WO2020212319A1 - Vorrichutng und verfahren zum erzeugen eines in einem fluidstrom geförderten pulvers - Google Patents

Vorrichutng und verfahren zum erzeugen eines in einem fluidstrom geförderten pulvers Download PDF

Info

Publication number
WO2020212319A1
WO2020212319A1 PCT/EP2020/060415 EP2020060415W WO2020212319A1 WO 2020212319 A1 WO2020212319 A1 WO 2020212319A1 EP 2020060415 W EP2020060415 W EP 2020060415W WO 2020212319 A1 WO2020212319 A1 WO 2020212319A1
Authority
WO
WIPO (PCT)
Prior art keywords
metering
rotation
axis
powder
wheel
Prior art date
Application number
PCT/EP2020/060415
Other languages
English (en)
French (fr)
Inventor
Birgit Irmgard Beccard
Original Assignee
Apeva Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apeva Se filed Critical Apeva Se
Publication of WO2020212319A1 publication Critical patent/WO2020212319A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • B65G53/18Gas pressure systems operating with fluidisation of the materials through a porous wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4625Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow
    • B65G53/4633Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow
    • B65G53/4641Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow with means for clearing out the pockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/10Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
    • G01F11/12Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements
    • G01F11/20Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements wherein the measuring chamber rotates or oscillates
    • G01F11/24Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation of the valve type, i.e. the separating being effected by fluid-tight or powder-tight movements wherein the measuring chamber rotates or oscillates for fluent solid material

Definitions

  • the invention relates to a device and a method for generating a powder conveyed in a fluid stream, with a storage container for storing the powder, a metering wheel which can be driven in rotation about an axis of rotation and which at its edge in a radially outward direction with respect to the rotation axis has open metering recesses which, when the metering wheel rotates around the axis of rotation in the metering recesses, convey quantized amounts of powder to an exit point, where a nozzle arrangement with two nozzles is arranged which, by means of the gas flows generated by them, relates to the radial direction generate the axis of rotation away from the Aushagsstelle directed fluid hom.
  • Such a device is known from DE 10 2014 007480 A1.
  • a metering wheel with metering recesses is arranged below a storage container.
  • Below the storage container there is a discharge point to which a conveying line is connected in the radial direction with respect to the axis of rotation.
  • two nozzles of a nozzle arrangement open out, which generate a gas flow which is directed into metering recesses, the gas heights being directed in the radial direction towards the center in the metering recesses.
  • DE 2732 109 A1 describes a metering device with a compressed air duct that spills out in the axial direction and extends in the radial direction Generates extending gas streams with which the powder conveyed in the metering recesses blows out of the metering recesses.
  • a device for generating an aerosol with a powder dispenser is known from DE 10 2017 106 500 A1.
  • a metering wheel which has the shape of a gear and which can rotate around a vertical axis.
  • the metering wheel is rotated through a powder supply by means of a rotary drive.
  • the metering recesses which are arranged in the manner of a gearwheel, fill with powder quantities. These are conveyed to a discharge point where an axially directed fluid flow conveys the amount of powder from the metering recess into a conveying line.
  • a generic device is provided to generate an aerosol from an organic powder.
  • the powder is transported by an inert gas stream to an evaporator, where the powder is brought into a vapor form by being brought into contact with hot surfaces.
  • the steam generated in this way is brought to a gas inlet element in a process chamber of a coating reactor through heated feed lines by means of the carrier gas.
  • the steam enters the process chamber of the coating reactor through gas outlet openings of the heated gas inlet element in order to condense on a surface of a substrate resting on a cooled substrate holder.
  • high requirements are placed on the uniformity of the aerosol mass flow generated by the metering device.
  • the invention is based on the object of developing a device of the generic type for use in OLED production in an advantageous manner.
  • the powder quantities as in the prior art, be transported from a storage container to a discharge point by means of a gear-shaped metering wheel.
  • the metering wheel When the metering wheel is turned through the powder supply, the metering recesses are filled with quantized amounts of powder.
  • the metering wheel moves essentially like a paddle wheel around a horizontal axis through the powder supply.
  • the discharge point is preferably arranged in a lower area of a housing in which the metering wheel rotates that the delivery line, which is directed away from the discharge point in the radial direction with respect to the axis of rotation, extends downward.
  • the direction of the gas flow emerging from at least one nozzle has a component directed in the radial direction with respect to the axis of rotation, the component being directed radially outwards with respect to the axis of rotation, so that the fluid flow has a directional component, which conveys the aerosol into the delivery line.
  • the nozzle arrangement has two nozzles lying opposite one another. It is preferably provided that each nozzle generates a fluid flow that has a radially outwardly directed th component. The two fluid flows generated by the nozzles preferably have axial components which are directed opposite one another.
  • Both fluid flows can enter the metering recess from broad sides of the metering wheel that are different from one another, so to speak at an angle, in order to bring the powder conveyed into it completely out of the metering recess. It is particularly advantageous if the metering wheel is positioned around a horizontal valley axis rotates. The edge of the metering wheel, that is to say the heads of the gear-like recess, can then slide along a bottom surface of the storage container. Gravity acts on the metering wheel in the direction of the bottom surface of the housing. In this way, concentricity tolerances can be compensated.
  • the azimuthal width of the metering recesses or the radial depth of the metering recesses is greater than the material thickness of the metering wheel.
  • the material thickness of the metering wheel in the area of the metering recesses can be 0.5 mm.
  • a preferred range of material thickness is between 0.1 and 1 mm.
  • the volume of the metering recesses can be in the range of 0.01 mm 3 .
  • a preferred area of the cross-sectional area of a metering recess is in the range between 0.002 mm 3 and 0.05 m 3 .
  • the surfaces of the metering recesses can be semicircular surfaces.
  • the metering wheel is rotated at a predetermined speed, the metered quantity depending on the speed of the metering wheel.
  • the metering recesses fill with powder when they are transported through the powder supply. They convey quantized quantities of powder in each case like a paddle wheel to the discharge point, where they are transported out of the metering recesses by the preferably two fluid flows, which can be inert gas flows.
  • a fluid flow is formed which is directed for at least a short distance in the radial direction away from the axis of rotation of the metering wheel and subsequently also in a transverse direction can rivet running conveyor pipe.
  • the beginning of a conveying line which is tubular and with which the aerosol is conveyed to an evaporator, preferably extends in the radial direction.
  • the aerosol particles are evaporated in the evaporator.
  • the steam generated in this way is brought through a heated steam line to a gas inlet element in an OLED reactor, where the steam exits from the heated gas inlet element in order to condense on a substrate which rests on a cooled substrate holder.
  • FIG. 2 enlarges the detail II in FIG. 1,
  • FIG. 5 shows the section along the line V-V in FIG. 4.
  • Dosing devices of the type in question are used in the production of OLED displays.
  • various organic starting substances are deposited on a substrate in several layers. This takes place with the aid of a steam fed into a process chamber of a reactor by means of a carrier gas.
  • the organic material is stored in powder form and transported as an aerosol to an evaporator.
  • the evaporator has heated evaporation surfaces on which the aerosol particles evaporate.
  • the steam generated in this way is then carried along with the fluid of the aerosol through heated lines to a coating reactor.
  • the coating reactor has a gas inlet element, for example in the form of a showerhead. This is heated.
  • the steam enters a process chamber through the showerhead's gas outlet openings.
  • the substrate on which the vapor can condense lies on a cooled substrate holder.
  • a constant mass flow of the aerosol is desirable for a uniform coating.
  • a metering device is required with which a uniform powder flow can be brought into a carrier gas flow without major fluctuations over time.
  • the metering device described in the exemplary embodiments can meet these requirements.
  • the devices shown in the drawings have a storage container 1, which can taper downwards in a funnel shape and in which a powder supply 4 is provided.
  • a gear wheel-shaped metering wheel 2 can be rotated about an axis of rotation 8 extending in the horizontal direction.
  • the metering wheel 2 is driven in rotation by a rotary drive, not shown. During the rotation, the edge of the metering wheel 2, which is essentially in the form of a circular disk, moves through the powder supply 4.
  • the metering recesses 3 are tooth gap-like incisions in the edge of the metering wheel 2, wherein the incisions can have a semicircular surface.
  • the edge of the metering recess 3 can run on a circular arc line.
  • a part of the edge of the metering wheel 2 moves freely, at a distance from a wall 9 of the storage container 1 by the powder supply 4.
  • the metering recesses 3 are each filled with a quantity of powder.
  • the quantity of powder is transported by the rotation of the metering wheel 2 to a discharge point 11, at which a conveying line 10 originates.
  • the delivery line 10 extends downward at least for a short distance in the radial direction with respect to the axis of rotation 8.
  • a bottom surface 9 'of the storage container 1 extends in sections on an inner surface of the cylinder.
  • the bottom surface 9 ' hugs the contour of the metering wheel 2 so that the heads of the teeth separating two adjacent metering recesses 3 can slide along the bottom surface 9.
  • the bottom surface 9 ′ merges into a straight wall 9 of the supply container 1, so that a gusset-shaped area is formed there between the metering wheel 2 and wall 9 and is filled with the powder supply 4.
  • the bottom surface 9 ' is interrupted.
  • the axial directions of the fluid jets are directed towards one another.
  • the metering recesses 3 conveyed through the discharge point 11 can be completely emptied.
  • the dosing wheel 2 can be rotated about the axis of rotation 8 with a certain bearing tolerance.
  • the bearing tolerance has the effect that the radially outwardly facing end faces of the teeth between the metering recesses 3 can slide onto the wall section 9 ′, so that the metering wheel 2 transports the powder from the powder supply 4 to the discharge point 11 like a paddle wheel.
  • the nozzles 5, 6 are arranged in wall sections which are in contact with the outer edge region of the metering wheel 2.
  • the teeth arranged between two adjacent metering recesses 3 run directly past the mouths of the nozzles 5, 6.
  • the mouths of the nozzles 5, 6 are somewhat spaced from the radially outer area of the metering wheel 3, so that the two adjacent metering recesses
  • the teeth 3 separating teeth can rotate freely through a region of the conveying line 10 which extends through the opening in the bottom surface 9 '.
  • the width of the discharge point 11 or the conveying line 10 measured in the direction of rotation essentially corresponds to the azimuthal width of a metering recess 3, which has approximately the outline of a semicircle.
  • a device which is characterized in that the discharge direction of the powder is directed away from the discharge point in the radial direction in relation to the axis of rotation 8 and in that the direction of the gas flow emerging from the at least one nozzle 5, 6 is directed in the radial direction in relation to the axis of rotation 8 has directed component.
  • a device which is characterized in that a conveying line 10 originating at the discharge point is directed away from the discharge point in the radial direction with reference to the axis of rotation 8 and that the nozzle arrangement 2 is opposite nozzles relative to a plane of rotation of the metering wheel 2 5, 6, which are arranged in such a way that the direction of the gas flows emerging from the nozzles 5, 6 in the axial direction based on the Axis of rotation 8 has directional components that are opposite to each other.
  • a device which is characterized in that the nozzle arrangement has two nozzles 5, 6 which are each arranged in such a way that the direction of the gas flows exiting from the nozzles 5, 6 is one in the radial direction relative to the
  • the axis of rotation 8 has component and an axial component, the axial components being directed in opposite directions.
  • a device which is characterized in that the axis of rotation 8 is a horizontal axis.
  • a device which is characterized in that the azimuthal width of each metering recess 3 and the radial depth of each metering recess 3 is significantly greater than the material thickness of the metering wheel in the area of the metering recesses 3.
  • a method that thereby is characterized in that at the discharge point at least one fluid flow is brought into the metering recess 3, the flow direction of which has a component directed in the radial direction and / or that exiting from two axially opposite nozzles 5, 6 with respect to the axis of rotation 8 Fluid flows are introduced into the metering recess 3.
  • All of the features disclosed are essential to the invention (individually, but also in combination with one another).
  • the disclosure of the application hereby also includes the full content of the disclosure content of the associated / attached priority documents (copy of the previous application), also for the purpose of including features of these documents in the claims of the present application.
  • the subclaims characterize, even without the features of a referenced claim, with their features independent inventive developments of the prior art, in particular in order to make divisional applications on the basis of these claims.
  • each claim can additionally have one or more of the features provided in the above description, in particular provided with reference numbers and / or specified in the list of reference numbers.
  • the invention also relates to design forms in which some of the features mentioned in the above description are not implemented, in particular insofar as they are recognizable for the respective purpose or can be replaced by other technically equivalent means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Nozzles (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines Aerosols mit einem Vorratsbehälter (1) zur Bevorratung des Pulvers, einem um eine Drehachse (8) drehantreibbaren Dosierrad (2), das an seinem Rand in Radialauswärtsrichtung bezogen auf die Drehachse (8) offene Dosierausnehmungen (3) aufweist, welche bei einer Drehung des Dosierrades (2) um die Drehachse (8) in den Dosierausnehmungen (3) quantisierte Pulvermengen zu einer Austrittsstelle fördert, wo eine Düsenanordnung angeordnet ist, die den Fluidstrom erzeugt, der in die Dosierausnehmung (3) gerichtet ist. Die Austragsrichtung des Pulvers ist in Radialrichtung bezogen auf die Drehachse (8) von der Austragsstelle weggerichtet. Die Richtungen der aus sich gegenüberliegenden Düsen (5, 6) austretenden Gasströme besitzen eine Radialkomponente nach außen.

Description

Beschreibung
Vorrichtung und Verfahren zum Erzeugen eines in einem Fluidstrom geförderten Pulvers
Gebiet der Technik
[0001] Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Erzeu- gen eines in einem Fluidstrom geförderten Pulvers, mit einem Vorratsbehälter zur Bevorratung des Pulvers, einem um eine Drehachse drehantreibbaren Do- sierrad, das an seinem Rand in Radialauswärtsrichtung bezogen auf die Dreh- achse offene Dosierausnehmungen aufweist, welche bei einer Drehung des Do- sierrades um die Drehachse in den Dosierausnehmungen quantisierte Pulver- mengen zu einer Austrittsstelle fördern, wo eine Düsenanordnung mit zwei Düsen angeordnet ist, die mittels von ihnen erzeugten Gasströmen den in Radi- alrichtung bezogen auf die Drehachse von der Aushagsstelle weg gerichteten Fluidshom erzeugen.
Stand der Technik
[0002] Eine derartige Vorrichtung ist aus der DE 10 2014 007480 A1 bekannt. Unterhalb eines Vorratsbehälters ist ein Dosierrad mit Dosierausnehmungen angeordnet. Unterhalb des Vorrats behälters befindet sich eine Austragsstelle, an die sich eine Förderleitung in Radialrichtung bezogen auf die Drehachse an- schließt. Von der Aushagsstelle her münden zwei Düsen einer Düsenanord- nung, die einen Gasstrom erzeugen, der in Dosierausnehmungen gerichtet ist, wobei die Gasshöme in Radialrichtung auf das Zenhum in die Dosierausneh- mungen gerichtet sind.
[0003] Die DE 2732 109 A1 beschreibt eine Dosiervorrichtung mit einem sich in axialer Richtung ersheckenden Druckluftkanal, der sich in Radialrichtung erstreckende Gasströme erzeugt, mit denen das in den Dosierausnehmungen geförderte Pulver aus den Dosierausnehmungen herausbläst.
[0004] Eine Vorrichtung zur Erzeugung eines Aerosols mit einem Pulverdosie- rer ist aus der DE 10 2017 106 500 A1 bekannt. Am Boden eines Vorratsbehälters befindet sich ein Dosierrad, welches die Form eines Zahnrades hat und dass sich um eine Vertikalachse drehen kann. Mittels eines Drehantriebs wird das Dosierrad durch einen Pulvervorrat gedreht. Bei dieser Drehung füllen sich die Dosierausnehmungen, die zahnradartig angeordnet sind, mit Pulverquantitä- ten. Diese werden zu einer Austragsstelle gefördert, wo ein in Axialrichtung gerichteter Fluidstrom die Pulvermenge aus der Dosierausnehmung heraus in eine Förderleitung fördert.
[0005] Aus der US 5,615,830 und der CN 201136896 sind Pulverdosiereinrich- tungen bekannt, bei denen ein walzenförmig ausgebildetes Dosierrad mit radial offenen Dosierausnehmungen um eine horizontale Achse gedreht wird. Das Pulver wird mittels eines in Radialeinwärtsrichtung gerichteten Fluidstrahls aus den Dosierausnehmungen herausgeblasen.
[0006] Eine gattungsgemäße Vorrichtung ist dazu vorgesehen, ein Aerosol aus einem organischen Pulver zu erzeugen. Das Pulver wird mit einem Inert- gasstrom zu einem Verdampfer transportiert, wo das Pulver durch In-Kontakt- Bringen mit heißen Oberflächen in eine Dampfform gebracht wird. Durch be- heizte Zuleitungen wird der so erzeugte Dampf mittels des Trägergases zu ei- nem Gaseinlassorgan in einer Prozesskammer eines Beschichtungsreaktors ge- bracht. Durch Gasaustrittsöffnungen des beheizten Gaseinlassorgans tritt der Dampf in die Prozesskammer des Beschichtungsreaktors ein, um auf einer Oberfläche eines auf einem gekühlten Substrathalter aufliegenden Substrats zu kondensieren. [0007] In der Technologie werden hohe Anforderungen an die Gleichförmig- keit des vom Dosierer erzeugten Massenflusses des Aerosols gestellt.
Zusammenfassung der Erfindung
[0008] Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Vor- richtung zur Verwendung in der OLED-Fertigung gebrauchsvorteilhaft weiter- zubilden.
[0009] Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Er- findung.
[0010] Zunächst und im Wesentlichen wird vorgeschlagen, dass die Pulver- quantitäten, wie beim Stand der Technik auch, mittels eines zahnradförmigen Dosierrades aus einem Vorratsbehälter hin zu einer Austragsstelle transportiert werden. Beim Drehen des Dosierrades durch den Pulvervorrat befüllen sich die Dosierausnehmungen mit quantisierten Pulvermengen. Hierzu bewegt sich das Dosierrad im Wesentlichen schaufelradartig um eine Horizontalachse durch den Pulvervorrat. Die Austragsstelle ist bevorzugt derart in einem unteren Be- reich eines Gehäuses, in dem sich das Dosierrad dreht, angeordnet, dass die Förderleitung, die sich in Radialrichtung bezogen auf die Drehachse von der Austragsstelle weggerichtet ist, nach unten erstreckt. Erfindungsgemäß wird vorgeschlagen, dass die Richtung des aus mindestens einer Düse austretenden Gasstroms eine in Radialrichtung bezogen auf die Drehachse gerichtete Kom- ponente aufweist, wobei die Komponente bezogen auf die Drehachse nach ra- dial auswärts gerichtet ist, so dass der Fluidstrom eine Richtungskomponente besitzt, die das Aerosol in die Förderleitung fördert. In einer besonders bevor- zugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Düsenano- rdnung zwei sich gegenüberliegende Düsen aufweist. Es ist bevorzugt vorgese- hen, dass jede Düse einen Fluidstrom erzeugt, der eine radial auswärts gerichte- te Komponente besitzt. Die beiden von den Düsen erzeugten Fluidströme besit- zen bevorzugt axiale Komponenten, die einander entgegengerichtet sind. Beide Fluidströme können von voneinander verschiedenen Breitseiten des Dosierra- des her gewissermaßen schräg in die Dosierausnehmung eintreten, um das da- rin geförderte Pulver vollständig aus der Dosierausnehmung heraus zu brin- gen. Es ist von besonderem Vorteil, wenn sich das Dosierrad um eine Horizon- talachse dreht. Der Rand des Dosierrades, also die Köpfe der zahnradartigen Ausnehmung können dann auf einer Bodenfläche des Vorratsbehälters ent- langgleiten. Die Schwerkraft beaufschlagt das Dosierrad in Richtung auf die Bodenfläche des Gehäuses. Hierdurch können Rundlauftoleranzen kompensiert werden. Es ist insbesondere von Vorteil, wenn die azimutale Weite der Do- sierausnehmungen beziehungsweise die radiale Tiefe der Dosierausnehmungen größer ist, als die Materialstärke des Dosierrades. Die Materialstärke des Do- sierrades im Bereich der Dosierausnehmungen kann bei 0,5 mm liegen. Ein be- vorzugter Bereich der Materialstärke liegt zwischen 0,1 und 1 mm. Das Volu- men der Dosierausnehmungen kann im Bereich von 0,01 mm3 liegen. Ein be- vorzugter Bereich der Querschnittsfläche einer Dosieraussparung liegt im Be- reich zwischen 0,002 mm3 und 0,05 m3. Bei den Flächen der Dosierausnehmun- gen kann es sich um Halbkreisflächen handeln. Über den gesamten Umfang des kreisscheibenförmigen Dosierrades sind in gleichmäßiger Winkelverteilung eine Vielzahl von Dosierausnehmungen angeordnet. Bei dem erfindungsgemä- ßen Verfahren wird das Dosierrad mit einer vorgegebenen Geschwindigkeit gedreht, wobei die Dosiermenge von der Drehzahl des Dosierrades abhängt.
Die Dosierausnehmungen füllen sich mit Pulver, wenn sie durch den Pulver- vorrat transportiert werden. Sie fördern schaufelradartig jeweils quantisierte Pulvermengen zur Austragsstelle, wo sie von den bevorzugt beiden Fluidströ- men, bei denen es sich um Inertgasströme handeln kann, aus den Dosieraus- nehmungen heraustransportiert werden. Es bildet sich dabei ein Fluidstrom aus, der für zumindest eine kurze Strecke in Radialrichtung weg von der Dreh- achse des Dosierrades gerichtet ist und nachfolgend aber auch in ein quer dazu verlaufendes Förderrohr eintieten kann. Bevorzugt erstreckt sich in Radialrich- tung der Beginn einer Förderleitung, die rohrförmig ist, mit der das Aerosol zu einem Verdampfer gefördert wird. In den Verdampfer werden die Aerosolpar- tikel verdampft. Der so erzeugte Dampf wird durch eine geheizte Dampfleitung zu einem Gaseinlassorgan in einen OLED-Reaktor gebracht, wo der Dampf aus dem beheizten Gaseinlassorgan austiitt, um auf einem Substrat zu kondensie- ren, das auf einem gekühlten Substrathalter aufliegt.
Kurze Beschreibung der Zeichnungen
[0011] Ausführungsbeispiele der Erfindung werden nachfolgend anhand bei- gefügter Zeichnungen erläutert. Es zeigen:
Fig. 1 schematisch eine Pulverdosiervorrichtung,
Fig. 2 vergrößert den Ausschnitt II in Figur 1,
Fig. 3 einen Schnitt gemäß der Schnittlinie III-III in Figur 1,
Fig. 4 ein zweites Ausführungsbeispiel in einer Darstellung gemäß
Figur 2 und
Fig. 5 den Schnitt gemäß der Linie V-V in Figur 4.
Beschreibung der Ausführungsformen
[0012] Dosiervorrichtungen der in Rede stehenden Art werden bei der Her- stellung von OLED-Displays verwendet. Bei der Herstellung werden in mehre- ren Schichten verschiedene organische Ausgangssubstanzen auf einem Substrat abgeschieden. Dies erfolgt mit Hilfe eines mittels eines Trägergases in eine Pro- zesskammer eines Reaktors eingespeisten Dampfes. Das organische Material wird in Pulverform bevorratet und als Aerosol zu einem Verdampfer transpor- tiert. Der Verdampfer besitzt beheizte Verdampfungsflächen, an denen die Ae- rosolpartikel verdampfen. Der so erzeugte Dampf wird dann mit dem Fluid des Aerosols weiter durch beheizte Leitungen zu einem Beschichtungsreaktor ge- bracht. Der Beschichtungsreaktor besitzt ein Gaseinlassorgan, beispielsweise in Form eines Showerheads. Dieser ist beheizt. Durch Gasaustrittsöffnungen des Showerheads gelangt der Dampf in eine Prozesskammer. Auf einem gekühlten Substrathalter liegt das Substrat, auf dem der Dampf kondensieren kann.
[0013] Für eine gleichmäßige Beschichtung ist ein gleichbleibender Massen- fluss des Aerosols wünschenswert. Um einen derartigen zeitlich gleichbleiben- den Aerosolfluss zu erzeugen, wird eine Dosiervorrichtung benötigt, mit der ohne größere zeitliche Schwankungen ein gleichmäßiger Pulverfluss in einen Trägergasstrom gebracht werden kann.
[0014] Die in den Ausführungsbeispielen beschriebene Dosiervorrichtung kann diesen Anforderungen genügen. Die in den Zeichnungen dargestellten Vorrichtungen besitzen einen Vorratsbehälter 1, der sich trichterförmig nach unten hin verjüngen kann und in dem ein Pulvervorrat 4 vorgesehen ist. Um eine sich in Horizontalrichtung sich erstreckende Drehachse 8 ist ein zahnrad- förmiges Dosierrad 2 drehbar. Das Dosierrad 2 wird von einem nicht dargestell- ten Drehantrieb drehangetrieben. Während der Drehung bewegt sich der Rand des im Wesentlichen eine Kreisscheibenform aufweisenden Dosierrades 2 durch den Pulvervorrat 4 hindurch.
[0015] Entlang des Randes des Dosierrades 2 befindet sich eine Vielzahl von gleich gestalteten Dosierausnehmungen 3. Bei den Dosierausnehmungen 3 handelt es sich um zahnlückenartige Einschnitte in den Rand des Dosierrades 2, wobei die Einschnitte eine halbkreisförmige Fläche besitzen können. Die Rand- kante der Dosierausnehmung 3 kann auf einer Kreisbogenlinie verlaufen.
[0016] Ein Teil des Randes des Dosierrades 2 bewegt sich frei, von einer Wan- dung 9 des Vorratsbehälters 1 beabstandet durch den Pulvervorrat 4. Dabei fül- len sich die Dosierausnehmungen 3 jeweils mit einer Pulverquantität. Die Pul- verquantität wird durch die Drehung des Dosierrades 2 hin zu einer Austrags- stelle 11 transportiert, an der eine Förderleitung 10 entspringt. Die Förderlei- tung 10 erstreckt sich zumindest für eine kurze Strecke in Radialrichtung bezo- gen auf die Drehachse 8 nach unten.
[0017] Unmittelbar angrenzend an die Austragsstelle 11 erstreckt sich eine Bo- denfläche 9' des Vorrats behälters 1 abschnittsweise auf einer Zylinderinnenflä- che. Die Bodenfläche 9' schmiegt sich dabei an die Umrisskontur des Dosierra- des 2 an, so dass die Köpfe der zwei benachbarte Dosierausnehmungen 3 von- einander trennenden Zähne auf der Bodenfläche 9 entlanggleiten können. Die Bodenfläche 9' geht im weiteren Verlauf in eine geradlinig verlaufende Wand 9 des Vorrats behälters 1 über, so dass sich dort zwischen Dosierrad 2 und Wand 9 ein zwickelförmiger Bereich ausbildet, der mit dem Pulvervorrat 4 gefüllt ist.
[0018] Im Bereich der Austragsstelle 11 ist die Bodenfläche 9' unterbrochen.
Sie besitzt dort eine radiale Öffnung, die eine Austragsstelle 11 ausbildet. Dort münden zwei aufeinander zu gerichtete Düsen 5, 6 in die Dosierausnehmung 3. Bei der Drehung des Dosierrades 2 bewegen sich die zwei benachbarten Do- sierausnehmungen 3 voneinander trennenden Zähne über die Düsen 5, 6. Aus den Düsen 5, 6 treten Gasströme, um die Pulverquantität aus der Dosieraus- nehmung 3 herauszublasen. Das dabei entstehende Aerosol wird durch die Förderleitung 10 abtransportiert. [0019] Aus den Figuren 2 und 4 ist zu entnehmen, dass die Düsen 5, 6 schräg in Radialauswärtsrichtung - bezogen auf die Drehachse 8 - aufeinander zu ge- richtet sind. Sie erzeugen jeweils einen gerichteten Fluidstrahl, der eine Rich- tungskomponente in Axialrichtung - bezogen auf die Drehachse 8 - und eine Richtungskomponente in Radialrichtung - bezogen auf die Drehachse 8 - be- sitzt, wobei die Radialrichtung jeweils nach radial außen gerichtet ist. Die Axi- alrichtungen der Fluidstrahlen sind aufeinander zu gerichtet. Als Folge dieser aufeinander zu gerichteten Fluidstrahlen können die durch die Austragsstelle 11 hindurch geförderten Dosierausnehmungen 3 vollständig entleert werden.
Es bleiben keine Partikel an den Wänden der Dosierausnehmungen 3 kleben.
[0020] Das Dosierrad 2 ist um die Drehachse 8 mit einer gewissen Lagertole- ranz drehbar. Die Lagertoleranz bewirkt, dass die nach radial außen weisenden Stirnflächen der Zähne zwischen den Dosierausnehmungen 3 an den Wan- dungsabschnitt 9' abgleiten können, so dass das Dosierrad 2 schaufelradartig das Pulver vom Pulvervorrat 4 hin zur Austragsstelle 11 transportiert.
[0021] Hinsichtlich der Dimensionierung des Dosierrades 2 wird auf die An- gaben der DE 10 2017106 500 A1 verwiesen.
[0022] Bei dem in den Figuren 1 bis 3 dargestellten Ausführungsbeispiel sind die Düsen 5, 6 in Wandungsabschnitten angeordnet, die berührend am äußeren Randbereich des Dosierrades 2 anliegen. Bei dieser Variante laufen die zwi- schen zwei benachbarten Dosierausnehmungen 3 angeordneten Zähne unmit- telbar an den Mündungen der Düsen 5, 6 vorbei.
[0023] Bei dem in den Figuren 4 und 5 dargestellten Ausführungsbeispiel sind die Mündungen der Düsen 5, 6 hingegen vom radial äußeren Bereich des Do- sierrades 3 etwas beabstandet, so dass die zwei benachbarten Dosierausneh- mungen 3 voneinander trennenden Zähne frei durch einen Bereich der Förder- leitung 10 drehen, der sich durch die Öffnung der Bodenfläche 9' erstreckt.
[0024] Die in Drehrichtung gemessene Weite der Austragstelle 11 bzw. der Förderleitung 10 entspricht im Wesentlichen der azimutalen Weite einer Do- sierausnehmung 3, die in etwa den Grundriss eines Halbkreises aufweist. Die Mündungen der Düsen 5, 6, die von schräg zur Drehachse 8 verlaufenden Strömungskanälen ausgebildet sind, münden innerhalb des Grundrisses der Dosierausnehmung.
[0025] Die vorstehenden Ausführungen dienen der Erläuterung der von der Anmeldung insgesamt erfassten Erfindungen, die den Stand der Technik zu- mindest durch die folgenden Merkmalskombinationen jeweils auch eigenstän- dig weiterbilden, wobei zwei, mehrere oder alle dieser Merkmalskombinatio- nen auch kombiniert sein können, nämlich:
[0026] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Austrags- richtung des Pulvers in Radialrichtung bezogen auf die Drehachse 8 von der Austragsstelle weggerichtet ist und dass die Richtung des aus der mindestens einen Düse 5, 6 austretenden Gasstroms eine in Radialrichtung bezogen auf die Drehachse 8 gerichtete Komponente aufweist.
[0027] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass eine an der Austragsstelle entspringende Förderleitung 10 in Radialrichtung bezogen auf die Drehachse 8 von der Austragsstelle weggerichtet ist und dass die Düsenan- ordnung 2 bezogen auf eine Drehebene des Dosierrades 2 sich gegenüberlie- gende Düsen 5, 6 aufweist, die derart angeordnet sind, dass die Richtung der aus den Düsen 5, 6 austretenden Gasströme in Axialrichtung bezogen auf die Drehachse 8 gerichtete Komponenten aufweist, die einander entgegengerichtet sind.
[0028] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Düsenano- rdnung zwei Düsen 5, 6 aufweist, die jeweils derart angeordnet sind, dass die Richtung der jeweils aus den Düsen 5, 6 austretenden Gasströme eine in Radial- richtung bezogen auf die Drehachse 8 gerichtete Komponente und eine Axial- komponente aufweist, wobei die Axialkomponenten einander entgegengerich- tet sind.
[0029] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die Drehachse 8 eine Horizontalachse ist.
[0030] Eine Vorrichtung, die dadurch gekennzeichnet ist, dass die azimutale Weite jeder Dosierausnehmung 3 und die radiale Tiefe jeder Dosierausneh- mung 3 wesentlich größer ist, als die Materialstärke des Dosierrades im Bereich der Dosierausnehmungen 3. [0031] Ein Verfahren, das dadurch gekennzeichnet ist, dass an der Austrags- stelle zumindest ein Fluidstrom in die Dosierausnehmung 3 gebracht wird, des- sen Strömungsrichtung eine in Radialrichtung gerichtete Komponente aufweist und/ oder dass aus zwei bezogen auf die Drehachse 8 sich axial gegenüberlie- genden Düsen 5, 6 austretende Fluidströme in die Dosierausnehmung 3 einge- bracht werden.
[0032] Ein Verfahren, das dadurch gekennzeichnet ist, dass der mindestens eine Fluidstrom die quantisierte Pulvermenge in Radialrichtung bezogen auf die Drehachse 8 aus der Dosierausnehmung 3 heraus fördert. [0033] Alle offenbarten Merkmale sind (für sich, aber auch in Kombination untereinander) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritäts- unterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender An- meldung mit aufzunehmen. Die Unter ansprüche charakterisieren, auch ohne die Merkmale eines in Bezug genommenen Anspruchs, mit ihren Merkmalen eigenständige erfinderische Weiterbildungen des Standes der Technik, insbe- sondere um auf Basis dieser Ansprüche Teilanmeldungen vorzunehmen. Die in jedem Anspruch angegebene Erfindung kann zusätzlich ein oder mehrere der in der vorstehenden Beschreibung, insbesondere mit Bezugsziffern versehene und/oder in der Bezugsziffernliste angegebene Merkmale aufweisen. Die Er- findung betrifft auch Gestaltungsformen, bei denen einzelne der in der vorste- henden Beschreibung genannten Merkmale nicht verwirklicht sind, insbeson- dere soweit sie erkennbar für den jeweiligen Verwendungszweck entbehrlich sind oder durch andere technisch gleichwirkende Mittel ersetzt werden kön- nen.
Liste der Bezugszeichen
1 Vorratsbehälter
2 Dosierrad
2' Breitseite
3 Dosierausnehmung
4 Pulvervorrat
5 Düse
6 Düse
7 Aerosol
8 Drehachse
9 Wand
9' Bodenfläche
10 Förderleitung
11 Austragsstelle

Claims

Ansprüche
1. Vorrichtung zum Erzeugen eines in einem Fluidstrom geförderten Pul- vers, mit einem Vorratsbehälter (1) zur Bevorratung des Pulvers, einem um eine Drehachse (8) drehantreibbaren Dosierrad (2), das an seinem Rand in Radialauswärtsrichtung bezogen auf die Drehachse (8) offene Do- sierausnehmungen (3) aufweist, welche bei einer Drehung des Dosierra- des (2) um die Drehachse (8) in den Dosierausnehmungen (3) quantisierte Pulvermengen zu einer Austrittsstelle fördern, wo eine Düsenanordnung mit zwei Düsen (5, 6) angeordnet ist, die mittels von ihnen erzeugten Gas- strömen einen in Radialrichtung bezogen auf die Drehachse (8) von der Austragsstelle weg gerichteten Fluidstrom erzeugen, dadurch gekenn- zeichnet, dass sich die beiden Düsen (5, 6) derart gegenüberliegen, dass die von ihnen erzeugten Gasströme von voneinander verschiedenen Breit- seiten des Dosierrades (2) her in die Dosierausnehmungen (3) eintreten und eine in Radialrichtung bezogen auf die Drehachse (8) gerichtete Komponente aufweisen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Richtung der aus den Düsen (5, 6) austretenden Gasströme jeweils eine in Axialrich- tung bezogen auf die Drehachse (8) gerichtete Komponente aufweist, wo- bei die beiden Komponenten einander entgegengerichtet sind.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die in Drehrichtung des Dosierrades (2) gemessene Weite der Austragsstelle (11) der in Drehrichtung gemessenen Weiter ei- ner Dosierausnehmung (3) entspricht.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Drehachse (8) eine Horizontalachse ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die azimutale Weite jeder Dosierausnehmung (3) und die radiale Tiefe jeder Dosierausnehmung (3) wesentlich größer ist, als die Materialstärke des Dosierrades im Bereich der Dosierausnehmungen (3).
6. Verfahren zum Erzeugen eines in einem Fluidstrom geförderten Pulvers mittels einer Vorrichtung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Gasströme von voneinander verschiedenen Breitseiten des Dosierrades (2) her schräg in die Dosieraus- nehmung (3) eintreten und das darin geförderte Pulver vollständig aus der Dosierausnehmung (3) herausbringen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der mindes- tens eine Fluidstrom die quantisierte Pulvermenge in Radialrichtung be- zogen auf die Drehachse (8) aus der Dosierausnehmung (3) heraus fördert.
8. Vorrichtung oder Verfahren, gekennzeichnet durch eines oder mehrere der kennzeichnenden Merkmale eines der vorhergehenden Ansprüche.
PCT/EP2020/060415 2019-04-16 2020-04-14 Vorrichutng und verfahren zum erzeugen eines in einem fluidstrom geförderten pulvers WO2020212319A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110036.4A DE102019110036A1 (de) 2019-04-16 2019-04-16 Vorrichtung und Verfahren zum Erzeugen eines in einem Fluidstrom geförderten Pulvers
DE102019110036.4 2019-04-16

Publications (1)

Publication Number Publication Date
WO2020212319A1 true WO2020212319A1 (de) 2020-10-22

Family

ID=70476169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/060415 WO2020212319A1 (de) 2019-04-16 2020-04-14 Vorrichutng und verfahren zum erzeugen eines in einem fluidstrom geförderten pulvers

Country Status (2)

Country Link
DE (1) DE102019110036A1 (de)
WO (1) WO2020212319A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123764A1 (de) 2020-09-11 2022-03-17 Apeva Se Verfahren zum Erzeugen eines zeitlich konstanten Dampfflusses sowie Verfahren zum Einstellen eines Arbeitspunktes einer Vorrichtung zum Erzeugen eines Dampfes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870199A (en) * 1971-08-31 1975-03-11 Itt Depositing apparatus
DE2732109A1 (de) 1976-07-16 1978-01-26 Thomson Csf Rauscharmer einseitenbandmischer
GB2144717A (en) * 1983-08-12 1985-03-13 Waeschle Maschf Gmbh Apparatus for dosing bulk materials
US5109893A (en) * 1989-09-15 1992-05-05 B.A.G. Corporation Vacuum fill system
US5615830A (en) 1993-12-17 1997-04-01 Nordson Corporation Apparatus and method for supply and transport of powder particles
EP1503862A1 (de) * 2002-05-14 2005-02-09 Pomtava Sa Pumpe für pulverförmige produkte
CN201136896Y (zh) 2007-11-07 2008-10-22 天津三星电子有限公司 载气式鼓轮送粉器
DE102014007480A1 (de) 2014-04-17 2015-10-22 Zeppelin Systems Gmbh Ausblaseinrichtung für eine Zellenradschleuse
DE102017106500A1 (de) 2017-03-27 2018-09-27 Aixtron Se Pulverdosierer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2732199A1 (de) * 1977-07-16 1979-01-25 Andreas Jaudt Zellenradschleuse mit ausblasbaren radtaschen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870199A (en) * 1971-08-31 1975-03-11 Itt Depositing apparatus
DE2732109A1 (de) 1976-07-16 1978-01-26 Thomson Csf Rauscharmer einseitenbandmischer
GB2144717A (en) * 1983-08-12 1985-03-13 Waeschle Maschf Gmbh Apparatus for dosing bulk materials
US5109893A (en) * 1989-09-15 1992-05-05 B.A.G. Corporation Vacuum fill system
US5615830A (en) 1993-12-17 1997-04-01 Nordson Corporation Apparatus and method for supply and transport of powder particles
EP1503862A1 (de) * 2002-05-14 2005-02-09 Pomtava Sa Pumpe für pulverförmige produkte
CN201136896Y (zh) 2007-11-07 2008-10-22 天津三星电子有限公司 载气式鼓轮送粉器
DE102014007480A1 (de) 2014-04-17 2015-10-22 Zeppelin Systems Gmbh Ausblaseinrichtung für eine Zellenradschleuse
DE102017106500A1 (de) 2017-03-27 2018-09-27 Aixtron Se Pulverdosierer

Also Published As

Publication number Publication date
DE102019110036A1 (de) 2020-10-22

Similar Documents

Publication Publication Date Title
EP2412664B1 (de) Vorrichtung und Verfahren zum Abfüllen von mehrkomponentigen Getränken
EP0157250B1 (de) Vorrichtung zum Beizen von Saatgut
DE3811260C2 (de)
WO2018177974A2 (de) Pulverdosierer
WO2012175315A1 (de) Vorrichtung zur aerosolerzeugung und abscheiden einer lichtemittierenden schicht
WO2020212319A1 (de) Vorrichutng und verfahren zum erzeugen eines in einem fluidstrom geförderten pulvers
EP3515676A1 (de) Vorrichtung und verfahren zur herstellung von pulverförmigen kunststoffen mit kugelförmiger struktur
DE19857296A1 (de) Verfahren und Vorrichtung zum Bilden eines Tabakstrangs
DE19844682A1 (de) Vorrichtung zum Aufbringen eines flüssigen Mediums auf Tabak
EP2851659A1 (de) Teilmengenwaage sowie Betrieb einer Teilmengenwaage
EP1936003B1 (de) Vorrichtung und Verfahren zum Beschichten von Bauteilen
AT513798B1 (de) Vorrichtung und Verfahren zur dosierten, formgebenden Ausgabe von Massenkörpern aus pumpfähigen Massen
DE102006007485B3 (de) Dosiervorrichtung zum Dosieren eines Pulvers
WO2014161843A1 (de) Desinfektionsmodul für eine serienprozessanlage
EP2809450A1 (de) Rotationszerstäuber
WO2014202393A1 (de) Verdampfungseinrichtung zum verdampfen eines aerosols
EP2350343B1 (de) Vorrichtung zum erzeugen und fördern eines gas-pulvergemisches
DE2536763A1 (de) Vorrichtung fuer die verteilung eines metallpulvers in einer flamme bei der herstellung metallischer beschichtungen
WO2018099718A1 (de) Aerosolverdampfer
DE3936080C2 (de) Verfahren zum Variieren der Umfangsgeschwindigkeitskomponente der Drallströmung eines Fluids
EP2811850B1 (de) Vorrichtung und verfahren zum bilden mindestens eines strangs der tabak verarbeitenden industrie sowie verteilervorrichtung zum beschicken einer strangmaschine
EP3562747B1 (de) Vorrichtung zum dosieren und abfüllen von pulverförmigem füllgut in behälter
EP1054738B1 (de) Nebelgeneratorkopf
EP2289640B1 (de) Spritzvorrichtung
DE2605920A1 (de) Verfahren und vorrichtung zur elektrostatischen bepulverung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20722484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20722484

Country of ref document: EP

Kind code of ref document: A1