2020086087-appb-000096
在10℃下,向化合物7-1(1.6g,2mmol)的二氯甲烷(20mL)溶液中加入哌啶(853mg,10mmol),继续搅拌12小时。加入20mL二氯甲烷和15mL饱和氯化铵溶液,搅拌5分钟,除去水相,有机相经无水硫酸钠干燥,减压浓缩得粗品,粗品经硅胶柱层析分离纯化,得到化合物7-2。 1H NMR(400MHz,CDCl 3)δppm 8.5-8.6(m,2H),7.60(br d,1H,J=7.5Hz),7.36(br s,1H),4.4-4.6(m,1H),4.50(br s,1H),3.6-3.8(m,1H),3.70(br s,1H),3.25(dd,1H,J=4.1,14.0Hz),3.1-3.2(m,2H),2.99(br d,2H,J=6.3Hz),2.86(br d,2H,J=6.4Hz),1.91(br t,3H,J=5.5Hz),1.67(br s,1H),1.43(s,9H),1.35(s,12H);LCMS(ESI)m/z:417(M+1)。
3)化合物7-3的合成
Figure PCTCN2020086087-appb-000097
冰水浴0℃下,向原料2-6(0.2g,638μmol)和7-2(292mg,702μmol)的二氯甲烷(3mL)中溶液中加入N,N-二异丙基乙胺(206mg,1mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(677mg,1mmol),得到的混合物继续搅拌2小时,向反应液中加入4mL二氯甲烷和5mL水,搅拌10分钟,除去水相,有机相减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物7-3。 1H NMR(400MHz,CDCl 3)δppm 8.47(d,J=4.77Hz,1H),8.27(s,1H),7.70(d,J=7.58Hz,2H),7.49-7.57(m,1H),7.44(br d,J=7.46Hz,3H),7.18(dd,J=4.95,7.52Hz,1H),7.10(d,J=8.44Hz,2H),6.86(d,J=8.44Hz,2H),6.74(br d,J=6.11Hz,1H),6.39(br d,J=8.68Hz,2H),5.31(s,1H),4.63-4.72(m,1H),4.56(q,J=7.34Hz,1H),4.41(br s,1H),3.01-3.12(m,3H),2.88-2.94(m,2H),2.84(br dd,J=6.66,13.88Hz,1H),2.77(br d,J=5.99Hz,2H),1.44(s,9H),1.22(s,12H);LCMS(ESI)m/z: 712(M+1)。
4)化合物7的合成
Figure PCTCN2020086087-appb-000098
将化合物7-3(0.27g,379μmol)溶于盐酸/甲醇(3mL),7℃下搅拌2小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物7盐酸盐。 1H NMR(400MHz,DMSO-d 6)δppm 8.83(s,1H),8.77(d,J=5.67Hz,1H),8.66(br d,J=8.80Hz,1H),8.57(d,J=7.82Hz,1H),8.40(br d,J=7.82Hz,1H),7.87-7.96(m,2H),7.83(br s,2H),7.79(d,J=7.24Hz,2H),7.48-7.54(m,1H),7.40-7.47(m,2H),7.17(d,J=8.61Hz,2H),6.75(d,J=8.61Hz,2H),4.73(dt,J=4.60,9.34Hz,1H),4.50-4.58(m,1H),3.89-3.97(m,1H),3.93(q,J=7.24Hz,1H),3.26(br dd,J=4.11,13.69Hz,1H),2.97-3.07(m,1H),2.79-2.94(m,2H),2.70-2.75(m,2H),1.24-1.38(m,15H)。
实施例8化合物8的合成
Figure PCTCN2020086087-appb-000099
1)化合物8-2的合成
Figure PCTCN2020086087-appb-000100
在10℃下,向化合物8-1(190mg,710μmol),3-7(300mg,676μmol)的乙酸乙酯(5mL)中加入N,N-二异丙基乙胺(175mg,1mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(861mg,1mmol),得到的混合物继续搅拌16小时。向反应液中加入2mL水和2mL乙酸乙酯,搅拌5分钟,除去水相,有机相经无水硫酸钠干燥,减压浓缩,残余物经柱层析分离纯化,得到化合物8-2。 1H NMR(400MHz,CDCl 3)δppm 7.88(d,J=7.91Hz,1H),7.78(br d,J=7.40Hz,2H),7.57(br d,J=7.40Hz,2H),7.37-7.45(m,5H),7.29-7.34(m,3H),5.61(br s,1H),5.35-5.46(m,1H),4.35-4.49(m,4H),4.22(br t,J=6.96Hz,1H),3.23-3.42(m,2H),2.75-2.86(m,4H),1.45(s,12H),1.17-1.32(m,9H)。
2)化合物8-3的合成
Figure PCTCN2020086087-appb-000101
将8-2(360mg,519μmol)溶于二氯甲烷(5mL)中,加入哌啶(176mg,2mmol),搅拌5分钟除去水相,机相减压浓缩,残余物经制备TLC纯化,得到化合物8-3。LCMS(ESI)m/z:661(M+1)。
3)化合物8-4的合成
Figure PCTCN2020086087-appb-000102
将化合物8-3(147mg,311μmol),2-6(97mg,311μmol)溶于乙酸乙酯(2mL)中,加入N,N-二异丙基乙胺(80mg,623μmol),三正丙基环磷酸酐50%乙酸乙酯溶液(396mg,623μmol),10℃下继续搅拌16小时,向反应液中加入5mL水和5mL乙酸乙酯,搅拌5分钟,除去水相,有机相减压浓缩,残余物经制备TLC纯化,得到化合物8-4。 1H NMR(400MHz,CDCl 3)δppm 7.86(d,J=8.02Hz,1H),7.79(d,J=7.63Hz,1H),7.70(br d,J=8.02Hz,2H),7.33-7.56(m,5H),7.06-7.15(m,3H),6.82(br d,J=8.41Hz,2H),6.67(br d,J=5.87Hz,1H),6.38(br d,J=7.63Hz,1H),5.90(br s,1H),4.72-4.80(m,1H),4.59(br d,J=6.85Hz,1H),3.93-4.04(m,2H),3.33(dd,J=5.97,15.16Hz,1H),3.03-3.17(m,3H),2.72-2.91(m,4H),1.44(s,9H),1.39(br t,J=7.04Hz,3H),1.07-1.28(m,12H);LCMS(ESI)m/z:767.3(M+1)。
4)化合物8的合成
Figure PCTCN2020086087-appb-000103
在10℃下,将化合物8-4(120mg,156μmol)溶于盐酸/甲醇(4M,1mL)中,继续搅拌0.5小时。反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物8盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.38(d,J=7.82Hz,1H),7.75-7.88(m,5H),7.50-7.56(m,1H),7.33-7.47(m,4H),7.14(s,1H),7.04(d,J=8.61Hz,2H),6.73(d,J=8.61Hz,2H),4.70-4.76(m,1H),4.66(t,J=7.34Hz,1H),3.93(dq,J=2.84,6.94Hz, 2H),3.35(d,J=6.06Hz,1H),3.07(dd,J=8.31,14.97Hz,1H),2.88-3.02(m,3H),2.80-2.88(m,1H),2.57(s,2H),1.29-1.37(m,15H)。
实施例9化合物9的合成
Figure PCTCN2020086087-appb-000104
1)化合物9-2的合成
Figure PCTCN2020086087-appb-000105
在0℃下,将化合物9-1(200mg,508μmol)和3-7(150mg,559μmol)溶于N,N-二甲基甲酰胺(3mL)中,加入N,N-二异丙基乙胺(131mg,1mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(647mg,1.02mmol),继续搅拌1小时。向反应液中加入8mL水,乙酸乙酯萃取(5mL×3),合并有机相,减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化,得到化合物9-2。LCMS(ESI)m/z:644(M+1)。
2)化合物9-3的合成
Figure PCTCN2020086087-appb-000106
将化合物9-2(300mg,466μmol)溶于二氯甲烷(5mL)中,加入哌啶(158mg,1.86mmol),10℃下,继续搅拌16小时。向反应液中加入2mL饱和氯化铵溶液和2mL水,除去水相,有机相减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化,得到化合物9-3。 1H NMR(400MHz,CDCl 3)δppm 7.76(d,J=7.6Hz,1H),7.4-7.4(m,1H),7.07(s,1H),6.99(dd,J=1.2,4.9Hz,1H),4.49(br s,1H),3.62(dd,J=4.1,8.8Hz,1H),3.22(dd,J=4.1,14.5Hz,1H),3.0-3.0(m,2H),2.8-2.9(m,3H),2.59(br s,2H),1.45(s,9H),1.38(s,12H)。
3)化合物9-4的合成
Figure PCTCN2020086087-appb-000107
在0℃下,将化合物9-3(100mg,237μmol)和2-6(74mg,237μmol)溶于乙酸乙酯(2mL)中,加入N,N-二异丙基乙胺(61mg,474μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(302mg,474μmol),自然升温至20℃,继续搅拌2小时,向反应液中加入5mL水,15mL乙酸乙酯萃取,有机相减压浓缩除去溶剂,得到化合物9-4。LCMS(ESI)m/z:717(M+1)。
4)化合物9的合成
Figure PCTCN2020086087-appb-000108
将化合物9-4(187mg,261μmol)溶于盐酸/甲醇(4M,2mL)中,18℃下,继续搅拌0.5小时,反应液减压浓缩,残余物经制备HPLC(酸性体系)纯化得到化合物9盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm7.77(br d,J=7.4Hz,3H),7.5-7.6(m,1H),7.4-7.5(m,2H),7.30(dd,J=3.0,4.9Hz,1H),7.11(d,J=8.5Hz,2H),6.97(s,1H),6.91(d,J=4.9Hz,1H),6.81(d,J=8.7Hz,2H),4.6-4.7(m,1H),4.5-4.6(m,1H),3.99(q,J=6.9Hz,2H),2.8-3.1(m,6H),2.58(s,2H),1.3-1.4(m,15H)。
实施例10化合物10的合成
Figure PCTCN2020086087-appb-000109
1)化合物10-2的合成
Figure PCTCN2020086087-appb-000110
将化合物10-1(1g,5mmol)加入碳酸钠(2M,6mL)中,然后加入苯甲酰氯(856mg,6mmol)的乙腈(6mL)溶液,在17℃下搅拌12小时。反应液加入6M盐酸调节pH=3,加入20mL水,60mL乙酸乙酯萃取,有机相后经无水硫酸钠干燥、减压浓缩,残余物经硅胶柱层析分离,得到化合物10-2。 1H NMR(400MHz,DMSO-d 6)δppm 12.70(br s,1H),9.18(s,1H),8.63(br d,J=8.07Hz,1H),7.79(br d,J=7.21Hz,2H),7.41-7.56(m,3H),7.10(br d,J=8.19Hz,2H),6.64(br d,J=8.19Hz,2H),4.47-4.58(m,1H),3.00-3.11(m,1H), 2.86-3.00(m,1H),2.86-3.00(m,1H)。
2)化合物10-3的合成
Figure PCTCN2020086087-appb-000111
冰水浴0℃下,将化合物10-2(400mg,1mmol),1-10(363mg,1mmol)溶于乙酸乙酯(6mL)中,加入N,N-二异丙基乙胺(362mg,2.8mmol),三正丙基环磷酸酐50%乙酸乙酯溶液(1.78g,3mmol),10℃下,继续搅拌5小时,向反应液加入5mL二氯甲烷和10mL水,除去水相,有机相经无水硫酸钠干燥、减压浓缩,残余物经硅胶柱层析分离,得到化合物10-3。 1H NMR(400MHz,CDCl 3)δppm 7.71(br d,J=7.15Hz,2H),7.48-7.56(m,1H),7.43(q,J=7.28Hz,2H),7.19-7.24(m,2H),6.94-7.04(m,4H),6.72(br d,J=8.41Hz,3H),6.36(br d,J=7.91Hz,1H),5.39(s,1H),4.75-4.90(m,2H),3.70-3.75(m,1H),3.72(s,1H),3.67(s,2H),2.96-3.16(m,4H),1.58(s,1H)。
3)化合物10-4的合成
Figure PCTCN2020086087-appb-000112
向化合物10-3(0.17g,380μmol),碳酸铯(372mg,1mmol)的N,N-二甲基甲酰胺(1mL)中加入1-溴-2甲氧基乙烷(79mg,571μmol),60℃的油浴中继续搅拌3小时,向反应液中加入10mL水,30mL乙酸乙酯萃取,有机相合并后,减压浓缩,粗品经硅胶柱层析分离纯化,得到化合物10-4。 1H NMR(400MHz,CDCl 3)δppm 8.02(s,1H),7.67-7.72(m,1H),7.37-7.56(m,2H),7.19-7.23(m,1H),7.13-7.18(m,1H),7.07(d,J=8.68Hz,1H),6.94-7.01(m,1H),6.82-6.87(m,1H),6.65-6.76(m,1H),6.23-6.43(m,1H),4.73-4.88(m,1H),4.05-4.11(m,1H),3.70-3.76(m,2H),3.66(s,1H),3.43-3.45(m,2H),2.96(s,3H),2.89(s,3H)。
4)化合物10-5的合成
Figure PCTCN2020086087-appb-000113
在10℃下,将化合物10-4(300mg,594μmol)溶于甲醇(3mL)中,加入一水合氢氧化锂(2.5M,951uL),继续搅拌2小时,向反应液加入6M稀盐酸,调pH=3,随后用乙酸乙酯(40mL×3)萃取,有机相合并后 经无水硫酸钠干燥,减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物10-5。 1H NMR(400MHz,CDCl 3)δppm 7.64-7.78(m,2H),7.35-7.55(m,3H),7.18-7.24(m,2H),7.01-7.13(m,4H),7.00-7.01(m,1H),6.79-6.98(m,3H),4.74-4.83(m,1H),4.10-4.16(m,1H),4.04-4.09(m,1H),3.69-3.78(m,2H),3.42-3.47(m,3H),2.93-3.19(m,4H),2.35-2.44(m,1H)。
5)化合物10-6的合成
Figure PCTCN2020086087-appb-000114
将化合物10-5(0.1g,204μmol),3-7(65mg,244μmol)溶于二氯甲烷(2mL)中,加入N,N-二异丙基乙胺(52mg,408μmol),三正丙基环磷酸酐50%乙酸乙酯溶液(216mg,408μmol),10℃下继续搅拌1小时,向反应液加入4mL二氯甲烷和5mL水,搅拌5分钟除去水相,有机相经合并后减压浓缩,得到化合物10-6。LCMS(ESI)m/z:742(M+1)。
6)化合物10的合成
Figure PCTCN2020086087-appb-000115
将化合物10-6(0.15g,202μmol)溶于盐酸/甲醇(3mL),7℃下继续搅拌1小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物10盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 7.75(d,J=7.28Hz,2H),7.50-7.56(m,1H),7.41-7.46(m,2H),7.15-7.27(m,5H),7.08(d,J=8.53Hz,2H),7.04-14.01(m,1H),6.82(d,J=8.53Hz,2H),4.66(t,J=7.40Hz,1H),4.58(dd,J=6.21,8.34Hz,1H),4.05(dd,J=3.83,5.33Hz,2H),3.70(dd,J=3.76,5.27Hz,2H),3.38(s,3H),2.82-3.08(m,6H),2.59(s,2H),1.36(s,12H);LCMS(ESI)m/z:642(M+1)。
实施例11化合物11的合成
Figure PCTCN2020086087-appb-000116
1)化合物11-2的合成
Figure PCTCN2020086087-appb-000117
冰水浴0℃及氮气保护下,向四氢铝锂(1.68g,44mmol)的四氢呋喃(50mL)溶液中滴加原料5-溴苯酐11-1(5g,22mmol)的四氢呋喃(20mL)溶液,滴加完毕,得到的混合物自然升至15℃继续搅拌2小时,冰水浴下,向反应液中依次滴加水1.68mL、10%氢氧化钠水溶液1.68mL和5.04mL水,再随后加入100mL乙酸乙酯搅拌10分钟,过滤,分液,有机相减压浓缩,残余物经过硅胶柱层析纯化后得到化合物11-2。 1H NMR(400MHz,CDCl 3)δppm 7.53(s,1H),7.46(dd,J=1.5,8.0Hz,1H),7.24(d,J=8.0Hz,1H),4.71(d,J=3.1Hz,4H),2.74(br s,2H)。
2)化合物11-3的合成
Figure PCTCN2020086087-appb-000118
在15℃下,向原料11-2(4.5g,20mmol)中加入浓盐酸(12M,28mL),得到的混合物加热到70℃搅拌0.5小时。加入50mL甲基叔丁基醚,搅拌10分钟,收集有机相,减压浓缩。残余物经过硅胶柱层析纯化得到化合物11-3。 1H NMR(400MHz,CDCl 3)δppm 7.64(d,J=1.9Hz,1H),7.45(dd,J=2.1,8.1Hz,1H),7.25(d,J=8.2Hz,1H),4.83(s,2H),4.66(s,2H),1.83(br s,1H)。
3)化合物11-4的合成
Figure PCTCN2020086087-appb-000119
冰水浴0℃下,向原料11-3(4.3g,18mmol)的四氢呋喃(40mL)中加入氢化钠(1.46g,36mmol),自然升至15℃搅拌2小时。向反应液中加入100mL甲基叔丁基醚和50mL饱和氯化铵水溶液,搅拌10分钟,除去水相,有机相减压浓缩,残余物经过硅胶柱层析纯化得到化合物11-4。 1H NMR(400MHz,CDCl 3)δppm 7.43-7.37(m,2H),7.12(d,J=8.2Hz,1H),5.07(dd,J=1.2,9.4Hz,4H)。
4)化合物11-6的合成
Figure PCTCN2020086087-appb-000120
在15℃及氮气保护下,向锌粉(592mg,9mmol)的N,N-二甲基甲酰胺(5mL)混合物中加入碘单质(115mg,452μmol),搅拌30分钟后加入原料11-5(990mg,3mmol),得到的混合物继续搅拌1小时后,再依次加入原料11-4(0.3g,1.5mmol),2-二环己基亚膦基-2,6-二甲氧基联苯(124mg,301μmol)和三(二亚苄基丙酮)二钯(138mg,150μmol),氮气置换三次,加热到60℃搅拌5小时。向反应混合物中加入30mL甲基叔丁基醚和10mL水,搅拌10分钟,过滤后静置、分液,有机相减压浓缩,得到的残余物经过硅胶柱层析纯化后得到化合物11-6。 1H NMR(400MHz,CDCl 3)δppm 7.17(d,J=7.6Hz,1H),7.06-6.98(m,2H),5.09(s,4H),4.98(br d,J=7.2Hz,1H),4.59(br d,J=6.7Hz,1H),3.20-3.00(m,2H),1.43(s,9H)。
5)化合物11-7的合成
Figure PCTCN2020086087-appb-000121
在15℃下,向原料11-6(0.45g,1.40mmol)的二氯甲烷(5mL)溶液中加入三氟乙酸(1.6g,14mmol),得到的混合物搅拌2小时,反应液直接减压浓缩得到化合物11-7。LCMS(ESI)m/z:222(M+1)。
6)化合物11-8的合成
Figure PCTCN2020086087-appb-000122
冰水浴0℃下,向原料11-7(0.31g,1mmol)的二氯甲烷(4mL)溶液中加入三乙胺(284mg,3mmol)和苯甲酰氯(236mg,2mmol),得到的混合物自然升至室温搅拌2小时。向反应液中加入2mL饱和碳酸氢钠水溶液和5mL二氯甲烷搅拌5分钟,除去上层水相,有机相减压浓缩,残余物经过硅胶柱层析纯化得到化合物11-8。 1H NMR(400MHz,CDCl 3)δppm 7.78-7.70(m,2H),7.56-7.50(m,1H),7.48-7.40(m,2H),7.17(d,J=7.7Hz,1H),7.07-6.98(m,2H),6.59(br d,J=7.0Hz,1H),5.08(br d,J=11.4Hz,5H),3.79(s,3H),3.39-3.19(m,2H);LCMS(ESI)m/z:326(M+1)。
7)化合物11-9的合成
Figure PCTCN2020086087-appb-000123
在15℃下,向原料11-8(0.44g,1mmol)的甲醇(5mL)溶液中加入一水合氢氧化锂水溶液(2.5M,2mL),得到的混合物搅拌4小时。向反应液中加入2M柠檬酸水溶液和调节pH~6,再加入50mL乙酸乙酯萃取,有机相减压浓缩,得到化合物11-9。 1H NMR(400MHz,CDCl 3)δppm 7.76-7.67(m,2H),7.52(d,J=7.4Hz,1H),7.47-7.39(m,2H),7.19-7.14(m,1H),7.13-7.06(m,2H),6.64(br d,J=7.2Hz,1H),5.13-5.01(m,4H),3.38(br d,J=5.7Hz,1H),3.33-3.24(m,1H);LCMS(ESI)m/z:312(M+1)。
8)化合物11-11的合成
Figure PCTCN2020086087-appb-000124
冰水浴0℃下,向原料11-10(0.50g,1.3mmol)和化合物3-7(0.40g,1.5mmol)的乙酸乙酯(5mL)溶液中加入N,N-二异丙基乙胺(0.33g,2.6mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(1.64g,2.6mmol),得到的混合物自然升至25℃搅拌16小时。向反应液中加入10mL水溶液和50mL乙酸乙酯萃取,有机相减压浓缩,得到化合物11-11。LCMS(ESI)m/z:638(M+1)。
9)化合物11-12的合成
Figure PCTCN2020086087-appb-000125
在15℃下,向原料11-11(0.80g,1.2mmol)的二氯甲烷(2mL)溶液中加入无水哌啶(1.1g,12.2mmol),得到的混合物搅拌12小时。向反应液中加入5mL水溶液和20mL二氯甲烷萃取,有机相减压浓缩,残余物经过硅胶柱层析纯化得到化合物11-12。LCMS(ESI)m/z:416(M+1)。
10)化合物11-13的合成
Figure PCTCN2020086087-appb-000126
冰水浴0℃下,向原料11-9(0.1g,321μmol)和11-12(133mg,321μmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(83mg,642μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(409mg,642μmol),得到的混合物自然升至15℃搅拌4小时。向反应液中加入5mL水和10mL乙酸乙酯搅拌10分钟,除去水相,有机相减压浓缩,残余物经过硅胶柱层析纯化,得到化合物11-13。LCMS(ESI)m/z:709 (M+1)。
11)化合物11的合成
Figure PCTCN2020086087-appb-000127
在15℃下,向原料11-13(0.2g,282μmol)的二氯甲烷(3mL)溶液中加入盐酸/甲醇(6M,909μL),得到的混合物搅拌2小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物11盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 7.83-7.71(m,3H),7.53(d,J=7.4Hz,1H),7.48-7.41(m,2H),7.28-7.13(m,6H),7.11-7.01(m,2H),5.00(br d,J=8.5Hz,4H),4.72(dd,J=6.5,8.2Hz,1H),4.59(dd,J=6.1,8.5Hz,1H),3.09-2.93(m,4H),2.91-2.81(m,2H),2.59(s,2H),1.36(s,12H);LCMS(ESI)m/z:609(M+1)。
实施例12化合物12的合成
Figure PCTCN2020086087-appb-000128
1)化合物12-2的合成
Figure PCTCN2020086087-appb-000129
冰水浴0℃下,向原料12-1(0.5g,2mmol)和L-苯丙氨酸甲酯盐酸盐(0.4g,2mmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(647mg,5mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(2.12g,3mmol),得到的混合物搅拌4小时。向反应液中加入5mL水和20mL乙酸乙酯搅拌10分钟,除去水相,有机相减压浓缩,得到化合物12-2。 1H NMR(400MHz,CDCl 3)δppm 7.26-7.16(m,5H),7.06-6.93(m,4H),6.72(br d,J=7.7Hz,1H),5.07(br d,J=7.2Hz,1H),4.78(br d,J=7.4Hz,1H),4.33(br d,J=5.6Hz,1H),3.66(s,3H),3.04-2.97(m,3H),1.35(s,9H);LCMS(ESI)m/z:461(M+1)。
2)化合物12-3的合成
Figure PCTCN2020086087-appb-000130
在15℃下,向原料12-2(0.75g,2mmol)的二氯甲烷(5mL)溶液中加入盐酸/甲醇(4M,8mL),得到的混合物搅拌2小时,反应液直接浓缩,得到化合物12-3。LCMS(ESI)m/z:361(M+1)。
3)化合物12-4的合成
Figure PCTCN2020086087-appb-000131
冰水浴0℃下,向原料12-3(0.65g,2mol)的二氯甲烷(5mL)溶液中加入N,N-二异丙基乙胺(634mg,5mol)和苯甲酰氯(345mg,2mmol),得到的混合物自然升至15℃搅拌16小时。向反应液中加入10mL水和20mL二氯甲烷搅拌10分钟,除去水相,有机相减压浓缩,残余物经过硅胶柱层析纯化得到化合物12-4。 1H NMR(400MHz,CDCl 3)δppm 7.73-7.65(m,2H),7.51(d,J=7.4Hz,1H),7.46-7.39(m,2H),7.26-7.19(m,5H),7.05(d,J=8.3Hz,2H),6.97(dd,J=2.8,6.5Hz,2H),6.74(br d,J=7.7Hz,1H),6.47(br d,J=7.9Hz,1H),4.84(dd,J=7.1,13.7Hz,2H),3.67(s,3H),3.18-3.06(m,2H),3.04(d,J=6.1Hz,2H);LCMS(ESI)m/z:465(M+1)。
4)化合物12-5的合成
Figure PCTCN2020086087-appb-000132
在15℃下,向原料12-4(0.7g,2mmol)的甲醇(10mL)溶液中加入一水合氢氧化锂(2.5M,2mL),得到的混合物搅拌4小时,向反应液中加入2M柠檬酸水溶液调节pH<6,再加入30mL乙酸乙酯搅拌10分钟,除去水相,有机相减压浓缩,得到化合物12-5。 1H NMR(400MHz,CDCl 3)δppm 7.67(d,J=7.5Hz,2H),7.51-7.45(m,1H),7.41-7.36(m,2H),7.24-7.12(m,5H),7.10-7.04(m,2H),6.94(d,J=8.3Hz,2H),4.88-4.68(m,2H),3.15-2.97(m,3H),2.96-2.83(m,3H);LCMS(ESI)m/z:451(M+1)。
5)化合物12-6的合成
Figure PCTCN2020086087-appb-000133
冰水浴0℃下,向原料12-5(0.1g,222μmol)和3-7(65mg,244μmol)的N,N-二甲基甲酰胺(2mL)溶液中加入N,N-二异丙基乙胺(57mg,443μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(282mg,443μmol),得到的反应液升温至15℃搅拌4小时,向反应液中加入2mL水和5mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,残余物经过硅胶柱层析纯化得到化合物12-6。 1H NMR(400MHz,CDCl 3)δppm 7.71(d,J=7.3Hz,2H),7.53(s,1H),7.46-7.40(m,2H),7.27-7.22(m,4H),7.09(br d,J=6.4Hz,2H),7.04(br d,J=8.2Hz,2H),6.89(br d,J=7.4Hz,1H),6.67(br d,J=8.0Hz,1H),6.07(br s,1H),4.77-4.54(m,2H),4.53-4.36(m,1H),3.16-2.98(m,4H),2.80-2.73(m,2H),1.20(br d,J=7.9Hz,12H);LCMS(ESI)m/z:601(M+1)。
6)化合物12的合成
Figure PCTCN2020086087-appb-000134
在15℃下,向原料12-6(0.14g,200μmol)的二氯甲烷(2mL)溶液中加入盐酸/甲醇(4M,2mL),得到的混合物搅拌3小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物12盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.44(br d,J=7.0Hz,1H),8.32(br d,J=7.5Hz,1H),7.82(br s,1H),7.76(br d,J=7.3Hz,2H),7.59-7.50(m,1H),7.49-7.40(m,2H),7.31-7.16(m,7H),7.11(br d,J=7.9Hz,2H),4.71(br d,J=5.8Hz,1H),4.59(br d,J=5.8Hz,1H),3.06(br d,J=5.6Hz,1H),3.03-2.78(m,5H),2.59(br s,2H),1.37(br s,12H);LCMS(ESI)m/z:601(M+1)。
实施例13化合物13的合成
Figure PCTCN2020086087-appb-000135
1)化合物13-2的合成
Figure PCTCN2020086087-appb-000136
将化合物1-12(453mg,1mmol),13-1(207mg,1mmol)溶于二氯甲烷(5mL)中,随后加入N,N-二异丙基乙胺(316mg,2mmol),三正丙基环磷酸酐50%乙酸乙酯溶液(1.30g,2mmol),10℃继续搅拌2小时。向反应液中加入2mL二氯甲烷和4mL水稀释,搅拌5分钟,除去水相,有机相减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物13-2。 1H NMR(400MHz,CDCl 3)δppm 7.19-7.26(m,1H),7.25(s,1H),7.00(br t,J=9.16Hz,4H),6.80(br d,J=8.28Hz,2H),6.34(br d,J=7.53Hz,1H),5.93(br d,J=7.28Hz,1H),4.75-4.84(m,1H),4.58(q,J=7.07Hz,1H),4.00(q,J=6.94Hz,2H),3.68(s,3H),2.91-3.05(m,4H),1.57(br s,12H),1.40(t,J=6.96Hz,3H)。
2)化合物13-3的合成
Figure PCTCN2020086087-appb-000137
将化合物13-2(353mg,697μmol)溶于甲醇(0.5mL)中,加入一水合氢氧化锂(2M,1mL),0℃下继续搅拌1小时。向反应液加入6M稀盐酸,调节pH=3,加入乙酸乙酯(4mL×3)萃取,有机相合并后经无水硫酸钠干燥、减压浓缩,得到化合物13-3。 1H NMR(400MHz,CDCl 3)δppm 7.24(br s,2H),7.02-7.07(m,2H),6.98(br d,J=8.41Hz,2H),6.80(br d,J=8.41Hz,2H),6.74(br d,J=7.28Hz,1H),6.27(br d,J=8.53Hz,1H),4.93-5.01(m,1H),4.74-4.81(m,1H),4.00(q,J=6.90Hz,2H),2.97-3.09(m,2H),2.91(br dd,J=6.84,13.87Hz,1H),2.73(br dd,J=7.47,13.87Hz,1H),1.54(s,12H),1.40(t,J=6.96Hz,3H)。
3)化合物13-4的合成
Figure PCTCN2020086087-appb-000138
冰水浴0℃下,将化合物13-3(123mg,250μmol),1A(80mg,300μmol)溶于二氯甲烷(2mL)中,加入N,N-二异丙基乙胺(64mg,500μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(317mg,500μmol),继 续搅拌1小时,向反应液加入3mL二氯甲烷和5mL水搅拌5分钟,除去水相,有机相减压浓缩得到化合物13-4。LCMS(ESI)m/z:743(M+1)。
4)化合物13的合成
Figure PCTCN2020086087-appb-000139
将化合物13-4(226mg,304μmol)溶于盐酸/甲醇(4M,3mL)中,0℃继续搅拌0.5小时。反应液减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物13盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm7.99(br d,J=7.65Hz,1H),7.81(br s,1H),7.26-7.32(m,2H),7.17-7.25(m,3H),6.93(br d,J=8.41Hz,2H),6.76(br d,J=8.41Hz,2H),4.39-4.62(m,2H),3.91-4.04(m,2H),2.92-3.07(m,2H),2.81-2.91(m,3H),2.71(br dd,J=8.72,13.74Hz,1H),2.65(s,2H),1.57(s,12H),1.32-1.46(m,15H);LCMS(ESI)m/z:644(M+1)。
实施例14化合物14的合成
Figure PCTCN2020086087-appb-000140
1)化合物14-2的合成
Figure PCTCN2020086087-appb-000141
在10℃下,将化合物1-12(300mg,810μmol),1-萘甲酸14-1(167mg,972μmol)溶于乙酸乙酯(5mL)中,加入N,N-二异丙基乙胺(209mg,2mmol),三正丙基环磷酸酐50%乙酸乙酯溶液(1g,1mmol),得到的混合物继续搅拌16小时,向反应液中加入5mL乙酸乙酯和5mL水,搅拌5分钟,除去水相,有机相减压浓缩,残余物经硅胶柱层析分离纯化后,得到化合物14-2。 1H NMR(400MHz,CDCl 3)δppm 8.01(s,4H),7.89(d,J=8.22Hz,1H),7.83(d,J=7.43Hz,1H),7.36-7.52(m,4H),7.20-7.25(m,2H),7.12(d,J=8.61Hz,2H),7.02(dd,J=1.76,7.43Hz,2H),6.83(d,J=8.61Hz,2H),4.83-4.99(m,2H),4.00(q,J=7.04Hz,2H),3.68(s,3H),3.12-3.23(m,1H),3.06-3.09(m,2H),3.03-3.05(m,1H),1.40(t,J=7.04Hz,3H);LCMS(ESI)m/z:525(M+1)。
2)化合物14-3的合成
Figure PCTCN2020086087-appb-000142
将化合物14-2(240mg,457μmol)溶于甲醇(3mL)中,加入一水合氢氧化锂(2M,915μL),10℃下继续搅拌1小时,滴加0.2M盐酸至pH=3,加入8mL乙酸乙酯和5mL水,搅拌5分钟除去水相,有机相减压浓缩,得到化合物14-3。 1H NMR(400MHz,CDCl 3)δppm 7.90(d,J=8.41Hz,1H),7.82(dd,J=8.12,17.51Hz,2H),7.39-7.49(m,3H),7.30-7.37(m,1H),7.19-7.25(m,4H),7.02-7.11(m,4H),6.96(d,J=8.80Hz,1H),6.81(d,J=8.02Hz,2H),5.20-5.29(m,1H),4.84(q,J=6.33Hz,1H),4.35-4.88(m,1H),4.35-4.88(m,1H),4.00(q,J=6.72Hz,2H),3.03-3.13(m,2H),2.93-2.99(m,2H),1.41(t,J=6.94Hz,3H);LCMS(ESI)m/z:511(M+1)。
3)化合物14-4的合成
Figure PCTCN2020086087-appb-000143
将化合物14-3(175mg,343μmol),3-7(92mg,343μmol)溶于乙酸乙酯(3mL)中,加入N,N-二异丙基乙胺(88mg,685μmol),三正丙基环磷酸酐50%乙酸乙酯溶液(436mg,685μmol),10℃下继续搅拌16小时,向反应液中加入5mL乙酸乙酯和5mL水,搅拌2分钟,除去水相,有机相减压浓缩,残余物经制备TLC纯化,得到化合物14-4。LCMS(ESI)m/z:761(M+1)。
4)化合物14的合成
Figure PCTCN2020086087-appb-000144
在10℃下,将化合物14-4(134mg,176μmol)溶于盐酸/甲醇(4M,2mL)中,得到的混合物继续搅拌1小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物14盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 7.94(t,J=4.79Hz,1H),7.77-7.90(m,3H),7.38-7.53(m,4H),7.24-7.32(m,2H),7.18-7.24(m,3H),7.13(d,J=8.61Hz,2H),6.83(d,J=8.61Hz,2H),4.77-4.82(m,1H),4.64-4.70(m,1H),4.02(q,J=6.91Hz,2H),3.09(dd,J=6.06,13.50Hz,1H),2.86-3.00(m,4H),2.79(dd,J=9.29,13.79Hz,1H),2.54(s,2H),1.32-1.41(m,15H);LCMS(ESI)m/z:661(M=1)。
实施例15化合物15的合成
Figure PCTCN2020086087-appb-000145
1)化合物15-1的合成
Figure PCTCN2020086087-appb-000146
化合物1-12(5.1g,14mmol)溶于甲醇(30mL)中,加入一水合氢氧化锂(2M,27mL),10℃下继续搅拌1小时,反应液直接减压浓缩,得到化合物15-1。LCMS(ESI)m/z:357(M+1)。
2)化合物15-2的合成
Figure PCTCN2020086087-appb-000147
将化合物15-1(4.9g,14mmol)溶于N,N-二甲基甲酰胺(30mL)和水(20mL)中,加入碳酸氢钠水溶液(2.5M,11mL)和芴甲氧羰酰琥珀酰亚胺(6.49g,19mmol),10℃下,继续搅拌16小时,向反应液中加入1M盐酸调pH=3,加入200mL水,乙酸乙酯(150mL×3)萃取,有机相合并后减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物15-2。LCMS(ESI)m/z:579(M+1)。
3)化合物15-3的合成
Figure PCTCN2020086087-appb-000148
在0℃下,将化合物15-2(1g,2mmol),3-7(510mg,2mmol)溶于N,N-二甲基甲酰胺(10mL)中,加入N,N-二异丙基乙胺(446mg,3mmol),三正丙基环磷酸酐50%乙酸乙酯溶液(2.20g,3mmol),在10℃及氮气保护下,继续搅拌16小时,向反应液中加入50mL水和乙酸乙酯(40mL)搅拌10分钟,除去水 相,有机相减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物15-3。LCMS(ESI)m/z:830(M+1)。
4)化合物15-4的合成
Figure PCTCN2020086087-appb-000149
将化合物15-3(1.1g,1mmol)溶于二氯甲烷(10mL)中,加入哌啶(452mg,5mmol),10℃下,继续搅拌16小时,向反应液中加入2mL饱和氯化铵溶液和二氯甲烷(30mL)搅拌5分钟,除去水相,有机相减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化,得到化合物15-4。 1H NMR(400MHz,CDCl 3)δppm 7.3-7.3(m,1H),7.27(s,2H),7.2-7.2(m,2H),7.0-7.1(m,1H),7.0-7.0(m,1H),6.8-6.9(m,2H),4.5-4.6(m,1H),4.45(br s,1H),3.9-4.0(m,2H),3.5-3.7(m,1H),3.1-3.3(m,1H),3.0-3.1(m,1H),2.96(s,1H),2.9-2.9(m,2H),2.8-2.9(m,2H),1.4-1.5(m,15H),1.2-1.3(m,9H)。
5)化合物15-5的合成
Figure PCTCN2020086087-appb-000150
将15-4(100mg,165μmol)溶于二氯甲烷(1mL)中,加入三乙胺(50mg,494μmol),滴加对甲基苯甲酰氯(30mg,197μmol),0℃下搅拌2小时。向反应液中加入3mL水,2mL二氯甲烷,萃取,分液,水相用二氯甲烷(2mL×3)萃取,有机相合并后减压浓缩,残余物经硅胶柱层析分离纯化,得到化合物15-5。LCMS(ESI)m/z:725(M+1)。
6)化合物15的合成
Figure PCTCN2020086087-appb-000151
将化合物15-5(166mg,137μmol)溶于盐酸/甲醇(4M,1mL)中,10℃下,继续搅拌1小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物15盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 8.16(d,J=7.8Hz,1H),7.74(t,J=6.2Hz,1H),7.64(d,J=8.2Hz,2H),7.24(dd,J=5.9,7.6Hz,4H),7.1- 7.2(m,3H),7.04(d,J=8.6Hz,2H),6.8-6.8(m,2H),4.5-4.7(m,2H),3.96(q,J=7.0Hz,2H),2.8-3.1(m,6H),2.58(s,2H),2.38(s,3H),1.3-1.4(m,15H)。
实施例16化合物16的合成
Figure PCTCN2020086087-appb-000152
1)化合物16-1的合成
Figure PCTCN2020086087-appb-000153
在0℃下,15-4(100mg,164μmol)溶于二氯甲烷(1mL)中,加入三乙胺(50mg,494μmol),滴加对氯苯甲酰氯(31mg,181μmol),继续搅拌2小时,向反应液中加入2mL水和5mL二氯甲烷搅拌5分钟,除去水相,有机相减压浓缩除去溶剂,残余物经硅胶柱层析分离,得到化合物16-1。LCMS(ESI)m/z:745(M+1)。
2)化合物16的合成
Figure PCTCN2020086087-appb-000154
将化合物16-1(177mg,142μmol)溶于盐酸/甲醇(4M,1mL)中,10℃下继续搅拌1小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物16盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 7.7-7.8(m,3H),7.4-7.5(m,2H),7.2-7.3(m,2H),7.1-7.2(m,3H),7.06(d,J=8.6Hz,2H),6.8-6.8(m,2H),4.60(m,J=6.6,8.2,19.1Hz,2H),3.98(q,J=7.0Hz,2H),2.8-3.1(m,6H),2.60(s,2H),2.6-2.6(m,1H),1.3-1.4(m,15H)。
实施例17化合物17的合成
Figure PCTCN2020086087-appb-000155
1)化合物17-1的合成
Figure PCTCN2020086087-appb-000156
在0℃下,将化合物15-4(60mg,98μmol)溶于二氯甲烷(1mL)中,滴加三乙胺(30mg,296μmol),环己酰氯(21mg,148μmol),继续搅拌1小时,反应液加入3mL水,二氯甲烷(2mL×3)萃取,有机相合并后减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化,得到化合物17-1。LCMS(ESI)m/z:717(M+1)。
2)化合物17的合成
Figure PCTCN2020086087-appb-000157
将17-1(40mg,55μmol)溶于盐酸/甲醇(4M,2mL)中,10℃下,继续搅拌0.5小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物17盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm7.2-7.3(m,2H),7.2-7.2(m,1H),7.1-7.2(m,2H),7.00(d,J=8.6Hz,2H),6.8-6.8(m,2H),4.56(dd,J=6.4,8.1Hz,1H),4.43(dd,J=6.2,8.5Hz,1H),3.98(q,J=7.0Hz,2H),2.9-3.0(m,2H),2.8-2.9(m,3H),2.6-2.7(m,3H),1.5-1.8(m,5H),1.3-1.5(m,15H),1.1-1.3(m,5H)。
实施例18化合物18的合成
Figure PCTCN2020086087-appb-000158
1)化合物18-1的合成
Figure PCTCN2020086087-appb-000159
冰水浴0℃下,将15-4(60mg,98μmol)溶于二氯甲烷(1mL)中,滴加三乙胺(30mg,296μmol),正丙酰氯(13mg,138μmol),继续搅拌1小时。向反应液中加入3mL水,二氯甲烷(2mL×3)萃取,合并有机相,减压浓缩除去溶剂,残余物经硅胶柱层析分离纯化,得到化合物18-1。LCMS(ESI)m/z:663(M+1)。
2)化合物18的合成
Figure PCTCN2020086087-appb-000160
将18-1(40mg,60μmol)溶于盐酸/甲醇(4M,2mL)中,10℃下继续搅拌0.5小时。反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物18盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm7.2-7.3(m,2H),7.2-7.2(m,1H),7.1-7.2(m,2H),7.01(d,J=8.6Hz,2H),6.8-6.8(m,2H),4.54(dd,J=6.5,8.2Hz,1H),4.43(dd,J=6.7,8.2Hz,1H),3.98(q,J=7.0Hz,2H),2.9-3.0(m,2H),2.8-2.9(m,3H),2.7-2.7(m,1H),2.64(s,2H),2.16(q,J=7.6Hz,2H),1.3-1.5(m,15H),1.03(t,J=7.6Hz,3H)。
实施例19化合物19的合成
Figure PCTCN2020086087-appb-000161
1)化合物19-1的合成
Figure PCTCN2020086087-appb-000162
冰水浴0℃下,将15-4(60mg,98μmol)溶于二氯甲烷(1mL)中,滴加三乙胺(30mg,296μmol)和噻吩-2甲酰氯(18mg,128μmol),继续搅拌1小时,加入3mL水,二氯甲烷(3mL×3)萃取,有机相后减压浓缩除去溶剂,残余物经制备TLC纯化,得到化合物19-1。LCMS(ESI)m/z:717(M+1)。
2)化合物19的合成
Figure PCTCN2020086087-appb-000163
将19-1(50mg,70μmol)溶于盐酸/甲醇(4M,2mL)中,10℃下继续搅拌0.5小时。反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物19盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm7.70(dd,J=1.1,3.8Hz,1H),7.65(dd,J=1.1,5.0Hz,1H),7.2-7.3(m,3H),7.1-7.2(m,3H),7.05(d,J=8.8Hz,2H),6.8-6.8(m,2H),4.5-4.6(m,2H),3.97(q,J=7.0Hz,2H),3.03(dd,J=6.1,13.9Hz,1H),2.9-3.0(m,1H),2.8-2.9(m,4H),2.60(s,2H),1.3-1.4(m,15H)。
实施例20化合物20的合成
Figure PCTCN2020086087-appb-000164
1)化合物20-1的合成
Figure PCTCN2020086087-appb-000165
冰水浴0℃及氮气保护下,将15-4(82mg,135μmol),2-吡啶甲酸(24mg,202μmol)溶于N,N-二甲基甲酰胺(2mL)中,加入N,N-二异丙基乙胺(35mg,270μmol),三正丙基环磷酸酐50%乙酸乙酯溶液(172mg,270μmol),得到的混合物继续搅拌1小时,向反应液中加入6mL水,乙酸乙酯(4mL×3)萃取,有机相合并后减压浓缩除去溶剂,得到化合物20-1。LCMS(ESI)m/z:712(M+1)。
2)化合物20的合成
Figure PCTCN2020086087-appb-000166
将20-1(80mg,112μmol)溶于盐酸/甲醇(4M,2mL)中,10℃下,继续搅拌0.5小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物20盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm8.77(br s,1H),8.3-8.4(m,2H),7.92(br s,1H),7.2-7.3(m,5H),7.04(d,J=8.2Hz,2H),6.76(d,J=8.6Hz,2H),4.80(br t,J=7.0Hz,1H),4.59(t,J=7.5Hz,1H),3.95(q,J=6.9Hz,2H),3.0-3.1(m,3H),2.8-2.9(m,3H),2.61(s,2H),1.3-1.4(m,15H)。
实施例21化合物21的合成
Figure PCTCN2020086087-appb-000167
1)化合物21-2的合成
Figure PCTCN2020086087-appb-000168
冰水浴0℃下,向原料21-1(1g,3mmol)的四氢呋喃(20mL)溶液中加入钠氢(286mg,7mmol)搅拌30分钟,随后加入碘甲烷(610mg,4mmol),得到的混合物加热到50℃搅拌24小时。向反应液中加入10mL饱和氯化铵水溶液和30mL乙酸乙酯,搅拌5分钟,除去水相,有机相减压浓缩,得到化合物21-2。LCMS(ESI)m/z:238(M-55)。
2)化合物21-3的合成
Figure PCTCN2020086087-appb-000169
在15℃下,向原料21-2(1g,3mmol)的二氯甲烷(10mL)溶液中加入盐酸/甲醇(4M,5mL),得到的反应液搅拌16小时。反应液直接减压浓缩,残余物溶于20mL乙酸乙酯和10mL饱和碳酸氢钠水溶液搅拌10分钟,除去水相,有机相减压浓缩,残余物经过过柱机纯化,得到化合物21-3。 1H NMR(400MHz, CDCl 3)δppm 7.29(d,J=7.5Hz,2H),7.24(d,J=7.3Hz,1H),7.19-7.14(m,2H),3.67(s,3H),3.48(s,1H),2.98-2.92(m,2H),2.36(s,3H)。
3)化合物21-4的合成
Figure PCTCN2020086087-appb-000170
冰水浴0℃下,向原料21-3(0.5g,2mmol)和2-6(370mg,2mmol)的N,N-二甲基甲酰胺(8mL)溶液中加入N,N-二异丙基乙胺(412mg,3mmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(2.03g,3mmol),得到的混合物升温至15℃搅拌4小时。向反应液中加入5mL水和20mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,残余物经过过柱机的纯化,得到化合物21-4。LCMS(ESI)m/z:489(M+1)。
4)化合物21-5的合成
Figure PCTCN2020086087-appb-000171
在20℃下,向原料21-4(0.3g,614μmol)的甲醇(5mL)溶液中加入一水合氢氧化锂(4M,767uL),得到的混合物搅拌16小时。向反应液中加入2M柠檬酸水溶液调节pH值小于4,随后加入10mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,残余物经过Pre-HPLC的纯化,得到化合物21-5。LCMS(ESI)m/z:475(M+1)。
5)化合物21-6的合成
Figure PCTCN2020086087-appb-000172
冰水浴0℃下,向原料21-5(0.14g,295μmol)和3-7(87mg,324μmol)的N,N-二甲基甲酰胺(3mL)溶液中加入N,N-二异丙基乙胺(76mg,590μmol)和三正丙基环磷酸酐50%乙酸乙酯溶液(375mg,590μmol),得到的混合物升温至25℃搅拌16小时。向反应液中加入3mL水和5mL乙酸乙酯搅拌5分钟,除去水相,有机相减压浓缩,得到化合物21-6。LCMS(ESI)m/z:725(M+1)。
6)化合物21的合成
Figure PCTCN2020086087-appb-000173
将化合物21-6(0.22g,303μmol)溶于二氯甲烷(1mL)中,加入盐酸/甲醇(4M,880uL),20℃下继续搅拌0.5小时,反应液直接减压浓缩,残余物经过制备HPLC(酸性体系)纯化得到化合物21盐酸盐。 1H NMR(400MHz,MeOD-d 4)δppm 7.8-7.8(m,2H),7.5-7.6(m,1H),7.4-7.5(m,3H),7.2-7.3(m,6H),7.06(d,J=8.8Hz,2H),6.79(d,J=8.8Hz,2H),5.36(t,J=7.9Hz,1H),5.04(t,J=7.3Hz,1H),3.9-4.0(m,2H),3.25(dd,J=7.3,14.0Hz,1H),3.00(s,3H),2.9-2.9(m,1H),2.8-2.9(m,2H),2.6-2.7(m,3H),2.53(s,2H),1.34(t,J=3.4Hz,15H);LCMS(ESI)m/z:625(M+1)。
实验例1测试化合物对血浆激肽释放酶(PKal)的抑制作用
1.PKal反应缓冲液:25mM Tris-HCl,pH 8.0,100mM NaCl,pH 8.5,0.01%Brij35,and 1%DMSO(最终浓度)。
2.酶:PKal(R&D Systems Cat#2497-SE),在小鼠骨髓瘤细胞株中表达的重组人源血浆激肽释放酶,由NS0-衍生的Gly20-Ala638,C-端带有60-His附属物,MW=70kDa。酶的活化:(1)将rhPKal稀释为200μg/mL的激活缓冲液(100mM Tris,10mM CaCl2,150mM NaCl,pH 7.5(TCN));(2)将嗜热菌蛋白酶(Thermolysin)稀释为20μg/mL的激活缓冲液;(3)将rhPKal(200μg/mL)和嗜热菌蛋白酶(20μg/mL)等体积混合;(4)37℃孵育30min;(5)再用50μM EDTA终止反应。
3.基质(Enzo Cat#P-139):10μM Z-FR-AMC(AMC:7-氨基-4-甲基香豆素)。
4.检测:EnVision(PE),Ex/Em 355/460nm。
5.反应过程:(1)准备指定的酶和基质在新配制的激活缓冲液中;(2)将酶溶液注入反应孔中;(3)采用声学技术(Echo 550,LabCyte Inc.Sunnyvale,CA)将供试品的DMSO溶液注入反应混合液中,并控制在纳升范围内;(4)预培养10min后,将基质溶液注入到反应孔中开始反应;(5)酶的活性可通过荧光标记肽基质的荧光信号增加来指示,每5min监测一次,室温下持续120min;(6)数据分析:测量直线的斜率*(荧光信号/时间),斜率可由excel计算出来,通过Prism软件拟合曲线。化合物对血浆激肽释放酶(PKal)的抑制作用测试结果如下表1所示。
表1化合物对血浆激肽释放酶的抑制作用测试结果
化合物编号 IC 50(人PKal)nM 化合物编号 IC 50(人PKal)nM
化合物1盐酸盐 1.00 化合物12盐酸盐 32.4
化合物2盐酸盐 7.64 化合物13盐酸盐 21.5
化合物3盐酸盐 0.55 化合物14盐酸盐 2.72
化合物4盐酸盐 2.03 化合物15盐酸盐 0.95
化合物5盐酸盐 1.21 化合物16盐酸盐 0.92
化合物6盐酸盐 11.6 化合物17盐酸盐 11.7
化合物7盐酸盐 0.16 化合物18盐酸盐 6.17
化合物8盐酸盐 0.85 化合物19盐酸盐 0.92
化合物9盐酸盐 0.45 化合物20盐酸盐 0.93
化合物10盐酸盐 1.32 化合物21盐酸盐 0.58
化合物11盐酸盐 100    
实验结论:本发明化合物对血浆激肽释放酶(PKal)的抑制作用显著。
实验例2本发明化合物在兔眼中药代动力学测试
1.摘要
以雄性新西兰白兔为受试动物,应用LC-MS/MS法测定单次、两侧、玻璃体腔注射给予化合物3和7盐酸盐后不同时刻眼组织中的药物浓度。研究化合物3和7盐酸盐联合给药后在兔眼中的药代动力学行为,评价其药动学特征。
2.实验方案
2.1试验药品:化合物3和7盐酸盐
2.2试验动物:健康成年雄性新西兰白兔3只,分成3组,每组2只眼睛。动物购买自邳州市东方养殖有限公司,动物生产许可证号:SCXK(苏)2014-0005。
2.3药物配制:称取适量样品,用磷酸盐缓冲液(PBS)溶解,搅拌超声后达到4.2μg/mL的澄清状态用于玻璃体腔注射给药。
2.4给药:雄性新西兰白兔3只,分成3组,每组进行玻璃体腔注射给药,联合给药,给药体积为50μL/眼,剂量为200ng/眼。
3.实验操作及结果
雄性新西兰白兔玻璃体腔注射给予化合物3和7盐酸盐后,分别在4,24及48小时使一只兔安乐死并测量在视网膜/脉络膜、玻璃体和房水中化合物的浓度。
用LC-MS/MS法测定兔眼玻璃体腔注射给药后,眼组织中待测化合物的含量。方法的线性范围为2.00~6000nmol/L;眼组织浓度数据呈现在表2,其中每个眼组织浓度数据是每只兔的左右眼的平均值。化合物3和7盐酸盐的药代动力学测试结果如下表2所示。
表2本发明化合物在兔眼中药代动力学测试结果
Figure PCTCN2020086087-appb-000174
注:ND表示未检测到该数据。
实验结论:本发明化合物有较好的兔眼部药代性质,且主要在视网膜/脉络膜分布。
实验例3本发明化合物在大鼠眼中药代动力学测试
1.摘要
以雄性大鼠为受试动物,应用LC-MS/MS法测定单次、两侧、玻璃体腔注射给予待测化合物后不同时刻眼组织中的药物浓度。研究化合物联合给药后在大鼠眼中的药代动力学行为,评价其药动学特征。
2.实验方案
2.1试验药品:化合物3、7、8、9和21盐酸盐
2.2试验动物:健康成年雄性大鼠6只,分成3组,每组4只眼睛。动物购买自北京维通利华实验动物技术有限公司,动物生产许可证号:SCXK(京)2016-0006。
2.3药物配制:称取适量样品,用生理盐水(BSS)溶解,搅拌超声后得到12.6μg/mL的储备液,然后稀释到4.2μg/mL的澄清状态用于玻璃体腔注射给药。
2.4给药:雄性大鼠6只,分成3组,每组进行玻璃体腔注射给药,联合给药,给药体积为5μL/眼,剂量为20ng/眼。
3.实验操作及结果
雄性大鼠玻璃体腔注射给予化合物3、7、8、9和21盐酸盐后,分别在4,24及48小时使一组(2只)大鼠安乐死,取4只眼睛合并眼组织,测量在视网膜/脉络膜、玻璃体和房水中化合物的浓度。
用LC-MS/MS法测定大鼠眼玻璃体腔注射给药后,眼组织中待测化合物的含量。方法的线性范围为2.00~6000nmol/L;眼组织浓度数据呈现在表3,其中每个眼组织浓度数据是2只大鼠的左右眼合并后检测所得。本发明化合物的药代动力学测试结果如下表3所示。
表3本发明化合物在大鼠眼中药代动力学测试结果
Figure PCTCN2020086087-appb-000175
Figure PCTCN2020086087-appb-000176
注:ND表示未检测到该数据。
实验结论:本发明化合物都有较好的大鼠眼部药代性质,且主要在视网膜/脉络膜分布。
实验例4本发明化合物对CA-1(100ng)诱导的大鼠DME模型的体内药效学研究
1.实验设计
从25只雄性SD大鼠中选择20只,根据体重分入5组,每组4只,每组各1只备用动物,在给药前和给药后48小时,对所有动物进行视网膜光学相干断层扫描检查。选择合适的扫描位置进行测量并标记视网膜厚度。通过各组视网膜厚度的变化,对供试品改善视网膜水肿的作用进行比较,筛选最优的化合物。以上给药及检查的实验操作,须遵循先右眼后左眼的顺序。
表4本发明化合物对CA-1诱导的大鼠DME模型实验方案
给药组 化合物 给药体积 造模剂 给药频率 动物数
1 生理盐水 5μL -- 单次给药 4
2 生理盐水 5μL 100ng CA-1 单次给药 4
3 化合物3盐酸盐 5μL×1μM 100ng CA-1 单次给药 4
4 化合物7盐酸盐 5μL×1μM 100ng CA-1 单次给药 4
2.实验材料
2.1实验动物
种属:大鼠
品系:SD大鼠,SPF级
周龄及体重:8-10周龄,体重300-400克
性别:雄性
供应商:北京维通利华实验动物技术有限公司
动物合格证号:11400700316497
2.2造模剂
碳酸酐酶-1(CA-1,Sigma)
3.实验方法与步骤
3.1给药及造模
在造模当天,使用氯胺酮(30mg/kg)和赛拉嗪(2mg/kg)对动物麻醉后进行视网膜OCT检查,然后玻璃体腔注射生理盐水或CA-1(100ng)的溶液或CA-1(100ng)与供试品的混合溶液。于注射后48小时以同样的麻醉方式对动物实行OCT检查,对造模给药前后视网膜厚度进行测量。
注意,麻醉前使用散瞳剂对动物进行散瞳,确保瞳孔散开后进行后进行麻醉及后续操作。
3.2光学相干断层扫描(OCT)检查
给药前及造模后48小时,对动物麻醉后,进行光学相干断层扫描检查,使用适当的散瞳剂,确保麻醉前确保动物的瞳孔已完全散开。OCT检查要求如下:
1)数据采集时须将视盘置于红外眼底图像正中位置;
2)采用“米字”形,交叉点过视盘,以最宽长度进行视网膜扫描。
3)在尽可能的情况下采用软件追踪功能,进行给药前后视网膜厚度的比较,如果无法使用追踪功能,则尽可能调节眼位与给药前一致,并尽量保证断层扫描图像的清晰,以利于给药前后视网膜厚度的比较。
4.实验结果
造模前OCT检查各组动物的视网膜显示正常,造模后48小时观察到只注射生理盐水的大鼠视网膜明显增厚,注射药物的大鼠视网膜增厚有不同程度的缓解,化合物对视网膜增厚的缓解率分别为:化合物3盐酸盐(100%),化合物7盐酸盐(60%)。同时动物对上述受试化合物都具有良好的耐受性。
实验例5本发明化合物对CA-1(200ng)诱导的大鼠DME模型的体内药效学研究
1.实验设计
从30只雄性SD大鼠中选择24只,根据体重分入6组,每组4只,每组各1只备用动物,在给药前和给药后48小时,对所有动物进行视网膜光学相干断层扫描检查。选择合适的扫描位置进行测量并标记视网膜厚度。通过各组视网膜厚度的变化,对供试品改善视网膜水肿的作用进行比较,筛选最优的化合物。以上给药及检查的实验操作,须遵循先右眼后左眼的顺序。
表5本发明化合物对CA-1诱导的大鼠DME模型实验方案
给药组 化合物 给药体积 造模剂 给药频率 动物数
1 生理盐水 5μL -- 单次给药 4
2 生理盐水 5μL 200ng CA-1 单次给药 4
4 化合物8盐酸盐 5μL×1μM 200ng CA-1 单次给药 4
5 化合物9盐酸盐 5μL×1μM 200ng CA-1 单次给药 4
6 化合物21盐酸盐 5μL×1μM 200ng CA-1 单次给药 4
2.实验材料
2.1实验动物
种属:大鼠
品系:SD大鼠,SPF级
周龄及体重:8-10周龄,体重300-400克
性别:雄性
供应商:北京维通利华实验动物技术有限公司
动物合格证号:11400700369466
2.2造模剂
碳酸酐酶-1(CA-1,Sigma)
3.实验方法与步骤
3.1给药及造模
在造模当天,使用氯胺酮(30mg/kg)和赛拉嗪(2mg/kg)对动物麻醉后进行视网膜OCT检查,然后玻璃体腔注射生理盐水或CA-1(200ng)的溶液或CA-1(200ng)与供试品的混合溶液。于注射后48小时以同样的麻醉方式对动物实行OCT检查,对造模给药前后视网膜厚度进行测量。
注意,麻醉前使用散瞳剂对动物进行散瞳,确保瞳孔散开后进行后进行麻醉及后续操作。
3.2光学相干断层扫描(OCT)检查
给药前及造模后48小时,对动物麻醉后,进行光学相干断层扫描检查,使用适当的散瞳剂,确保麻醉前确保动物的瞳孔已完全散开。OCT检查要求如下:
1)数据采集时须将视盘置于红外眼底图像正中位置;
2)采用“米字”形,交叉点过视盘,以最宽长度进行视网膜扫描。
3)在尽可能的情况下采用软件追踪功能,进行给药前后视网膜厚度的比较,如果无法使用追踪功能,则尽可能调节眼位与给药前一致,并尽量保证断层扫描图像的清晰,以利于给药前后视网膜厚度的比较。
4.实验结果
造模前OCT检查各组动物的视网膜显示正常,造模后48小时观察到只注射生理盐水的大鼠视网膜明显增厚,注射药物的大鼠视网膜增厚有不同程度的缓解,化合物对视网膜增厚的缓解率分别为:化合物8盐酸 盐(36%),化合物9盐酸盐(24%),化合物21盐酸盐(24%)。同时动物对上述受试化合物都具有良好的耐受性。

Claims (26)

  1. 式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2020086087-appb-100001
    其中,
    E 1、E 2和E 3分别独立地选自-(CH 2) n-;
    各n独立地为0、1或2;
    环A选自
    Figure PCTCN2020086087-appb-100002
    T 1、T 2和T 3分别独立地选自N和CR 6
    T 4选自N和CR 7
    T 5选自N和CR 8
    R 1选自C 1-6烷基、C 4-8环烷基、5-6元杂芳基和C 6-10芳基,所述C 1-6烷基、C 4-8环烷基、5-6元杂芳基和C 6- 10芳基任选被1、2或3个R a取代;
    R 2和R 3分别独立地选自H和C 1-3烷基;
    R 4选自H、F、Cl、Br、I、OH、NH 2、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R b取代;
    R 5选自H和C 1-3烷基;
    R 6分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
    R 7选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R d取代;
    R 8选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R e取代;
    或者,R 7与R 8及其它们所连接的C原子一起形成一个苯基,所述苯基任选被1、2或3个R f取代;
    R a分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷基;
    R b分别独立地选自H、F、Cl、Br、I、OH、NH 2和C 1-3烷氧基,其中所述C 1-3烷氧基任选被1、2或3个R取代;
    R c、R d、R e和R f分别独立地选自H、F、Cl、Br、I、OH和NH 2
    R分别独立地选自F、Cl、Br、I、OH和NH 2
    所述5-6元杂芳基包含1、2、3或4个独立选自-NH-、-O-、-S-和N的杂原子或杂原子团。
  2. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R a分别独立地选自H、F、Cl、Br、I、OH、NH 2、CH 3和-CH 2-CH 3
  3. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R b分别独立地选自H、F、Cl、Br、I、OH、NH 2和-O-CH 3
  4. 根据权利要求1或2所述化合物、其异构体或其药学上可接受的盐,其中,所述R 1选自C 1-3烷基、
    Figure PCTCN2020086087-appb-100003
    其中,
    E 4和E 5分别独立地选自-(CH 2) m-;
    E 6、E 7和E 8分别独立地选自-(CH 2) j-;
    m为0、1或2;
    j为0、1或2;
    T 6、T 7、T 8、T 9和T 10分别独立地选自N和CH;
    所述C 1-3烷基、
    Figure PCTCN2020086087-appb-100004
    任选被1、2或3个R a取代;
    R a如权利要求1或2所定义。
  5. 根据权利要求4所述化合物、其异构体或其药学上可接受的盐,其中,所述R 1选自CH 3-CH 2-、
    Figure PCTCN2020086087-appb-100005
    Figure PCTCN2020086087-appb-100006
    所述CH 3-CH 2-、
    Figure PCTCN2020086087-appb-100007
    Figure PCTCN2020086087-appb-100008
    任选被1、2或3个R a取代。
  6. 根据权利要求5所述化合物、其异构体或其药学上可接受的盐,其中,所述R 1选自CH 3-CH 2-、
    Figure PCTCN2020086087-appb-100009
    Figure PCTCN2020086087-appb-100010
  7. 根据权利要求6所述化合物、其异构体或其药学上可接受的盐,其中,所述R 1选自CH 3-CH 2-、
    Figure PCTCN2020086087-appb-100011
    Figure PCTCN2020086087-appb-100012
  8. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 2和R 3分别独立地选自H和CH 3
  9. 根据权利要求1或3所述化合物、其异构体或其药学上可接受的盐,其中,所述R 4选自H、F、Cl、Br、I、OH、NH 2、CH 3、-CH 2-CH 3、-O-CH 3和-O-CH 2-CH 3,其中,所述CH 3、-CH 2-CH 3、-O-CH 3和-O-CH 2-CH 3任选被1、2或3个R b取代。
  10. 根据权利要求9所述化合物、其异构体或其药学上可接受的盐,其中,所述R 4选自H、F、Cl、Br、I、OH、NH 2、CH 3、-CH 2-CH 3、-O-CH 3、-O-CH 2-CH 3
    Figure PCTCN2020086087-appb-100013
  11. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 5选自H和CH 3
  12. 根据权利要求10或11所述化合物、其异构体或其药学上可接受的盐,其中,所述结构单元
    Figure PCTCN2020086087-appb-100014
    选自
    Figure PCTCN2020086087-appb-100015
  13. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 6分别独立地选自H、F、Cl、Br、I、OH和NH 2
  14. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 7选自H、F、Cl、Br、I、OH和NH 2
  15. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 8选自H、F、Cl、Br、I、OH和NH 2
  16. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述R 7与R 8及它们所连接的C原子一起形成
    Figure PCTCN2020086087-appb-100016
  17. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述环A选自
    Figure PCTCN2020086087-appb-100017
    Figure PCTCN2020086087-appb-100018
  18. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述环A选自
    Figure PCTCN2020086087-appb-100019
    Figure PCTCN2020086087-appb-100020
  19. 根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,所述结构单元
    Figure PCTCN2020086087-appb-100021
    选自
    Figure PCTCN2020086087-appb-100022
  20. 根据权利要求1-18任意一项所述化合物、其异构体或其药学上可接受的盐,其选自式(Ⅰ’)化合物:
    Figure PCTCN2020086087-appb-100023
    其中,
    R 1如权利要求1~7所定义;
    R 2和R 3如权利要求1或8所定义;
    R 4和R 5如权利要求1、9、10或11所定义;
    环A如权利要求1、17或18所定义;
    E 1、E 2和E 3如权利要求1所定义。
  21. 根据权利要求20所述化合物、其异构体或其药学上可接受的盐,其选自式(I-1)和式(I-2)化合物:
    Figure PCTCN2020086087-appb-100024
    其中,
    R 1如权利要求1~7所定义;
    R 2和R 3如权利要求1或8所定义;
    R 4和R 5如权利要求1、9、10或11所定义;
    环A如权利要求1、17或18所定义。
  22. 根据权利要求21所述化合物、其异构体或其药学上可接受的盐,其选自式(I-1A)、(I-2A)、(I-2B)和(I-2C)化合物:
    Figure PCTCN2020086087-appb-100025
    其中,
    R 2和R 3如权利要求1或8所定义;
    R 4和R 5如权利要求1、9、10或11所定义;
    T 1、T 2、T 3、T 4和T 5如权利要求1所定义;
    T 6、T 7、T 8、T 9和T 10如权利要求4所定义。
  23. 下式化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2020086087-appb-100026
    Figure PCTCN2020086087-appb-100027
  24. 根据权利要求1-23任意一项所述的化合物、其异构体或其药学上可接受的盐,其中所述的盐选自盐酸盐。
  25. 根据权利要求1-23任意一项所述的化合物、其异构体或其药学上可接受的盐在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。
  26. 根据权利要求24所述的盐酸盐在制备治疗血浆激肽释放酶介导的相关疾病的药物的用途。
PCT/CN2020/086087 2019-04-22 2020-04-22 用作血浆激肽释放酶抑制剂的双环烷类化合物 WO2020216240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080016791.0A CN113474318A (zh) 2019-04-22 2020-04-22 用作血浆激肽释放酶抑制剂的双环烷类化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910324376 2019-04-22
CN201910324376.0 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020216240A1 true WO2020216240A1 (zh) 2020-10-29

Family

ID=72940834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086087 WO2020216240A1 (zh) 2019-04-22 2020-04-22 用作血浆激肽释放酶抑制剂的双环烷类化合物

Country Status (2)

Country Link
CN (1) CN113474318A (zh)
WO (1) WO2020216240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572231A (zh) * 2022-09-30 2023-01-06 浙江工业大学 一种双环[1.1.1]戊烷-1,3-二胺的盐的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022535A2 (en) * 2005-08-19 2007-02-22 Pharmacofore, Inc. Prodrugs of active agents
WO2010084199A1 (en) * 2009-01-26 2010-07-29 Academisch Medisch Centrum Drug delivery system for use in the treatment of vascular and vessel-related pathologies
WO2013005045A1 (en) * 2011-07-07 2013-01-10 Kalvista Pharmaceuticals Limited Benzylamine derivatives as inhibitors of plasma kallikrein
WO2015164308A1 (en) * 2014-04-22 2015-10-29 Merck Sharp & Dohme Corp. FACTOR XIa INHIBITORS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022535A2 (en) * 2005-08-19 2007-02-22 Pharmacofore, Inc. Prodrugs of active agents
WO2010084199A1 (en) * 2009-01-26 2010-07-29 Academisch Medisch Centrum Drug delivery system for use in the treatment of vascular and vessel-related pathologies
WO2013005045A1 (en) * 2011-07-07 2013-01-10 Kalvista Pharmaceuticals Limited Benzylamine derivatives as inhibitors of plasma kallikrein
WO2015164308A1 (en) * 2014-04-22 2015-10-29 Merck Sharp & Dohme Corp. FACTOR XIa INHIBITORS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572231A (zh) * 2022-09-30 2023-01-06 浙江工业大学 一种双环[1.1.1]戊烷-1,3-二胺的盐的合成方法
CN115572231B (zh) * 2022-09-30 2024-02-13 浙江工业大学 一种双环[1.1.1]戊烷-1,3-二胺的盐的合成方法

Also Published As

Publication number Publication date
CN113474318A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
TW530046B (en) Azetidine derivatives, their preparation and medicaments containing them
CN103402996B (zh) 可用于治疗年龄相关性黄斑变性(amd)的吲哚化合物或其类似物
JP5857068B2 (ja) 抗酸化炎症モジュレーターとしてのピラゾリルおよびピリミジニル三環式エノン
CN108516958B (zh) 稠环衍生物、其制备方法、中间体、药物组合物及应用
CN115702156A (zh) 吡啶酰胺类化合物
CN102459231B (zh) 季铵盐化合物
CN113272301A (zh) 杂环类化合物、中间体、其制备方法及应用
CN1740169B (zh) 用作类胰蛋白酶抑制剂的芳基甲胺衍生物
WO2014198195A1 (zh) 联芳基取代的4-氨基丁酸衍生物及其制备方法和用途
CN108440515A (zh) 取代的苯并呋喃基和苯并噁唑基化合物及其用途
WO1998027063A1 (fr) Derives d&#39;aminopyrazole
JPH07509490A (ja) アミノメチレンで置換した非芳香族複素環式化合物及びサブスタンスpのアンタゴニストとしての使用
CN102256944A (zh) 鞘氨醇-1-磷酸受体拮抗剂
CN102224142A (zh) 具有5-ht2b受体拮抗活性的新型吡唑-3-羧酰胺衍生物
CN107949562A (zh) 毒蕈碱性m2受体的正性变构调节剂
JPH11503127A (ja) 新規なヘテロ環式化合物
WO2020038457A1 (zh) 作为JAK抑制剂的[1,2,4]三唑并[1,5-a]吡啶类化合物及其应用
CN109790145A (zh) 二氢嘧啶类化合物及其制备方法和用途
CN105980381A (zh) 取代的尿嘧啶及其用途
CN114728967A (zh) 作为jak抑制剂的三并杂环类化合物及其应用
CN112601746B (zh) 吡唑并嘧啶衍生物及其作为pi3k抑制剂的应用
CN105188380A (zh) Lxr调节剂
CN114929694A (zh) 肾上腺素能受体adrac2拮抗剂
CN104109143B (zh) 一类褪黑激素(mt1-mt2)受体激动剂及其制备方法与用途
JPH09510720A (ja) エンドセリンレセプターのアンタゴニスト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796069

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20796069

Country of ref document: EP

Kind code of ref document: A1