WO2022080950A1 - 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판 - Google Patents

이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판 Download PDF

Info

Publication number
WO2022080950A1
WO2022080950A1 PCT/KR2021/014363 KR2021014363W WO2022080950A1 WO 2022080950 A1 WO2022080950 A1 WO 2022080950A1 KR 2021014363 W KR2021014363 W KR 2021014363W WO 2022080950 A1 WO2022080950 A1 WO 2022080950A1
Authority
WO
WIPO (PCT)
Prior art keywords
billet
layer
thin plate
powder
composite powder
Prior art date
Application number
PCT/KR2021/014363
Other languages
English (en)
French (fr)
Inventor
권한상
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to US18/247,951 priority Critical patent/US20230373002A1/en
Publication of WO2022080950A1 publication Critical patent/WO2022080950A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • B22F2302/403Carbon nanotube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a plastically-worked material made of a heterogeneous composite material in which different materials are complexed, and to a plastically-worked material manufactured thereby.
  • Aluminum and aluminum alloys have slightly inferior thermal conductivity compared to copper, which is widely known for excellent thermal conductivity, but are relatively inexpensive and have excellent mechanical properties such as specific strength, and excellent malleability and ductility, so that It has the advantage that it can be processed into virtually any shape, such as a wire rod, and is applied as a heat dissipation material having various shapes and uses.
  • a carbon nanotube-reinforced aluminum matrix heterogeneous composite material that uses carbon nanotube (CNT) as a reinforcing material and is compounded with an aluminum or aluminum alloy matrix is designed with customized characteristics such as ultra-light, high strength, and high heat dissipation according to the intended use. is possible
  • a material processed into a thin plate shape with excellent mechanical properties and thermal conductivity is expected to be applicable as a functional material in various industries.
  • the technical problem to be solved by the present invention consists of a heterogeneous composite material in which aluminum (or aluminum alloy) and carbon nanotubes (CNT) are complexed, and a method for manufacturing a heterogeneous composite material thin plate having excellent mechanical properties and thermal conductivity, and the like to provide a thin plate of heterogeneous composite material manufactured by
  • the present invention comprises the steps of (a) producing a composite powder by ball milling aluminum or aluminum alloy powder and carbon nanotube powder; (b) manufacturing a multi-layer billet comprising the composite powder, comprising a core layer and two or more shell layers surrounding the core layer, wherein the core layer is made of the composite powder or aluminum alloy, The shell layer excluding the outermost shell layer is made of the composite powder, and the outermost shell layer is (i) aluminum or aluminum alloy powder or (ii) manufacturing a multi-layer billet, characterized in that consisting of the composite powder; And (c) rolling the multi-layer billet to form a thin plate shape; proposes a method of manufacturing a heterogeneous composite material thin plate comprising a.
  • the core layer is made of the composite powder, and the composition of the composite powder included in each of the shell layer and the core layer excluding the outermost shell layer is different from each other.
  • the multi-layer billet a core layer, a first shell layer surrounding the core layer, and a second shell layer surrounding the first shell layer
  • a method of manufacturing a heterogeneous composite material thin plate characterized in that consisting of.
  • the multi-layered billet may include: a can-shaped first billet as the second shell layer; a second billet disposed inside the first billet as the first shell layer; and a third billet disposed inside the second billet as the core layer.
  • step (b) the multi-layer billet under a pressure of 30 MPa to 100 MPa, at a temperature of 280 ° C. to 600 ° C., for 1 second to 30 minutes, spark plasma sintering heterogeneous composite material, characterized in that A method for manufacturing a thin plate is proposed.
  • the present invention proposes a heterogeneous composite material thin plate manufactured by the manufacturing method in another aspect of the present invention.
  • the advantages of each material can be maximized and the disadvantages can be mutually supplemented, and since it has a thin plate shape, various application fields (battery case, 5G Aluminum (or aluminum alloy)-carbon nanotube heterogeneous composite material that can be applied to repeaters and ESS cases, packaging materials for pharmaceuticals, container materials, heat exchanger fins, wire covering materials, etc.) can be manufactured with
  • FIG. 1 is a process flow diagram of a method for manufacturing a heterogeneous composite material thin plate according to the present invention.
  • FIG. 2 is a schematic view showing a manufacturing process of a multi-layer billet used for manufacturing a heterogeneous composite material thin plate according to the present invention.
  • Figure 3 is a schematic diagram showing an example of a multi-layer billet used in the manufacture of the heterogeneous composite material thin plate according to the present invention.
  • FIG. 4 is a photograph of an aluminum-carbon nanotube heterogeneous composite material thin plate prepared by rolling a multi-layer billet containing an aluminum/carbon nanotube composite powder in the present embodiment.
  • the manufacturing method of the heterogeneous composite material thin plate according to the present invention comprises the steps of: (a) preparing a composite powder by ball milling aluminum or aluminum alloy powder and carbon nanotube powder; (b) manufacturing a multi-layer billet comprising the composite powder, comprising a core layer and two or more shell layers surrounding the core layer, wherein the core layer is made of the composite powder or aluminum alloy, The shell layer excluding the outermost shell layer is made of the composite powder, and the outermost shell layer is (i) aluminum or aluminum alloy powder or (ii) manufacturing a multi-layer billet, characterized in that consisting of the composite powder; and (c) rolling the multi-layer billet to form a thin plate shape (FIG. 1).
  • the aluminum alloy powder is any one selected from the group consisting of 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, 7000 series and 8000 series series.
  • the composite powder contains the carbon nanotubes
  • a composite material such as a clad material is manufactured through plastic processing such as extrusion, rolling, forging, etc. using a billet manufactured using the carbon nanotube
  • the composite material has high thermal conductivity, high strength , may have lightweight properties.
  • micro-sized aluminum alloy particles are difficult to disperse due to a large difference in particle diameter from nano-sized carbon nanotubes, and carbon nanotubes are prone to agglomeration due to strong van der Waals force.
  • a dispersion inducer may be further added.
  • nanoparticles made of any one ceramic selected from the group consisting of SiC, SiO 2 , Al 2 O 3 , TiO 2 , Fe 3 O 4 , MgO, ZrO 2 and mixtures thereof may be used.
  • the nano-ceramic particles act to uniformly disperse the carbon nanotubes between the aluminum alloy particles, and in particular, the nano-SiC (nano-silicon carbide) has high tensile strength and sharp, constant electrical conductivity and thermal conductivity. It has high hardness, high fire resistance and thermal shock resistance, and has excellent high temperature properties and chemical stability, so it is used as abrasives and refractories.
  • the nano-SiC particles present on the surface of the aluminum alloy particles suppress direct contact between the carbon nanotubes and the aluminum alloy particles, which can be generated by the reaction of the carbon nanotubes with the aluminum alloy, which is generally known. It also plays a role in suppressing the formation of unhealthy aluminum carbide.
  • the composite powder may include 100 parts by volume of the aluminum alloy powder, and 0.01 to 10 parts by volume of the carbon nanotube.
  • the strength of the composite material appears similar to that of pure aluminum or aluminum alloy, so it may not play a sufficient role as a reinforcing material, and on the contrary, the carbon nanotube
  • the content of is more than 10 parts by volume, the strength increases compared to pure aluminum or aluminum alloy, but the elongation may decrease conversely.
  • the content of the carbon nanotubes is extremely increased, dispersion becomes difficult, and mechanical and physical properties may be deteriorated by acting as a defect.
  • the composite powder may further include 1 part by volume to 50 parts by volume of a metal other than aluminum and/or 1 part by volume to 50 parts by volume of a metal silicide or metal boride with respect to 100 parts by volume of the aluminum alloy powder.
  • the metal other than aluminum is Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd , Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt, and one kind of metal selected from the group consisting of Pb Or it is preferably an alloy of two or more metals, and the metal silicide is CrSi 2 , Cr 2 Si, HfSi, MoSi 2 , NbSi 2 , TaSi 2 , Ta 5 Si 3 , ThSi 2 , Ti 5 Si 3 , WSi 2 , W 5 Si 3 , V 3 Si and ZrSi 2 is preferably at least one, and the metal boride is AlB 2 , BeB 2 , CrB 2 , HfB 2 , HB
  • the composite powder when the composite powder further includes the dispersion inducer, the composite powder may further include 0.1 to 10 parts by volume of the dispersion inducer with respect to 100 parts by volume of the aluminum alloy powder.
  • the dispersion inducing effect may be insignificant. there is.
  • the ball mill is specifically atmospheric, in an inert atmosphere, for example, under a nitrogen or argon atmosphere, at a low speed of 150 r/min to 300 r/min or a high speed of 300 r/min or more, for 12 hours to 48 hours. It may be made using a ball mill, for example, a horizontal or planetary ball mill.
  • the ball mill can be made by charging 100 parts by volume to 1500 parts by volume of stainless balls (a 1: 1 mixing of a diameter of 20 pie balls and a diameter of 10 pie balls) in a stainless container with respect to 100 parts by volume of the composite powder. there is.
  • any one organic solvent selected from the group consisting of heptane, hexane and alcohol as a process control agent may be used in an amount of 10 to 50 parts by volume based on 100 parts by volume of the composite powder.
  • the organic solvent is all evaporated in the hood when the mixed powder is recovered by opening the container after the ball mill, and only the aluminum alloy powder and the carbon nanotubes remain in the recovered mixed powder.
  • the nano-sized ceramic dispersion inducer acts like the nano-sized milling ball by the rotational force generated during the ball mill process, physically separating the agglomerated carbon nanotubes, and promoting fluidity.
  • Carbon nanotubes may be more uniformly dispersed on the surface of the aluminum particles.
  • step (b) a multi-layered billet including the composite powder obtained in the previous step is prepared.
  • the multi-layer billet manufactured in this step is made of a core layer and two or more shell layers surrounding the core layer, the core layer is made of the composite powder or aluminum alloy, and the shell layer except for the outermost shell layer is the composite powder is made of, and the outermost shell layer is made of an aluminum alloy.
  • the composition of the composite powder included in each of the two or more shell layers that is, the content ratio of the aluminum alloy powder and the carbon nanotube powder is preferably different from each other.
  • the composite powder included in each of the one or more shell layers except for the core layer and the outermost shell layer has a different composition, so that the volume fraction of carbon nanotubes with respect to the aluminum alloy powder is different. It is preferable to be different.
  • the number of shell layers included in the multi-layer billet is not particularly limited, but is preferably 5 or less in consideration of economic feasibility and the like.
  • FIG. 2 is a diagram schematically showing an example of the multi-layered billet manufacturing process as described above.
  • the billet may be manufactured by loading the composite powder 10 into a metal can 20 through a guider G, and sealing or pressing with a cap C to prevent the powder from flowing.
  • the metal can 20 can be used as long as it is made of a metal having electrical and thermal conductivity, and aluminum or aluminum alloy can, copper can, and magnesium can can be preferably used.
  • the thickness of the metal can 20 may be 0.5 mm to 150 mm assuming a 6-inch billet, but may have various thickness ratios depending on the size of the billet.
  • FIG. 3 is an example of a multilayer billet that can be manufactured in this step, that is, a multilayer billet including a shell layer with a core layer and two surrounding layers, that is, a core layer, a first shell layer surrounding the core layer, and the first shell layer. It is a perspective view schematically showing a multi-layer billet made of a second shell layer surrounding the.
  • a multi-layer billet may be manufactured by further disposing a third billet 13 having a different composition from the second billet 12 as a core layer inside the second billet 12 .
  • the first billet 11 has a hollow cylindrical shape, and may have a can shape with one inlet closed or a hollow cylindrical shape with both inlets open, and the first billet 11 is made of aluminum, copper, It may be made of magnesium or the like.
  • the first billet 11 may be manufactured by melting the metal base material and then injecting it into a mold to form a hollow cylindrical shape, or by machining the first billet 11 .
  • the second billet 12 may include the prepared composite powder, and the second billet 12 may be a bulk or powder.
  • the second billet 12 When the second billet 12 is a lump, the second billet 12 may have a specifically cylindrical shape, and the multi-layered billet may include the cylindrical second billet 12 and the first billet 11 . It can be manufactured by placing it inside the At this time, as a method of disposing the second billet 12 inside the first billet 11, the composite powder of the second billet 12 is melted and injected into a mold to form a cylindrical shape, This may be manufactured by fitting it into the first billet 11 , or may be manufactured by directly charging the composite powder into the first billet 11 .
  • the third billet 13 may be a metal bulk or powder.
  • the composite powder may be compressed or sintered under high pressure to form a lump.
  • the composition of the composite powder included in the second billet 12 and the third billet 13 is different from each other.
  • the heterogeneous materials included in the composite powder are aluminum (or aluminum alloy) powder and carbon nanotubes (CNT)
  • the second billet 12 may contain the carbon nanotubes with respect to 100 parts by volume of the aluminum alloy. 0.09 parts by volume to 10 parts by volume
  • the third billet 13 may contain more than 0 parts by volume and 0.08 parts by volume or less of the carbon nanotube with respect to 100 parts by volume of the aluminum alloy powder.
  • the second billet 12 includes the composite powder
  • the third billet 13, like the first billet 11 includes aluminum, copper, magnesium, titanium, stainless steel, tungsten, cobalt, Any one metal lump or metal powder selected from the group consisting of nickel, tin, and alloys thereof may be used.
  • the multi-layered billet may contain 0.01 to 10% by volume of the second billet 12 and 0.01 to 10% by volume of the third billet 13 with respect to the total volume of the multi-layered billet, One billet 11 may be included in the remaining volume.
  • the multi-layer billet includes the second billet 12 or the third billet 13 including the composite powder
  • the multi-layer billet is compressed at a high pressure of 10 MPa to 100 MPa before encapsulation. process may be included.
  • the multi-layer billet By pressing the multi-layer billet, it becomes possible to then extrude the multi-layer billet using an extrusion die.
  • the condition for compressing the composite powder is less than 10 MPa, pores may occur in the manufactured plastic working composite material, the composite powder may flow down, and if it exceeds 100 MPa, the second billet ( means the second or more billets) can be inflated.
  • the multi-layer billet includes the second billet and/or the third billet including the composite powder
  • the multi-layer billet is then sintered to provide the multi-layer billet to a plastic working process such as extrusion. It may further include a process.
  • spark plasma sintering or hot pressure sintering apparatus may be used, but any sintering apparatus may be used as long as it can achieve the same purpose.
  • discharge plasma sintering when it is necessary to precisely sinter within a short time, it is preferable to use discharge plasma sintering, and at this time, under a pressure of 30 MPa to 100 MPa, at a temperature of 280 ° C. to 600 ° C., discharge plasma sintering can be performed for 1 second to 30 minutes there is.
  • step (c) the multi-layer billet is provided to a rolling process to process the multi-layer billet into a thin plate shape.
  • the multilayer billet may be formed into a thin plate shape by sequentially performing hot rolling and cold rolling, or may be formed into a thin plate shape by performing only a cold rolling process on the multilayer billet.
  • the starting temperature of hot rolling is preferably 500 ° C. or higher so that intermetallic compounds due to alloying elements in the aluminum alloy do not adversely affect the mechanical properties of the composite material by precipitation.
  • the end temperature of rolling is preferably a temperature of 300 ° C or less, more preferably in the range of 270 to 300 ° C, in order to prevent deterioration of mechanical properties of the composite material due to recrystallization in the cooling process after hot rolling.
  • the thickness of the heterogeneous composite material thin plate obtained through the rolling made in this step is preferably 5 ⁇ 2,000 ⁇ m.
  • the thickness of the thin plate is less than 5 ⁇ m, the mechanical strength of the thin plate is not satisfactory, and there is a risk that wrinkles may occur on the surface of the thin plate during the rolling process. If necessary, processing is restricted due to excessive thickness, which is undesirable.
  • the present invention may further include the step of laminating two or more thin plates prepared in step (c) and then cold rolling to prepare a heterogeneous composite thin plate clad material.
  • the heterogeneous composite material thin plate clad material is a dispersed phase (CNT, a metal other than aluminum, metal silicide, metal boride, etc.) with respect to the aluminum alloy 100 volume ratio of the matrix phase in each of the aluminum alloy / CNT-containing layers included in two or more thin plates. It is preferable to use a functionally graded material (FGM) whose composition varies along the thickness direction of the clad material due to different volume ratios.
  • FGM functionally graded material
  • first thin plate For example, by laminating two thin plates (first thin plate, second thin plate) prepared by rolling a multi-layer billet including three layers (core layer, first shell layer, and second shell layer), respectively, to manufacture a gradient functional clad material.
  • the first thin plate is manufactured by rolling a multi-layer billet including a core layer made of a first shell layer and a second composition of a composite powder of a first composition
  • a second thin plate is a composite powder of a third composition.
  • the first shell layer and the multilayer billet including the core layer made of the composite powder of the fourth composition are rolled and manufactured, the first thin plate and the second thin plate are laminated and then cold rolled to prepare a quadrifunctional clad material.
  • the first composition, the second composition, the third composition, and the fourth composition are naturally different from each other in composition.
  • the advantages of each material can be maximized and the disadvantages can be mutually supplemented, and since it has a thin plate shape, the High yield through a simple and rapid process for thin aluminum (or aluminum alloy)-carbon nanotube heterogeneous composite material that can be applied to various applications (packaging materials such as pharmaceuticals, container materials, heat exchanger fins, wire covering materials, etc.) depending on the thickness can be manufactured with
  • Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below.
  • the embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
  • Carbon nanotubes have a purity of 99.5%, diameter and length of 10 nm or less and 30 ⁇ m or less, respectively (Luxemteil, manufactured by OCSiAl Co., Ltd.), and aluminum powder has an average particle size of 45 ⁇ m and a purity of 99.8% (Korea, MetalPlayer) was used.
  • a multi-layered billet was manufactured such that a cylindrical third billet was positioned in the center of the aluminum alloy can, which is the first billet, and a second billet (composite powder) was positioned between the first billet and the third billet.
  • the second billet contained an aluminum-CNT composite powder containing 0.1 parts by volume of carbon nanotubes with respect to 100 parts by volume of the aluminum powder, the first billet was made of aluminum 6063, and the third billet was made of aluminum 3003 made of alloy.
  • the second billet was specifically manufactured by the following method. 100 parts by volume of aluminum powder, 0.1 parts by volume of the carbon nanotube is filled in a stainless container at 30% by volume, and a stainless ball (a diameter of 20 pie balls and a diameter of 10 pie balls are mixed) in the container is 30% by volume inside the container After filling up to 50 ml and adding 50 ml of heptane, it was ball milled at 250 rpm using a horizontal ball mill at low speed for 24 hours. Then, the container was opened to evaporate all of the heptane in a hood, and the aluminum-CNT composite powder was recovered.
  • the prepared aluminum-CNT composite powder was charged into a gap 2.5t between the first billet and the third billet, and compressed at a pressure of 100 MPa to prepare the multi-layer billet.
  • the multi-layer billet was manufactured as a thin plate having a final thickness of 1.0 mm, with a rolling continuity of 5 mm/s and a rolling reduction of 0.2 mm.
  • aluminum (or aluminum alloy)-carbon nanotube that can be applied to various application fields (battery case, 5G repeater and ESS case, packaging material such as medicine, container material, heat exchanger fin, wire covering material, etc.)
  • Thin sheets of heterogeneous composite materials can be manufactured in high yield through a simple and rapid process.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 (a) 알루미늄 또는 알루미늄 합금 분말 및 탄소나노튜브 분말을 볼밀링하여 복합 분말을 제조하는 단계; (b) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하되, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 코어층은 상기 복합 분말 또는 알루미늄 합금으로 이루어지고, 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지며, 최외곽 쉘층은 (i) 알루미늄 또는 알루미늄 합금 분말 또는 (ii) 상기 복합 분말로 이루어지는 것을 특징으로 하는 다층 빌렛을 제조하는 단계; 및 (c) 상기 다층 빌렛을 압연해 박판 형상으로 성형하는 단계;를 포함하는 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판에 대한 것이다.

Description

이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판
본 발명은 서로 다른 소재가 복합화된 이종 복합소재로 이루어진 소성 가공재의 제조방법 및 이에 의해 제조된 소성 가공재에 대한 것이다.
알루미늄 및 알루미늄 합금은, 열전도성이 뛰어난 것으로 널리 알려진 구리에 비해서는 열전도성이 다소 떨어지지만 상대적으로 저렴하면서 비강도 등 기계적 특성이 우수하고, 전성 및 연성이 우수해 봉재, 관재, 판재, 박재, 선재 등 사실상 모든 형태로 가공이 가능하다는 장점을 가져 다양한 형상 및 용도를 가지는 방열 소재로서 적용되고 있다.
이러한 알루미늄 또는 알루미늄 합금의 적용 범위를 더욱 확장시키기 위해서는, 알루미늄 또는 알루미늄 합금과 이종(異種) 재료를 복합화시켜 기계적 물성 및 열전도성 등의 물성을 좀 더 개선시킬 필요가 있다.
예를 들어, 탄소나노튜브(carbon nanotube, CNT)를 강화재로 사용해 알루미늄 또는 알루미늄 합금 기지와 복합화한 탄소나노튜브 강화 알루미늄 기지 이종복합재료는 그 용도에 따라 초경량, 고강도, 고방열성 등의 맞춤형 특성 설계가 가능하다.
특히, 기계적 물성과 열전도성이 우수한 박판(thin plate) 형상으로 가공된 소재는 다양한 산업의 기능성 소재로 적용이 가능할 것으로 기대된다.
본 발명이 해결하고자 하는 기술적 과제는, 알루미늄(또는 알루미늄 합금)과 탄소나노튜브(CNT)가 복합화된 이종 복합소재로 이루어지며, 기계적 물성 및 열전도성 등이 뛰어난 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판을 제공하는 것이다.
상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 알루미늄 또는 알루미늄 합금 분말 및 탄소나노튜브 분말을 볼밀링하여 복합 분말을 제조하는 단계; (b) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하되, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 코어층은 상기 복합 분말 또는 알루미늄 합금으로 이루어지고, 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지며, 최외곽 쉘층은 (i) 알루미늄 또는 알루미늄 합금 분말 또는 (ii) 상기 복합 분말로 이루어지는 것을 특징으로 하는 다층 빌렛을 제조하는 단계; 및 (c) 상기 다층 빌렛을 압연해 박판 형상으로 성형하는 단계;를 포함하는 이종 복합소재 박판의 제조방법을 제안한다.
또한, 상기 코어층은 상기 복합 분말로 이루어지고, 상기 최외곽 쉘층을 제외한 쉘층 및 상기 코어층 각각에 포함되는 복합 분말의 조성은 서로 상이한 것을 특징으로 하는 이종 복합소재 박판의 제조방법을 제안한다.
또한, 상기 다층 빌렛은, 코어층, 상기 코어층을 둘러싸는 제1 쉘층 및 상기 제1 쉘층을 둘러싸는 제2 쉘층으로 이루어진 것을 특징으로 하는 이종 복합소재 박판의 제조방법을 제안한다.
또한, 상기 다층 빌렛은, 상기 제2 쉘층으로서 캔 형상의 제1 빌렛; 상기 제1 쉘층으로서 상기 제1 빌렛의 내부에 배치된 제2 빌렛; 및 상기 코어층으로서 상기 제2 빌렛의 내부에 배치된 제3 빌렛으로 이루어진 것을 특징으로 하는 이종 복합소재 박판의 제조방법을 제안한다.
또한, 상기 단계 (b)에서 상기 다층 빌렛을 30MPa 내지 100MPa의 압력 하에서, 280℃ 내지 600℃의 온도로, 1초 내지 30분 동안 방전 플라즈마 소결(spark plasma sintering)시키는 것을 특징으로 하는 이종 복합소재 박판의 제조방법을 제안한다.
그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 이종 복합소재 박판을 제안한다.
본 발명에 의하면, 알루미늄(또는 알루미늄 합금)과 탄소나노튜브를 복합화시켜 각 소재의 장점을 극대화시키고 단점을 상호 보완할 수 있으며, 박판 형상을 가지기 때문에 그 두께에 따라 다양한 응용 분야(배터리 케이스, 5G중계기 및 ESS용 케이스류, 약품 등의 포장재, 용기 재료, 열교환기 핀, 전선 피복재 등)에 적용될 수 있는 알루미늄(또는 알루미늄 합금)-탄소나노튜브 이종 복합소재 박판을 간단하고 신속한 공정을 통해 높은 수율로 제조할 수 있다.
도 1은 본 발명에 따른 이종 복합소재 박판의 제조방법의 공정 흐름도이다.
도 2는 본 발명에 따른 이종 복합소재 박판의 제조에 사용되는 다층 빌렛의 제조 과정을 나타낸 모식도이다.
도 3은 본 발명에 따른 이종 복합소재 박판의 제조에 사용되는 다층 빌렛의 일례를 도시한 모식도이다.
도 4는 본원 실시예에서 알루미늄/탄소나노튜브 복합 분말을 포함하는 다층 빌렛을 압연해 제조된 알루미늄-탄소나노튜브 이종 복합소재 박판의 사진이다.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명을 상세히 설명하도록 한다.
본 발명에 따른 이종 복합소재 박판의 제조방법은, (a) 알루미늄 또는 알루미늄 합금 분말 및 탄소나노튜브 분말을 볼밀링하여 복합 분말을 제조하는 단계; (b) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하되, 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 코어층은 상기 복합 분말 또는 알루미늄 합금으로 이루어지고, 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지며, 최외곽 쉘층은 (i) 알루미늄 또는 알루미늄 합금 분말 또는 (ii) 상기 복합 분말로 이루어지는 것을 특징으로 하는 다층 빌렛을 제조하는 단계; 및 (c) 상기 다층 빌렛을 압연해 박판 형상으로 성형하는 단계를 포함해 이루어진다(도 1).
상기 단계 (a)에서 상기 알루미늄 합금 분말은 1000 번대 계열, 2000 번대 계열, 3000 번대 계열, 4000 번대 계열, 5000 번대 계열, 6000 번대 계열, 7000 번대 계열 및 8000 번대 계열로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 복합 분말은 상기 탄소나노튜브를 포함함에 따라, 이를 이용하여 제조되는 빌렛을 이용해 압출, 압연, 단조 등의 소성 가공을 통해 클래드재 등과 같은 복합재료를 제조할 경우 해당 복합재료는 고열전도성, 고강도, 경량화 특성을 가질 수 있다.
한편, 마이크로 사이즈의 알루미늄 합금 입자는 나노 사이즈의 탄소나노튜브와 입경 차이가 커서 분산이 어렵고, 탄소나노튜브는 강한 반데르발스 힘에 의해서 응집되기 쉬워 탄소나노튜브를 알루미늄 합금 분말과 균일하게 분산시키기 위해서 분산 유도제가 더 첨가될 수 있다.
상기 분산 유도제로는 SiC, SiO2, Al2O3, TiO2, Fe3O4, MgO, ZrO2 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나의 세라믹으로 이루어진 나노 입자를 사용할 수 있다.
상기 나노 세라믹 입자는 상기 탄소나노튜브를 상기 알루미늄 합금 입자 사이에 균일하게 분산시키는 작용을 하며, 특히 상기 나노 SiC(나노 실리콘카바이드, nano Silicon carbide)는 인장 강도가 높고 날카로우며 일정한 전기전도성과 열전도성을 갖고 있으며, 높은 경도, 고내화성과 열충격에 강하며 고온 성질과 화학적 안정성이 우수하여 연마재, 내화재로서 사용된다. 또한, 상기 알루미늄 합금 입자 표면에 존재하는 상기 나노 SiC 입자는 상기 탄소나노튜브와 상기 알루미늄 합금 입자의 직접적인 접촉을 억제하여 일반적으로 알려져 있는 상기 탄소나노튜브와 상기 알루미늄 합금의 반응에 의해서 생성될 수 있는 불건전상의 알루미늄 카바이드의 생성을 억제하는 역할도 수행한다.
또한, 상기 복합 분말은 상기 알루미늄 합금 분말 100 부피부, 및 상기 탄소나노튜브 0.01 부피부 내지 10 부피부를 포함할 수 있다.
상기 탄소나노튜브의 함량이 상기 알루미늄 합금 분말 100 부피부에 대하여 0.01 부피부 미만인 경우 복합재료의 강도는 순수 알루미늄 또는 알루미늄 합금과 비슷하게 나타나므로 강화재로서 충분한 역할을 하지 못할 수 있고, 반대로 상기 탄소나노튜브의 함량이 10 부피부를 초과하는 경우 강도는 순수 알루미늄 또는 알루미늄 합금 대비 증가하지만 반대로 연신율이 떨어질 수 있다. 또한, 상기 탄소나노튜브의 함량이 극단적으로 많아지면 오히려 분산이 어려워지고 결함으로 작용하여 기계적 물리적 특성을 떨어뜨릴 수도 있다.
나아가, 상기 복합 분말은 알루미늄 합금 분말 100 부피부에 대해, 알루미늄 외의 금속 1 부피부 내지 50 부피부 및/또는 금속 규화물 또는 금속 붕화물 1 부피부 내지 50 부피부를 더 포함할 수 있다.
이때, 상기 알루미늄 외의 금속은 Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt 및 Pb로 이루어진 군으로부터 선택되는 1종의 금속 또는 2종 이상의 금속의 합금인 것이 바람직하며, 상기 금속 규화물은 CrSi2, Cr2Si, HfSi, MoSi2, NbSi2, TaSi2, Ta5Si3, ThSi2, Ti5Si3, WSi2, W5Si3, V3Si 및 ZrSi2 중 적어도 어느 하나인 것이 바람직하고, 상기 금속 붕화물은 AlB2, BeB2, CrB2, HfB2, LaB2, MoB2, MoB, NbB2, SiB2, TaB2, ThB4, TiB2, WB, VB2,및 ZrB2 중 적어도 어느 하나인 것이 비람직하다.
또한, 상기 복합 분말이 상기 분산 유도제를 더 포함하는 경우, 상기 복합 분말은 상기 알루미늄 합금 분말 100 부피부에 대하여 상기 분산 유도제 0.1 부피부 내지 10 부피부를 더 포함할 수 있다.
상기 분산 유도제의 함량이 상기 알루미늄 합금 분말 100 부피부에 대하여 0.1 부피부 미만인 경우 분산 유도 효과가 미미할 수 있고, 10 부피부를 초과하는 경우 탄소나노튜브의 응집으로 분산이 어려워 오히려 결함으로 작용할 있을 수 있다.
한편, 상기 볼 밀은 구체적으로 대기, 불활성 분위기, 예를 들면, 질소 또는 아르곤 분위기 하에서, 150 r/min 내지 300 r/min의 저속 또는 300 r/min의 이상의 고속으로, 12 시간 내지 48 시간 동안 볼밀기, 예를 들어 수평형 또는 유성형 볼밀기를 이용하여 이루어질 수 있다.
이때, 상기 볼 밀은 스테인레스 용기에서, 스테인레스 볼(지름 20 파이 볼, 및 지름 10 파이 볼을 1:1 혼합)을 상기 복합 분말 100 부피부에 대하여 100 부피부 내지 1500 부피부로 장입하여 이루어질 수 있다.
또한, 마찰계수를 감소시키기 위해서 공정 제어제로 헵탄, 헥산 및 알코올로 이루어진 군에서 선택되는 어느 하나의 유기 용제를 상기 복합 분말 100 부피부에 대하여 10 부피부 내지 50 부피부로 사용할 수 있다. 상기 유기 용제는 볼 밀 후 용기를 오픈하여 상기 혼합 분말 회수시 후드에서 모두 증발되고, 회수되는 혼합 분말에는 상기 알루미늄 합금 분말과 상기 탄소나노튜브만 남는다.
이때, 상기 나노 크기의 세라믹인 분산 유도제는, 상기 볼 밀 공정시 발생되는 회전력에 의해 상기 나노 크기의 밀링 볼과 같은 역할을 하여, 물리적으로 응집된 상기 탄소나노튜브를 분리하고 유동성을 촉진시켜 상기 탄소나노튜브를 상기 알루미늄 입자 표면에 더욱 균일하게 분산시킬 수 있다.
다음으로, 상기 단계 (b)에서는 전 단계에서 얻어진 복합 분말을 포함하는 다층 빌렛(billet)을 제조한다.
본 단계에서 제조되는 다층 빌렛은 코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 코어층은 상기 복합 분말 또는 알루미늄 합금으로 이루어지고, 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지며, 최외곽 쉘층은 알루미늄 합금으로 이루어진다.
상기 최외곽 쉘층을 제외한 쉘층이 2개층 이상일 경우 해당 2개층 이상의 쉘층 각각에 포함되는 복합 분말의 조성, 즉 알루미늄 합금 분말과 탄소나노튜브 분말의 함량비는 서로 상이한 것이 바람직하다.
또한, 상기 코어층이 상기 복합 분말로 이루어질 경우에도, 해당 코어층 및 최외곽 쉘층을 제외한 1개층 이상의 쉘층 각각에 포함되는 복합 분말은 조성이 상이해 알루미늄 합금 분말에 대한 탄소나노튜브의 부피 분율이 서로 다른 것이 바람직하다.
한편, 상기 다층 빌렛에 포함되는 쉘층의 개수는 특별히 제한되지 않으나, 경제성 등을 고려할 때 5개 층 이하인 것이 바람직하다.
도 2는 상기와 같은 다층 빌렛 제조 과정의 일례를 모식적으로 나타내는 그림이다.
도 2를 참조하면, 상기 빌렛은 상기 복합 분말(10)을 가이더(G)를 통해 금속캔(20)에 장입하고, 캡(C)으로 봉입하거나 압착하여 분말이 흐르지 않도록 하여 제조할 수 있다.
상기 금속캔(20)은 전기전도성 및 열전도성이 있는 금속으로 이루어진 것이면 모두 사용 가능하고, 알루미늄 또는 알루미늄 합금 캔, 구리 캔, 마그네슘 캔을 바람직하게 사용할 수 있다. 상기 금속캔(20)의 두께는 6 인치 빌렛을 가정할 경우 0.5 mm 내지 150 mm일 수 있지만 이는 빌렛의 크기에 따라 다양한 두께 비율을 가질 수 있다.
도 3은 본 단계에서 제조될 수 있는 다층 빌렛의 일례로서, 코어층과 이를 둘러싸는 2층을 쉘층을 포함하는 다층 빌렛 즉, 코어층, 상기 코어층을 둘러싸는 제1 쉘층 및 상기 제1 쉘층을 둘러싸는 제2 쉘층으로 이루어진 다층 빌렛을 모식적으로 도시한 사시도이다.
도 3을 참조하면, 우선 제2 쉘층으로서 속이 빈 원통 형상의 제1 빌렛(11)의 내부에 제1 쉘층으로서 상기 제1 빌렛(11)과는 성분이 상이한 제2 빌렛(12)을 배치하고, 상기 제2 빌렛(12)의 내부에 코어층으로서 상기 제2 빌렛(12)과는 성분이 상이한 제3 빌렛(13)을 더 배치하여 다층 빌렛을 제조할 수 있다.
이때, 상기 제1 빌렛(11)은 속이 빈 원통 형상으로서, 한쪽 입구가 막힌 캔(can) 형상이거나, 양쪽 입구가 뚫린 중공 원통 형상일 수 있고, 상기 제1 빌렛(11)은 알루미늄, 구리, 마그네슘 등으로 이루어질 수 있다. 상기 제1 빌렛(11)은 상기 금속 모재를 용융시킨 후, 주형에 주입하여 속이 빈 원통 형상으로 제조하거나, 기계 가공하여 제조할 수 있다.
상기 제2 빌렛(12)은 상기 제조된 복합 분말을 포함할 수 있고, 상기 제2 빌렛(12)은 덩어리(bulk) 또는 분말일 수 있다.
상기 제2 빌렛(12)이 덩어리인 경우, 상기 제2 빌렛(12)은 구체적으로 원기둥 형상일 수 있고, 상기 다층 빌렛은 상기 원기둥 형상의 제2 빌렛(12)을 상기 제1 빌렛(11)의 내부에 배치시켜 제조할 수 있다. 이때, 상기 제2 빌렛(12)을 상기 제1 빌렛(11)의 내부에 배치시키는 방법으로는, 상기 제2 빌렛(12)의 복합 분말을 용융시켜 주형에 주입하여 원기둥 형상으로 제조한 후, 이를 상기 제1 빌렛(11) 내부에 끼워 맞춤하여 제조할 수 있고, 또는 상기 복합 분말을 상기 제1 빌렛(11) 내부에 직접 장입하여 제조할 수도 있다.
상기 제3 빌렛(13)은 금속 덩어리(bulk) 또는 분말일 수 있다.
한편, 상기 제2 빌렛(12) 또는 상기 제3 빌렛(13) 등이 상기 복합 분말을 포함하는 덩어리인 경우, 상기 복합 분말을 고압으로 압착시키거나 소결시켜 덩어리 형상으로 제조할 수 있다.
이때, 상기 제2 빌렛(12)과 제3 빌렛(13)이 포함하는 복합 분말은 그 조성이 서로 상이하다. 상기 복합 분말에 포함되는 이종 재료가 알루미늄(또는 알루미늄 합금) 분말 및 탄소나노튜브(CNT)일 경우를 예로 들면, 상기 제2 빌렛(12)은 상기 알루미늄 합금 100 부피부에 대하여 상기 탄소나노튜브를 0.09 부피부 내지 10 부피부로 포함하고, 상기 제3 빌렛(13)은 상기 알루미늄 합금 분말 100 부피부에 대하여 상기 탄소나노튜브를 0 부피부 초과 0.08 부피부 이하로 포함할 수 있다.
또는, 상기 제2 빌렛(12)은 상기 복합 분말을 포함하고, 상기 제3 빌렛(13)은 상기 제1 빌렛(11)과 같이, 알루미늄, 구리, 마그네슘, 티타늄, 스테인리스스틸, 텅스텐, 코발트, 니켈, 주석 및 이들의 합금으로 이루어진 군에서 선택되는 어느 하나의 금속 덩어리이거나 금속 분말일 수도 있다.
상기 다층 빌렛은 상기 다층 빌렛 전체 부피에 대하여 상기 제2 빌렛(12)을 0.01 부피% 내지 10 부피% 및 상기 제3 빌렛(13)을 0.01 부피% 내지 10 부피%로 포함할 수 있고, 상기 제1 빌렛(11)을 나머지 부피로 포함할 수 있다.
한편, 상기 다층 빌렛이 상기 복합 분말을 포함하는 상기 제2 빌렛(12) 또는 상기 제3 빌렛(13)을 포함함에 따라, 상기 다층 빌렛은 봉입하기 전에, 10 MPa 내지 100 MPa의 고압으로 압착시키는 공정을 포함할 수 있다.
상기 다층 빌렛을 압착함에 따라, 이후 상기 다층 빌렛을 압출 다이스를 이용하여 압출하는 것이 가능해진다. 상기 복합 분말을 압착하는 조건이 10 MPa 미만인 경우 제조된 소성 가공 복합재료에 기공이 발생할 수 있고, 상기 복합 분말이 흘러 내릴 수 있으며, 100 MPa를 초과하는 경우 높은 압력으로 인하여 상기 제2의 빌렛(두 번째 이상의 빌렛을 의미함)이 팽창할 수 있다.
또한, 상기 다층 빌렛이 상기 복합 분말을 포함하는 상기 제2 빌렛 및/또는 상기 제3 빌렛을 포함함에 따라, 이후 상기 다층 빌렛을 압출 등의 소성 가공 공정에 제공하기 위하여, 상기 다층 빌렛을 소결시키는 공정을 더 포함할 수 있다.
상기 소결에는 방전 플라즈마 소결(spark plasma sintering) 또는 열간 가압 소결 장치를 사용할 수 있지만, 동일한 목적을 달성할 수 있는 한 어떠한 소결 장치를 사용해도 무방하다. 다만, 단시간 내에 정밀하게 소결하는 것이 필요한 경우 방전 플라즈마 소결을 이용하는 것이 바람직하고, 이때 30 MPa 내지 100 MPa의 압력 하에서, 280 ℃ 내지 600 ℃의 온도로, 1 초 내지 30 분 동안 방전 플라즈마 소결시킬 수 있다.
이어서, 상기 단계 (c)에서는 다층 빌렛을 박판 형상으로 가공하기 위해 상기 다층 빌렛을 압연 공정에 제공한다.
일례로, 상기 다층 빌렛에 대해 열간 압연 및 냉간 압연을 순차적으로 실시해 박판 형상으로 성형하거나, 상기 다층 빌렛에 대해 냉간 압연 공정만을 실시해 박판 형상으로 성형할 수 있다.
냉간 압연에 앞서 열간 압연을 실시할 경우, 열간 압연의 개시 온도는 알루미늄 합금 내의 합금 원소에 기인하는 금속간 화합물이 석출되어 복합재료의 기계적 물성에 악영향을 끼치지 않도록 500 ℃ 이상인 것이 바람직하고, 열간 압연의 종료 온도는 열간 압연 후 냉각 과정에서 재결정에 의한 복합재료의 기계적 물성 저하를 방지하기 위해 300 ℃ 이하의 온도, 보다 바람직하게는 270 ~ 300 ℃의 범위에 속하는 것이 좋다.
한편, 본 단계에서 이루어지는 압연을 통해 얻어지는 이종 복합재료 박판의 두께는 5 ~ 2,000 ㎛인 것이 바람직하다.
박판의 두께가 5 ㎛ 미만일 경우에는 박판의 기계적 강도가 만족스럽지 않고, 자칫하다간 압연 과정에서 박판 표면에 주름이 발생할 우려가 있으며, 박판의 두께가 2,000 ㎛를 초과할 경우에는 박판 제조 후 추가 성형이 필요할 경우 과도한 두께로 인해 가공에 제한이 생겨 바람직하지 않다.
나아가, 본 발명은 상기 단계 (c)에서 제조한 2개 이상의 박판을 적층한 후 냉각 압연해 이종 복합소재 박판 클래드재를 제조하는 단계를 더 포함할 수 있다.
이때, 상기 이종 복합소재 박판 클래드재는, 2개 이상의 박판에 포함된 알루미늄 합금/CNT 포함층 각각에서 기지상인 알루미늄 합금 100 부피비에 대한 분산상(CNT, 알루미늄 외의 금속, 금속 규화물, 금속 붕화물 등)의 부피비가 서로 달라 클래드재의 두께 방향을 따라 조성이 변화하는 경사기능성 재료(functionally graded material, FGM)인 것이 바람직하다.
예를 들어, 3개층(코어층, 제1 쉘층 및 제2 쉘층)을 포함한 다층 빌렛을 각각 압연해 제조한 2개의 박판(제1 박판, 제2 박판)을 적층시켜 경사기능성 클래드재를 제조할 경우, 제1 박판은 제1 조성의 복합 분말로 이루어진 제1 쉘층 및 제2 조성의 복합 분말로 이루어진 코어층을 포함하는 다층 빌렛을 압연해 제조하고, 제2 박판은 제3 조성의 복합 분말로 이루어진 제1 쉘층 및 제4 조성의 복합 분말로 이루어진 코어층을 포함하는 다층 빌렛을 압연해 제조한 후, 제1 박판 및 제2 박판을 적층한 후 냉간 압연해 사기능성 클래드재를 제조할 수 있다. 이때, 상기 제1 조성, 제2 조성, 제3 조성 및 제4 조성은 당연히 서로 조성이 상이하다.
전술한 본 발명에 따른 이종 복합소재 박판의 제조방법에 의하면, 알루미늄(또는 알루미늄 합금)과 탄소나노튜브를 복합화시켜 각 소재의 장점을 극대화시키고 단점을 상호 보완할 수 있으며, 박판 형상을 가지기 때문에 그 두께에 따라 다양한 응용 분야(약품 등의 포장재, 용기 재료, 열교환기 핀, 전선 피복재 등)에 적용될 수 있는 알루미늄(또는 알루미늄 합금)-탄소나노튜브 이종 복합소재 박판을 간단하고 신속한 공정을 통해 높은 수율로 제조할 수 있다.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예>
탄소나노튜브는 순도 99.5 %, 직경과 길이는 각각 10 nm 이하와 30 ㎛ 이하이고(룩셈부르크, (주)OCSiAl사 제품), 알루미늄 분말은 평균 입경 45 ㎛, 순도 99.8 %(한국, MetalPlayer 제품)을 사용하였다.
한편, 상기 제1 빌렛인 알루미늄 합금 캔 중앙에 원기둥 형상의 제3 빌렛이 위치하고, 상기 제1 빌렛과 제3 빌렛의 사이에 제2 빌렛(복합 분말)이 위치하도록 다층 빌렛을 제조하였다.
상기 제2 빌렛은 상기 알루미늄 분말 100 부피부에 대하여 탄소나노튜브를 0.1 부피부로 포함하는 알루미늄-CNT 복합 분말을 포함하였고, 상기 제1 빌렛은 알루미늄 6063으로 이루어졌고, 상기 제3 빌렛은 알루미늄 3003 합금으로 이루어졌다.
상기 제2 빌렛은 구체적으로 다음의 방법으로 제조되었다. 알루미늄 분말 100 부피부, 상기 탄소나노튜브 0.1 부피부 비율로 스테인레스 용기에 30 부피%로 채우고, 상기 용기에 스테인레스 볼(지름 20 파이 볼, 및 지름 10 파이 볼을 혼합)을 용기 내부에 30 부피%까지 채우고 헵탄을 50 ml 첨가한 후, 이를 수평형 볼밀기를 이용하여 250 rpm, 24 시간 동안 저속 볼 밀 시켰다. 이후, 상기 용기를 오픈하여 상기 헵탄을 후드에서 모두 증발시키고, 알루미늄-CNT 복합 분말을 회수하였다.
상기 제조된 알루미늄-CNT 복합 분말을 상기 제1 빌렛과 상기 제3 빌렛 사이의 틈 2.5t에 장입시키고, 100 MPa의 압력으로 압착시켜, 상기 다층 빌렛을 제조하였다.
다층 빌렛은 압연속도 5 mm/s, 압하량 0.2 mm로 요구되는 최종 두께인 1.0 mm의 박판으로 제조되었다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 의하면, 다양한 응용 분야(배터리 케이스, 5G중계기 및 ESS용 케이스류, 약품 등의 포장재, 용기 재료, 열교환기 핀, 전선 피복재 등)에 적용될 수 있는 알루미늄(또는 알루미늄 합금)-탄소나노튜브 이종 복합소재 박판을 간단하고 신속한 공정을 통해 높은 수율로 제조할 수 있다.

Claims (6)

  1. (a) 알루미늄 또는 알루미늄 합금 분말 및 탄소나노튜브 분말을 볼밀링하여 복합 분말을 제조하는 단계;
    (b) 상기 복합 분말을 포함하는 다층 빌렛(billet)을 제조하되,
    코어층 및 상기 코어층을 둘러싸는 2층 이상의 쉘층을 포함해 이루어지며, 코어층은 상기 복합 분말 또는 알루미늄 합금으로 이루어지고, 최외곽 쉘층을 제외한 쉘층은 상기 복합 분말로 이루어지며, 최외곽 쉘층은 (i) 알루미늄 또는 알루미늄 합금 분말 또는 (ii) 상기 복합 분말로 이루어지는 것을 특징으로 하는 다층 빌렛을 제조하는 단계; 및
    (c) 상기 다층 빌렛을 압연해 박판 형상으로 성형하는 단계;를 포함하는 이종 복합소재 박판의 제조방법.
  2. 제1항에 있어서,
    상기 코어층은 상기 복합 분말로 이루어지고,
    상기 최외곽 쉘층을 제외한 쉘층 및 상기 코어층 각각에 포함되는 복합 분말의 조성은 서로 상이한 것을 특징으로 하는 이종 복합소재 박판의 제조방법.
  3. 제1항에 있어서,
    상기 다층 빌렛은,
    코어층; 상기 코어층을 둘러싸는 제1 쉘층; 및 상기 제1 쉘층을 둘러싸는 제2 쉘층;으로 이루어진 것을 특징으로 하는 이종 복합소재 박판의 제조방법.
  4. 제3항에 있어서,
    상기 다층 빌렛은,
    상기 제2 쉘층으로서 캔 형상의 제1 빌렛;
    상기 제1 쉘층으로서 상기 제1 빌렛의 내부에 배치된 제2 빌렛; 및
    상기 코어층으로서 상기 제2 빌렛의 내부에 배치된 제3 빌렛으로 이루어진 것을 특징으로 하는 이종 복합소재 박판의 제조방법.
  5. 제1항에 있어서,
    상기 단계 (b)에서 상기 다층 빌렛을 30MPa 내지 100MPa의 압력 하에서, 280℃ 내지 600℃의 온도로, 1초 내지 30분 동안 방전 플라즈마 소결(spark plasma sintering)시키는 것을 특징으로 하는 이종 복합소재 박판의 제조방법.
  6. 제1항 내지 제5항 중 어느 한 항에 기재된 제조방법에 의해 제조된 이종 복합소재 박판.
PCT/KR2021/014363 2020-10-15 2021-10-15 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판 WO2022080950A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/247,951 US20230373002A1 (en) 2020-10-15 2021-10-15 Method for manufacturing heterogeneous composite material thin plate and heterogeneous composite material thin plate manufactured by same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0133530 2020-10-15
KR1020200133530A KR102447558B1 (ko) 2020-10-15 2020-10-15 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판

Publications (1)

Publication Number Publication Date
WO2022080950A1 true WO2022080950A1 (ko) 2022-04-21

Family

ID=81207445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014363 WO2022080950A1 (ko) 2020-10-15 2021-10-15 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판

Country Status (3)

Country Link
US (1) US20230373002A1 (ko)
KR (1) KR102447558B1 (ko)
WO (1) WO2022080950A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140125033A (ko) * 2013-04-18 2014-10-28 전남대학교산학협력단 탄소가 코팅된 나노 금속입자를 포함하는 금속복합재료 및 그 제조방법
KR20160072943A (ko) * 2014-12-15 2016-06-24 한국기계연구원 알루미늄 합금 복합 클래드재 및 이의 제조방법
KR101822073B1 (ko) * 2017-09-06 2018-01-26 (주)차세대소재연구소 이종 복합 형재의 제조 방법 및 이를 이용하여 제조된 이종 복합 형재
KR101844884B1 (ko) * 2016-10-24 2018-04-04 주식회사 경신전선 Al-CNT 복합 소재의 제조방법
KR20200112503A (ko) * 2019-03-22 2020-10-05 부경대학교 산학협력단 알루미늄계 클래드 형재의 제조 방법 및 이를 이용하여 제조된 알루미늄계 클래드 형재

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346575B1 (ko) 2012-08-30 2014-01-06 연세대학교 산학협력단 금속기지 복합 소결체의 제조방법 및 그 소결체
KR101509028B1 (ko) 2013-03-14 2015-04-07 주식회사 대유신소재 알루미늄-탄소나노튜브 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-탄소나노튜브 복합재료
KR101722582B1 (ko) * 2015-06-19 2017-04-18 부경대학교 산학협력단 카본나노튜브-알루미늄 복합분말을 이용한 송전용 복합선재의 제조방법
KR101755988B1 (ko) * 2016-03-02 2017-07-07 현대자동차주식회사 나노카본 강화 알루미늄 복합재 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140125033A (ko) * 2013-04-18 2014-10-28 전남대학교산학협력단 탄소가 코팅된 나노 금속입자를 포함하는 금속복합재료 및 그 제조방법
KR20160072943A (ko) * 2014-12-15 2016-06-24 한국기계연구원 알루미늄 합금 복합 클래드재 및 이의 제조방법
KR101844884B1 (ko) * 2016-10-24 2018-04-04 주식회사 경신전선 Al-CNT 복합 소재의 제조방법
KR101822073B1 (ko) * 2017-09-06 2018-01-26 (주)차세대소재연구소 이종 복합 형재의 제조 방법 및 이를 이용하여 제조된 이종 복합 형재
KR20200112503A (ko) * 2019-03-22 2020-10-05 부경대학교 산학협력단 알루미늄계 클래드 형재의 제조 방법 및 이를 이용하여 제조된 알루미늄계 클래드 형재

Also Published As

Publication number Publication date
KR102447558B1 (ko) 2022-09-27
US20230373002A1 (en) 2023-11-23
KR20220049868A (ko) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2020213753A1 (ko) 알루미늄계 클래드 방열판의 제조방법 및 이에 의해 제조된 알루미늄계 클래드 방열판
CN113355548B (zh) 一种石墨烯增强铝基复合材料的气氛控制粉末冶金制备方法
WO2022080950A1 (ko) 이종 복합소재 박판의 제조방법 및 이에 의해 제조된 이종 복합소재 박판
WO2022080951A1 (ko) 순차적인 소성 가공을 통해 이종 복합소재 박판을 제조하는 방법 및 이에 의해 제조된 이종 복합소재 박판
WO2020196982A1 (ko) 알루미늄계 클래드 형재의 제조 방법 및 이를 이용하여 제조된 알루미늄계 클래드 형재
WO2021215575A1 (ko) 전기 자동차의 파워트레인용 냉각 파이프의 제조방법 및 이에 의해 제조된 냉각 파이프
WO2020213754A1 (ko) 복합재료 제조를 위한 소성 가공용 빌렛의 제조방법 및 이에 의해 제조된 빌렛
WO2021194007A1 (ko) 내부식성이 향상된 알루미늄-탄소나노튜브 이종복합재료 압출재의 제조방법 및 이에 의해 제조된 알루미늄-탄소나노튜브 이종복합재료 압출재
KR102548445B1 (ko) 클래드재 전극층을 포함하는 정전척의 제조방법 및 이에 의해 제조된 정전척
WO2023058803A1 (ko) 전기 자동차의 배터리 케이스 제조방법 및 이에 의해 제조된 배터리 케이스
WO2019198918A1 (ko) 육방정 질화붕소 나노플레이트렛/금속 나노 복합 분말 및 이의 제조방법
CN115341114B (zh) 一种预氧化Ti3AlC2颗粒增强铝基复合材料的制备方法
KR20240064362A (ko) 전기 자동차의 냉난방 공조 장치용 관재의 제조방법, 이에 의해 제조된 관재 및 이를 포함하는 전기 자동차 냉난방 공조 장치
WO2022092361A1 (ko) 고체적율 알루미늄 복합재 및 그 제조방법
CN113737047A (zh) 一种金属基复合材料及其制备方法
CN115029589A (zh) 一种核壳型氮化铝颗粒增强铝基复合材料及其制备方法
CN116426786A (zh) 一种高刚度颗粒增强铝锂基复合材料的制备方法
Nabawy et al. Melt Processing of Al-TiB 2 Nanocomposite Materials
CHENG et al. Nanocrystalline Al-Zn-Mg-Cu alloy prepared by cryomilling
JPH06145844A (ja) 粒子分散強化型銅合金の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880597

Country of ref document: EP

Kind code of ref document: A1