WO2020215839A1 - 一种铜基墨水及其制备方法、电极的制备方法 - Google Patents

一种铜基墨水及其制备方法、电极的制备方法 Download PDF

Info

Publication number
WO2020215839A1
WO2020215839A1 PCT/CN2020/071883 CN2020071883W WO2020215839A1 WO 2020215839 A1 WO2020215839 A1 WO 2020215839A1 CN 2020071883 W CN2020071883 W CN 2020071883W WO 2020215839 A1 WO2020215839 A1 WO 2020215839A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
based ink
solution
nanoparticles
substrate
Prior art date
Application number
PCT/CN2020/071883
Other languages
English (en)
French (fr)
Inventor
赵金阳
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2020215839A1 publication Critical patent/WO2020215839A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Definitions

  • the invention relates to the field of laser direct writing, in particular to a copper-based ink, a preparation method thereof, and a preparation method of electrodes.
  • Thin Film Transistor TFT as a driving unit of LCD and LED display devices, has an important influence on the performance of display devices. As the resolution of the display panel increases and the screen size becomes larger, the metal electrode traces of the TFT become longer and longer, and the resistance value becomes larger and larger. The increase in resistance leads to problems such as signal delay, which affects the display performance. Therefore, it is imperative to develop electrode materials with lower resistivity.
  • the metal copper has higher conductivity than the traditional metal aluminum, which can significantly reduce the resistance of the device, and the cost of copper is lower than aluminum, so copper has gradually become the main material required for TFT electrodes.
  • etching technology is mainly used to prepare TFT metal copper electrode.
  • the process includes PVD film formation, photoresist coating, photolithography, wet etching and photoresist stripping, etc.
  • the process is more complicated; and this method causes a lot of problems in the etching process.
  • laser direct writing technology can directly prepare patterned metal electrode structures from metal nanoparticles. This method is widely used in the field of micro-nano processing of polymers, gold and silver nanoparticles.
  • the laser processing can easily cause copper oxidation, resulting in a decrease in electrical conductivity.
  • copper oxidation can be avoided under nitrogen protection, it is not practical for actual mass production.
  • the present invention provides a copper-based ink and its preparation method and electrode preparation method to solve the problem that laser heating in the prior art can easily cause copper oxidation, resulting in a decrease in electrical conductivity, which is not conducive to actual mass production. The problem.
  • the present invention provides a copper-based ink, the raw materials of which according to mass fractions include: copper formate, 5% to 35%; complexing agent, 0.5% to 20%; copper nanoparticles, 2% ⁇ 60%; solvent, balance.
  • the solvent includes at least one of methanol, ethanol, isopropanol, tert-butanol and benzyl alcohol.
  • the complexing agent is an alkanolamine; the alkanolamine is 2-amino-2-methyl-1-propanol or octylamine or a mixture of the two.
  • the amount concentration of the copper nanoparticle substance is twice the amount concentration of the copper formate substance.
  • the present invention also provides a method for preparing copper-based ink, which includes the following steps: S11) dissolving a complexing agent in a solvent, and stirring for 10 to 30 minutes to obtain a first solution. The mass fraction of the complexing agent accounts for copper. 0.5%-20% of the base ink; S12) Add copper formate or copper formate tetrahydrate powder to the first solution and stir for 1 hour to obtain a second solution, wherein the mass fraction of copper formate accounts for 5 percent of the copper-based ink. % To 35%; S13) adding copper nanoparticles to the second solution to obtain the copper-based ink; the mass fraction of the copper nanoparticles accounts for 2% to 60% of the copper-based ink.
  • the preparation method of the copper-based ink further includes the step of preparing copper nanoparticles: S131) at a temperature of 180°, reducing copper acetate into copper nanoparticles by a thermal reduction method in a reaction medium; S132) passing a centrifuge The copper nanoparticles are obtained by separation and purification.
  • reaction medium in step S131) is phenylhydrazine-octylamine-oleic acid.
  • the present invention also provides a method for preparing an electrode, including the following steps: S21) providing a substrate and the copper-based ink according to any one of claims 1 to 4; S22) spin-coating the copper-based ink solution Forming a first film layer on the substrate; S23) heating the substrate to keep the temperature between 60° and 70°; S24) focusing the pulsed laser on the first film layer on the substrate to make The copper nanoparticles in the copper-based ink are melted and then solidified to form an electrode.
  • it also includes S25) moving the substrate or the pulsed laser according to a predetermined route to form a preset pattern on the first film; S26) dissolving and removing the first film not irradiated by the pulsed laser Film layer to obtain a mixed solution containing the copper-based ink.
  • the first film layer not irradiated by the pulsed laser is dissolved and removed by an isopropanol solution, and the mixed solution containing the copper-based ink obtained after dissolution can be used as a new Copper-based ink is reused.
  • the copper-based ink and the preparation method thereof, and the preparation method of the electrode of the present invention are a decomposable copper-based metal organic compound.
  • the copper nano-particles are polymerized under laser to prepare a copper structure, and the copper-based metal organic compound is used as Copper formate decomposes under the laser to generate gas and Cu characteristics, reducing copper oxidation. In this way, a high-precision, high-conductivity copper electrode structure is obtained, which will greatly promote the development of TFTs in display fields such as LCD and OLED.
  • the copper nanoparticles are heated by laser pulses, so that the copper nanoparticles are gathered together and solidified.
  • the generated CO2 and other gases effectively hinder the reaction of O2 with Cu. Therefore, the copper oxidation is effectively avoided, which is beneficial to obtain high Conductivity copper electrode.
  • the corresponding pattern is obtained. Then use a solvent such as isopropanol to wash away the unreacted copper formate, so that the substrate has the copper electrode pattern we need.
  • the washed copper ink can also be recycled, which can effectively avoid material waste.
  • Figure 1 is a flow chart of the preparation of copper nanoparticles in an embodiment.
  • Fig. 2 is a flow chart of the preparation of the copper-based ink in the embodiment.
  • Fig. 3 is a flow chart of electrode preparation in the embodiment.
  • the copper-based ink of the present invention includes the copper formate or copper formate tetrahydrate, copper nanoparticles as a complexing agent, and a solvent.
  • the raw materials of the copper-based ink include in mass fraction: copper formate, 5% to 35%; complexing agent, 0.5% to 20%; copper nanoparticles, 2% to 60%; the balance is solvent.
  • the copper formate or copper formate tetrahydrate is the main body of the copper-based ink, and the copper formate is generally light blue crystal, easily soluble in water, and the solution is sky blue.
  • the complexing agent can undergo a complex reaction with metal ions to form complex ions, so that the reaction in the solution proceeds in the direction of precipitation dissolution, affecting the completeness of precipitation, and even no precipitation phenomenon occurs.
  • the complexing agent of the present invention is alkanolamine (2-amino-2-methyl-1-propanol or octylamine or a mixture of the two in any ratio), the complexing agent and copper formate
  • the molar ratio ranges from 1:10-2:1.
  • the copper nanoparticles are copper nanoparticles without surface oxides, and the concentration of the substance is 0.5 to 4 times the concentration of the copper formate substance, and the optimal ratio is 2 times.
  • the solvent is an alcohol solution such as methanol, ethanol, isopropanol, tert-butanol or benzyl alcohol.
  • the steps of preparing the copper nanoparticles include:
  • Cu melts and polymerizes together under the action of a laser to form a solidified structure.
  • CO2 and H2 can volatilize into the air, so that there is only Cu material on the substrate, which prevents organic matter from remaining in Cu.
  • CO2 and other gases can effectively block oxygen from contacting copper, reducing copper oxidation. Therefore, the ink is very suitable for laser direct writing technology.
  • the preparation method of a copper-based ink in this embodiment includes the following steps:
  • this embodiment also provides a method for preparing an electrode, as shown in FIG. 3, including step S21)-step S24).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

一种铜基墨水,包括以下原料:甲酸铜或甲酸铜四水合物 5%~35%;络合剂 0.5%~20%;铜纳米颗粒 2%~60%;溶剂余量。其制备方法包括:S11)将络合剂溶于溶剂中,搅拌10分钟~30分钟,得到第一溶液;S12)向第一溶液加入甲酸铜或甲酸铜四水合物粉末,搅拌1小时,得到第二溶液;S13)向第二溶液中加入铜纳米颗粒,得到铜基墨水。使用该铜基墨水制备电极的方法,包括:将该铜基墨水溶液旋涂于基板上形成第一膜层;加热基板,使温度保持在60°~70°之间;将脉冲激光聚焦于基板上的第一膜层以使铜基墨水中的铜纳米颗粒熔化后再凝固形成电极。

Description

一种铜基墨水及其制备方法、电极的制备方法 技术领域
本发明涉及激光直写领域,特别涉及一种铜基墨水及其制备方法、电极的制备方法。
背景技术
薄膜场效应晶体管(Thin Film Transistor TFT)作为LCD和LED显示器件的驱动单元,对于显示设备的性能具有重要的影响。而随着显示面板的分辨率的提高和画面尺寸的变大,TFT的金属电极走线也变得越来越长,阻值也就变得越来越大。阻值的提高导致则导致信号延误等问题,从而影响了显示性能,因此开发更低电阻率的电极材料变得势在必行。而金属铜则比传统的金属铝有更高的电导率,可以明显地减小器件阻抗,且铜比铝的成本更低,因此铜逐渐成为TFT电极所需的主要材料。
目前主要采用刻蚀技术制备TFT金属铜电极,其工艺包括PVD成膜、光阻涂布、光刻、湿蚀刻和光阻剥离等多种工艺,工艺较复杂;且该方法在蚀刻过程中造成较多的材料浪费。而激光直写技术作为一种增材制造技术,则可以直接由金属纳米颗粒制备得到图案化的金属电极结构,该方法被广泛应用于聚合物、金、银纳米颗粒的微纳加工领域。然而对于铜纳米颗粒来说,该激光加工极易造成铜氧化,导致其电导率降低。虽然在氮气保护条件下可以避免铜氧化,但这对于实际的大规模生产来说并不实用。因此开发大气环境下的加工方法或材料对于直写铜电极的发展非常必要。而我们通过对铜墨水的优化,制得铜基金属有机物的墨水,使其在激光加工过程中产生CO2等气体来阻碍熔融铜被氧气氧化,从而得到高电导率的铜电极。
技术问题
为了解决上述问题,本发明提供了一种铜基墨水及其制备方法、电极的制备方法用以解决现有技术中激光加热极易造成铜氧化,导致电导率降低,不利于实际的大规模生产的问题。
技术解决方案
解决上述问题的技术方案是,本发明提供了一种铜基墨水,其原料按质量分数包括:甲酸铜,5%~35%;络合剂,0.5%~20%;铜纳米颗粒,2%~60%;溶剂,余量。
进一步的,所述溶剂包括甲醇、乙醇、异丙醇、叔丁醇和苄基醇中的至少一种。
进一步的,所述络合剂为烷醇胺;所述烷醇胺为2-氨基-2-甲基-1-丙醇或辛胺或二者的混合物。
进一步的,所述铜纳米颗粒物质的量浓度为所述甲酸铜物质的量浓度的2倍。
本发明还提供了一种铜基墨水的制备方法,包括如下步骤:S11)将络合剂溶于溶剂中,搅拌10分钟~30分钟,得到第一溶液,所述络合剂质量分数占铜基墨水的0.5%~20%;S12)向所述第一溶液加入甲酸铜或甲酸铜四水合物粉末,搅拌1小时,得到第二溶液,其中所述甲酸铜质量分数占铜基墨水的5%~35%;S13)向所述第二溶液中加入铜纳米颗粒,得到所述的铜基墨水;所述铜纳米颗粒的质量分数占铜基墨水的的2%~60%。
进一步的,所述铜基墨水的制备方法还包括铜纳米颗粒制备步骤:S131)在180°的温度下,在反应介质中通过热还原法将醋酸铜还原成铜纳米颗粒;S132)通过离心机分离纯化得到所述铜纳米颗粒。
进一步的,所述S131)步骤中的反应介质为苯肼-辛胺-油酸。
本发明还提供了一种电极的制备方法,包括以下步骤:S21)提供一基板以及如权利要求1-4中任意一项所述的铜基墨水;S22)将所述铜基墨水溶液旋涂于所述基板上形成第一膜层;S23)加热所述基板,使温度保持在60°~70°之间;S24)将脉冲激光聚焦于所述基板上的所述第一膜层以使所述铜基墨水中的铜纳米颗粒熔化后再凝固形成电极。
进一步的,还包括S25)按预定的路线移动所述基板或所述脉冲激光,在所述第一膜层形成预设图案;S26)溶解并去除未被所述脉冲激光照射的所述第一膜层,得到含所述铜基墨水的混合溶液。
进一步的,所述步骤S26)中,通过异丙醇溶液溶解并去除未被所述脉冲激光照射的所述第一膜层,溶解后得到的含所述铜基墨水的混合溶液可作为新 的铜基墨水重新使用。
有益效果
本发明的铜基墨水及其制备方法、电极的制备方法,铜基墨水的主要成分为可分解的铜基金属有机物,利用铜纳米颗粒激光下聚合来制备铜结构,同时利用铜基金属有机物如甲酸铜在激光下分解产生气体和Cu的特性,减少铜的氧化。从而获得高精度、高电导的铜电极结构,这将对LCD和OLED等显示领域的TFT发展起到很大的促进作用。所述电极的制备方法中,通过激光脉冲加热铜纳米颗粒,使铜纳米颗粒聚集到一起固化成型,产生的CO2等气体有效阻碍O2与Cu反应,因此有效地避免的铜氧化,有利于获得高电导率铜电极。通过按照特定的路径移动基板或光束,从而得到相应的图案。然后利用异丙醇等溶剂洗去未被反应的甲酸铜,这样基板上便有了我们所需的铜电极图案。并且洗去的铜墨水还可以被回收利用,可以有效地避免材料浪费。
附图说明
图1是实施例中的铜纳米颗粒制备流程图。
图2是实施例中的铜基墨水制备流程图。
图3是实施例中的电极制备流程图。
本发明的实施方式
以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在一实施例中,本发明的铜基墨水包括所述甲酸铜或甲酸铜四水合物、络合剂铜纳米颗粒以及溶剂。其中,所述铜基墨水的原料按质量分数包括:甲酸铜,5%~35%;络合剂,0.5%~20%;铜纳米颗粒,2%~60%;余量为溶剂。
所述甲酸铜或甲酸铜四水合物为所述铜基墨水的主体,所述甲酸铜一般浅蓝色晶体,易溶于水,溶液为天蓝色。
所述络合剂可以与金属离子发生络合反应从而形成络合离子,使溶液中 的反应向沉淀溶解的方向进行,影响沉淀的完全程度,甚至不产生沉淀现象。本实施例中,本发明的所述络合剂为烷醇胺(2-氨基-2-甲基-1-丙醇或辛胺或任意比例二者的混合物),络合剂与甲酸铜的摩尔比范围为1:10-2:1。
所述铜纳米颗粒为无表面氧化物的铜纳米颗粒,其物质的量浓度为所述甲酸铜物质的量浓度的0.5至4倍,最优比为2倍。
所述溶剂为甲醇、乙醇、异丙醇、叔丁醇或苄基醇等醇溶液。
如图1所示,其中所述铜纳米颗粒制备步骤包括:
S131)在180°的温度下,在反应介质中通过热还原法将醋酸铜还原成铜纳米颗粒,其中所述反应介质为苯肼-辛胺-油酸。
S132)通过离心机分离纯化得到所述铜纳米颗粒。
由于甲酸铜在激光作用下,可以分解产生Cu(铜)、CO2(二氧化碳)和H2(氢气),其反应方程式如下所示:
Figure PCTCN2020071883-appb-000001
Cu在激光作用下熔融聚合到一起,形成固化结构。而CO2和H2则可以挥发到空气中,从而基底上只有Cu材料,避免了有机物残留在Cu中,同时CO2等气体可以有效阻挡氧气与铜接触,减小了铜的氧化。因此该墨水非常适用于激光直写技术。
如图2所示,为了更好的解释本发明,本实施的一种铜基墨水的制备方法,包括如下步骤:
S11)将络合剂溶于溶剂中,搅拌10分钟~30分钟,得到第一溶液,所述络合剂质量分数占铜基墨水的0.5%~20%。
S12)向所述第一溶液加入甲酸铜或甲酸铜四水合物粉末,搅拌1小时,得到第二溶液,其中所述甲酸铜质量分数占铜基墨水的5%~35%。
S13)向所述第二溶液中加入铜纳米颗粒,得到所述的铜基墨水;所述铜纳米颗粒的质量分数占铜基墨水的2%~60%。
根据以上制备的铜基墨水,本实施例还提供了一种电极的制备方法,如图3所示,包括步骤S21)-步骤S24)。
S21)提供一基板以及所述铜基墨水。
S22)将所述铜基墨水溶液旋涂于所述基板上形成第一膜层。
S23)加热所述基板,加热温度在60°~70°之间,用以去除所述铜基墨水溶液中的溶剂。
S24)将脉冲激光聚焦于所述基板上的所述第一膜层,激光产生的局域热场可以将所述铜基墨水中的铜纳米颗粒处于熔融状态,使铜聚集到一起固化成型,产生的CO2等气体有效阻碍O2(氧气)与Cu反应,因此有效地避免的铜氧化,有利于获得高电导率铜电极。
S25)按预定的路线移动所述基板或所述脉冲激光,在所述第一膜层形成预设图案。
S26)利用异丙醇溶液去除未被所述脉冲激光照射的所述第一膜层,这样基板上便有了我们所需要的铜电极图案,同时被所述异丙醇溶液洗去的所述第一膜层即甲酸铜还可以回收利用,可以有效地避免材料浪费,节约成本。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种铜基墨水,其中,其原料按质量分数包括:
    甲酸铜或甲酸铜四水合物,5%~35%;
    络合剂,0.5%~20%;
    铜纳米颗粒,2%~60%;
    溶剂,余量。
  2. 根据权利要求1所述的铜基墨水,其中,所述溶剂包括甲醇、乙醇、异丙醇、叔丁醇和苄基醇中的至少一种。
  3. 根据权利要求2所述的铜基墨水,其中,
    所述络合剂为烷醇胺;
    所述烷醇胺为2-氨基-2-甲基-1-丙醇或辛胺或二者的混合物。
  4. 根据权利要求1所述的铜基墨水,其中,
    所述铜纳米颗粒物质的量浓度为所述甲酸铜物质的量浓度的2倍。
  5. 一种铜基墨水的制备方法,其中,包括如下步骤:
    S11)将络合剂溶于溶剂中,搅拌10分钟~30分钟,得到第一溶液,所述络合剂质量分数占铜基墨水的0.5%~20%;
    S12)向所述第一溶液加入甲酸铜或甲酸铜四水合物粉末,搅拌1小时,得到第二溶液,其中所述甲酸铜质量分数占铜基墨水的5%~35%;
    S13)向所述第二溶液中加入铜纳米颗粒,得到所述的铜基墨水;所述铜纳米颗粒的质量分数占铜基墨水的2%~60%。。
  6. 根据权利要求5所述的铜基墨水的制备方法,其中,还包括铜纳米颗粒制备步骤:
    S131)在180°的温度下,在反应介质中通过热还原法将醋酸铜还原成铜纳米颗粒;
    S132)通过离心机分离纯化得到所述铜纳米颗粒。
  7. 根据权利要求6所述的铜基墨水的制备方法,其中,
    所述S131)步骤中的反应介质为苯肼-辛胺-油酸。
  8. 一种电极的制备方法,其中,包括以下步骤:
    S21)提供一基板以及所述铜基墨水;
    S22)将所述铜基墨水溶液旋涂于所述基板上形成第一膜层;
    S23)加热所述基板,使温度保持在60°~70°之间;
    S24)将脉冲激光聚焦于所述基板上的所述第一膜层以使所述铜基墨水中的铜纳米颗粒熔化后再凝固形成电极。
  9. 根据权利要求8所述电极的制备方法,其中,还包括
    S25)按预定的路线移动所述基板或所述脉冲激光,在所述第一膜层形成预设图案;
    S26)溶解并去除未被所述脉冲激光照射的所述第一膜层,得到含所述铜基墨水的混合溶液。
  10. 根据权利要求9所述电极的制备方法,其中,
    所述步骤S26)中,通过异丙醇溶液溶解并去除未被所述脉冲激光照射的所述第一膜层,溶解后得到的含所述铜基墨水的混合溶液可作为新的铜基墨水重新使用。
PCT/CN2020/071883 2019-04-23 2020-01-14 一种铜基墨水及其制备方法、电极的制备方法 WO2020215839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910327197.2 2019-04-23
CN201910327197.2A CN110028830A (zh) 2019-04-23 2019-04-23 一种铜基墨水及其制备方法、电极的制备方法

Publications (1)

Publication Number Publication Date
WO2020215839A1 true WO2020215839A1 (zh) 2020-10-29

Family

ID=67239782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071883 WO2020215839A1 (zh) 2019-04-23 2020-01-14 一种铜基墨水及其制备方法、电极的制备方法

Country Status (2)

Country Link
CN (1) CN110028830A (zh)
WO (1) WO2020215839A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028830A (zh) * 2019-04-23 2019-07-19 深圳市华星光电技术有限公司 一种铜基墨水及其制备方法、电极的制备方法
CN111128702A (zh) * 2019-12-10 2020-05-08 Tcl华星光电技术有限公司 一种金属电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245192A (zh) * 2012-03-30 2014-12-24 韩国化学研究院 抑制金属纳米颗粒具有氧化膜的合成方法及经由经处理的溶液制作导电性金属薄膜的方法
CN105754414A (zh) * 2014-12-16 2016-07-13 中国科学院苏州纳米技术与纳米仿生研究所 一种导电纳米铜墨水及其制备方法
CN106147405A (zh) * 2016-07-06 2016-11-23 复旦大学 铜导电油墨及铜导电油墨、铜导电薄膜的制备方法
CN107778995A (zh) * 2017-11-16 2018-03-09 辽宁大学 一种含有甲酸铜的高稳定性无颗粒型铜基导电墨水及其制备方法和应用
CN109270798A (zh) * 2018-08-31 2019-01-25 北京航空航天大学 飞秒激光直写抗氧化铜微结构的方法以及铜离子墨水
CN110028830A (zh) * 2019-04-23 2019-07-19 深圳市华星光电技术有限公司 一种铜基墨水及其制备方法、电极的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341860B (zh) * 2013-08-01 2019-04-09 索尼公司 纳米导电墨水及其制备方法
KR20170133158A (ko) * 2016-05-25 2017-12-05 (주)창성 열분해 구리나노입자를 포함하는 구리잉크 및 레이저 소결법을 이용하는 fpcb 전극 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245192A (zh) * 2012-03-30 2014-12-24 韩国化学研究院 抑制金属纳米颗粒具有氧化膜的合成方法及经由经处理的溶液制作导电性金属薄膜的方法
CN105754414A (zh) * 2014-12-16 2016-07-13 中国科学院苏州纳米技术与纳米仿生研究所 一种导电纳米铜墨水及其制备方法
CN106147405A (zh) * 2016-07-06 2016-11-23 复旦大学 铜导电油墨及铜导电油墨、铜导电薄膜的制备方法
CN107778995A (zh) * 2017-11-16 2018-03-09 辽宁大学 一种含有甲酸铜的高稳定性无颗粒型铜基导电墨水及其制备方法和应用
CN109270798A (zh) * 2018-08-31 2019-01-25 北京航空航天大学 飞秒激光直写抗氧化铜微结构的方法以及铜离子墨水
CN110028830A (zh) * 2019-04-23 2019-07-19 深圳市华星光电技术有限公司 一种铜基墨水及其制备方法、电极的制备方法

Also Published As

Publication number Publication date
CN110028830A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020215839A1 (zh) 一种铜基墨水及其制备方法、电极的制备方法
Green Gold etching for microfabrication
TWI278535B (en) Etchant compositions for metal thin films having as the major component silver
JP5868751B2 (ja) 銀ナノワイヤ分散液の製造方法
US9839961B2 (en) Metallic nanoparticle dispersion
JP5616648B2 (ja) 有機アミン安定化銀ナノ粒子およびそれを製造するためのプロセス
US20100289997A1 (en) Display device
JP2015508434A (ja) 導電性銀構造を形成するためのインク組成物
KR20070092219A (ko) 에칭 용액 및 이를 위한 첨가제
CN106077704B (zh) 一种超长银纳米线及其制备方法和应用
US20160108272A1 (en) A metallic nanoparticle dispersion
CN104985191A (zh) 一种单分散性的银纳米立方及其制备方法及其导电油墨
JP2009007634A (ja) 銀合金膜のエッチング方法およびエッチング溶液
Yasukawa et al. Site-selective chemical etching of GaAs through a combination of self-organized spheres and silver particles as etching catalyst
JP5304637B2 (ja) エッチング液及びエッチング方法
JPS61180427A (ja) 集積回路基板
KR100445314B1 (ko) 유기금속 화합물에 의한 고전도 금속의 배선 형성방법
Li et al. Synergism of Cl− and Br− on the controllable synthesis of flexible silver nanowires
JP2004137586A (ja) エッチング液及びエッチング方法
JP2006265714A (ja) 金属針状体含有金属微粒子の製造方法
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
Ying et al. Synthesis and Reduction Processes of Silver Nanowires in a Silver (I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System
CN102505118B (zh) 一种oled用铬蚀刻液及其制备方法与应用
Yan et al. Formation of substrate-based gold nanocage chains through dealloying with nitric acid
JP2013112767A (ja) プルシアンブルー型錯体を含むインクの製造方法及び前記インクを用いたエレクトロクロミック素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796187

Country of ref document: EP

Kind code of ref document: A1