WO2020211402A1 - 基于流化床气流磨技术制备3d打印用钛及钛合金粉末 - Google Patents

基于流化床气流磨技术制备3d打印用钛及钛合金粉末 Download PDF

Info

Publication number
WO2020211402A1
WO2020211402A1 PCT/CN2019/123904 CN2019123904W WO2020211402A1 WO 2020211402 A1 WO2020211402 A1 WO 2020211402A1 CN 2019123904 W CN2019123904 W CN 2019123904W WO 2020211402 A1 WO2020211402 A1 WO 2020211402A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
fluidized bed
titanium alloy
powder
grinding
Prior art date
Application number
PCT/CN2019/123904
Other languages
English (en)
French (fr)
Inventor
陈刚
秦明礼
陶麒鹦
曲选辉
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2020211402A1 publication Critical patent/WO2020211402A1/zh
Priority to US17/200,475 priority Critical patent/US11911826B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/15Use of fluidised beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of metal powder metallurgy preparation, and relates to a jet mill shaping preparation technology of low-cost titanium and titanium alloy powder for 3D printing.
  • Titanium metal has the advantages of low density, excellent corrosion resistance, high specific strength, and excellent biocompatibility. It is widely used in high-tech fields such as aerospace, biomedical, petrochemical, energy and power. At present, the preparation of high-performance, complex-shaped titanium products through powder metallurgy near-net forming processes such as 3D printing and injection molding has attracted great attention at home and abroad. In view of the needs of process characteristics, the powder required for 3D printing technology should have the characteristics of good fluidity, low oxygen content, and high loose ratio. Among them, the good fluidity of the powder is a key factor to ensure stable operation of the process, uniform spread of the powder or uniform filling of the injection molding feed, and product quality.
  • spherical titanium powder has become the main raw material for 3D printing technology. Therefore, powder metallurgy processes such as 3D printing and injection molding usually use spherical titanium powder with good powder fluidity as raw materials.
  • spherical titanium powder is mainly produced by inert gas atomization, plasma rotating electrode atomization and plasma fuse atomization.
  • the spherical titanium powder produced by these processes can meet the process requirements of 3D printing and injection molding.
  • the fine particle size ( ⁇ 45 ⁇ m) spherical titanium powder prepared by the above technology is extremely expensive, all of which are higher than 2000 yuan/kg. The main reason is that the yield of fine-particle titanium powder is generally low, and the cost of powder milling equipment is high.
  • the purpose of the present invention is to provide a method for preparing titanium and titanium alloy powder for 3D printing based on fluidized bed jet milling technology, which realizes the short-process and low-cost preparation of high-performance titanium and titanium alloy powder to satisfy 3D printing, injection molding and thermal spraying And other process requirements.
  • the preparation technology of titanium and titanium alloy powder for 3D printing of the present invention includes the following steps:
  • Step 1) Weigh a certain amount of hydrogenated dehydrogenated titanium powder or titanium alloy powder, wherein the oxygen content of the powder is 1000-2000 PPM, the particle size is 200-800 mesh, and the morphology is irregular;
  • Step 2 Place titanium and titanium alloy powder in a fluidized bed airflow grinding chamber, where three nozzles connected to the air source are arranged above the fluidized bed airflow grinding cavity, and the angle between the surface and the wall of the grinding chamber is 60°-90° ;
  • Step 3 Put the powder in the grinding chamber of the fluidized bed airflow mill, use high-purity nitrogen or high-purity argon as the grinding gas, and the grinding gas enters the grinding cavity through the grinding air pressure inlet, and the fluidized bed airflow grinding Adjust to 0.1-10MPa, spray titanium and titanium alloy powder from the discharge port; adjust the frequency of the sorting wheel to 0-60Hz/min, and the grinding time to 2-60min.
  • the titanium alloy powder in step 1) includes at least one of TC1, TC2, TC3, and TC4, the oxygen content is 1000-2000 PPM, and the particle size is 200-500 mesh.
  • the three nozzles of the fluidized bed jet mill in step 2) form an angle of 120° with each other, and supersonic nozzles, sonic nozzles and subsonic nozzles are used.
  • step 3 the grinding pressure inlet is negative pressure, and the outlet is protected by high-purity nitrogen or high-purity argon.
  • the frequency of the sorting wheel in step 3) is 60 Hz/min when feeding, and adjusted to 0 Hz/min when discharging.
  • the present invention has the following significant advantages:
  • Figure 1 is a scanning electron microscope photo of the raw material powder.
  • Fig. 2 is a photograph of the nearly spherical powder of titanium and titanium alloy powder prepared by the present invention suitable for 3D printing.
  • the oxygen content of the irregular morphology hydrogenated dehydrogenation titanium powder used is 1200PPM
  • the mass is 400g
  • the particle size is below 325 mesh
  • the angle between the fluidized bed jet mill nozzle and the wall of the grinding chamber is 60°
  • the grinding gas pressure is 0.6MPa
  • the frequency of the sorting wheel is 60Hz/min when feeding, 0 when discharging
  • the grinding time is 6min.
  • the titanium powder after jet milling has an irregular shape.
  • the sphericity is improved, the surface smoothness is higher, the fluidity is 35s/50g, and the oxygen content is 1400PPM.
  • the whole process of the present invention is time-consuming and has low equipment requirements. Only by adjusting the gas flow rate and the grinding pressure to make the powders rub and collide with each other, the irregular Ti powder can be used to obtain low-oxygen near-spherical Ti powder suitable for 3D printing or injection molding. Low cost, short process, mass production.
  • This embodiment uses the irregular hydrogenated dehydrogenation titanium powder described in the above embodiment 1, the oxygen content is 1200 PPM, the mass is 600 g, and the particle size is 325 mesh.
  • the angle between the fluidized bed jet mill nozzle and the wall of the grinding chamber is 60°, nitrogen is used as the grinding gas, the grinding gas pressure is 0.6MPa, the frequency of the sorting wheel is 60Hz/min, and the frequency of the sorting wheel is 0Hz/min when discharging.
  • the time is 4 minutes, and the titanium powder is nearly spherical, the surface is relatively smooth, the fluidity is 41s/50g, and the oxygen content is 1600PPM.
  • This embodiment uses the hydrogenated dehydrogenation titanium powder described in the above embodiment 1, with an oxygen content of 1200 PPM, a mass of 600 g, and a particle size of 200 mesh.
  • the angle between the fluidized bed jet mill nozzle and the wall of the grinding chamber is 60°, nitrogen is used as the grinding gas, the grinding gas pressure is 0.45MPa, the frequency of the sorting wheel is 50Hz/min, and the grinding time is 6min.
  • the titanium powder obtained is nearly spherical.
  • the fluidity is 33s/50g, and the oxygen content is 1600PPM.
  • This embodiment uses the hydrogenated dehydrogenation titanium powder described in the above embodiment 1, the oxygen content is 1200 PPM, the mass is 400 g, and the particle size is 325 mesh.
  • the angle between the fluidized bed jet mill nozzle and the wall of the grinding chamber is 60°. Argon is used as the grinding gas.
  • the pressure of the grinding gas is 0.45MPa.
  • the frequency of the sorting wheel is 60Hz/min.
  • the grinding time is 4min.
  • the fluidity of the titanium powder obtained is 39s/50g, oxygen content: 1700PPM.
  • This embodiment uses an irregular hydrogenated dehydrogenation Ti powder with an oxygen content of 1600PPM, a mass of 600g, a particle size of 500 mesh, a fluidized bed jet mill nozzle and the wall of the grinding chamber at an angle of 90°, and argon is used as the grinding gas.
  • the gas pressure is 0.72MPa
  • the frequency of the sorting wheel is 60Hz/min
  • the grinding time is 6min
  • the fluidity of the titanium powder is 35s/50g
  • the oxygen content is 2000PPM.
  • the fluidized bed jet mill technology of the present invention has a short process flow for preparing titanium and titanium alloy powders for 3D printing, high powder yield, high production efficiency, low cost, and excellent fluidity, Impurity content, particle size distribution and other properties can meet the requirements of 3D printing, injection molding and other processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Food Science & Technology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

基于流化床气流磨技术制备3D打印用钛及钛合金粉末,属于粉末制备及改性领域,采用氢化脱氢钛粉及钛合金粉末为主要原料粉末,在氮气或氩气保护性气氛下进行气流磨整形,最终获得满足3D打印工艺的高性能钛及钛合金粉末。具有生产效率高,生产成本低等优点。所制钛及钛合金粉末还具有粒度分布窄、近球形、氧含量可控、流动性好、纯度高等优点,可满足3D打印、注射成形及热喷涂等工业生产的技术要求。

Description

基于流化床气流磨技术制备3D打印用钛及钛合金粉末 技术领域
本发明属于金属粉末冶金制备技术领域,涉及一种3D打印用低成本钛及钛合金粉末的气流磨整形制备技术。
背景技术
金属钛具有密度低、耐腐蚀优良、比强度高、生物相容性优异等优点,广泛应用于航空航天、生物医用、石油化工、能源动力等高技术领域。当前,通过3D打印和注射成形等粉末冶金近净成形工艺制备高性能、形状复杂的钛制品引起了国内外的高度关注。鉴于工艺特性的需要,3D打印技术所需粉末应具备流动性好、氧含量低、松比高等特点。其中,粉末良好的流动性是保证工艺稳定运行,粉末均匀铺展或注射成形喂料均匀填充,以及制品质量的关键因素。因此,球形钛粉成为了3D打印技术的主要原料。因此,3D打印和注射成形等粉末冶金工艺通常使用粉末流动性较好的球形钛粉作为原料。目前,球形钛粉主要采用惰性气体雾化、等离子旋转电极雾化和等离子熔丝雾化等方法制得,这些工艺所制球形钛粉能够满足3D打印和注射成形的工艺要求。然而,上述技术制备的细粒径(<45μm)球形钛粉的价格异常昂贵,均高于2000元/公斤。究其主要原因是:细粒径钛粉的收得率普遍偏低,且制粉装备造价高昂。而且,上述制备技术经过几十年的发展,细粉收得率已近极限,难以实现球形钛粉的低成本稳定生产,成为制约全球3D打印钛工业发展的首要问题。因此开发一种成本低、工艺过程简单、杂质含量可控、粉末流动性好,且能满足3D打印和注射成形等粉末冶金工艺要求的钛及钛合金粉末制备或加工技术迫在眉睫。
发明内容
本发明的目的是提供一种基于流化床气流磨技术制备3D打印用钛及钛合金粉末,实现短流程、低成本制备高性能钛及钛合金粉末,以满足3D打印、注射成形及热喷涂等工艺需求。
本技术方案的实现如下所述:
本发明3D打印用钛及钛合金粉体制备技术包括以下步骤:
步骤1)称取一定量的氢化脱氢钛粉或钛合金粉末,其中粉末的氧含量为1000-2000PPM, 粒度为200-800目,形貌为不规则形貌;
步骤2)将钛及钛合金粉末放置于流化床气流研磨腔内,其中,流化床气流研磨腔上方设有三个与气源连通的喷嘴,与研磨腔壁面夹角为60°—90°;
步骤3)将粉末置于流化床气流磨研磨腔内,采用高纯氮气或高纯氩气作为研磨气体,研磨气体经研磨气压进料口进入研磨腔内,将流化床气流磨研磨气压调整为0.1-10MPa,从出料口喷出钛及钛合金粉末;调整分选轮频率为0-60Hz/min,研磨时间为2-60min。
其中,步骤1)中所述钛合金粉末包括TC1、TC2、TC3、TC4中的至少一种,氧含量为1000-2000PPM,粒径为200-500目。
其中,步骤2)中所述流化床气流磨的三个喷嘴互成120°夹角,采用超音速喷嘴、音速喷嘴及亚音速喷嘴。
其中,步骤3)中所述研磨气压进料口采用负压,出料口采用高纯氮气或高纯氩气保护。
其中,步骤3)中所述分选轮频率进料时为60Hz/min,出料时调整为0Hz/min。
本发明与现有技术相比,具有以下显著优点:
生产效率高,节约能源,且较球形钛粉的传统制备工艺相比,成本大幅降低;
采用流化床气流磨降低了原料粉体的污染程度,同时对设备几乎没有损耗,采用惰性气体作为制备及保护气体,有效控制了钛及钛合金粉末中氧含量的增加;所制备钛及钛合金粉末具有粒度分布窄、近球形、氧含量可控、流动性好等优点。
附图说明
图1为为原料粉体扫描电镜照片。
图2为本发明制备的适用于3D打印用钛及钛合金粉末的近球形粉体照片。
具体实施例
实施例1:
使用本发明的钛粉时,所用不规则形貌的氢化脱氢钛粉氧含量为1200PPM,质量为400g,粒度在325目以下,流化床气流磨喷嘴与研磨腔壁面夹角为60°,采用高纯氮气作为研磨气体,研磨气体压强为0.6MPa,进料时分选轮频率为60Hz/min,出料时为0,研磨时间为6min,如图1所示,处理前钛粉的形貌为不规则形状,气流磨处理后的钛粉为近球形,如 图2所示,球形度提高,表面光滑度较高,流动性为35s/50g,氧含量为1400PPM。
本发明整个流程耗时短,设备要求低,仅通过调整气体流速及研磨气压使得粉末相互摩擦、碰撞即可由不规则Ti粉得到适用于3D打印或注射成形的低氧近球形Ti粉,可实现低成本,短流程、批量化生产。
实施例2:
该实施例采用上述实施例1所述不规则氢化脱氢钛粉,氧含量为1200PPM,质量为600g,粒度为325目。流化床气流磨喷嘴与研磨腔壁面夹角为60°,采用氮气作为研磨气体,研磨气体压强为0.6MPa,分选轮频率为60Hz/min,出料时分选轮频率为0Hz/min,研磨时间为4min,得到钛粉为近球形,表面较为光滑,流动性为41s/50g,氧含量为1600PPM。
实施例3:
该实施例采用上述实施例1所述的氢化脱氢钛粉,氧含量为1200PPM,质量为600g,粒度为200目。流化床气流磨喷嘴与研磨腔壁面夹角为60°,采用氮气作为研磨气体,研磨气体压强为0.45MPa,分选轮频率为50Hz/min,研磨时间为6min,得到钛粉为近球形,流动性为33s/50g,氧含量为1600PPM。
实施例4:
该实施例采用上述实施例1所述的氢化脱氢钛粉,氧含量为1200PPM,质量为400g,粒度为325目。流化床气流磨喷嘴与研磨腔壁面夹角为60°,采用氩气作为研磨气体,研磨气体压强为0.45MPa,分选轮频率为60Hz/min,研磨时间为4min,得到钛粉流动性为39s/50g,氧含量为:1700PPM。
实施例5:
该实施例采用氧含量为1600PPM的不规则氢化脱氢Ti粉,质量为600g,粒度为500目,流化床气流磨喷嘴与研磨腔壁面夹角为90°,采用氩气作为研磨气体,研磨气体压强为0.72MPa,分选轮频率为60Hz/min,研磨时间为6min,得到钛粉流动性为35s/50g,氧含量为:2000PPM。
由上述实施例获得的结果,证明本发明所述的流化床式气流磨技术制备3D打印用钛及 钛合金粉末工艺流程短,收粉率高,生产效率高,成本低,在流动性、杂质含量、粒度分布等性能方面可满足3D打印、注射成形等工艺的要求。
本发明是通过实施例来描述的,但并不对本发明构成限制,参照本发明的描述,所公开的实施例的其他变化应该属于本发明权利要求限定的范围之内。

Claims (5)

  1. 基于流化床气流磨技术制备3D打印用钛及钛合金粉末,其特征在于,包括以下步骤:
    步骤1)称取一定量的氢化脱氢钛粉或钛合金粉末,其中粉末的氧含量为1000-2000PPM,粒度为200-800目,形貌为不规则形貌;
    步骤2)将钛及钛合金粉末放置于流化床气流研磨腔内,其中,流化床气流研磨腔上方设有三个与气源连通的喷嘴,与研磨腔壁面夹角为60°—90°,流化床气流研磨腔两端设有进料口和出料口;
    步骤3)将粉末置于流化床气流磨研磨腔内,采用高纯氮气或高纯氩气作为研磨气体,研磨气体经研磨气压进料口进入研磨腔内,将流化床气流磨研磨气压调整为0.1-10MPa,从出料口喷出钛及钛合金粉末;调整分选轮频率为0-60Hz/min,研磨时间为2-60min。
  2. 根据权利要求1所述的基于流化床气流磨技术制备3D打印用钛及钛合金粉末,其特征在于,步骤1)中所述钛合金粉末包括TC1、TC2、TC3、TC4中的至少一种,粒径为200-500目。
  3. 根据权利要求1所述的基于流化床气流磨技术制备3D打印用钛及钛合金粉末,其特征在于,步骤2)中所述流化床气流磨的三个喷嘴互成120°夹角,采用超音速喷嘴、音速喷嘴及亚音速喷嘴。
  4. 根据权利要求1所述的基于流化床气流磨技术制备3D打印用钛及钛合金粉末,其特征在于,步骤3)中所述研磨气压进料口采用负压,出料口采用高纯氮气或高纯氩气保护。
  5. 根据权利要求1所述的基于流化床气流磨技术制备3D打印用钛及钛合金粉末,其特征在于,步骤3)中所述分选轮频率进料时为60Hz/min,出料时调整为0Hz/min。
PCT/CN2019/123904 2019-04-16 2019-12-09 基于流化床气流磨技术制备3d打印用钛及钛合金粉末 WO2020211402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/200,475 US11911826B2 (en) 2019-04-16 2021-03-12 Preparation of titanium and titanium alloy powder for 3D printing based on fluidized bed jet milling technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305528.2A CN109877329B (zh) 2019-04-16 2019-04-16 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN201910305528.2 2019-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/200,475 Continuation-In-Part US11911826B2 (en) 2019-04-16 2021-03-12 Preparation of titanium and titanium alloy powder for 3D printing based on fluidized bed jet milling technique

Publications (1)

Publication Number Publication Date
WO2020211402A1 true WO2020211402A1 (zh) 2020-10-22

Family

ID=66937579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123904 WO2020211402A1 (zh) 2019-04-16 2019-12-09 基于流化床气流磨技术制备3d打印用钛及钛合金粉末

Country Status (3)

Country Link
US (1) US11911826B2 (zh)
CN (1) CN109877329B (zh)
WO (1) WO2020211402A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109877329B (zh) * 2019-04-16 2020-12-15 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN110280760B (zh) * 2019-07-01 2021-03-05 北京科技大学 一种高致密度钛制品的活化烧结制备方法
CN110666178B (zh) * 2019-08-26 2022-07-29 中国航天空气动力技术研究院 一种增材制造废弃钛或钛合金粉末的回收处理方法
CN110524003A (zh) * 2019-10-09 2019-12-03 攀钢集团攀枝花钢铁研究院有限公司 近球型钛粉的制备方法
CN110961619A (zh) * 2019-12-23 2020-04-07 北京科技大学 一种低成本3d打印钛制品的方法
CN111842875B (zh) * 2020-07-06 2022-03-18 北京科技大学 一种低成本打印制备高性能Nb521制品的方法
CN112048638B (zh) * 2020-07-29 2022-04-22 北京科技大学 钛基合金粉末及制备方法、钛基合金制件的制备方法
CN112453413B (zh) * 2020-11-20 2023-05-12 中科南京绿色制造产业创新研究院 一种3d打印用氧化物弥散强化钢球形粉体的制备方法
CN112846197A (zh) * 2021-01-05 2021-05-28 北京科技大学 一种提高3d打印金属粉体激光吸收率的方法
CN115007850B (zh) * 2022-05-11 2023-06-16 北京科技大学 一种3d打印粉末降氧方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263901A (ja) * 1989-04-04 1990-10-26 Daido Steel Co Ltd 金属射出成形用粉末およびその製造法
CN2899949Y (zh) * 2006-04-28 2007-05-16 上海化工机械三厂粉碎装备分厂 一种新型高效流化床式气流磨
CN104525956A (zh) * 2014-12-16 2015-04-22 中国航空工业集团公司北京航空材料研究院 一种氢化钛合金粉末的制备方法
CN105499589A (zh) * 2016-01-27 2016-04-20 攀枝花学院 制备高纯微细低氧氢化钛粉和脱氢钛粉的方法
US20160221084A1 (en) * 2013-08-12 2016-08-04 United Technologies Corporation Powder spheroidizing via fluidized bed
CN109382511A (zh) * 2018-11-23 2019-02-26 北京科技大学 一种3d打印用低成本钛粉的流化整形制备方法
CN109877329A (zh) * 2019-04-16 2019-06-14 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2242730Y (zh) * 1995-07-28 1996-12-18 中国科学院宁波三环粉体高技术公司 对撞式气流磨的可控流化床装置
EP2236634B1 (en) * 2009-04-01 2016-09-07 Bruker BioSpin AG Sn based alloys with fine compound inclusions for Nb3Sn superconducting wires
CN103433500A (zh) * 2013-09-06 2013-12-11 北京科技大学 一种高纯微细低氧钛粉制备方法
CN208526909U (zh) * 2018-05-24 2019-02-22 中铝山东依诺威强磁材料有限公司 一种无底料气流磨制粉装置
CN110961619A (zh) * 2019-12-23 2020-04-07 北京科技大学 一种低成本3d打印钛制品的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263901A (ja) * 1989-04-04 1990-10-26 Daido Steel Co Ltd 金属射出成形用粉末およびその製造法
CN2899949Y (zh) * 2006-04-28 2007-05-16 上海化工机械三厂粉碎装备分厂 一种新型高效流化床式气流磨
US20160221084A1 (en) * 2013-08-12 2016-08-04 United Technologies Corporation Powder spheroidizing via fluidized bed
CN104525956A (zh) * 2014-12-16 2015-04-22 中国航空工业集团公司北京航空材料研究院 一种氢化钛合金粉末的制备方法
CN105499589A (zh) * 2016-01-27 2016-04-20 攀枝花学院 制备高纯微细低氧氢化钛粉和脱氢钛粉的方法
CN109382511A (zh) * 2018-11-23 2019-02-26 北京科技大学 一种3d打印用低成本钛粉的流化整形制备方法
CN109877329A (zh) * 2019-04-16 2019-06-14 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末

Also Published As

Publication number Publication date
US20210197264A1 (en) 2021-07-01
CN109877329B (zh) 2020-12-15
US11911826B2 (en) 2024-02-27
CN109877329A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2020211402A1 (zh) 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN101716686B (zh) 一种微细球形钛粉的短流程制备方法
CN108315628B (zh) 基于(Ti,Me)CN-Co的涂层喷涂和3D打印金属陶瓷材料及其制备方法
CN107557737B (zh) 一种制备管状靶材的方法
CN106166617B (zh) 一种3d打印用钛合金粉末的制备方法
WO2020103582A1 (zh) 一种3d打印用低成本钛粉的流化整形制备方法
CN107096924A (zh) 一种可用于三维打印的球形金属基稀土纳米复合粉末的制备方法及产品
CN108145170A (zh) 一种难熔高熵合金球形粉末的制备方法
CN112893852A (zh) 一种难熔高熵合金粉末制备方法
CN110153434A (zh) 一种超细Ni-Ti-Y多元复合金属纳米粉的快速制备方法
CN108480651A (zh) 一种Ti-48Al-2Cr-2Nb合金粉末的制备方法及应用
CN110961619A (zh) 一种低成本3d打印钛制品的方法
CN110280760B (zh) 一种高致密度钛制品的活化烧结制备方法
CN104070173B (zh) 球形钨粉的制备方法
CN111872404A (zh) 一种用于3d打印的铝铜合金粉末及其制备方法
CN114289722B (zh) 一种细粒度球形钨粉的制备方法
CN106927436A (zh) 一种氮化铬纳米粉的制备方法
KR20200003302A (ko) 쓰리디 프린터용 금속분말 제조방법
CN110756807B (zh) 氢化脱氢钛粉的激光熔化沉积方法
CN102161099B (zh) 纳米晶高纯球形镁合金粉末生产方法及装置
CN115029587B (zh) 一种增材制造氧化物弥散强化镍基高温合金及其制备方法
CN110802234A (zh) 零卫星颗粒的3d打印用金属粉末的制备方法
Unal et al. Production of aluminum and aluminum-alloy powder
CN114892038B (zh) 一种流动性优异的高球形度Cr基合金-TiB2微纳米粉体及其制备方法
CN114920218A (zh) 一种氮化物纳米或和亚微米粉末材料制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925548

Country of ref document: EP

Kind code of ref document: A1