WO2020211557A1 - 薄型均温板的制作方法 - Google Patents

薄型均温板的制作方法 Download PDF

Info

Publication number
WO2020211557A1
WO2020211557A1 PCT/CN2020/077887 CN2020077887W WO2020211557A1 WO 2020211557 A1 WO2020211557 A1 WO 2020211557A1 CN 2020077887 W CN2020077887 W CN 2020077887W WO 2020211557 A1 WO2020211557 A1 WO 2020211557A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
slurry
wall
powder
metal powder
Prior art date
Application number
PCT/CN2020/077887
Other languages
English (en)
French (fr)
Inventor
陈振贤
Original Assignee
广州力及热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州力及热管理科技有限公司 filed Critical 广州力及热管理科技有限公司
Publication of WO2020211557A1 publication Critical patent/WO2020211557A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Definitions

  • the invention provides a method for manufacturing a thin uniform temperature plate, in particular to a method for manufacturing a thin uniform temperature plate by an additive method to reduce the manufacturing cost.
  • the heat dissipation module manufacturer uses the upper and lower copper substrates to make the grooves required for the uniform temperature plate by an etching process, and the substrate with the grooves is air-tightly welded to form a cavity with the groove inside.
  • Heat Pipe Plate uniform temperature Board
  • Vapor Chamber uniform temperature Board
  • the production cost of the etching process is expensive and the waste chemical liquids produced by the etching process are also environmentally friendly, which makes the cost of the manufactured uniform temperature plate components high and the production cycle longer. Therefore, how to reduce the overall manufacturing cost of the thin-type uniform temperature plate and the timeliness of shipment for mass production is a problem that the industry is trying to solve.
  • the purpose of the present invention is to provide a method for manufacturing a thin uniform temperature plate, which can overcome the defects of the prior art, has a simpler manufacturing process, can shorten the production time of products, and can more accurately control the porous capillary The structure and the thickness of the cavity.
  • the present invention discloses a method for manufacturing a thin uniform temperature plate, which is characterized by including the following steps:
  • the cavity is processed to form a thin uniform temperature plate.
  • the step of heating the slurry wall to form the dense structure wall further includes the following sub-steps:
  • the first metal slurry further includes a metal powder and a first polymer, the first polymer is burned off during baking, and the metal powder is sintered to form the dense structural wall.
  • the step of heating the second metal slurry to form the porous capillary structure further includes the following sub-steps:
  • the second metal slurry further includes a first metal powder, a second metal powder, and a second polymer.
  • the second polymer is burned off during baking.
  • the first metal powder and the second polymer The metal powder forms the porous capillary structure after sintering, the first metal powder and the second metal powder are quasi-spherical powders, and the ratio of the average particle size of the first metal powder to the average particle size of the second metal powder is greater than 3. .
  • the second metal slurry further includes a first metal powder, a second metal powder, and a second polymer.
  • the second polymer is burned off during baking.
  • the first metal powder and the second polymer The metal powder is sintered to form the porous capillary structure, the first metal powder is a quasi-spherical powder, and the second metal powder is a flake-shaped powder.
  • the step of heating the slurry wall to form the dense structure wall further includes the following sub-steps:
  • the step of baking and sintering the solidified slurry wall to form the dense structure wall is performed simultaneously with the step of baking and sintering the solidified tissue to form the porous capillary structure.
  • the first metal slurry contains a copper powder, and the average particle size (D 50 ) of the copper powder is less than 5um.
  • the metal solid content of the first metal slurry is higher than the metal solid content of the second metal slurry.
  • the metal solid content of the first metal slurry is higher than 80%, and the metal solid content of the second metal slurry is lower than 70%.
  • the manufacturing method of the present invention consists of laying the first metal slurry on the first metal sheet and heating it to form an annular dense structural wall, and then forming the dense structural wall on the first metal sheet A groove, and laying a second metal slurry in the annular groove to heat to form a porous capillary structure.
  • a trenched wall and supporting column structure are formed by an additive manufacturing method.
  • the manufacturing cost of this manufacturing method is lower than that of a general chemical etching process and can shorten the production time of the product.
  • the porous capillary structure is also formed by additive manufacturing. This manufacturing method can more accurately control the thickness of the porous capillary structure and the cavity.
  • the manufacturing method of the present invention can also form a porous capillary structure in the trench with the second metal slurry while forming a dense structure wall, thereby saving labor time and manufacturing cost.
  • Fig. 1 shows a flow chart of the manufacturing method of a thin-type uniform temperature plate according to a specific embodiment of the present invention.
  • Fig. 2 shows a top view of a thin-type uniform temperature plate structure according to a specific embodiment of the present invention.
  • Fig. 3 is a schematic flow chart showing a manufacturing method of a thin uniform temperature plate structure according to a specific embodiment of the present invention.
  • Fig. 4 shows a flow chart of the manufacturing method of a thin-type uniform temperature plate according to another specific embodiment of the present invention.
  • Fig. 5 is a schematic flow chart showing a manufacturing method of a thin-type uniform temperature plate structure according to another specific embodiment of the present invention.
  • Fig. 6 shows a schematic diagram of a first metal paste mixing configuration according to a specific embodiment of the present invention.
  • Fig. 7 shows a schematic diagram of a second metal paste mixing configuration according to a specific embodiment of the present invention.
  • Fig. 8 shows a flow chart of the manufacturing method of a thin-type uniform temperature plate according to still another specific embodiment of the present invention.
  • Fig. 9 is a schematic flow chart showing a manufacturing method of a thin uniform temperature plate structure according to still another specific embodiment of the present invention.
  • FIG. 1 shows a flow chart of a method of manufacturing a thin-type uniform temperature plate according to a specific embodiment of the present invention
  • FIG. 2 shows a thin-type uniform temperature plate according to a specific embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a manufacturing method of a thin uniform temperature plate structure E according to a specific embodiment of the present invention.
  • the schematic flow diagrams in this specification are all shown in cross-section with the A-A' section line of the thin-type uniform temperature plate structure E in FIG. 2. As shown in FIGS.
  • the manufacturing method of the thin uniform temperature plate of the present invention includes the following steps: Step S1: Provide a first metal sheet 1 and a second metal sheet with a first surface 11 Metal sheet 2; Step S2: provide a first metal slurry 31 and a second metal slurry 41; Step S3: lay the first metal slurry 31 on the first surface 11 in a ring shape to form a slurry wall 32, and the slurry A trench 5 is formed inside the material wall 32; step S4: heating the slurry wall 32 to form a dense structural wall 34; step S5: laying the second metal slurry 41 in the trench 5; step S6: heating the second metal slurry 41 to form a porous capillary structure 43; Step S7: Airtightly weld the second metal sheet 2 and the dense structure wall 34 surface of the first metal sheet 1, so that the porous capillary structure 43 and the second metal sheet 2 The cavity 6 is formed; step S8: the cavity 6 is processed to form a thin-type
  • FIG. 4 shows a flow chart of the manufacturing method of a thin-type uniform temperature plate according to another specific embodiment of the present invention
  • step S4 further includes the following sub-steps: Sub-step S41: heating the slurry wall 32 to volatilize the first organic solvent 311 in the first metal slurry 31 to form a solidification Slurry wall 33; Sub-step S42: Baking and sintering the solidified slurry wall 33 to form a dense structural wall 34.
  • FIG. 6 illustrates a schematic diagram of the mixing configuration of the first metal paste 31 according to a specific embodiment of the present invention.
  • the first metal paste 31 of the present invention may include a first organic solvent 311, a first polymer 312 and a metal powder 313.
  • the first organic solvent 311 can be volatilized when heated to the boiling temperature of the first organic solvent 311, the first polymer 312 can be burned off during baking, and the metal powder 313 can form a dense structure wall 34 after sintering.
  • the method of the present invention gradually increases the temperature, so that the first metal paste 31 undergoes the heating, baking and sintering processes in sequence.
  • FIG. 6 illustrates a schematic diagram of the mixing configuration of the first metal paste 31 according to a specific embodiment of the present invention.
  • the first metal paste 31 of the present invention may include a first organic solvent 311, a first polymer 312 and a metal powder 313.
  • the first organic solvent 311 can be volatilized when heated to the boiling temperature of the first organic solvent 311, the
  • the slurry wall 32 on which the first metal slurry 31 is laid will be heated to volatilize the first organic solvent 311 to form a solidified slurry wall 33 with a smaller volume. Then, continue heating to the baking temperature to burn off the first polymer 312, and further heat to the sintering temperature to sinter the metal powder 313 to form a dense structure wall 34. Among them, due to the volatilization of the first organic solvent 311 in the first metal paste 31 and the burning of the first polymer 312, the volume of the dense structure wall 34 finally sintered from the metal powder 313 will be smaller than that originally laid.
  • the volume reduction ratio can be adjusted by the solid content of the first metal paste 31.
  • the thickness of the dense structure wall 34 can also be determined by the solid content of the first metal paste 31 and the physical properties of the metal powder 313.
  • step S6 further includes the following sub-steps: Step S61: heating the second metal paste 41 to volatilize the second organic solvent 411 in the second metal paste 41 to form a solidification Tissue 42; Step S62: Baking and sintering the solidified tissue 42 to form a porous capillary structure 43.
  • FIG. 7 illustrates a schematic diagram of the mixing configuration of the second metal paste 41 according to a specific embodiment of the present invention.
  • the second metal paste 41 of the present invention may include a second organic solvent 411, a second polymer 412, a first metal powder 413 and a second metal powder 414.
  • the second organic solvent 411 can volatilize when heated to the boiling temperature of the second organic solvent 411, the second polymer 412 can be burned off during baking, and the first metal powder 413 and the second metal powder 414 can be After sintering, a porous capillary structure 43 is formed.
  • the second metal paste 41 is heated to volatilize the second organic solvent 411 to form a smaller solidified structure 42. Then, continue heating to the baking temperature to burn off the second polymer 412, and further heat to the sintering temperature to sinter the first metal powder 413 and the second metal powder 414 to form the porous capillary structure 43.
  • the porous capillary structure 43 due to the volatilization of the second organic solvent 411 in the second metal slurry 41 and the burning of the second polymer 412, the porous capillary structure 43 finally sintered from the first metal powder 413 and the second metal powder 414
  • the volume will be smaller than the volume of the second metal paste 41 originally laid.
  • the volume reduction ratio can be adjusted by the solid content of the second metal paste 41.
  • the thickness of the porous capillary structure 43 can also be determined by the solid content of the second metal slurry 41 and the physical properties of the first metal powder 413 and the second metal powder 414.
  • the first metal powder 413 and the second metal powder 414 are quasi-spherical powders, and the ratio of the average particle size of the first metal powder 413 to the average particle size of the second metal powder 414 is greater than 3.
  • the average particle size (D 50 ) of the first metal powder 413 is not greater than 53 um
  • the average particle size (D 50 ) of the second metal powder 414 is not greater than 13 um.
  • the first metal powder 413 and the second metal powder 414 may be bimetal powder systems with different average particle sizes
  • the first metal powder 413 may be a spherical powder
  • the second metal powder 414 can be flake-shaped powder.
  • the average particle size (D 50 ) of the first metal powder 413 is not greater than 53 um, and the flake thickness of the second metal powder 414 is not greater than 1 um.
  • the materials of the first metal sheet 1, the second metal sheet 2, the metal powder 313, the first metal powder 413, and the second metal powder 414 in the manufacturing method of the present invention can be copper, copper alloy, and titanium.
  • the first metal paste 31 usually uses a single metal powder system.
  • the second metal slurry 41 can use a bimetal powder system or even a multi-metal powder system to achieve a porous structure. Therefore, the size, shape, and material of the metal powder 313, the first metal powder 413, and the second metal powder 414 are not limited thereto.
  • the thickness of the solidified slurry wall 33 and the dense structure wall 34 formed by the first metal slurry 31 greater than the solidified structure 42 and the porous capillary structure 43 formed by the second metal slurry 41, and to ensure the second metal slurry
  • the fluidity of 41 is high enough to be evenly laid in the trench 5, and the metal solid content of the first metal slurry 31 will be higher than the metal solid content of the second metal slurry 41.
  • the metal solid content of the first metal slurry 31 can be higher than 80%, and the metal solid content of the second metal slurry 41 can be lower than 70%.
  • step S8 the following sub-steps are further included: Step S81: Use an external conduit to communicate with the cavity 6 to inject working fluid and vacuum; Step S82: Close the external conduit to form a thermally conductive function The thin uniform temperature plate.
  • Step S81 Use an external conduit to communicate with the cavity 6 to inject working fluid and vacuum; Step S82: Close the external conduit to form a thermally conductive function The thin uniform temperature plate.
  • FIG. 8 shows a flow chart of a method for manufacturing a thin-type uniform temperature plate according to another specific embodiment of the present invention
  • FIG. 9 shows a thin-type uniform temperature plate according to another specific embodiment of the present invention.
  • step S5 is performed to lay the second metal paste 41 in the trench 5, and step S61 is performed after step S5 to form a solidified structure 42.
  • Another manufacturing method of the present invention is to perform step S42 and step S62 together after the solidified slurry wall 33 and solidified structure 42 are formed to simultaneously bake and sinter the solidified slurry wall 33 and solidified structure 42 to form a compact Structural walls 34 and porous capillary structures 43.
  • the manufacturing method of the present invention uses the simultaneous baking and sintering of the solidified slurry wall 33 and the solidified structure 42 to save manufacturing man-hours and equipment investment and thermal energy costs required for separate baking and sintering.
  • the metal powder 313 of the first metal slurry 31 used is copper powder, and the particles of the copper powder are average
  • the diameter (D 50 ) is less than 5um. Since the metal solid content of the first metal slurry 31 is higher than the metal solid content of the second metal slurry 41 and the composition structure is different, it is necessary to simultaneously sinter the dense structure wall 34 and the porous capillary under the same baking and sintering conditions. Structure 43, the formulas of the first metal paste 31 and the second metal paste 41 must meet the characteristics of achieving the process conditions.
  • the first metal slurry 31 is laid on the first metal sheet 1 in an additive manner and heated to form a dense structural wall 34.
  • the dense structure wall 34 can form grooves 5 on the first surface 11 of the first metal sheet 1 to replace the conventional etching process to form grooves on the metal sheet, thereby greatly reducing the manufacturing cost.
  • the method of the present invention further forms the porous capillary structure 43 by laying and heating the second metal slurry 41 in the groove 5, thereby replacing the existing copper mesh or woven mesh laying in the groove to improve The flow rate of the working fluid in the groove.

Abstract

一种薄型均温板的制作方法,包含有以下步骤:提供第一金属片材(1)及第二金属片材(2);提供第一金属浆料(31)及第二金属浆料(41);环形铺置第一金属浆料(31)于第一金属片材(1)上以形成浆料墙(32),且浆料墙(32)内侧形成沟槽(5);加热浆料墙(32)以形成致密结构墙(34);铺置第二金属浆料(41)于沟槽(5)中;加热第二金属浆料(41)以形成多孔毛细结构(43);气密焊合第二金属片材(2)及第一金属片材(1)的致密结构墙(34)表面,以形成空腔(6);加工空腔(6)以形成薄型均温板;此方法系以增材制程制造出沟槽及毛细结构,取代了现有技术中的蚀刻制程及铜网铺设烧结制程。

Description

薄型均温板的制作方法 技术领域
本发明提供一种薄型均温板的制作方法,尤指一种以增材方式制作薄型均温板以降低制作成本的方法。
背景技术
科技的快速发展,所有的电子装置的外形诉求逐渐走向轻、薄、小的设计,尤其是做为移动计算(Mobile Computing)及移动通讯的薄型笔电(Notebook PC),智慧型手机(Smartphone),智慧型眼镜(Smartglasses)等。然而,电子通讯装置为了达到薄型化,最常面临到的问题就是散热及热管理问题。因为在越薄的装置中,能够设置散热装元件的空间就会被压缩。一般用在传统桌上型电脑及笔记型电脑上的均温板(Vapor Chamber)或微热导管(Micro Heat Pipe),在元件的厚度上很难达到新一代移动计算及移动通讯的超薄规格要求。
对此,散热模组厂商将上、下两片铜基板以蚀刻制程制做均温板所需的沟槽,将具有沟槽的基板以沟槽在内的方式气密焊接形成空腔。在沟槽中铺置铜网或编织网,再经高温烧结后再将其封合、注水、抽真空等加工而制成具有毛细结构的超薄热管板(Heat Pipe Plate),或俗称均温板(Vapor Chamber)。然而,蚀刻制程的制作成本昂贵且其产生的废弃化学液体亦有环保的问题,使得所制作出的均温板元件成本高居不下且生产周期较长。因此,如何降低薄型均温板的整体制作成本及量产的出货时效性是目前产业上极力所要解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种薄型均温板的制作方法,其能克服现有技术的缺陷,制程更为简单,还可缩短产品生产时程,能更为精准的控制多孔毛细结构以及空腔的厚度。
为实现上述目的,本发明公开了一种薄型均温板的制作方法,其特征在于包含有以下步骤:
提供一具有一第一表面的第一金属片材及一第二金属片材;
提供一第一金属浆料及一第二金属浆料;
环形铺置该第一金属浆料于该第一表面上以形成一浆料墙,且该浆料墙内侧形成一沟槽;
加热该浆料墙以形成一致密结构墙;
铺置该第二金属浆料于该沟槽中;
加热该第二金属浆料以形成一多孔毛细结构;
气密焊合该第二金属片材及该第一金属片材的该致密结构墙表面,以使该多孔毛细结构与该第二金属片材之间形成一空腔;以及
加工该空腔以形成一薄型均温板。
其中,于加热该浆料墙以形成该致密结构墙的步骤中,进一步包含有以下子步骤:
加温该浆料墙使该第一金属浆料内的一第一有机溶剂挥发以形成一固化浆料墙;以及
烘烤及烧结该固化浆料墙以形成该致密结构墙。
其中,该第一金属浆料更包含有一金属粉末以及一第一聚合物,该第一聚合物于烘烤时被烧除,且该金属粉末烧结后形成该致密结构墙。
其中,于加热该第二金属浆料以形成该多孔毛细结构的步骤中,进一步包含有以下子步骤:
加温该第二金属浆料使该第二金属浆料内的一第二有机溶剂挥发以形成一固化组织;以及
烘烤及烧结该固化组织以形成该多孔毛细结构。
其中,该第二金属浆料更包含有一第一金属粉末、一第二金属粉末以及一第二聚合物,该第二聚合物于烘烤时被烧除,该第一金属粉末及该第二金属粉末于烧结后形成该多孔毛细结构,该第一金属粉末及该第二金属粉末为类球形粉末,且第一金属粉末的平均粒径与该第二金属粉末的平均粒径的比值大于3。
其中,该第二金属浆料更包含有一第一金属粉末、一第二金属粉末以及一第二聚合物,该第二聚合物于烘烤时被烧除,该第一金属粉末及该第二金属粉末于烧结后形成该多孔毛细结构,该第一金属粉末为类球形粉末,且该第二金属粉末为薄片形粉末。
其中,于加热该浆料墙以形成该致密结构墙的步骤中,进一步包含有以下子步骤:
加温该浆料墙使该第一金属浆料内的一第一有机溶剂挥发,形成一固化浆料墙;以及
烘烤及烧结该固化浆料墙以形成该致密结构墙;
其中烘烤及烧结该固化浆料墙以形成该致密结构墙的步骤与烘烤及烧结该固化组织以形成该多孔毛细结构的步骤同时进行。
其中,该第一金属浆料包含有一铜粉末,该铜粉末的颗粒平均粒径(D 50)小于5um。
其中,该第一金属浆料的金属固含量高于该第二金属浆料的金属固含量。
其中,该第一金属浆料的金属固含量高于80%,该第二金属浆料的金属固含量低于70%。
相较于现有技术,本发明的制作方法系由铺设第一金属浆料于第一金属片材上进行加热以形成环形的致密结构墙,进而以致密结构墙于第一金属片材上形成沟槽,并且铺设第二金属浆料于环形的沟槽中加热以形成多孔毛细结构。本发明系以增材制造的方式形成具有沟槽的墙及支撑柱结构,此制作方法的制作成本较一般化学蚀刻制程低又可缩短产品生产时程。另外,多孔毛细结构亦以增材制造的方式形成。此制作方法可较精准的控制多孔毛细结构以及空腔的厚度。本发明的制作方法亦可于形成致密结构墙的同时一并以第二金属浆料于沟槽中形成多孔毛细结构,进而节省工时及制作成本。
附图说明
图1:绘示根据本发明的一具体实施例的薄型均温板的制作方法的步骤流程图。
图2:绘示根据本发明的一具体实施例的薄型均温板结构的俯视图。
图3:绘示根据本发明的一具体实施例的薄型均温板结构的制作方法的流程示意图。
图4:绘示根据本发明的另一具体实施例的薄型均温板的制作方法的步骤流程图。
图5:绘示根据本发明的另一具体实施例的薄型均温板结构的制作方法的流程示意图。
图6:绘示根据本发明的一具体实施例的第一金属浆料混合配置示意图。
图7:绘示根据本发明的一具体实施例的第二金属浆料混合配置示意图。
图8:绘示根据本发明的再一具体实施例的薄型均温板的制作方法的步骤流程图。
图9:绘示根据本发明的再一具体实施例的薄型均温板结构的制作方法的流程示意图。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以实施例并参照所附图式进行详述与讨论。值得注意的是,这些实施例仅为本发明代表性的实施例,其中所举例的特定方法,装置,条件,材质等并非用以限定本发明或对应的实施例。
在本发明的描述中,需要理解的是,术语“纵向、横向、上、下、前、后、左、右、顶、底、内、外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示所述的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,本发明装置或元件前的不定冠词“一”、“一种”和“一个”对装置或元件的数量要求(即出现次数)无限制性。因此“一”应被解读为包括一或至少一,并且单数形式的装置或元件也包括复数形式,除非所述数量明显指单数形式。
请参阅图1至图3,图1绘示根据本发明的一具体实施例的薄型均温板的制作方法的步骤流程图,图2绘示根据本发明的一具体实施例的薄型均温板结构E的俯视图,图3绘示根据本发明的一具体实施例的薄型均温板结构E的制作方法的流程示意图。其中,本说明书的流程示意图皆以图2的薄型均温板结构E以A-A’剖面线进行剖面示意。如图1及图3所示,于一具体实施例中,本发明的薄型均温板的制作方法包含有以下步骤:步骤S1:提供具有第一表面11的第一金属片材1及第二金属片材2;步骤S2:提供第一金属浆料31及第二金属浆料41;步骤S3:环形铺置第一金属浆料31于第一表面11上以形成浆料墙32,且浆料墙32内侧形成沟槽5;步骤S4:加热浆料墙32以形成致密结构墙34;步骤S5:铺置第二金属浆料41于沟槽5中;步骤S6:加热第二金属浆料41以形成多孔毛细结构43;步骤S7:气密焊合第二金属片材2及第一金属片材1的致密结构墙34表面,以使多孔毛细结构43与第二金属片材2之间形成空腔6;步骤S8:加工空腔6以形成薄型均温板。
为了更清楚说明图1的具体实施例,请参阅图4及图5,图4绘示根据本发明的另一具体实施例的薄型均温板的制作方法的步骤流程图,图5绘示根据本发明的另一具体实施例的薄型均温板结构E的制作方法的流程示意图。如图4及图5所示,于步骤S4中,进一步包含有以下子步骤:子步骤S41:加温浆料墙32使该第一金属浆料31内的第一有机溶剂311挥发以形成固化浆料墙33;子步骤S42:烘烤及烧结固化浆料墙33以形成致密结构墙34。
请合并参阅图6,图6绘示根据本发明的一具体实施例的第一金属浆料31混合配置示意图。如图6所示,本发明的第一金属浆料31可包含有第一有机溶剂311、第一聚合物312以及金属粉末313。第一有机溶剂311可挥发于加温至第一有机溶剂311的沸点温度时,第一聚合物312可于烘烤时被烧除,而金属粉末313则可于烧结后形成致密结构墙34。据此,本发明的方法藉由逐渐提高温度,致使第一金属浆料31依序地经过加温、烘烤及烧结过程。其中,如图5所示,第一金属浆料31所铺置成的浆料墙32经加温使第一有机溶剂311挥发后将会形成体积较小的固化浆料墙33。接着,继续加热至烘烤温度以将第一聚合物312烧除,并更进一步加热至烧结温度以使金属粉末313烧结后形成致密结构墙34。其中,由于第一金 属浆料31中的第一有机溶剂311挥发以及第一聚合物312被烧除,因此最后由金属粉末313烧结而成的致密结构墙34的体积将会小于原本所铺置的浆料墙32的体积。而其体积缩小的比率可以由第一金属浆料31的固含量来进行调整。此外,致密结构墙34的厚度也可由第一金属浆料31的固含量及金属粉末313的物理特性所决定。
请复参阅图4及图5,于步骤S6中,进一步包含有以下子步骤:步骤S61:加温第二金属浆料41使第二金属浆料41内的第二有机溶剂411挥发以形成固化组织42;步骤S62:烘烤及烧结固化组织42以形成多孔毛细结构43。请合并参阅图7,图7绘示根据本发明的一具体实施例的第二金属浆料41混合配置示意图。如图7所示,本发明的第二金属浆料41可包含有第二有机溶剂411、第二聚合物412、第一金属粉末413以及第二金属粉末414。第二有机溶剂411可于加温至第二有机溶剂411的沸点温度时挥发,第二聚合物412可于烘烤时被烧除,而第一金属粉末413及第二金属粉末414则可于烧结后形成多孔毛细结构43。如图5所示,第二金属浆料41经加温使第二有机溶剂411挥发后将会形成体积较小的固化组织42。接着,继续加热至烘烤温度以将第二聚合物412烧除,并更进一步加热至烧结温度以使第一金属粉末413与第二金属粉末414烧结后形成多孔毛细结构43。其中,由于第二金属浆料41中的第二有机溶剂411挥发以及第二聚合物412被烧除,因此最后由第一金属粉末413及第二金属粉末414烧结而成的多孔毛细结构43的体积将会小于原本所铺置的第二金属浆料41的体积。而其体积缩小的比率可以由第二金属浆料41的固含量来进行调整。此外,多孔毛细结构43的厚度也可由第二金属浆料41的固含量及第一金属粉末413与第二金属粉末414的物理特性所决定。
其中,于一具体实施例中,第一金属粉末413及第二金属粉末414为类球形粉末,且第一金属粉末413的平均粒径与第二金属粉末414的平均粒径的比值大于3。于一具体实施例中,第一金属粉末413的平均粒径(D 50)不大于53um,而第二金属粉末414的平均粒径(D 50)不大于13um。除了第一金属粉末413与第二金属粉末414可为不同平均粒径大小的双金属粉末系统外,于另一具体实施例中,第一金属粉末413可为类球形粉末,而第二金属粉末414可为薄片形粉末。于一具体实施例中,第一金属粉末413的平均粒径(D 50)不大于53um,且第二金属粉末414的片状厚度不大于1um。
此外,本发明的制作方法中的第一金属片材1、第二金属片材2、金属粉末313、第一金属粉末413及第二金属粉末414的材质为可为铜、铜合金和钛中的其中一种。根据上述可以了解的是,于实务上,为了使形成沟槽5的致密结构墙34的结构致密,第一金属浆料31通常会使用单金属粉末系统。而为了形成多孔毛细结构43,第二金属浆料41则可以使用双金属粉末系统亦甚至是多金属粉末系统以达成 多孔洞的结构。因此,金属粉末313、第一金属粉末413以及第二金属粉末414的大小、形状及材质并不以此为限。且为了使第一金属浆料31所形成的固化浆料墙33以及致密结构墙34的厚度大于第二金属浆料41所形成的固化组织42以及多孔毛细结构43,且确保第二金属浆料41的流动性高到能于沟槽5中均匀铺置,第一金属浆料31的金属固含量会高于第二金属浆料41的金属固含量。于实际应用中,第一金属浆料31的金属固含量可高于80%,而第二金属浆料41的金属固含量可低于70%。
请复参阅图4及图5,于步骤S8中,更包含有以下子步骤:步骤S81:利用外部导管连通空腔6以注入工作流体并抽真空;步骤S82:封闭外部导管以形成具有导热功能的薄型均温板。本发明的制作方法于致密结构墙34与多孔毛细结构43制作完成后,需进一步以上述步骤来对空腔6作进一步加工以制成薄型均温板。
除了上述先将第一金属浆料31加热形成致密结构墙34,再将第二金属浆料41加热形成多孔毛细结构43的制作方法外,本发明更包含有另一种更简捷的制作方法。请参阅图8及图9,图8绘示根据本发明的再一具体实施例的薄型均温板的制作方法的步骤流程图,图9绘示根据本发明的再一具体实施例的薄型均温板结构E的制作方法的流程示意图。如图8及图9所示,于步骤S3后,先进行步骤S41以形成固化浆料墙33。接着进行步骤S5铺置第二金属浆料41于沟槽5中,并于步骤S5后先进行步骤S61以形成固化组织42。本发明的另一种制作方法系于固化浆料墙33及固化组织42形成后,再一并进行步骤S42及步骤S62,以同步烘烤及烧结固化浆料墙33及固化组织42以形成致密结构墙34及多孔毛细结构43。本发明的制作方法藉由同步进行烘烤及烧结固化浆料墙33及固化组织42,以节省制作工时以及节省分开烘烤及烧结所需要的设备投资及热能成本。
其中,于同步烘烤及烧结固化浆料墙33及固化组织42的制作方法的具体实施例中,所使用的第一金属浆料31的金属粉末313为铜粉末,且铜粉末的颗粒平均粒径(D 50)小于5um。由于第一金属浆料31的金属固含量高于第二金属浆料41的金属固含量且组成结构不同,因此若要在相同的烘烤及烧结条件下同时烧结成致密结构墙34以及多孔毛细结构43,则第一金属浆料31及第二金属浆料41的配方须符合达到此制程条件的特性。
综上所述,本发明系以增材的方式将第一金属浆料31铺置于第一金属片材1上,并加热形成致密结构墙34。此致密结构墙34可于第一金属片材1的第一表面11上形成沟槽5,进而取代现有以蚀刻制程于金属片材上形成沟槽,以大幅降低制作成本。另外,本发明的方法藉由铺置并加热第二金属浆料41于沟槽5中,以进一步形成多孔毛细结构43,进而取代现有以铜网或编织网铺置于沟槽,以提高工作流体于沟槽中的流动速率。
藉由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。

Claims (10)

  1. 一种薄型均温板的制作方法,其特征在于包含有以下步骤:
    提供一具有一第一表面的第一金属片材及一第二金属片材;
    提供一第一金属浆料及一第二金属浆料;
    环形铺置该第一金属浆料于该第一表面上以形成一浆料墙,且该浆料墙内侧形成一沟槽;
    加热该浆料墙以形成一致密结构墙;
    铺置该第二金属浆料于该沟槽中;
    加热该第二金属浆料以形成一多孔毛细结构;
    气密焊合该第二金属片材及该第一金属片材的该致密结构墙表面,以使该多孔毛细结构与该第二金属片材之间形成一空腔;以及
    加工该空腔以形成一薄型均温板。
  2. 如权利要求1所述的方法,其特征在于,于加热该浆料墙以形成该致密结构墙的步骤中,进一步包含有以下子步骤:
    加温该浆料墙使该第一金属浆料内的一第一有机溶剂挥发以形成一固化浆料墙;以及
    烘烤及烧结该固化浆料墙以形成该致密结构墙。
  3. 如权利要求2所述的方法,其特征在于,该第一金属浆料更包含有一金属粉末以及一第一聚合物,该第一聚合物于烘烤时被烧除,且该金属粉末烧结后形成该致密结构墙。
  4. 如权利要求1所述的方法,其特征在于,于加热该第二金属浆料以形成该多孔毛细结构的步骤中,进一步包含有以下子步骤:
    加温该第二金属浆料使该第二金属浆料内的一第二有机溶剂挥发以形成一固化组织;以及
    烘烤及烧结该固化组织以形成该多孔毛细结构。
  5. 如权利要求4所述的方法,其特征在于,该第二金属浆料更包含有一第一金属粉末、一第二金属粉末以及一第二聚合物,该第二聚合物于烘烤时被烧除,该第一金属粉末及该第二金属粉末于烧结后形成该多孔毛细结构,该第一金属粉末及该第二金属粉末为类球形粉末,且第一金属粉末的平均粒径与该第二金属粉末的平均粒径的比值大于3。
  6. 如权利要求4所述的方法,其特征在于,该第二金属浆料更包含有一第一金属粉末、一第二金属粉末以及一第二聚合物,该第二聚合物于烘烤时被烧除,该第一金属粉末及该第二金属粉末于烧结后形成该多孔毛细结构,该第一金属粉 末为类球形粉末,且该第二金属粉末为薄片形粉末。
  7. 如权利要求4所述的方法,其特征在于,于加热该浆料墙以形成该致密结构墙的步骤中,进一步包含有以下子步骤:
    加温该浆料墙使该第一金属浆料内的一第一有机溶剂挥发,形成一固化浆料墙;以及
    烘烤及烧结该固化浆料墙以形成该致密结构墙;
    其中烘烤及烧结该固化浆料墙以形成该致密结构墙的步骤与烘烤及烧结该固化组织以形成该多孔毛细结构的步骤同时进行。
  8. 如权利要求7所述的方法,其特征在于,该第一金属浆料包含有一铜粉末,该铜粉末的颗粒平均粒径(D 50)小于5um。
  9. 如权利要求1所述的方法,其特征在于,该第一金属浆料的金属固含量高于该第二金属浆料的金属固含量。
  10. 如权利要求1所述的方法,其特征在于,该第一金属浆料的金属固含量高于80%,该第二金属浆料的金属固含量低于70%。
PCT/CN2020/077887 2019-04-15 2020-03-05 薄型均温板的制作方法 WO2020211557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910297231.6A CN111822712B (zh) 2019-04-15 2019-04-15 薄型均温板的制作方法
CN201910297231.6 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211557A1 true WO2020211557A1 (zh) 2020-10-22

Family

ID=72836969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077887 WO2020211557A1 (zh) 2019-04-15 2020-03-05 薄型均温板的制作方法

Country Status (2)

Country Link
CN (1) CN111822712B (zh)
WO (1) WO2020211557A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795910A (zh) * 2020-12-25 2021-05-14 瑞声科技(南京)有限公司 一种均温板制作方法及均温板
CN114935272A (zh) * 2022-05-24 2022-08-23 中国电子科技集团公司第十研究所 一种基于增材制造的一体化成型均温板
CN115338406A (zh) * 2022-07-11 2022-11-15 瑞泰精密科技(沭阳)有限公司 用于制备毛细结构的浆料及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112414189B (zh) * 2020-11-02 2021-11-19 华中科技大学 一种适用于浇筑式毛细芯的平板式蒸发器
CN112589387B (zh) * 2020-11-30 2022-07-01 瑞声科技(南京)有限公司 均温板加工方法及均温板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139893A1 (en) * 2008-12-10 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
CN101995182A (zh) * 2009-08-11 2011-03-30 和硕联合科技股份有限公司 均温板及其制造方法
CN102019543A (zh) * 2009-09-18 2011-04-20 和硕联合科技股份有限公司 均温板及其制作方法
CN202182665U (zh) * 2011-07-04 2012-04-04 昆山巨仲电子有限公司 具有受热凸部的均温板结构
CN202307864U (zh) * 2011-09-21 2012-07-04 奇鋐科技股份有限公司 均温板结构
CN102693949A (zh) * 2011-03-22 2012-09-26 富准精密工业(深圳)有限公司 均温板
CN102810521A (zh) * 2011-05-31 2012-12-05 奇鋐科技股份有限公司 均温板结构及其制造方法
CN102956583A (zh) * 2011-08-29 2013-03-06 奇鋐科技股份有限公司 均温板结构及其制造方法
US20190059174A1 (en) * 2017-08-16 2019-02-21 Avary Holding (Shenzhen) Co., Limited. Cooling plate and method for manufacturing thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608928Y (zh) * 2002-11-01 2004-03-31 王勤文 板式热管结构
CN100552364C (zh) * 2005-08-26 2009-10-21 富准精密工业(深圳)有限公司 烧结式热导管之制造方法
CN101614499B (zh) * 2008-06-27 2010-09-15 超众科技股份有限公司 均温板及其制作方法
CN101639331A (zh) * 2008-07-31 2010-02-03 富准精密工业(深圳)有限公司 平板式热管的制造方法
CN205580271U (zh) * 2016-04-21 2016-09-14 广州华钻电子科技有限公司 一种气液分离式均温板
CN107486553B (zh) * 2016-06-12 2019-08-02 苏州铜宝锐新材料有限公司 铝膏及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139893A1 (en) * 2008-12-10 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader with vapor chamber
CN101995182A (zh) * 2009-08-11 2011-03-30 和硕联合科技股份有限公司 均温板及其制造方法
CN102019543A (zh) * 2009-09-18 2011-04-20 和硕联合科技股份有限公司 均温板及其制作方法
CN102693949A (zh) * 2011-03-22 2012-09-26 富准精密工业(深圳)有限公司 均温板
CN102810521A (zh) * 2011-05-31 2012-12-05 奇鋐科技股份有限公司 均温板结构及其制造方法
CN202182665U (zh) * 2011-07-04 2012-04-04 昆山巨仲电子有限公司 具有受热凸部的均温板结构
CN102956583A (zh) * 2011-08-29 2013-03-06 奇鋐科技股份有限公司 均温板结构及其制造方法
CN202307864U (zh) * 2011-09-21 2012-07-04 奇鋐科技股份有限公司 均温板结构
US20190059174A1 (en) * 2017-08-16 2019-02-21 Avary Holding (Shenzhen) Co., Limited. Cooling plate and method for manufacturing thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795910A (zh) * 2020-12-25 2021-05-14 瑞声科技(南京)有限公司 一种均温板制作方法及均温板
CN114935272A (zh) * 2022-05-24 2022-08-23 中国电子科技集团公司第十研究所 一种基于增材制造的一体化成型均温板
CN114935272B (zh) * 2022-05-24 2023-08-04 中国电子科技集团公司第十研究所 一种基于增材制造的一体化成型均温板
CN115338406A (zh) * 2022-07-11 2022-11-15 瑞泰精密科技(沭阳)有限公司 用于制备毛细结构的浆料及制备方法

Also Published As

Publication number Publication date
CN111822712A (zh) 2020-10-27
CN111822712B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2020211557A1 (zh) 薄型均温板的制作方法
TWI718004B (zh) 以金屬漿料製作毛細結構的方法
TWI784248B (zh) 一種用於製作均溫板中毛細結構之金屬漿料
TWI553288B (zh) 均溫板及其製造方法
US20140335290A1 (en) Conductive sealant, display panel and manufacturing method thereof, and display device
TWI750769B (zh) 一種鏈狀銅金屬毛細結構及其製作方法
TW201127266A (en) Vapor chamber and manufacturing method thereof
US20070044308A1 (en) Heat pipe and manufacturing method for the same
WO2021042946A1 (zh) 一种用于制作均温板元件毛细结构的金属氧化物浆料
TWI710744B (zh) 薄型均溫板的製作方法
CN112436250B (zh) 一种微波介质波导滤波器的端口耦合结构
TWI749708B (zh) 一種大功率均溫板結構的製造方法
TWI738479B (zh) 具有一固化複合材料結構之片狀金屬元件及其製造方法
US10831249B2 (en) Heat conduction component and mobile terminal
WO2020073905A1 (zh) 制作具有印刷毛细结构的超薄热管板的方法
TWI783488B (zh) 具有船型多孔隙毛細結構之管形元件及熱導管元件之製造方法
US20100028192A1 (en) Method for manufacturing a plate-type heat pipe
TWI827071B (zh) 超薄型均溫板元件結構及其製造方法
US8956483B2 (en) Manufacturing method of casing of heat pipe
CN112304137A (zh) 热导板毛细结构元件及其制造方法
CN107324778A (zh) 一种高密度、高导电性ito靶材的制备方法
JP2021131213A (ja) 熱伝導部材およびその製造方法
TWI301780B (zh)
CN117053606A (zh) 均温板及其制作方法
CN114199055A (zh) 具有一固化复合材料结构的片状金属元件及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20792190

Country of ref document: EP

Kind code of ref document: A1