WO2020215434A1 - 一种 oled 器件及其制备方法 - Google Patents

一种 oled 器件及其制备方法 Download PDF

Info

Publication number
WO2020215434A1
WO2020215434A1 PCT/CN2019/088735 CN2019088735W WO2020215434A1 WO 2020215434 A1 WO2020215434 A1 WO 2020215434A1 CN 2019088735 W CN2019088735 W CN 2019088735W WO 2020215434 A1 WO2020215434 A1 WO 2020215434A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transport layer
thin film
electron transport
contact hole
Prior art date
Application number
PCT/CN2019/088735
Other languages
English (en)
French (fr)
Inventor
潘凌翔
刘明
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020215434A1 publication Critical patent/WO2020215434A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to the field of display technology, in particular to an OLED device and a preparation method thereof.
  • OLED Organic Light-Emitting Diode
  • OLED organic electric laser display device
  • organic light emitting semiconductor organic light emitting semiconductor
  • the basic structure of OLED is a thin, transparent, semi-conducting indium tin oxide (ITO) connected to the positive electrode of electricity, plus another metal-faced cathode, wrapped in a sandwich structure.
  • ITO indium tin oxide
  • the entire structure layer includes: hole transport layer (HTL), light emitting layer (EL) and electron transport layer (ETL).
  • HTL hole transport layer
  • EL light emitting layer
  • ETL electron transport layer
  • the positive electrode holes and the surface cathode charges When the power is supplied to the appropriate voltage, the positive electrode holes and the surface cathode charges will combine in the light-emitting layer, and under the action of the Coulomb force, they will recombine with a certain probability to form excitons (electron-hole pairs) in an excited state.
  • the excited state is unstable in the normal environment.
  • the excitons in the excited state recombine and transfer energy to the luminescent material, making it transition from the ground state energy level to the excited state.
  • the excited state energy generates photons through the radiation relaxation process and releases light It can produce light, and the three primary colors of red, green and blue are produced according to different formulas, which constitute the basic colors.
  • OLED the characteristic of OLED is that it emits light by itself, unlike the thin film transistor liquid crystal display device (English full name: Thin The film transistor-liquid crystal display (TFT-LCD for short) needs backlight, so the visibility and brightness are high.
  • OLED has the advantages of low voltage demand, high power saving efficiency, fast response, light weight, thin thickness, simple structure, low cost, wide viewing angle, almost infinitely high contrast, low power consumption, and extremely high response speed. It has become One of the most important display technologies today is gradually replacing TFT-LCD is expected to become the next-generation mainstream display technology after LCD.
  • OLEDs are applied in two categories: red, green, and blue organic display devices directly emitting light, and white organic display devices with color filters added to light emitting technologies.
  • the products are mainly divided into smaller-sized mobile phones, Pads and other screens and larger-sized TV screens.
  • the surface cathode of the top OLED usually uses a thinner transparent metal as the electrode.
  • the driving voltage gap between the inner edge of the screen near the electrode interface area and the center area of the screen is too large, and there is a voltage drop (IR drop) problem. Therefore, it is necessary to find a new type of OLED device to solve the voltage drop problem of the current OLED device.
  • An object of the present invention is to provide an OLED device and a preparation method thereof, which can solve the voltage drop problem of current OLED devices.
  • an OLED device which includes a substrate, two anodes, an auxiliary cathode, two dams, a functional layer, a thin film layer, and a surface cathode.
  • the two anodes are separately arranged on the substrate, and the auxiliary cathode is arranged on the substrate between the two anodes; the two dams are arranged oppositely on both sides of the auxiliary cathode;
  • the two dams and the auxiliary cathode surface form a contact hole;
  • the functional layer includes an electron transport layer, the electron transport layer is disposed on the two anodes and the two dams;
  • the thin film layer is disposed on The bottom of the contact hole partially covers the surface of the auxiliary cathode, the constituent material of the thin film layer includes a nano-particle structure of electron transport layer material, and the surface cathode is arranged on the electron transport layer and in the contact hole,
  • the surface cathode in the contact hole is directly connected to the auxiliary catho
  • the nanoparticle structure of the electron transport layer material of the thin film layer includes 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene nanoparticles and/or 1,3,5- Tris(1-phenyl-1H-benzimidazol-2-yl)benzene nanoparticles.
  • the constituent material of the thin film layer further includes a conductive material
  • the conductive material includes graphene and/or nano silver.
  • the surface cathode in the contact hole is also connected to the auxiliary cathode through the thin film layer.
  • the functional layer further includes: a hole injection layer, a hole transport layer, and a light-emitting layer.
  • the hole injection layer is disposed on the two anodes; the hole transport layer is disposed on the hole injection layer; and the light-emitting layer is disposed on the hole transport layer; the electron transport The layer is arranged on the light-emitting layer, the bottom of the contact hole and the two dams.
  • Another embodiment of the present invention provides a method for manufacturing an OLED device, which includes: S1, providing a substrate, separating and preparing two anodes on the substrate, and placing them on the substrate between the two anodes.
  • Prepare an auxiliary cathode prepare two dams opposite to each other on both sides of the auxiliary cathode, so that a contact hole is formed between the dam and the surface of the auxiliary cathode;
  • S2 holes are respectively formed on the two anodes Injection layer, hole transport layer and light emitting layer;
  • S4 converting the electron transport layer provided at the bottom of the contact hole into The thin film layer composed of the nano-particle structure of the material;
  • S5 a surface cathode is prepared on the electron transport layer and in the contact hole, so that the surface cathode in the contact hole is directly connected to the auxiliary cathode not covered by the thin film layer .
  • the preparation step of converting the electron transport layer into a thin film layer is: printing a solvent into the surface of the electron transport layer at the bottom of the contact hole by inkjet printing, and the pair is formed on the bottom of the contact hole.
  • the electron transport layer is washed and dissolved to destroy the film structure to form a nanoparticle structure, and then the solvent is volatilized by dry pumping to remove the solvent, so that the nanoparticle structure of the electron transport layer is completely ⁇ The film layer.
  • the solvent includes a good solvent and/or a poor solvent for dissolving a polymer solute;
  • the good solvent includes N,N-dimethylformamide and/or tetrahydrofuran, and the poor solvent includes methanol and/or ethanol .
  • a conductive material is added to the solvent, and the conductive material includes graphene and/or nano silver.
  • the surface cathode in the contact hole is also connected to the auxiliary cathode through the thin film layer.
  • the invention relates to an OLED device and a preparation method thereof, which prints a good solvent, a poor solvent or a mixed solvent of a good solvent and a poor solvent dissolved by a polymer solute into an electron transport layer at the bottom of a contact hole through an inkjet printing technology ,
  • the solvent is allowed to wash and dissolve the electron transport layer at the bottom of the contact hole, destroy the film structure, and form a nano-particle structure, and then remove the solvent to form a thin film layer. Due to the agglomeration effect of the nanoparticles, the uniformity of the film layer structure of the film layer formed by the nanoparticles is deteriorated, and space defects or holes may appear in the film layer, so that it cannot fully and effectively cover the auxiliary cathode underneath. In this way, the surface cathode can be directly connected to the auxiliary cathode that is not covered by the thin film layer, thereby solving the voltage drop problem to a certain extent.
  • the present invention can also add conductive materials such as graphene and nano silver to the solvent for scouring the electron transport layer, so that the conductivity of the resulting thin film layer is increased, so that the surface cathode can also pass through the thin film layer mixed with the conductive material and the conductive material.
  • the auxiliary cathode is turned on, thereby further improving the voltage drop problem.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the OLED device of the present invention.
  • Fig. 2 is a schematic structural diagram of Embodiment 2 of the OLED device of the present invention.
  • Fig. 3 is a step diagram of the method for preparing the OLED device of the present invention.
  • Embankment dam 41 Hole injection layer
  • the component can be directly placed on the other component; there may also be an intermediate component on which the component is placed , And the intermediate component is placed on another component.
  • a component is described as “installed to” or “connected to” another component, both can be understood as directly “installed” or “connected”, or a component is “installed to” or “connected to” through an intermediate component Another component.
  • the OLED device of this embodiment includes: a substrate (not shown), two anodes 1, an auxiliary cathode 2, two dams 3, a functional layer, a thin film layer, and a surface cathode 6.
  • the two anodes 1 are separately arranged on the substrate.
  • a transparent electrode made of transparent conductive films such as indium tin oxide (ITO) and indium zinc oxide (IZO) can be used, which has light transmittance.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the auxiliary cathode 2 is arranged on the substrate between the two anodes 1, and the two dams 3 are arranged oppositely above the two sides of the auxiliary cathode 2; the two dams 3 and the auxiliary cathode 2 A contact hole 7 is formed on the surface. Through the contact hole 7 structure, the auxiliary cathode 2 and the surface cathode 6 are connected. Since the auxiliary cathode 2 has a low resistance, the voltage drop problem can be effectively solved by the auxiliary cathode 2 and the surface cathode 6 being connected.
  • the functional layer includes: a hole injection layer 41, a hole transport layer 42, a light emitting layer 43, and an electron transport layer 44.
  • the hole injection layer 41 is disposed on the two anodes 1; the hole transport layer 42 is disposed on the hole injection layer 41; and the light-emitting layer 43 is disposed on the hole transport layer 42
  • the electron transport layer 44 is provided on the dam 3 on the left and right sides of the light emitting layer 43 and the two anodes 1.
  • the hole transport layer 42 controls the transport of holes, thereby controlling the recombination of holes and electrons in the light-emitting layer 433, thereby improving the luminous efficiency.
  • the light-emitting layer 43 is composed of light-emitting materials, and the light-emitting layer 43 can be prepared by one of evaporation, printing, homogeneous deposition, and vapor phase synthesis, but is not limited thereto.
  • the electron transport layer 44 controls the transport of electrons, and further controls the recombination of electrons and holes in the light-emitting layer 43, thereby improving luminous efficiency.
  • the thin film layer is printed on the electron transport layer 44 at the inner bottom of the contact hole 7 by printing a good solvent, a poor solvent or a mixed solvent of a good solvent and a poor solvent dissolved by a polymer solute by inkjet printing technology, so that the solvent is washed and dissolved in contact.
  • the electron transport layer 44 at the bottom of the hole 7 destroys its film structure to form a nanoparticle structure 51, and then uses dry pumping technology to volatilize the solvent and re-form a thin film layer in the contact hole 7.
  • the agglomeration of the structure 51 reduces the uniformity of the film layer, thereby achieving the effect that the auxiliary cathode 2 is not completely covered by the film layer.
  • the nanoparticle structure of the electron transport layer material of the thin film layer includes 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene nanoparticles and/or 1,3,5-tris(1 -Phenyl-1H-benzimidazol-2-yl)benzene nanoparticles, specifically according to the change of the material of the electron transport layer 44.
  • the surface cathode 7 is arranged on the electron transport layer 44 and in the contact hole 7.
  • the surface cathode 6 can be a transparent electrode made of a transparent conductive film such as indium tin oxide, indium zinc oxide, etc., and has light transmittance.
  • the cathode electrode 4 functions as a surface cathode for injecting electrons into the light emitting layer 43. Since the auxiliary cathode 2 is not completely covered by the thin film layer, the auxiliary cathode 2 and the surface cathode 6 can be directly connected through the auxiliary cathode not covered by the thin film layer, thereby effectively solving the voltage drop problem.
  • a conductive material 52 is also added to the thin film layer.
  • the good conductor material is graphene and/or nano silver.
  • the external conductor material 52 can enhance the conductivity of the film layer, thereby effectively solving the voltage drop problem.
  • this embodiment provides a method for manufacturing an OLED device. Including: S1, providing a substrate, separating and preparing two anodes 1 on the substrate, and preparing an auxiliary cathode 2 on the substrate between the two anodes 1, above both sides of the auxiliary cathode 2 Two dams 3 are relatively prepared so that a contact hole 7 is formed on the surface of the dam 3 and the auxiliary cathode 2; S2, a hole injection layer 41 and a hole transport layer are respectively formed on the two anodes 1.
  • an electron transport layer 44 is prepared on the light-emitting layer 43, the bottom of the contact hole 7 and the dam 3;
  • S4 a good solvent, a poor solvent or a poor solvent for dissolving polymer solutes by inkjet printing
  • the mixed solvent of good solvent and poor solvent is printed on the surface of the electron transport layer 44 at the bottom of the contact hole 7, so that the solvent washes and dissolves the electron transport layer 44 at the bottom of the contact hole 7, destroys its film structure, and makes it nano
  • a conductive material 52 can also be added to the solvent to increase its conductivity;
  • S5 using dry pumping technology to volatilize the solvent and form a thin film layer at the bottom of the contact hole 7;
  • S6, in the electron transport A surface cathode 6 is prepared on the layer 44 and in the contact hole 7, so that the surface cathode 6 in the contact hole 7 is directly connected to the auxiliary cathode 2 that is not covered by the film layer, and can also be connected to the
  • the good solvent includes N,N-dimethylformamide and/or tetrahydrofuran, and the poor solvent includes methanol and/or ethanol.
  • the conductor material 52 includes graphene and/or nano silver.
  • the conductive material 52 can enhance the electrical conductivity of the film layer, enhance the conduction between the surface cathode 6 and the auxiliary cathode 2, and effectively solve the problem of voltage drop.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件及其制备方法,OLED器件包括基板、两个阳极(1)、辅助阴极(2)、两个堤坝(3)、功能层、薄膜层以及面阴极(6)。通过喷墨打印将高分子溶质溶解的良溶剂、不良溶剂或者良溶剂与不良溶剂的混合溶剂打印进入接触孔(7)底部的电子传输层(44)上,使溶剂冲刷、溶解接触孔(7)底部的电子传输层(44),破坏其膜层结构形成纳米颗粒结构(51),然后去除溶剂,形成薄膜层。由于纳米颗粒的团聚效应,降低薄膜层均匀性,使得面阴极(6)能够与未被薄膜层覆盖的辅助阴极(2)直接导通,从而解决电压降的问题;还可以在冲刷电子传输层(44)的溶剂中添加导体材料(52),增加薄膜层导电能力,使得面阴极(6)还能通过混有导体材料(52)的薄膜层与辅助阴极(2)导通,从而进一步地解决电压降的问题。

Description

一种OLED器件及其制备方法 技术领域
本发明涉及显示技术领域,具体涉及一种OLED器件及其制备方法。
背景技术
OLED(英文全称:Organic Light-Emitting Diode, 简称OLED)器件又称为有机电激光显示装置、有机发光半导体。OLED的基本结构是由一薄而透明具有半导体特性的铟锡氧化物(ITO)与电力之正极相连,再加上另一个金属面阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与面阴极电荷就会在发光层中结合,在库伦力的作用下以一定几率复合形成处于激发态的激子(电子-空穴对),而此激发态在通常的环境中是不稳定的,激发态的激子复合并将能量传递给发光材料,使其从基态能级跃迁为激发态,激发态能量通过辐射驰豫过程产生光子,释放出光能,产生光亮,依其配方不同产生红、绿和蓝RGB三基色,构成基本色彩。
首先OLED的特性是自己发光,不像薄膜晶体管液晶显示装置(英文全称:Thin film transistor-liquid crystal display,简称TFT-LCD)需要背光,因此可视度和亮度均高。其次OLED具有电压需求低、省电效率高、反应快、重量轻、厚度薄,构造简单,成本低、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,已经成为当今最重要的显示技术之一,正在逐步替代 TFT-LCD,有望成为继LCD之后的下一代主流显示技术。
目前OLED的应用方向有红绿蓝有机显示装置直接发光的技术,以及白色有机显示装置中加入彩色滤光片的发光技术两大类。而产品主要分为较小尺寸的手机、Pad等屏幕和较大尺寸的TV屏幕等。
在大尺寸OLED屏幕方向,现有面市产品集中在底部发光结构,面阴极采用较厚的碱金属。但是,随着用户对分辨率的要求越来越高,底部结构的OLED会受到开口率的限制,难以实现较高的分辨率。因此,越来越多的厂家将精力转向顶部OLED的开发,以期望实现更高的分辨率。
技术问题
但是,顶部OLED的面阴极通常采用较薄的透明金属作为电极,此外为了避免对复杂Mask的使用,透明面阴极通过整面蒸镀实现与屏幕边缘电路的连接。由于要兼顾透过率,透明面阴极一般做得较薄,导致其导电能力较差。由R = ρL/S条形电阻计算公式大致可知,在屏幕尺寸较大时,在屏幕中心的发光点,由于离电极接口较远,长距离的电流传输使其驱动电压上升较大。造成屏幕内边缘靠近电极接口区域与屏幕中心区域驱动电压差距过大,有电压降(IR drop)的问题。因此需要对寻找一种新型的OLED器件以解决目前的OLED器件存在的电压降的问题。
技术解决方案
本发明的一个目的是提供一种OLED器件及其制备方法,其能够解决目前的OLED器件存在的电压降的问题。
为了解决上述问题,本发明的一个实施方式提供了一种OLED器件,其中包括:基板、两个阳极、辅助阴极、两个堤坝、功能层、薄膜层以及面阴极。其中所述两个阳极分隔设置在所述基板上,所述辅助阴极设置于所述两个阳极之间的所述基板上;所述两个堤坝相对设置于所述辅助阴极两侧上方;所述两个堤坝与所述辅助阴极表面形成一接触孔;所述功能层包括电子传输层,所述电子传输层设置于所述两个阳极及所述两个堤坝上;所述薄膜层设置在所述接触孔底部并部分覆盖所述辅助阴极表面,所述薄膜层的构成材料包括电子传输层材料的纳米颗粒结构,所述面阴极设置于所述电子传输层上和所述接触孔内,所述接触孔内的面阴极与未被所述薄膜层覆盖的辅助阴极直接导通。
进一步的,其中所述薄膜层的电子传输层材料的纳米颗粒结构包括1,3,5-三[(3-吡啶基)-3-苯基]苯纳米粒子和/或1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯纳米粒子。
进一步地,其中所述薄膜层的构成材料还包括导体材料,所述导体材料包括石墨烯和/或纳米银。
进一步地,其中所述接触孔内的面阴极还通过所述薄膜层与所述辅助阴极导通。
进一步地,其中所述功能层还包括:空穴注入层、空穴传输层、发光层。所述空穴注入层设置于所述两个阳极上;所述空穴传输层设置于所述空穴注入层上;以及所述发光层设置于所述空穴传输层上;所述电子传输层设置于所述发光层、接触孔底部及所述两个堤坝上。
本发明的另一个实施方式提供了一种OLED器件的制备方法,其中包括:S1,提供一基板,在所述基板上分隔制备出两个阳极,并在所述两个阳极之间的基板上制备出辅助阴极,在所述辅助阴极两侧上方相对制备出两个堤坝,使得所述堤坝与所述辅助阴极的表面形成一接触孔;S2,在所述两个阳极上分别制备出空穴注入层、空穴传输层以及发光层; S3,在所述发光层、接触孔底部以及两个堤坝上制备出电子传输层;S4,将所述接触孔底部设置的电子传输层转化为由其材料的纳米颗粒结构构成的所述薄膜层;S5,在所述电子传输层上以及接触孔内制备面阴极,使接触孔内的面阴极与未被所述薄膜层覆盖的辅助阴极直接导通。
进一步的,其中所述电子传输层转化为薄膜层的制备步骤为:通过喷墨打印的方式将一溶剂打印进入所述接触孔底部的所述电子传输层表面,对形成在所述接触孔底部的所述电子传输层进行冲刷、溶解,以破坏其膜层结构形成纳米颗粒结构,然后通过干泵泵抽的方式使溶剂挥发去除所述溶剂,使得所述电子传输层的纳米颗粒结构构成所述薄膜层。
进一步的,其中所述溶剂包括高分子溶质溶解的良溶剂和/或不良溶剂;所述良溶剂包括N,N-二甲基甲酰胺和/或四氢呋喃,所述不良溶剂包括甲醇和/或乙醇。
进一步的,其中所述溶剂中还添加有导体材料,所述导体材料包括石墨烯和/或纳米银。
进一步的,其中所述接触孔内的面阴极还通过所述薄膜层与所述辅助阴极导通。
有益效果
本发明涉及一种OLED器件及其制备方法,其通过喷墨打印的技术将高分子溶质溶解的良溶剂、不良溶剂或者良溶剂与不良溶剂的混合溶剂打印进入接触孔内底部的电子传输层上,使溶剂冲刷、溶解接触孔内底部的电子传输层,破坏其膜层结构,使其形成纳米颗粒结构,然后去除所述溶剂,形成薄膜层。由于所述纳米颗粒的团聚效应,导致其所构成的薄膜层其膜层结构的均匀性变差,其内会出现空间瑕疵或是孔洞,从而使其不能完全有效的覆盖其下的辅助阴极,如此,使得面阴极能够与未被所述薄膜层覆盖的辅助阴极直接导通,从而在一定程度上解决电压降的问题。
进一步的,本发明还可以在冲刷电子传输层的溶剂中添加石墨烯和纳米银等导体材料,使得生成的薄膜层导电能力增加,进而使得面阴极还能通过混有导体材料的薄膜层与所述辅助阴极导通,从而进一步的改善电压降的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明OLED器件实施例1的结构示意图。
图2是本发明OLED器件实施例2的结构示意图。
图3是本发明OLED器件的制备方法步骤图。
图中部件标识如下:
1、阳极                          2、辅助阴极
3、堤坝                          41、空穴注入层
42、空穴传输层                   43、发光层
44、电子传输层                   51、纳米颗粒结构
6、面阴极                        7、接触孔
52、导体材料
本发明的实施方式
以下结合说明书附图详细说明本发明的优选实施例,以向本领域中的技术人员完整介绍本发明的技术内容,以举例证明本发明可以实施,使得本发明公开的技术内容更加清楚,使得本领域的技术人员更容易理解如何实施本发明。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例,下文实施例的说明并非用来限制本发明的范围。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,本文所使用的方向用语是用来解释和说明本发明,而不是用来限定本发明的保护范围。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。此外,为了便于理解和描述,附图所示的每一组件的尺寸和厚度是任意示出的 ,本发明并没有限定每个组件的尺寸和厚度。
当某些组件,被描述为“在”另一组件“上”时,所述组件可以直接置于所述另一组件上;也可以存在一中间组件,所述组件置于所述中间组件上,且所述中间组件置于另一组件上。当一个组件被描述为“安装至”或“连接至”另一组件时,二者可以理解为直接“安装”或“连接”,或者一个组件通过一中间组件“安装至”或“连接至”另一个组件。
实施例1
如图1所示,本实施例的OLED器件,包括:基板(图未示)、两个阳极1、辅助阴极2、两个堤坝3、功能层、薄膜层以及面阴极6。
其中所述连个阳极1分隔设置在所述基板上,具体可以采用由氧化铟锡(ITO)、氧化铟锌(IZO)等透明导电膜构成的透明电极,具有透光性。
其中所述辅助阴极2设置于所述两个阳极1之间的基板上,所述两个堤坝3相对设置于所述辅助阴极2两侧上方;所述两个堤坝3与所述辅助阴极2的表面形成一接触孔7。通过接触孔7结构使得辅助阴极2与面阴极6导通,由于辅助阴极2电阻较小,通过辅助阴极2与面阴极6导通可以有效的解决电压降问题。
其中所述功能层包括:空穴注入层41、空穴传输层42、发光层43以及电子传输层44。所述空穴注入层41设置于所述两个阳极1上;所述空穴传输层42设置于所述空穴注入层41上;以及所述发光层43设置于所述空穴传输层42上;所述电子传输层44设置于所述发光层43及所述两个阳极1左右两侧的堤坝3上。
其中所述空穴传输层42控制着空穴的传输,进而控制空穴在发光层433中与电子的复合,进而提高发光效率。其中所述发光层43是由发光材料组成,所述发光层43可以通过蒸镀、打印、均相沉积法及气相合成法等方式中的一种来制备,但不限于此。其中所述电子传输层44控制着电子的传输,进而控制电子在所述发光层43中与空穴的复合,进而提高发光效率。
所述薄膜层是通过喷墨打印技术将高分子溶质溶解的良溶剂、不良溶剂或者良溶剂与不良溶剂的混合溶剂打印进入接触孔7内底部的电子传输层44上,使溶剂冲刷、溶解接触孔7内底部的电子传输层44,破坏其膜层结构,形成纳米颗粒结构51,然后利用干泵泵抽技术,使得溶剂挥发,在接触孔7内重新形成一层薄膜层,此时纳米颗粒结构51的团聚使得薄膜层均匀性降低,从而达到辅助阴极2未被薄膜层完全覆盖的效果。
其中所述薄膜层的电子传输层材料的纳米颗粒结构包括1,3,5-三[(3-吡啶基)-3-苯基]苯纳米粒子和/或1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯纳米粒子,具体根据电子传输层44的材料改变而改变。
其中所述面阴极7设置于所述电子传输层44上和所述接触孔7内。面阴极6可以采用由氧化铟锡、氧化铟锌等透明导电膜构成的透明电极,具有透光性。阴电极4作为用于向发光层43注入电子的面阴极发挥作用。由于辅助阴极2未被薄膜层完全覆盖,因此通过辅助阴极2与面阴极6可以直接通过未被薄膜层覆盖的辅助阴极导通,从而有效的解决电压降问题。
实施例2
以下仅就本实施例与实施例1之间的相异之处进行说明,而其相同之处则在此不再赘述。
如图2所示,其中所述薄膜层中还添加有导体材料52。其中所述良导体材料为石墨烯和/或纳米银。所述外加导体材料52可以增强所述薄膜层的导电能力,从而有效的解决电压降问题。
实施例3
如图3所示,本实施例提供了一种OLED器件的制备方法。其中包括:S1,提供一基板,在所述基板上分隔制备出两个阳极1,并在所述两个阳极1之间的基板上制备出辅助阴极2,在所述辅助阴极2两侧上方相对制备出两个堤坝3,使得所述堤坝3与所述辅助阴极2的表面形成一接触孔7;S2,在所述两个阳极1上分别制备出空穴注入层41、空穴传输层42以及发光层43; S3,在所述发光层43、接触孔7底部以及堤坝3上制备出电子传输层44;S4,通过喷墨打印的方式将高分子溶质溶解的良溶剂、不良溶剂或者良溶剂与不良溶剂的混合溶剂打印入所述接触孔7底部的电子传输层44表面,使溶剂冲刷、溶解所述接触孔7底部的电子传输层44,破坏其膜层结构,使其形成纳米颗粒结构51,还可以在所述溶剂中添加导体材料52,增加其导电性能;S5,利用干泵泵抽技术,使得溶剂挥发,在接触孔7底部形成薄膜层;S6,在所述电子传输层44上以及接触孔7内制备面阴极6,使接触孔7内的面阴极6与未被所述薄膜层覆盖的辅助阴极2直接导通,还可以通过所述薄膜层与所述辅助阴极2导通。
其中所述良溶剂包括N,N-二甲基甲酰胺和/或四氢呋喃,所述不良溶剂包括甲醇和/或乙醇。
其中所述导体材料52包括石墨烯和/或纳米银。所述导体材料52可以增强薄膜层的导电性能,增强面阴极6与辅助阴极2导通,有效解决电压降的问题。
以上对本发明所提供的OLED器件及其制备方法进行了详细介绍。应理解,本文所述的示例性实施方式应仅被认为是描述性的,用于帮助理解本发明的方法及其核心思想,而并不用于限制本发明。在每个示例性实施方式中对特征或方面的描述通常应被视作适用于其他示例性实施例中的类似特征或方面。尽管参考示例性实施例描述了本发明,但可建议所属领域的技术人员进行各种变化和更改。本发明意图涵盖所附权利要求书的范围内的这些变化和更改,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种OLED器件,其中包括:
    基板;
    两个阳极,所述两个阳极在所述基板上分隔设置;
    辅助阴极,所述辅助阴极设置于所述两个阳极之间的所述基板上;
    两个堤坝,所述两个堤坝相对设置于所述辅助阴极两侧上方;
    所述两个堤坝与所述辅助阴极的表面形成一接触孔;
    功能层,所述功能层包括电子传输层,所述电子传输层设置于所述两个阳极及所述两个堤坝上;
    薄膜层,所述薄膜层设置在所述接触孔底部并部分覆盖所述辅助阴极表面,其中所述薄膜层的构成材料结构包括电子传输层材料的纳米颗粒结构;
    面阴极,所述面阴极设置于所述电子传输层上和所述接触孔内,所述接触孔内的面阴极与未被所述薄膜层覆盖的辅助阴极直接导通。
  2. 根据权利要求1所述的OLED器件,其中所述薄膜层的电子传输层材料的纳米颗粒结构包括1,3,5-三[(3-吡啶基)-3-苯基]苯纳米粒子和/或1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯纳米粒子。
  3. 根据权利要求1所述的OLED器件,其中所述薄膜层的构成材料还包括导体材料,所述导体材料包括石墨烯和/或纳米银。
  4. 根据权利要求3所述的OLED器件,其中所述接触孔内的面阴极还通过所述薄膜层与所述辅助阴极导通。
  5. 根据权利要求1所述的OLED器件,其中所述功能层还包括:
    空穴注入层,所述空穴注入层设置于所述两个阳极上;
    空穴传输层,所述空穴传输层设置于所述空穴注入层上;以及
    发光层,所述发光层设置于所述空穴传输层上;
    所述电子传输层设置于所述发光层、接触孔底部及所述两个堤坝上。
  6. 一种OLED器件的制备方法,其中包括:
    S1,提供一基板,在所述基板上分隔制备出两个阳极,并在所述两个阳极之间的基板上制备出辅助阴极,在所述辅助阴极两侧上方相对制备出两个堤坝,使得所述两个堤坝与所述辅助阴极的表面形成一接触孔;
    S2,在所述两个阳极上分别制备出空穴注入层、空穴传输层以及发光层;
    S3,在所述发光层、接触孔底部以及两个堤坝上制备出电子传输层;
    S4,将所述接触孔底部设置的电子传输层转化为由其材料的纳米颗粒结构构成的所述薄膜层;
    S5,在所述电子传输层上以及接触孔内制备面阴极,使接触孔内的面阴极与未被所述薄膜层覆盖的辅助阴极直接导通。
  7. 根据权利要求6所述的OLED器件的制备方法,其中所述电子传输层转化为薄膜层的制备步骤为:通过喷墨打印的方式将一溶剂打印进入所述接触孔底部的所述电子传输层表面,对形成在所述接触孔底部的所述电子传输层进行冲刷、溶解,以破坏其膜层结构形成纳米颗粒结构,然后通过干泵泵抽的方式使溶剂挥发去除所述溶剂,使得所述电子传输层的纳米颗粒结构构成所述薄膜层。
  8. 根据权利要求7所述的OLED器件的制备方法,其中所述溶剂包括高分子溶质溶解的良溶剂和/或不良溶剂;所述良溶剂包括N,N-二甲基甲酰胺和/或四氢呋喃,所述不良溶剂包括甲醇和/或乙醇。
  9. 根据权利要求8所述的OLED器件的制备方法,其中所述溶剂中还添加有导体材料,所述导体材料包括石墨烯和/或纳米银。
  10. 根据权利要求9所述的OLED器件的制备方法,其中所述接触孔内的面阴极还通过所述薄膜层与所述辅助阴极导通。
PCT/CN2019/088735 2019-04-22 2019-05-28 一种 oled 器件及其制备方法 WO2020215434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910323616.5 2019-04-22
CN201910323616.5A CN110048022B (zh) 2019-04-22 2019-04-22 一种oled器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020215434A1 true WO2020215434A1 (zh) 2020-10-29

Family

ID=67278317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088735 WO2020215434A1 (zh) 2019-04-22 2019-05-28 一种 oled 器件及其制备方法

Country Status (2)

Country Link
CN (1) CN110048022B (zh)
WO (1) WO2020215434A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828705A (zh) * 2019-10-30 2020-02-21 深圳市华星光电半导体显示技术有限公司 面板及其制造方法
CN110993642A (zh) * 2019-11-01 2020-04-10 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110993812B (zh) * 2019-11-08 2021-01-15 深圳市华星光电半导体显示技术有限公司 有机发光二极体面板及其制作方法
CN111525042A (zh) * 2020-04-26 2020-08-11 深圳市华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制造方法
CN113241367B (zh) * 2021-07-09 2021-09-21 北京京东方技术开发有限公司 显示基板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872090A (zh) * 2014-03-03 2014-06-18 青岛海信电器股份有限公司 一种有机发光二极管显示面板
US8890317B1 (en) * 2013-05-22 2014-11-18 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20150090989A1 (en) * 2013-09-30 2015-04-02 Japan Display Inc. Organic el display device and method for manufacturing the organic el display device
US20150144914A1 (en) * 2013-11-22 2015-05-28 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN109560117A (zh) * 2018-12-21 2019-04-02 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7642109B2 (en) * 2005-08-29 2010-01-05 Eastman Kodak Company Electrical connection in OLED devices
JP2014093288A (ja) * 2012-11-07 2014-05-19 Dainippon Printing Co Ltd 表示装置
KR102458597B1 (ko) * 2015-06-30 2022-10-25 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 제조방법
KR102543639B1 (ko) * 2016-07-18 2023-06-15 삼성디스플레이 주식회사 표시 패널, 이의 제조 방법 및 이를 구비하는 표시 장치
CN109244269B (zh) * 2018-09-19 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890317B1 (en) * 2013-05-22 2014-11-18 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20150090989A1 (en) * 2013-09-30 2015-04-02 Japan Display Inc. Organic el display device and method for manufacturing the organic el display device
US20150144914A1 (en) * 2013-11-22 2015-05-28 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN103872090A (zh) * 2014-03-03 2014-06-18 青岛海信电器股份有限公司 一种有机发光二极管显示面板
CN109560117A (zh) * 2018-12-21 2019-04-02 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN110048022B (zh) 2020-08-04
CN110048022A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020215434A1 (zh) 一种 oled 器件及其制备方法
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
US9825256B2 (en) Display panel having a top surface of the conductive layer coplanar with a top surface of the pixel define layer
US10573850B2 (en) Manufacturing OLED panel by utilizing morphological transformation layer
WO2019095452A1 (zh) Oled显示器及其制作方法
TWI282697B (en) Organic electroluminescence device
JP6052825B2 (ja) 有機発光素子およびその製造方法
CN109037481B (zh) 有机发光显示盖板及制作方法、显示面板和显示装置
WO2020248348A1 (zh) 一种显示面板及其显示装置
US10784321B2 (en) Method for manufacturing OLED device, OLED device and display panel
US20160276617A1 (en) Opposed substrate of an oled array substrate and method for preparing the same, and display device
WO2020244100A1 (zh) 一种显示器件及其制备方法
CN111653678B (zh) 量子点发光二极管及其制作方法、显示面板、显示装置
WO2016188247A1 (zh) Oled器件及其制备方法、显示装置
US11581512B2 (en) Display panel and method of fabricating the same
CN110021629A (zh) 电致发光显示装置
WO2021097981A1 (zh) 有机电致发光二极管器件、显示面板及其制备方法
WO2021056725A1 (zh) 一种彩膜基板及其制备方法、oled显示装置
WO2020237875A1 (zh) 一种显示面板及其制备方法
WO2021017312A1 (zh) 一种显示面板及其显示装置
WO2020164174A1 (zh) Oled 显示面板和柔性显示装置
US20200411612A1 (en) Electroluminescent device
US20210408075A1 (en) Display panel and manufacturing method thereof
US20210366731A1 (en) Mask, usage method thereof, and manufacturing method of encapsulation layer
US20120037948A1 (en) Organic light emitting diode and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926309

Country of ref document: EP

Kind code of ref document: A1