WO2020213754A1 - 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛 - Google Patents

복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛 Download PDF

Info

Publication number
WO2020213754A1
WO2020213754A1 PCT/KR2019/004630 KR2019004630W WO2020213754A1 WO 2020213754 A1 WO2020213754 A1 WO 2020213754A1 KR 2019004630 W KR2019004630 W KR 2019004630W WO 2020213754 A1 WO2020213754 A1 WO 2020213754A1
Authority
WO
WIPO (PCT)
Prior art keywords
billet
manufacturing
layer
composite powder
composite material
Prior art date
Application number
PCT/KR2019/004630
Other languages
English (en)
French (fr)
Inventor
권한상
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to EP19925123.2A priority Critical patent/EP3957418A4/en
Publication of WO2020213754A1 publication Critical patent/WO2020213754A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1216Container composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • B22F2302/403Carbon nanotube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Definitions

  • the present invention relates to a method of manufacturing a billet for plastic processing and a billet manufactured thereby.
  • Plastic processing is a method that can produce various industrial materials in large quantities without including cutting such as machining. In particular, it is possible to simply manufacture a shape close to the final product in a solid state without melting by using a mold or frame having a desired shape.
  • An object of the present invention is to provide a method for manufacturing a billet for plastic processing that can be used to manufacture a composite material such as a clad material through a plastic processing process such as extrusion, and a billet manufactured thereby.
  • the present invention (A) a composite powder manufacturing step of producing a composite powder by ball milling two or more kinds of different material powders ( ⁇ ); And (B) a billet manufacturing step of preparing a multilayer billet containing the composite powder, wherein the multilayer billet includes a core layer and a shell layer of two or more layers surrounding the core layer, wherein the The shell layer excluding the core layer and the outermost shell layer is made of the composite powder, the outermost shell layer is made of a pure metal or an alloy, and the composite powders included in each of the core layer and the shell layer have different compositions. It provides a method of manufacturing billets for plastic processing for material manufacturing.
  • the heterogeneous material provides a method of manufacturing a billet for plastic processing for manufacturing a composite material, characterized in that at least two selected from the group consisting of metal, polymer, ceramic, and carbon-based nanomaterials.
  • the metal is Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd , Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt and one metal selected from the group consisting of Pb Or it provides a method of manufacturing a billet for plastic working for manufacturing a composite material, characterized in that the alloy of two or more kinds of metals.
  • the polymer may be (i) a thermoplastic resin selected from acrylic resins, olipine resins, vinyl resins, styrene resins, fluorine resins and cellulose resins, or (ii) phenol resins, epoxy resins and polyimide resins. It provides a method of manufacturing a billet for plastic processing for manufacturing a composite material, characterized in that it is a thermosetting resin.
  • the ceramic is (i) an oxide-based ceramic or (ii) a non-oxide-based ceramic selected from nitride, carbide, boride, and silicide, and provides a method of manufacturing a billet for plastic processing for manufacturing a composite material.
  • the carbon-based nanomaterial is at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanoparticles, mesoporous carbon, carbon nanosheets, carbon nanorods, and carbon nanobelts. It provides a method of manufacturing a billet for plastic processing for.
  • the multi-layered billet provides a method of manufacturing a billet for plastic processing for manufacturing a composite material, characterized in that consisting of a core layer, a first shell layer surrounding the core layer, and a second shell layer surrounding the first shell layer. .
  • the multi-layered billet may include a can-shaped first billet as the second shell layer; A second billet disposed inside the first billet as the first shell layer; And a third billet disposed inside the second billet as the core layer.
  • a method of manufacturing a billet for plastic processing for manufacturing a composite material is provided.
  • the billet manufacturing step of step (B) provides a method of manufacturing a billet for plastic processing for manufacturing a composite material, characterized in that it includes a step of compressing the composite powder at a high pressure of 10 MPa to 100 MPa.
  • the billet manufacturing step of step (B) is a process of spark plasma sintering the composite powder under a pressure of 30 MPa to 100 MPa, at a temperature of 280 to 600 °C, for 1 second to 30 minutes. It provides a method of manufacturing a billet for plastic processing for manufacturing a composite material comprising a.
  • the present invention provides a billet for plastic processing for manufacturing a composite material manufactured by the above manufacturing method in another aspect of the present invention.
  • the manufacturing method of the plastic processing billet according to the present invention it is possible to manufacture a plastic processing billet that overcomes the limitations of the conventional single material billet and enables the production of customized composite materials for each characteristic such as clad material.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a billet for plastic processing for manufacturing a composite material according to the present invention.
  • FIG. 2 is a diagram schematically showing a billet manufacturing process.
  • FIG 3 is a perspective view schematically showing an example of a multi-layer billet manufactured according to the present invention.
  • FIG. 4A is a photograph of a composite material manufactured by extruding an aluminum billet in Example 4.
  • 4B is a photograph of a composite material prepared by extruding an aluminum billet in Comparative Example 2.
  • FIG. 1 is a flowchart of a method of manufacturing a billet for plastic processing for manufacturing a composite material according to an embodiment of the present invention.
  • the method of manufacturing a billet for plastic processing for manufacturing the composite material includes a composite powder manufacturing step (S10) of manufacturing a composite powder by ball milling two or more different kinds of material powders. And a billet manufacturing step (S20) of manufacturing a multilayer billet including the composite powder.
  • a composite powder for producing a composite powder is manufactured by ball milling two or more different kinds of powders (S10).
  • the two or more kinds of different materials may be selected from the group consisting of metals, polymers, ceramics, and carbon-based nanomaterials.
  • the metals are Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag , Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt and one metal selected from the group consisting of Pb, or these It may be any one or more selected from metal alloys, but is not limited thereto.
  • the polymer may be (i) a thermoplastic resin selected from acrylic resins, olipine resins, vinyl resins, styrene resins, fluorine resins and cellulose resins, or (ii) phenol resins, epoxy resins and polyimide resins.
  • Thermosetting resins may be exemplified, but the type of polymer is not limited to the aforementioned polymer.
  • the ceramic may be (i) an oxide-based ceramic or (ii) a non-oxide-based ceramic selected from nitride, carbide, boride, and silicide, but is not limited thereto.
  • the carbon-based nanomaterial may be at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanoparticles, mesoporous carbon, carbon nanosheets, carbon nanorods, and carbon nanobelts. It is not limited to these.
  • aluminum or aluminum alloy powder and carbon nanotubes may be ball milled to prepare a composite powder.
  • the aluminum alloy powder may be any one selected from the group consisting of the 1000th series, the 2000th series, the 3000th series, the 4000th series, the 5000th series, the 6000th series, the 7000th series and the 8000th series.
  • the composite powder contains the carbon nanotubes
  • a composite material such as a clad material is manufactured through plastic processing such as extrusion, rolling, and forging using a billet manufactured using the same
  • the composite material has high thermal conductivity and high strength.
  • it can be used very usefully as a material for heat dissipation such as various electronic parts and lighting equipment because it has a light weight characteristic.
  • the micro-sized aluminum or aluminum alloy particles have a large size difference from the nano-sized carbon nanotubes, making it difficult to disperse, and the carbon nanotubes are easily agglomerated by strong Van der Waals force, so that the carbon nanotubes are converted into the aluminum.
  • a dispersion inducing agent may be further added to uniformly disperse the aluminum alloy powder.
  • the dispersion inducing agent is any one nano-sized ceramic selected from the group consisting of nano SiC, nano SiO 2 nano Al 2 O 3 , nano TiO 2 , nano Fe 3 O 4 , nano MgO, nano ZrO 2 and mixtures thereof You can use
  • the nano-sized ceramic serves to uniformly disperse the carbon nanotubes between the aluminum or aluminum alloy particles, and in particular, the nano SiC (nano silicon carbide) has high tensile strength, sharp, and constant electricity. It has conductivity and thermal conductivity, has high hardness, high fire resistance, and is strong against thermal shock, and has excellent high temperature properties and chemical stability, so it is used as an abrasive and fireproof material.
  • the nano-SiC particles present on the surface of the aluminum or aluminum alloy particles suppress direct contact between the carbon nanotubes and the aluminum or aluminum alloy particles, so that the generally known reaction of the carbon nanotubes and the aluminum or aluminum alloys It also plays a role of suppressing the generation of unsound aluminum carbide that may be produced by
  • the composite powder may include 100 parts by volume of the aluminum or aluminum alloy powder, and 0.01 parts by volume to 10 parts by volume of the carbon nanotubes.
  • the strength of the aluminum-based cladding material appears similar to that of pure aluminum or aluminum alloy, so that it may not play a sufficient role as a reinforcing material.
  • the content of the carbon nanotubes exceeds 10 parts by volume, the strength may increase compared to pure aluminum or aluminum alloy, but the elongation may decrease.
  • dispersion becomes difficult and may act as a defect, thereby deteriorating mechanical and physical properties.
  • the composite powder when the composite powder further includes the dispersion inducing agent, the composite powder may further include 0.1 to 10 parts by volume of the dispersion inducing agent based on 100 parts by volume of the aluminum powder.
  • the content of the dispersion inducing agent is less than 0.1 parts by volume with respect to 100 parts by volume of the aluminum powder, the effect of inducing dispersion may be insignificant, and if it exceeds 10 parts by volume, it is difficult to disperse due to agglomeration of the carbon nanotubes, so it may act as a defect. .
  • the ball mill is specifically in the atmosphere, in an inert atmosphere, for example, nitrogen or argon atmosphere, at a low speed of 150 r/min to 300 r/min or a high speed of 300 r/min or more, for 12 to 48 hours It can be made using a ball mill, for example, a horizontal or planetary ball mill.
  • an inert atmosphere for example, nitrogen or argon atmosphere
  • the ball mill may be made by charging a stainless steel ball (a mixture of a diameter of 20 pie ball and a diameter of 10 pie ball 1:1) in a stainless steel container in an amount of 100 to 1500 parts by volume with respect to 100 parts by volume of the composite powder. have.
  • any one organic solvent selected from the group consisting of heptane, hexane, and alcohol as a process control agent may be used in an amount of 10 to 50 parts by volume per 100 parts by volume of the composite powder.
  • the organic solvent is all evaporated in the hood when the mixed powder is recovered by opening the container after the ball mill, and only the aluminum powder and the carbon nanotubes remain in the recovered mixed powder.
  • the dispersion inducing agent which is a nano-sized ceramic, acts like the nano-sized milling ball by the rotational force generated during the ball mill process, separating the physically agglomerated carbon nanotubes and promoting fluidity to the The carbon nanotubes may be more evenly dispersed on the surface of the aluminum particles.
  • the multilayer billet produced in this step includes a core layer and two or more shell layers surrounding the core layer, and the shell layers excluding the core layer and the outermost shell layer are made of the composite powder, and the outermost
  • the shell layer is made of a pure metal or an alloy, and the composite powder contained in each of the core layer and the shell layer is characterized by having different compositions (types of different materials and/or content of each different material included in the composite powder).
  • the multilayer billet produced in this step includes a core layer and a shell layer of two or more layers surrounding the core layer.
  • the shell layer excluding the core layer and the outermost shell layer is made of the composite powder
  • the outermost shell layer is made of (i) aluminum or aluminum alloy powder or (ii) the composite powder
  • the core is characterized in that the volume fraction of the carbon nanotubes relative to the aluminum or aluminum alloy powder is different.
  • the number of shell layers included in the multi-layer billet is not particularly limited, but it is preferably 5 or less in consideration of economic efficiency.
  • the billet inserts the composite powder 10 into the metal can 20 through a guider (G) (S20-1), and seals or compresses it with a cap (C) to prevent the powder from flowing. It can be manufactured by (S20-4).
  • the metal can 20 may be used as long as it is made of a metal having electrical conductivity and thermal conductivity, and aluminum or aluminum alloy cans, copper cans, and magnesium cans may be preferably used.
  • the thickness of the metal can 20 may be 0.5 mm to 150 mm, assuming a 6 inch billet, but it may have various thickness ratios depending on the size of the billet.
  • FIG. 3 is an example of a multilayer billet that can be manufactured in this step, in which a core layer and a two layer surrounding the multilayer billet including a shell layer, that is, a core layer, a first shell layer surrounding the core layer, and the first shell layer It is a perspective view schematically showing a multi-layer billet made of a second shell layer surrounding.
  • a second billet 12 having a component different from that of the first billet 11 as a first shell layer is disposed inside the first billet 11 having a hollow cylindrical shape as a second shell layer.
  • a third billet 13 having a different component from the second billet 12 as a core layer may be further disposed inside the second billet 12 to manufacture a multilayer billet.
  • the first billet 11 may have a hollow cylindrical shape, a can shape with one entrance closed, or a hollow cylinder shape with both entrances open, and the first billet 11 may be aluminum, copper, It may be made of magnesium or the like.
  • the first billet 11 may be manufactured by melting the metal base material and then injecting it into a mold to form a hollow cylindrical shape, or by machining.
  • the second billet 12 may include the prepared composite powder, and the second billet 12 may be a bulk or powder.
  • the second billet 12 When the second billet 12 is a lump, the second billet 12 may be specifically cylindrical, and the multi-layered billet is the second billet 12 having the cylindrical shape and the first billet 11 It can be manufactured by placing it inside of. At this time, as a method of disposing the second billet 12 inside the first billet 11, the composite powder of the second billet 12 is melted and injected into a mold to be manufactured in a cylindrical shape, This may be manufactured by fitting it inside the first billet 11, or may be manufactured by directly charging the composite powder into the first billet 11.
  • the third billet 13 may be a metal bulk or powder.
  • the composite powder may be compressed or sintered at a high pressure to form a lump shape.
  • the composite powders included in the second billet 12 and the third billet 13 have different compositions.
  • the heterogeneous material included in the composite powder is aluminum (or aluminum alloy) powder and carbon nanotube (CNT)
  • the second billet 12 is the carbon nanoparticles based on 100 parts by volume of the aluminum or aluminum alloy.
  • the tube may be included in an amount of 0.09 to 10 parts by volume
  • the third billet 13 may include the carbon nanotube in an amount greater than 0 part by volume and 0.08 part by volume or less with respect to 100 parts by volume of the aluminum or aluminum alloy powder. .
  • the second billet 12 includes the composite powder
  • the third billet 13, like the first billet 11 includes aluminum, copper, magnesium, titanium, stainless steel, tungsten, cobalt, It may be a metal mass or metal powder selected from the group consisting of nickel, tin, and alloys thereof.
  • the multilayer billet may include 0.01% to 10% by volume of the second billet 12 and 0.01% to 10% by volume of the third billet 13 with respect to the total volume of the multilayer billet. 1 billet 11 may be included in the remaining volume.
  • the multi-layer billet includes the second billet 12 or the third billet 13 including the composite powder
  • the multi-layer billet is compressed at a high pressure of 10 MPa to 100 MPa before the sealing. It may include a process of making (S20-2).
  • the multilayer billet By compressing the multilayer billet, it becomes possible to perform plastic processing such as extruding the multilayer billet using an extrusion die thereafter.
  • the conditions for compressing the composite powder are less than 10 MPa, pores may occur in the manufactured plastic processed composite material, and the composite powder may flow down, and if it exceeds 100 MPa, the second billet ( (Meaning a second or more billet) can expand.
  • the multi-layer billet includes the second billet and/or the third billet including the composite powder
  • the multi-layer billet is sintered. It may further include a process (S20-3).
  • a spark plasma sintering or hot press sintering apparatus may be used, but any sintering apparatus may be used as long as the same purpose can be achieved.
  • discharge plasma sintering it is preferable to use discharge plasma sintering, and at this time, under a pressure of 30 MPa to 100 MPa, at a temperature of 280° C. to 600° C., discharge plasma sintering can be performed for 1 second to 30 minutes. have.
  • Carbon nanotubes have a purity of 99.5%, diameter and length of 10 nm or less and 30 ⁇ m, respectively (Luxemteil, manufactured by OCSiAl Co., Ltd.), and aluminum powder average particle diameter of 45 ⁇ m and purity of 99.8% (Korea, MetalPlayer product). Used.
  • a multi-layered billet was manufactured such that a third billet having a cylindrical shape was positioned in the center of the metal can, which was the first billet, and a second billet (composite powder) was positioned between the first billet and the third billet.
  • the second billet included an aluminum-CNT composite powder containing 0.1 parts by volume of carbon nanotubes per 100 parts by volume of the aluminum powder, and the first billet was made of aluminum 6063, and the third billet was aluminum 3003. Made of alloy.
  • the second billet was specifically manufactured by the following method. 100 parts by volume of aluminum powder, and 30 vol% of the carbon nanotubes are filled in a stainless steel container at a ratio of 0.1 parts by volume, and stainless balls (20 pie balls in diameter and 10 pie balls in diameter are mixed) in the container 30 vol% After filling up to and adding 50 ml of heptane, this was subjected to a low speed ball mill at 250 rpm for 24 hours using a horizontal ball mill. Thereafter, the container was opened to evaporate all the heptane in the hood, and the aluminum-CNT composite powder was recovered.
  • the prepared aluminum-CNT composite powder was charged into a gap of 2.5t between the first billet and the third billet, and pressed with a pressure of 100 MPa to prepare the multilayer billet.
  • Example 2 In the same manner as in Example 1, an aluminum-CNT composite powder having a carbon nanotube content of 1 part by volume was prepared, and a multilayer billet was prepared.
  • Example 2 In the same manner as in Example 1, an aluminum-CNT composite powder having a carbon nanotube content of 3 parts by volume was prepared, and a multilayer billet was prepared.
  • the multilayer billet prepared in Example 1 was directly extruded using an extruder at an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 , and a billet temperature of 460° C. to prepare an aluminum clad material. (Fig. 4(a)).
  • the multilayer billet prepared in Example 2 was directly extruded using an extruder at an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 , and a billet temperature of 460° C. to prepare an aluminum-based clad material. (Fig. 4(a)).
  • the multilayer billet prepared in Example 2 was directly extruded using an extruder at an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 , and a billet temperature of 460° C. to prepare an aluminum-based clad material. (Fig. 4(a)).
  • Disperse by mixing an aluminum-CNT mixture of 10% by weight of CNT and 80% by weight of aluminum powder with a dispersion inducing agent (a solution of 1:1 mixture of solvent and natural rubber) and irradiating ultrasonic waves for 12 minutes After preparing the mixture, the dispersion mixture was heat-treated in an inert atmosphere at 500° C. for 1.5 hours in a tube furnace to completely remove the dispersion inducing agent component to prepare an aluminum-CNT mixture.
  • the prepared aluminum-CNT composite powder was put into an aluminum can having a diameter of 12 mm and a thickness of 1.5 mm and sealed to prepare a billet.
  • the billet prepared in Comparative Example 1 was hot powder extruded with a hot extruder (manufactured by Shimadzu, Japan, model UH-500kN) at an extrusion temperature of 450° C. and an extrusion ratio of 20 to prepare an aluminum clad material (Fig. 4(b)). .
  • the tensile strength and elongation were measured by the method of tensile speed 2 mm/s tensile test condition and tensile test piece ks standard No. 4, and the Vickers hardness was measured under the conditions and method of 300 g and 15 seconds.
  • the aluminum clad material prepared in Examples 4 to 6 has both strength and ductility compared to extruding the aluminum clad material using a strong material (Al6063) and a soft material (Al3003). You can see that you have.
  • the aluminum-based cladding material prepared in Comparative Example 2 has a high Vickers hardness but a very low elongation.
  • the above characteristics were measured by a seawater spray test method, and a sample having a size of 10*10 and a thickness of 2 mm was measured according to the CASS standard.
  • the aluminum-based cladding material prepared in Example 5 is made of a material of a strong material (A6063) and a material having excellent corrosion resistance (A3003), and the aluminum-based cladding material is extruded even with the addition of a small amount of CNT. In comparison, it can be seen that the corrosion resistance is greatly improved. Further, it can be seen that the aluminum-based cladding material prepared in Comparative Example 2 exhibits a higher value than that of the pure alloy, but is lower than the aluminum-based clad material prepared in Example 5.
  • the density of the aluminum-based clad material was measured according to ISO standards based on Archimedes' principle, and the heat capacity and thermal diffusivity were measured with a sample having a size of 10*10 and a thickness of 2 mm by a laser flash method, and the thermal conductivity was measured. It was obtained as the product of the resulting density*heat capacity*heat diffusivity.
  • the aluminum-based clad material prepared in Example 6 is made of a strong material (A6063) and a pure Al-based material (A1005) that has excellent soft and excellent thermal conductivity, so that even when a small amount of CNT is added, aluminum It can be seen that the thermal conductivity is greatly improved compared to the extruded cladding material.
  • the aluminum-based cladding material prepared in Comparative Example 2 exhibits a higher value than that of the pure alloy, but is lower than the aluminum-based clad material prepared in Example 6.
  • a plastic processing billet that overcomes the limitations of a conventional single material billet is manufactured, and using this, it is possible to manufacture a customized composite material according to characteristics such as a cladding material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Extrusion Of Metal (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은, (A) 2종 이상의 이종(異種) 재료 분말을 볼 밀(ball mill)하여 복합 분말을 제조하는 복합 분말 제조 단계; 및 (B) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하는 빌렛 제조 단계를 포함하며, 상기 다층 빌렛은, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 상기 코어층 및 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층은 순금속 또는 합금으로 이루어지며, 상기 코어층 및 쉘층 각각에 포함되는 복합 분말은 조성이 서로 다른 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법에 대한 것으로서, 본 발명에 의하면 종래의 단일 소재 빌렛이 지닌 한계를 극복하고 클래드재 등 특성별 맞춤 복합 소재 제작을 가능케 하는 소성 가공용 빌렛을 제작할 수 있다.

Description

복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛
본 발명은 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛에 대한 것이다.
소성가공은 기계 가공 등의 절단을 포함하지 않으면서도 다양한 산업용 소재를 대량으로 생산할 수 있는 공법이다. 특히, 원하는 형상을 지닌 금형이나 틀을 이용하여 최종 제품에 근접한 형상을 용융 없이 고상에서 간단히 제조 할 수 있다.
그러나, 종래 소성가공에 제공되는 빌렛(billet)을 이루는 소재는 단일 소재에 한정되어 있어, 소성가공을 통한 복합재료 제조에 적합한 빌렛 제조 기술에 대한 개발이 요구된다.
본 발명은 압출 등 소성 가공 공정을 통해 클래드재 등의 복합재료를 제조하는데 사용될 수 있는 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛의 제공을 그 목적으로 한다.
본 발명은, (A) 2종 이상의 이종(異種) 재료 분말을 볼 밀(ball mill)하여 복합 분말을 제조하는 복합 분말 제조 단계; 및 (B) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하는 빌렛 제조 단계를 포함하며, 상기 다층 빌렛은, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 상기 코어층 및 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층은 순금속 또는 합금으로 이루어지며, 상기 코어층 및 쉘층 각각에 포함되는 복합 분말은 조성이 서로 다른 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 이종 재료는 금속, 폴리머, 세라믹 및 탄소계 나노 재료로 이루어진 군에서 선택되는 2종 이상인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 금속은 Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt 및 Pb로 이루어진 군으로부터 선택되는 1종의 금속 또는 2종 이상의 금속의 합금인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 폴리머는 (i) 아크릴계 수지, 올리핀계 수지, 비닐계 수지, 스티렌계 수지, 불소계 수지 및 섬유소계 수지로부터 선택되는 열가소성 수지 또는 (ii) 페놀 수지, 에폭시 수지 및 폴리이미드 수지로부터 선택되는 열경화성 수지인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 세라믹은 (i) 산화물계 세라믹 또는 (ii) 질화물, 탄화물, 붕화물 및 규화물로부터 선택되는 비산화물계 세라믹인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 탄소계 나노 재료는 탄소나노튜브, 탄소나노섬유, 탄소나노입자, 메조다공성탄소, 탄소나노시트, 탄소나노막대 및 탄소나노벨트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 다층 빌렛은, 코어층, 상기 코어층을 둘러싸는 제 1 쉘층 및 상기 제 1 쉘층을 둘러싸는 제 2 쉘층으로 이루어진 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 다층 빌렛은, 상기 제 2 쉘층으로서 캔 형상의 제 1 빌렛; 상기 제 1 쉘층으로서 상기 제 1 빌렛의 내부에 배치된 제 2 빌렛; 및 상기 코어층으로서 상기 제 2 빌렛의 내부에 배치된 제 3 빌렛으로 이루어진 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 단계 (B)의 빌렛 제조 단계는 상기 복합 분말을 10 MPa 내지 100 MPa의 고압으로 압착시키는 공정을 포함하는 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
또한, 상기 단계 (B)의 빌렛 제조 단계는 상기 복합 분말을 30 MPa 내지 100 MPa의 압력 하에서, 280 ℃ 내지 600 ℃의 온도로, 1 초 내지 30 분 동안 방전 플라즈마 소결(spark plasma sintering)시키는 공정을 포함하는 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 제공한다.
본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 복합재료 제조를 위한 소성 가공용 빌렛을 제공한다.
본 발명에 따른 소성 가공용 빌렛의 제조방법에 의하면 종래의 단일 소재 빌렛이 지닌 한계를 극복하고 클래드재 등 특성별 맞춤 복합 소재 제작을 가능케 하는 소성 가공용 빌렛을 제작할 수 있다.
도 1은 본 발명에 따른 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법의 공정 순서도이다.
도 2는 빌렛 제조 과정을 모식적으로 나타내는 그림이다.
도 3은 본 발명에 따라 제조되는 다층 빌렛의 일례를 모식적으로 도시한 사시도이다.
도 4a는 실시예 4에서 알루미늄계 빌렛을 압출해 제조한 복합재료의 사진이다.
도 4b는 비교예 2에서 알루미늄계 빌렛을 압출해 제조한 복합재료의 사진이다.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명을 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법의 공정 순서도이다.
이하, 상기 도 1을 참조하여 상기 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법을 설명한다.
상기 도 1을 참조하면, 상기 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법은 2종 이상의 이종(異種) 재료 분말을 볼 밀(ball mill)하여 복합 분말을 제조하는 복합 분말 제조 단계(S10)와 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하는 빌렛 제조 단계(S20)를 포함한다.
먼저, 2종 이상의 이종(異種) 재료 분말을 볼 밀(ball mill)하여 복합 분말을 제조하는 복합 분말 제조한다(S10).
이때, 상기 2종 이상의 이종 재료는 금속, 폴리머, 세라믹 및 탄소계 나노 재료로 이루어진 군에서 선택될 수 있다.
상기 금속은 Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt 및 Pb로 이루어진 군으로부터 선택되는 1종의 금속 또는 이들 금속의 합금으로부터 선택되는 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 폴리머는 (i) 아크릴계 수지, 올리핀계 수지, 비닐계 수지, 스티렌계 수지, 불소계 수지 및 섬유소계 수지로부터 선택되는 열가소성 수지 또는 (ii) 페놀 수지, 에폭시 수지 및 폴리이미드 수지로부터 선택되는 열경화성 수지를 예롤 들 수 있으나, 폴리머 또한 전술한 폴리머로 그 종류가 제한되는 것은 아니다.
상기 세라믹은 (i) 산화물계 세라믹 또는 (ii) 질화물, 탄화물, 붕화물 및 규화물로부터 선택되는 비산화물계 세라믹을 예로 들 수 있으나, 이들로 제한되는 것은 아니다.
상기 탄소계 나노 재료는 탄소나노튜브, 탄소나노섬유, 탄소나노입자, 메조다공성탄소, 탄소나노시트, 탄소나노막대 및 탄소나노벨트로 이루어진 군으로부터 선택된 1종 이상일 수 있으나. 이들로 제한되는 것은 아니다.
일례로, 본 단계에서 알루미늄 또는 알루미늄 합금 분말 및 카본 나노 튜브(CNT)을 볼 밀(ball mill)하여 복합 분말을 제조할 수 있다.
상기 알루미늄 합금 분말은 1000 번대 계열, 2000 번대 계열, 3000 번대 계열, 4000 번대 계열, 5000 번대 계열, 6000 번대 계열, 7000 번대 계열 및 8000 번대 계열로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 복합 분말은 상기 카본 나노 튜브를 포함함에 따라, 이를 이용하여 제조되는 빌렛을 이용해 압출, 압연, 단조 등의 소성 가공을 통해 클래드재 등과 같은 복합재료를 제조할 경우 해당 복합재료는 고열전도성, 고강도, 경량화 특성을 지니므로 다양한 전자부품 및 조명기구 등의 방열용 소재 등으로서 매우 유용하게 활용될 수 있다.
한편, 마이크로 사이즈의 상기 알루미늄 또는 알루미늄 합금 입자는 나노 사이즈의 상기 카본 나노 튜브와 사이즈 차이가 커서 분산이 어렵고, 상기 카본 나노 튜브는 강한 반데르발스 힘에 의해서 응집되기 쉬워 상기 카본 나노 튜브를 상기 알루미늄 또는 알루미늄 합금 분말과 균일하게 분산시키기 위해서 분산 유도제가 더 첨가될 수 있다.
상기 분산 유도제로는 나노 SiC, 나노 SiO2나노 Al2O3,나노 TiO2,나노 Fe3O4,나노 MgO, 나노 ZrO2및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 나노 크기의 세라믹을 사용할 수 있다.
상기 나노 크기의 세라믹은 상기 카본 나노 튜브를 상기 알루미늄 또는 알루미늄 합금 입자 사이에 균일하게 분산시키는 작용을 하며, 특히 상기 나노 SiC(나노 실리콘카바이드, nano Silicon carbide)는 인장 강도가 높고 날카로우며 일정한 전기전도성과 열전도성을 갖고 있으며, 높은 경도, 고내화성과 열충격에 강하며 고온 성질과 화학적 안정성이 우수하여 연마재, 내화재로서 사용된다. 또한, 상기 알루미늄 또는 알루미늄 합금 입자 표면에 존재하는 상기 나노 SiC 입자는 상기 카본 나노 튜브와 상기 알루미늄 또는 알루미늄 합금 입자의 직접적인 접촉을 억제하여 일반적으로 알려져 있는 상기 카본 나노 튜브와 상기 알루미늄 또는 알루미늄 합금의 반응에 의해서 생성될 수 있는 불건전상의 알루미늄 카바이드의 생성을 억제하는 역할도 수행한다.
또한, 상기 복합 분말은 상기 알루미늄 또는 알루미늄 합금 분말 100 부피부, 및 상기 카본 나노 튜브 0.01 부피부 내지 10 부피부를 포함할 수 있다.
상기 카본 나노 튜브의 함량이 상기 알루미늄 또는 알루미늄 합금 분말 100 부피부에 대하여 0.01 부피부 미만인 경우 상기 알루미늄계 클래드재의 강도는 순수 알루미늄 또는 알루미늄 합금과 비슷하게 나타나므로 강화재로서 충분한 역할을 하지 못할 수 있고, 반대로 상기 카본 나노 튜브의 함량이 10 부피부를 초과하는 경우 강도는 순수 알루미늄 또는 알루미늄 합금 대비 증가하지만 반대로 연신율이 떨어질 수 있다. 또한, 상기 카본 나노 튜브의 함량이 극단적으로 많아지면 오히려 분산이 어려워지고 결함으로 작용하여 기계적 물리적 특성을 떨어뜨릴 수도 있다.
또한, 상기 복합 분말이 상기 분산 유도제를 더 포함하는 경우, 상기 복합 분말은 상기 알루미늄 분말 100 부피부에 대하여 상기 분산 유도제 0.1 부피부 내지 10 부피부를 더 포함할 수 있다.
상기 분산 유도제의 함량이 상기 알루미늄 분말 100 부피부에 대하여 0.1 부피부 미만인 경우 분산 유도 효과가 미미할 수 있고, 10 부피부를 초과하는 경우 카본 나노 튜브의 응집으로 분산이 어려워 오히려 결함으로 작용할 있을 수 있다.
한편, 상기 볼 밀은 구체적으로 대기, 불활성 분위기, 예를 들면, 질소 또는 아르곤 분위기 하에서, 150 r/min 내지 300 r/min의 저속 또는 300 r/min의 이상의 고속으로, 12 시간 내지 48 시간 동안 볼밀기, 예를 들어 수평형 또는 플레너터리 볼밀기를 이용하여 이루어질 수 있다.
이때, 상기 볼 밀은 스테인레스 용기에서, 스테인레스 볼(지름 20 파이 볼, 및 지름 10 파이 볼을 1:1 혼합)을 상기 복합 분말 100 부피부에 대하여 100 부피부 내지 1500 부피부로 장입하여 이루어질 수 있다.
또한, 마찰계수를 감소시키기 위해서 공정 제어제로 헵탄, 헥산 및 알코올로 이루어진 군에서 선택되는 어느 하나의 유기 용제를 상기 복합 분말 100 부피부에 대하여 10 부피부 내지 50 부피부로 사용할 수 있다. 상기 유기 용제는 볼 밀 후 용기를 오픈하여 상기 혼합 분말 회수시 후드에서 모두 증발되고, 회수되는 혼합 분말에는 상기 알루미늄 분말과 상기 카본 나노 튜브만 남는다.
이때, 상기 나노 크기의 세라믹인 분산 유도제는, 상기 볼 밀 공정시 발생되는 회전력에 의해 상기 나노 크기의 밀링 볼과 같은 역할을 하여, 물리적으로 응집된 상기 카본 나노 튜브를 분리하고 유동성을 촉진시켜 상기 카본 나노 튜브를 상기 알루미늄 입자 표면에 더욱 균일하게 분산시킬 수 있다.
다음으로, 상기 얻어진 복합 분말을 포함하는 다층 빌렛(billet)을 제조한다(S20).
본 단계에서 제조되는 상기 다층 빌렛은, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 상기 코어층 및 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층은 순금속 또는 합금으로 이루어지며, 상기 코어층 및 쉘층 각각에 포함되는 복합 분말은 조성(복합 분말에 포함되는 이종 재료의 종류 및/또는 각 이종 재료의 함량)이 서로 다른 것을 특징으로 한다.
상기 복합 분말에 포함되는 이종 재료가 알루미늄(또는 알루미늄 합금) 분말 및 카본 나노 튜브(CNT)일 경우를 예로 들면, 본 단계에서 제조되는 다층 빌렛은 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 상기 코어층 및 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층은 (i) 알루미늄 또는 알루미늄 합금 분말 또는 (ii) 상기 복합 분말로 이루어지며, 상기 코어층 및 쉘층 각각에 포함되는 복합 분말은 알루미늄 또는 알루미늄 합금 분말에 대한 카본 나노 튜브의 부피 분율이 서로 다른 것을 특징으로 한다.
상기 다층 빌렛에 포함되는 쉘층의 개수는 특별히 제한되지 않으나, 경제성 등을 고려할 때 5개 층 이하인 것이 바람직하다.
도 2는 상기와 같은 다층 빌렛 제조 과정의 일례를 모식적으로 나타내는 그림이다. 상기 도 2를 참조하면, 상기 빌렛은 상기 복합 분말(10)을 가이더(G)를 통해 금속캔(20)에 장입하고(S20-1), 캡(C)으로 봉입하거나 압착하여 분말이 흐르지 않도록 하여 제조할 수 있다(S20-4).
상기 금속캔(20)은 전기전도성 및 열전도성이 있는 금속으로 이루어진 것이면 모두 사용가능하고, 알루미늄 또는 알루미늄 합금 캔, 구리 캔, 마그네슘 캔을 바람직하게 사용할 수 있다. 상기 금속캔(20)의 두께는 6 인치 빌렛을 가정할 경우 0.5 mm 내지 150 mm일 수 있지만 이는 빌렛의 크기에 따라 다양한 두께 비율을 가질 수 있다.
도 3은 본 단계에서 제조될 수 있는 다층 빌렛의 일례로서, 코어층과 이를 둘러싸는 2층을 쉘층을 포함하는 다층 빌렛 즉, 코어층, 상기 코어층을 둘러싸는 제 1 쉘층 및 상기 제 1 쉘층을 둘러싸는 제 2 쉘층으로 이루어진 다층 빌렛을 모식적으로 도시한 사시도이다.
상기 도 3을 참조하면, 우선 제 2 쉘층으로서 속이 빈 원통 형상의 제 1 빌렛(11)의 내부에 제 1 쉘층으로서 상기 제 1 빌렛(11)과는 성분이 상이한 제 2 빌렛(12)을 배치하고, 상기 제 2 빌렛(12)의 내부에 코어층으로서 상기 제 2 빌렛(12)과는 성분이 상이한 제 3 빌렛(13)을 더 배치하여 다층 빌렛을 제조할 수 있다.
이때, 상기 제 1 빌렛(11)은 속이 빈 원통 형상으로서, 한쪽 입구가 막힌 캔(can) 형상이거나, 양쪽 입구가 뚫린 중공 원통 형상일 수 있고, 상기 제 1 빌렛(11)은 알루미늄, 구리, 마그네슘 등으로 이루어질 수 있다. 상기 제 1 빌렛(11)은 상기 금속 모재를 용융시킨 후, 주형에 주입하여 속이 빈 원통 형상으로 제조하거나, 기계 가공하여 제조할 수 있다.
상기 제 2 빌렛(12)은 상기 제조된 복합 분말을 포함할 수 있고, 상기 제 2 빌렛(12)은 덩어리(bulk) 또는 분말일 수 있다.
상기 제 2 빌렛(12)이 덩어리인 경우, 상기 제 2 빌렛(12)은 구체적으로 원기둥 형상일 수 있고, 상기 다층 빌렛은 상기 원기둥 형상의 제 2 빌렛(12)을 상기 제 1 빌렛(11)의 내부에 배치시켜 제조할 수 있다. 이때, 상기 제 2 빌렛(12)을 상기 제 1 빌렛(11)의 내부에 배치시키는 방법으로는, 상기 제 2 빌렛(12)의 복합 분말을 용융시켜 주형에 주입하여 원기둥 형상으로 제조한 후, 이를 상기 제 1 빌렛(11) 내부에 끼워 맞춤하여 제조할 수 있고, 또는 상기 복합 분말을 상기 제 1 빌렛(11) 내부에 직접 장입하여 제조할 수도 있다.
상기 제 3 빌렛(13)은 금속 덩어리(bulk) 또는 분말일 수 있다.
한편, 상기 제 2 빌렛(12) 또는 상기 제 3 빌렛(13) 등이 상기 복합 분말을 포함하는 덩어리인 경우, 상기 복합 분말을 고압으로 압착시키거나 소결시켜 덩어리 형상으로 제조할 수 있다.
이때, 상기 제 2 빌렛(12)과 제 3 빌렛(13)이 포함하는 복합 분말은 그 조성이 서로 상이하다. 상기 복합 분말에 포함되는 이종 재료가 알루미늄(또는 알루미늄 합금) 분말 및 카본 나노 튜브(CNT)일 경우를 예로 들면, 상기 제 2 빌렛(12)은 상기 알루미늄 또는 알루미늄 합금 100 부피부에 대하여 상기 카본 나노 튜브를 0.09 부피부 내지 10 부피부로 포함하고, 상기 제 3 빌렛(13)은 상기 알루미늄 또는 알루미늄 합금 분말 100 부피부에 대하여 상기 카본 나노 튜브를 0 부피부 초과 0.08 부피부 이하로 포함할 수 있다.
또는, 상기 제 2 빌렛(12)은 상기 복합 분말을 포함하고, 상기 제 3 빌렛(13)은 상기 제 1 빌렛(11)과 같이, 알루미늄, 구리, 마그네슘, 티타늄, 스테인리스스틸, 텅스텐, 코발트, 니켈, 주석 및 이들의 합금으로 이루어진 군에서 선택되는 어느 하나의 금속 덩어리이거나 금속 분말일 수도 있다.
상기 다층 빌렛은 상기 다층 빌렛 전체 부피에 대하여 상기 제 2 빌렛(12)을 0.01 부피% 내지 10 부피% 및 상기 제 3 빌렛(13)을 0.01 부피% 내지 10 부피%로 포함할 수 있고, 상기 제 1 빌렛(11)을 나머지 부피로 포함할 수 있다.
한편, 상기 다층 빌렛이 상기 복합 분말을 포함하는 상기 제 2 빌렛(12) 또는 상기 제 3 빌렛(13)을 포함함에 따라, 상기 다층 빌렛은 상기 봉입하기 전에, 10 MPa 내지 100 MPa의 고압으로 압착시키는 공정을 포함할 수 있다(S20-2).
상기 다층 빌렛을 압착함에 따라, 이후 상기 다층 빌렛을 압출 다이스를 이용하여 압출하는 등 소성 가공을 수행하는 것이 가능해 진다. 상기 복합 분말을 압착하는 조건이 10 MPa 미만인 경우 제조된 소성 가공 복합재료에 기공이 발생할 수 있고, 상기 복합 분말이 흘러 내릴 수 있으며, 100 MPa를 초과하는 경우 높은 압력으로 인하여 상기 제 2의 빌렛(두 번째 이상의 빌렛을 의미함)이 팽창할 수 있다.
또한, 상기 다층 빌렛이 상기 복합 분말을 포함하는 상기 제 2 빌렛 및/또는 상기 제 3 빌렛을 포함함에 따라, 이후 상기 다층 빌렛을 압출 등의 소성 가공 공정에 제공하기 위하여, 상기 다층 빌렛을 소결시키는 공정을 더 포함할 수 있다(S20-3).
상기 소결에는 방전 플라즈마 소결(spark plasma sintering) 또는 열간 가압 소결 장치를 사용할 수 있지만, 동일한 목적을 달성할 수 있는 한 어떠한 소결 장치를 사용해도 무방하다. 다만, 단시간 내에 정밀하게 소결하는 것이 필요한 경우 방전 플라즈마 소결을 이용하는 것이 바람직하고, 이때 30 MPa 내지 100 MPa의 압력 하에서, 280 ℃ 내지 600 ℃의 온도로, 1 초 내지 30 분 동안 방전 플라즈마 소결시킬 수 있다.
이하, 본 발명을 실시예를 들어 상세하게 설명하기로 한다.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 및 비교예: 알루미늄 및 탄소나노튜브 포함 다층 빌렛 및 이의 압출재]
<실시예 1>
카본 나노 튜브는 순도 99.5 %, 직경과 길이는 각각 10 nm 이하와 30 ㎛ 이하이고(룩셈부르크, (주)OCSiAl사 제품), 알루미늄 분말은 평균 입경 45 ㎛, 순도 99.8 %(한국, MetalPlayer 제품)을 사용하였다.
한편, 상기 제 1 빌렛인 금속 캔 중앙에 원기둥 형상의 제 3 빌렛이 위치하고, 상기 제 1 빌렛과 제 3 빌렛의 사이에 제 2 빌렛(복합 분말)이 위치 하도록 다층 빌렛을 제조하였다.
상기 제 2 빌렛은 상기 알루미늄 분말 100 부피부에 대하여 카본 나노 튜브를 0.1 부피부로 포함하는 알루미늄-CNT 복합 분말을 포함하였고, 상기 제 1 빌렛은 알루미늄 6063으로 이루어졌고, 상기 제 3 빌렛은 알루미늄 3003 합금으로 이루어졌다.
상기 제 2 빌렛은 구체적으로 다음의 방법으로 제조되었다. 알루미늄 분말 100 부피부, 상기 카본 나노 튜브 0.1 부피부 비율로 스테인레스 용기에 30 부피%로 채우고, 상기 용기에 스테인레스 볼(지름 20 파이 볼, 및 지름 10 파이 볼을 혼합)을 용기 내부에 30 부피%까지 채우고 헵탄을 50 ml 첨가한 후, 이를 수평형 볼밀기를 이용하여 250 rpm, 24 시간 동안 저속 볼 밀 시켰다. 이후, 상기 용기를 오픈하여 상기 헵탄을 후드에서 모두 증발시키고, 알루미늄-CNT 복합 분말을 회수하였다.
상기 제조된 알루미늄-CNT 복합 분말을 상기 제 1 빌렛과 상기 제 3 빌렛 사이의 틈 2.5t에 장입시키고, 100 MPa의 압력으로 압착시켜, 상기 다층 빌렛을 제조하였다.
<실시예 2>
상기 실시예 1와 동일한 방법으로, 상기 카본 나노 튜브의 함량이 1 부피부인 알루미늄-CNT 복합 분말을 제조하고 다층 빌렛을 제조하였다.
<실시예 3>
상기 실시예 1와 동일한 방법으로, 상기 카본 나노 튜브의 함량이 3 부피부인 알루미늄-CNT 복합 분말을 제조하고 다층 빌렛을 제조하였다.
<실시예 4>
실시예 1에서 제조한 다층 빌렛을 직접 압출기를 이용하여 압출비 100, 압출 속도 5 mm/s, 압출 압력 200 kg/cm2, 빌렛 온도 460 ℃인 조건으로 직접 압출하여 알루미늄계 클래드재를 제조하였다(도 4(a)).
<실시예 5>
실시예 2에서 제조한 다층 빌렛을 직접 압출기를 이용하여 압출비 100, 압출 속도 5 mm/s, 압출 압력 200 kg/cm2, 빌렛 온도 460 ℃인 조건으로 직접 압출하여 알루미늄계 클래드재를 제조하였다(도 4(a)).
<실시예 6>
실시예 2에서 제조한 다층 빌렛을 직접 압출기를 이용하여 압출비 100, 압출 속도 5 mm/s, 압출 압력 200 kg/cm2, 빌렛 온도 460 ℃인 조건으로 직접 압출하여 알루미늄계 클래드재를 제조하였다(도 4(a)).
<비교예 1>
CNT 10 중량%와 알루미늄 분말 80 중량%를 혼합한 알루미늄-CNT 혼합물을 분산 유도제(솔벤트와 천연고무액을 1:1로 혼합한 용액)와 1:1로 혼합하여 초음파를 12 분 동안 조사하여 분산 혼합물을 제조한 후, 분산 혼합물을 관상로에서 불활성 분위기로 500 ℃로 1.5 시간 동안 열처리하여 분산 유도제 성분을 완전히 제거하여 알루미늄-CNT 혼합물을 제조하였다. 상기 제조된 알루미늄-CNT 복합 분말을 직경 12 mm, 두께 1.5 mm의 알루미늄 캔에 투입하여 봉입해 빌렛을 제조하였다.
<비교예 2>
비교예 1에서 제조한 빌렛을 열간압출기(일본, 시마츠사 제품, 모델 UH-500kN)로 압출 온도 450 ℃, 압출비 20 조건으로 열간 분말 압출하여 알루미늄 클래드재를 제조하였다(도 4(b)).
[실험예 1: 알루미늄계 클래드재의 기계적 물성 측정]
상기 실시예 및 비교예에서 제조된 알루미늄계 클래드재의 인장강도, 연신률 및 비커스 경도를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
상기 인장강도 및 연신률은 인장 속도 2 mm/s 인장테스트 조건 및 인장시험편 ks규격 4호의 방법으로 측정하였고, 상기 비커스 경도는 300g, 15초의 조건 및 방법으로 측정하였다.
Figure PCTKR2019004630-appb-T000001
상기 표 1을 참조하면, 상기 실시예 4 내지 6에서 제조된 알루미늄계 클래드재는 강한 재질(Al6063)과 연한 재질(Al3003)의 재료를 사용하여 알루미늄계 클래드재를 압출한 것에 비하여 강도와 연성을 동시에 가지고 있음을 알 수 있다.
또한, 상기 비교예 2에서 제조된 알루미늄계 클래드재는 비커스 경도는 높지만 연신율이 매우 낮음을 알 수 있다.
[실험예 2: 알루미늄계 클래드재의 내부식성 측정]
상기 실시예 및 비교예에서 제조된 알루미늄계 클래드재의 내부식성 특성을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
상기 특성은 해수분무시험법으로 10*10의 크기와 두께 2 mm의 샘플을 CASS 규격으로 측정하였다.
Figure PCTKR2019004630-appb-T000002
상기 표 2를 참조하면, 상기 실시예 5에서 제조된 알루미늄계 클래드재는 강한 재질(A6063)과 내식성이 우수한 재질(A3003)의 재료를 사용하여 소량의 CNT의 첨가에도 알루미늄계 클래드재를 압출한 것에 비하여 내식성이 매우 향상되는 것을 확인할 수 있다. 또한, 상기 비교예 2에서 제조된 알루미늄계 클래드재는 순수 합금 보다는 높을 값을 나타내지만 상기 실시예 5에서 제조된 알루미늄계 클래드재 보다는 낮음을 알 수 있다.
[실험예 3: 알루미늄계 클래드재의 열전도도 측정]
상기 실시예 및 비교예에서 제조된 알루미늄계 클래드재의 밀도(density), 열용량(heat capacity), 열확산성(diffusivity), 열전도도(thermal conductivity)를 측정하였고, 그 결과를 하기 표 3에 나타내었다.
상기 밀도는 아르키메데스의 원리로 ISO 규격에 따라 상기 알루미늄계 클래드재의 밀도를 측정하였고, 상기 열용량과 열확산성은 레이저 플레쉬 방법으로 10*10의 크기와 두께 2 mm의 샘플로 측정하였고, 상기 열전도도는 측정된 밀도*열용량*열확산도의 곱으로 얻어 졌다.
Figure PCTKR2019004630-appb-T000003
상기 표 3을 참조하면, 상기 실시예 6에서 제조된 알루미늄계 클래드재는 강한 재질(A6063)과 연질의 우수한 열전도성을 지니는 순수 Al계열의 (A1005)의 재료를 사용하여 소량의 CNT의 첨가에도 알루미늄계 클래드재를 압출한 것에 비하여 열전도가 매우 향상되는 것을 확인할 수 있다.
또한, 상기 비교예 2에서 제조된 알루미늄계 클래드재는 순수 합금 보다는 높을 값을 나타내지만 상기 실시예 6에서 제조된 알루미늄계 클래드재 보다는 낮음을 알 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 상기한 실시예는 본 발명의 특정한 일 예로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명의 권리범위는 후술할 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명에 따른 소성 가공용 빌렛의 제조방법에 의하면 종래의 단일 소재 빌렛이 지닌 한계를 극복한 소성 가공용 빌렛을 제작하고, 이를 이용해 클래드재 등 특성별 맞춤 복합 소재 제작이 가능하다.

Claims (11)

  1. (A) 2종 이상의 이종(異種) 재료 분말을 볼 밀(ball mill)하여 복합 분말을 제조하는 복합 분말 제조 단계; 및
    (B) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하는 빌렛 제조 단계를 포함하며,
    상기 다층 빌렛은,
    코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며,
    상기 코어층 및 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층은 순금속 또는 합금으로 이루어지며,
    상기 코어층 및 쉘층 각각에 포함되는 복합 분말은 조성이 서로 다른 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  2. 제1항에 있어서,
    상기 이종 재료는 금속, 폴리머, 세라믹 및 탄소계 나노 재료로 이루어진 군에서 선택되는 2종 이상인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  3. 제2항에 있어서,
    상기 금속은 Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt 및 Pb로 이루어진 군으로부터 선택되는 1종의 금속 또는 2종 이상의 금속의 합금인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  4. 제2항에 있어서,
    상기 폴리머는 (i) 아크릴계 수지, 올리핀계 수지, 비닐계 수지, 스티렌계 수지, 불소계 수지 및 섬유소계 수지로부터 선택되는 열가소성 수지 또는 (ii) 페놀 수지, 에폭시 수지 및 폴리이미드 수지로부터 선택되는 열경화성 수지인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  5. 제2항에 있어서,
    상기 세라믹은 (i) 산화물계 세라믹 또는 (ii) 질화물, 탄화물, 붕화물 및 규화물로부터 선택되는 비산화물계 세라믹인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  6. 제2항에 있어서,
    상기 탄소계 나노 재료는 탄소나노튜브, 탄소나노섬유, 탄소나노입자, 메조다공성탄소, 탄소나노시트, 탄소나노막대 및 탄소나노벨트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  7. 제1항에 있어서,
    상기 다층 빌렛은,
    코어층, 상기 코어층을 둘러싸는 제 1 쉘층 및 상기 제 1 쉘층을 둘러싸는 제 2 쉘층으로 이루어진 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  8. 제7항에 있어서,
    상기 다층 빌렛은,
    상기 제 2 쉘층으로서 캔 형상의 제 1 빌렛;
    상기 제 1 쉘층으로서 상기 제 1 빌렛의 내부에 배치된 제 2 빌렛; 및
    상기 코어층으로서 상기 제 2 빌렛의 내부에 배치된 제 3 빌렛으로 이루어진 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  9. 제1항에 있어서,
    상기 단계 (B)의 빌렛 제조 단계는 상기 복합 분말을 10 MPa 내지 100 MPa의 고압으로 압착시키는 공정을 포함하는 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  10. 제1항에 있어서,
    상기 단계 (B)의 빌렛 제조 단계는 상기 복합 분말을 30 MPa 내지 100 MPa의 압력 하에서, 280 ℃ 내지 600 ℃의 온도로, 1 초 내지 30 분 동안 방전 플라즈마 소결(spark plasma sintering)시키는 공정을 포함하는 것을 특징으로 하는 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법.
  11. 제1항에 기재된 제조방법에 의해 제조된 복합재료 제조를 위한 소성 가공용 빌렛.
PCT/KR2019/004630 2019-04-15 2019-04-17 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛 WO2020213754A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19925123.2A EP3957418A4 (en) 2019-04-15 2019-04-17 Method for preparing plastic working billets for composite material manufacture, and billets prepared thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190043557A KR102266847B1 (ko) 2019-04-15 2019-04-15 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛
KR10-2019-0043557 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213754A1 true WO2020213754A1 (ko) 2020-10-22

Family

ID=72747651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004630 WO2020213754A1 (ko) 2019-04-15 2019-04-17 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛

Country Status (6)

Country Link
US (1) US11633783B2 (ko)
EP (1) EP3957418A4 (ko)
JP (1) JP6901791B2 (ko)
KR (1) KR102266847B1 (ko)
CN (1) CN111822720A (ko)
WO (1) WO2020213754A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528987A (zh) * 2021-06-18 2021-10-22 河钢承德钒钛新材料有限公司 一种钨合金复合材料及其3d打印方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219084A1 (en) * 2005-05-17 2008-09-11 Dong-Hyun Bae Fabrication Methods of Metal/Polymer/Ceramic Matrix Composites Containing Randomly Distributed or Directionally Aligned Nanofibers
KR20090132799A (ko) * 2008-06-23 2009-12-31 한국생산기술연구원 복합 분말야금 공정을 이용한 마그네슘 합금의 제조방법
JP2017088913A (ja) * 2015-11-04 2017-05-25 昭和電工株式会社 アルミニウムと炭素粒子との複合体の製造方法
KR20180005972A (ko) * 2016-07-07 2018-01-17 부경대학교 산학협력단 복합 재료 송전 케이블의 제조방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285786A (en) * 1961-01-05 1966-11-15 Westinghouse Electric Corp Coextruded thermoelectric members
US4154893A (en) * 1972-09-15 1979-05-15 Conrad Goldman Production of thermoplastic billets and preforms
JPS61190006A (ja) * 1985-02-19 1986-08-23 Sanyo Tokushu Seiko Kk 粉末冶金法による熱間押出しクラツド金属管の製造法
JPH0625363B2 (ja) * 1987-02-06 1994-04-06 株式会社神戸製鋼所 押出加工用A▲l▼基複合ビレツトおよびその製造方法
CN1048892A (zh) * 1989-05-24 1991-01-30 奥本大学 混合纤维复合材料结构及其制法和用途
KR100364043B1 (ko) * 2000-06-10 2002-12-11 진인태 임의의 단면형상을 가진 금속곡관과 금속곡봉의 제조장치 및 제조방법
CN100478474C (zh) * 2002-07-31 2009-04-15 北京有色金属研究总院 颗粒增强铝基复合材料及其零部件和零部件的近净成形工艺
JPWO2005040066A1 (ja) * 2003-10-29 2007-03-01 住友精密工業株式会社 カーボンナノチューブ分散複合材料とその製造方法並びにその適用物
KR20090056242A (ko) * 2007-11-30 2009-06-03 창원대학교 산학협력단 탄소나노튜브 혼합 분쇄에 의한 소결체 분말 제조 방법
KR101102139B1 (ko) 2008-12-09 2012-01-02 경상대학교산학협력단 반용융 압출용 Al―Zn―Mg계 알루미늄 합금 빌렛의 결정립 성장 억제 방법
KR101091272B1 (ko) * 2009-09-24 2011-12-07 현대자동차주식회사 탄소나노튜브와 금속으로 이루어진 나노복합분말의 제조방법
AU2010333929A1 (en) * 2009-12-01 2012-05-24 Applied Nanostructured Solutions, Llc Metal matrix composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
JP5683974B2 (ja) * 2010-01-20 2015-03-11 古河電気工業株式会社 複合材料を用いた線材およびその製造方法、並びにその線材を用いた電線
WO2012083036A2 (en) * 2010-12-17 2012-06-21 Cleveland State University Nano-engineered ultra-conductive nanocomposite copper wire
US8631876B2 (en) * 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
KR101812997B1 (ko) * 2011-06-03 2017-12-29 삼성디스플레이 주식회사 실리케이트 형광체, 실리케이트 형광체의 제조방법 및 이를 포함하는 발광 장치
KR101418983B1 (ko) * 2011-09-09 2014-07-11 부경대학교 산학협력단 나노입자를 이용한 균질 분산 카본나노튜브-알루미늄 복합분말의 제조방법
KR20140076448A (ko) * 2012-12-12 2014-06-20 현대자동차주식회사 알루미늄합금 제조방법
CN103192082B (zh) * 2013-03-19 2015-04-22 北京驰宇空天技术发展有限公司 轻型金属基复合材料产品的制造方法及其浆料
CN103602843B (zh) * 2013-12-09 2015-11-04 国家电网公司 碳纳米管增强铝基复合材料
KR101686973B1 (ko) * 2014-04-14 2016-12-15 부경대학교 산학협력단 나노입자를 이용한 균질 분산 카본나노튜브-알루미늄 복합분말의 제조방법
KR101583916B1 (ko) * 2014-04-14 2016-01-11 현대자동차주식회사 나노카본 강화 알루미늄 복합재 및 그 제조방법
KR20160019711A (ko) * 2014-08-12 2016-02-22 부경대학교 산학협력단 이중 나노입자 강화 알루미늄 경사 기능 재료 및 그 제조방법
KR101590181B1 (ko) 2015-08-04 2016-01-29 에스 티(주) 알루미늄 빌렛을 압출공법에 의하여 제조되는 휴대폰의 메탈케이스 및 그 제조방법
CN105734322B (zh) * 2016-03-02 2017-05-31 昆明理工大学 一种碳纳米管增强铝基复合材料的制备方法
CN105734332B (zh) * 2016-04-29 2017-09-22 合肥工业大学 一种孔隙均匀可控的多孔钨块体材料的制备方法
KR101859168B1 (ko) * 2016-05-23 2018-05-16 부경대학교 산학협력단 탄소나노튜브 및 나노 탄화규소 강화 알루미늄 경사 기능 재료
JP6846879B2 (ja) * 2016-06-07 2021-03-24 昭和電工株式会社 ヒートシンクの製造方法
US10553370B2 (en) * 2017-06-28 2020-02-04 Siemens Industry, Inc. Methods of making light-weight, low-resistivity transfer materials
KR101822073B1 (ko) * 2017-09-06 2018-01-26 (주)차세대소재연구소 이종 복합 형재의 제조 방법 및 이를 이용하여 제조된 이종 복합 형재
JP6782678B2 (ja) * 2017-10-20 2020-11-11 矢崎総業株式会社 アルミニウム基複合材料及びそれを用いた電線並びにアルミニウム基複合材料の製造方法
CN109338167B (zh) * 2018-10-22 2021-09-14 昆明理工大学 一种碳纳米管复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219084A1 (en) * 2005-05-17 2008-09-11 Dong-Hyun Bae Fabrication Methods of Metal/Polymer/Ceramic Matrix Composites Containing Randomly Distributed or Directionally Aligned Nanofibers
KR20090132799A (ko) * 2008-06-23 2009-12-31 한국생산기술연구원 복합 분말야금 공정을 이용한 마그네슘 합금의 제조방법
JP2017088913A (ja) * 2015-11-04 2017-05-25 昭和電工株式会社 アルミニウムと炭素粒子との複合体の製造方法
KR20180005972A (ko) * 2016-07-07 2018-01-17 부경대학교 산학협력단 복합 재료 송전 케이블의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. KIM ET AL.: "Carbon nanotubes-reinforced aluminum alloy functionally gr aded materials fabricated by powder extrusion process", MATERIALS SCIENCE A ND ENGINEERING: A, vol. 745, 2 January 2019 (2019-01-02), pages 379 - 389, XP055751343, DOI: 10.1016/j.msea.2018.12.128 *
See also references of EP3957418A4 *

Also Published As

Publication number Publication date
EP3957418A1 (en) 2022-02-23
US11633783B2 (en) 2023-04-25
KR102266847B1 (ko) 2021-06-21
EP3957418A4 (en) 2022-06-29
CN111822720A (zh) 2020-10-27
KR20200121051A (ko) 2020-10-23
US20200324343A1 (en) 2020-10-15
JP2020175439A (ja) 2020-10-29
JP6901791B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2020213753A1 (ko) 알루미늄계 클래드 방열판의 제조방법 및 이에 의해 제조된 알루미늄계 클래드 방열판
US20100183471A1 (en) Metal injection moulding method
WO2020213754A1 (ko) 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛
WO2020196982A1 (ko) 알루미늄계 클래드 형재의 제조 방법 및 이를 이용하여 제조된 알루미늄계 클래드 형재
WO2021215575A1 (ko) 전기 자동차의 파워트레인용 냉각 파이프의 제조방법 및 이에 의해 제조된 냉각 파이프
JPH03208865A (ja) 耐火物複合物品の製造方法
WO2022080950A1 (ko) 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판
WO2022080951A1 (ko) 순차적인 소성 가공을 통해 이종 복합소재 박판을 제조하는 방법 및 이에 의해 제조된 이종 복합소재 박판
WO2021194007A1 (ko) 내부식성이 향상된 알루미늄-탄소나노튜브 이종복합재료 압출재의 제조방법 및 이에 의해 제조된 알루미늄-탄소나노튜브 이종복합재료 압출재
WO2023058803A1 (ko) 전기 자동차의 배터리 케이스 제조방법 및 이에 의해 제조된 배터리 케이스
KR102548445B1 (ko) 클래드재 전극층을 포함하는 정전척의 제조방법 및 이에 의해 제조된 정전척
WO2019198918A1 (ko) 육방정 질화붕소 나노플레이트렛/금속 나노 복합 분말 및 이의 제조방법
WO2009029992A1 (en) Metal injection moulding method
WO2022092361A1 (ko) 고체적율 알루미늄 복합재 및 그 제조방법
US20240238857A1 (en) Method for manufacturing battery case of electric vehicle and battery case manufactured thereby
JP2002256307A (ja) 急冷凝固を利用したマグネシウム合金粉末の作製およびその成形方法
WO2018062872A1 (ko) 은-다이아몬드 복합 재료의 제조를 위한 방전플라즈마소결 방법 및 이에 의해 제조된 은-다이아몬드 복합 재료
KR20240064362A (ko) 전기 자동차의 냉난방 공조 장치용 관재의 제조방법, 이에 의해 제조된 관재 및 이를 포함하는 전기 자동차 냉난방 공조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019925123

Country of ref document: EP

Effective date: 20211115