WO2020211302A1 - 光电二极管制备方法及其光电二极管 - Google Patents

光电二极管制备方法及其光电二极管 Download PDF

Info

Publication number
WO2020211302A1
WO2020211302A1 PCT/CN2019/110217 CN2019110217W WO2020211302A1 WO 2020211302 A1 WO2020211302 A1 WO 2020211302A1 CN 2019110217 W CN2019110217 W CN 2019110217W WO 2020211302 A1 WO2020211302 A1 WO 2020211302A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
doped
doped region
epitaxial layer
type
Prior art date
Application number
PCT/CN2019/110217
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/604,047 priority Critical patent/US20220209041A1/en
Publication of WO2020211302A1 publication Critical patent/WO2020211302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1127Devices with PN heterojunction gate
    • H01L31/1129Devices with PN heterojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • This application relates to the field of semiconductors, and in particular, to a photodiode preparation method and photodiode.
  • CMOS Complementary Metal Oxide Semiconductor
  • a CMOS image sensor includes at least: a pixel array, a timing control module, an analog signal processing module, and an analog-to-digital conversion module, where the pixel array can use photodiodes to achieve photoelectric conversion.
  • Fig. 1 is a schematic structural diagram of a photodiode in the prior art. As shown in Fig.
  • the photodiode includes: a P-type epitaxial layer P-epi2 is provided on a P-type substrate P-sub1, and a P-type epitaxial layer P- One region of epi2 is provided with an N-type doped region PDN3, while a clamping layer 6 is provided on a part of the upper surface of the N-type doped region PDN3, and another region of the P-type epitaxial layer P-epi2 is provided with an output terminal FD4.
  • the upper surface of the P-type epitaxial layer P-epi2 forms a transmission gate TX5, wherein the lower surface of the transmission gate TX5 is directly connected to the output terminal FD4 and the N-type doped region PDN3, respectively.
  • the photodiode receives light
  • the light wave penetrates into the P-epi2 region of the P-type epitaxial layer, and photo-generated electrons are generated in the P-epi2 region of the P-type epitaxial layer.
  • the N-type doped region PDN3 attracts the photo-generated electrons, thereby The photogenerated electrons generated in the P-epi2 region of the P-type epitaxial layer are stored in the N-type doped region PDN3.
  • an inversion layer is formed between the N-type doped region PDN3 and the output terminal FD4.
  • the type layer serves as a conductive channel to output photogenerated electrons in the N-type doped region PDN3 from the output terminal FD4 through the conductive channel itself.
  • the inventor of the present application discovered in the process of realizing the above-mentioned prior art that when the transmission gate TX5 stops being energized, the inversion layer will release part of the photogenerated electrons and return to the N-type doped region PDN3, leading to the next photoelectric The photogenerated electrons generated by the conversion are indistinguishable from the photogenerated electrons returning to the N-doped region PDN3, resulting in poor photoelectric conversion effect of the photodiode.
  • the purpose of this application is to provide a photodiode manufacturing method and its photodiode to solve the problem of poor photoelectric conversion effect of the photodiode.
  • the first aspect of the embodiments of the present application provides a method for manufacturing a photodiode, including:
  • the second type material is doped in the third area of the epitaxial layer to obtain an output area, and the other side of the transmission gate is connected to the output area.
  • the method further includes:
  • Doping of the first type material is performed under the first region to form a first isolation region.
  • the method further includes:
  • One side of the transmission gate connected to the first doped region includes:
  • the one side of the transmission gate is connected to the first doped region through the second isolation region.
  • the second type material and the first type material are respectively different types of semiconductor materials, and the semiconductor material includes a P-type semiconductor material and an N-type semiconductor material.
  • the doping includes implantation.
  • the other side of the transmission gate connected to the first doped region includes:
  • At least half of the lower surface of the transmission gate is connected to the first doped region through the second isolation region.
  • the concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region.
  • the method further includes:
  • the first type material is doped in the fourth region of the epitaxial layer to form a third isolation region, and the output region is arranged in the third isolation region.
  • the third isolation region is not directly connected to the first doped region.
  • the doping of the first type material in the fourth region of the epitaxial layer to form a third isolation region includes:
  • Performing at least two injections of the first type material into the fourth region to obtain the third isolation region, and performing at least two injections of the first type material into the fourth region includes: In two adjacent injections, the measurement and energy of the latter injection are smaller than the measurement and energy of the previous injection.
  • first isolation region is connected to both the and the second doped regions respectively.
  • the method further includes:
  • forming a transmission gate on the upper surface of the epitaxial layer includes:
  • the polysilicon gate is etched to form the transmission gate.
  • a photodiode including: an epitaxial layer, a first doped region, a transmission gate, a second doped region, and an output region, wherein,
  • the epitaxial layer is arranged on a silicon substrate, and the epitaxial layer is doped with a first type material
  • the first doped region is arranged in a first region of the epitaxial layer, and the first doped region is doped with a second type of material;
  • the second doped region is arranged in a second region of the epitaxial layer, the second doped region is doped with a second type of material, and the second doped region is connected to the first doped region;
  • the transmission gate is arranged on the upper surface of the epitaxial layer, and one side of the transmission gate is connected to the first doped region;
  • the output area is arranged in a third area of the epitaxial layer, the output area is doped with a first type material, and the other side of the transmission gate is connected to the output area.
  • a first isolation area Also includes: a first isolation area
  • the first isolation region is disposed under the first region, and the first isolation region is doped with a first type material.
  • the second isolation region is disposed above the second doped region and the first doped region, and the second isolation region includes a first type of material doping;
  • the one side of the transmission gate is connected to the first doped region through the second isolation region.
  • the second type material and the first type material are respectively different types of semiconductor materials, and the semiconductor material includes a P-type semiconductor material and an N-type semiconductor material.
  • At least half of the lower surface of the transmission gate is connected to the first doped region through the second isolation region.
  • the concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region.
  • the third isolation region is disposed in a fourth region of the epitaxial layer, the third isolation region is doped with a first type of material doping, and the output region is disposed in the third isolation region.
  • the third isolation region is not directly connected to the first doped region.
  • the first isolation region is respectively connected to both the and the second doped regions.
  • the side wall is arranged on the side wall of the transmission grid
  • the fourth isolation region is disposed between the second isolation region and the second doped region, and the fourth isolation region is doped with a first type material.
  • the photodiode manufacturing method and the photodiode provided in the present application include: forming an epitaxial layer on one side of a silicon substrate, the epitaxial layer is doped with a first type material; A region is doped with a second type material to form a first doped region; a transmission gate is formed on the upper surface of the epitaxial layer, and one side of the transmission gate is connected to the first doped region; The second region of the layer is doped with a second type of material to form a second doped region, the second doped region is connected to the first doped region; the second type is performed in the third region of the epitaxial layer The material is doped to obtain an output area, and the other side of the transmission gate is connected to the output area.
  • the first doped region is arranged between the second doped region and the transmission gate.
  • the doped area realizes the storage of the reflowed photogenerated electrons in the first doped area and prevents the reflowed photogenerated electrons from reflowing to the second doped area, thereby avoiding affecting the photogenerated electrons generated in the next photoelectric conversion, thereby improving the photodiode’s performance Photoelectric conversion effect.
  • FIG. 1 is a schematic diagram of the structure of a photodiode in the prior art
  • FIG. 2 is a schematic structural diagram of an embodiment of the photodiode of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of the photodiode of the present application.
  • FIG. 4 is a schematic flowchart of an embodiment of the photodiode manufacturing method of the present application.
  • FIG. 5 is a schematic flowchart of another embodiment of the photodiode manufacturing method of the present application.
  • the photodiode includes: an epitaxial layer 101, a first doped region 102, a transmission gate 103, a second doped region 4, and an output Area 105. among them,
  • the epitaxial layer 101 is disposed on a silicon substrate, and the epitaxial layer 101 is doped with a first type material;
  • the first doped region 102 is disposed in the first region of the epitaxial layer 101, and the first doped region 102 is doped with a second type material;
  • the second doped region 104 is disposed in the second region of the epitaxial layer 101, the second doped region 104 is doped with a second type of material, and the second doped region 104 is the same as the first doped region. Miscellaneous area 102 connection;
  • the concentration of the second type material in the first doped region 102 is higher than the concentration of the second type material in the second doped region 104. Therefore, part of the electrons can be stored in the overlap region between the first doped region 102 and the second doped region 104. Furthermore, when the transmission gate 103 is closed, the overlap region can contribute to the photogenerated electrons released from the inversion layer. The storage is performed to avoid injection back into the second doped region 104, which further avoids affecting the next photoelectric conversion, thereby improving the photoelectric conversion efficiency.
  • the transmission gate 103 is disposed on the upper surface of the epitaxial layer 101, and one side of the transmission gate is connected to the first doped region 102;
  • the output area 105 is arranged in the third area of the epitaxial layer 101, the output area 105 is doped with a first type material, and the other side of the transmission gate is connected to the output area 105.
  • At least half of the lower surface of the transmission gate is connected to the first doped region 102.
  • the photodiode when the photodiode receives light, the light wave penetrates the epitaxial layer 101 to generate photogenerated electrons. Then, the second doped region 104 attracts the photogenerated electrons and attracts the photogenerated electrons to the second doped region 104 At the same time, the transmission gate is energized, so that the photogenerated electrons in the second doped region 104 are transmitted through the first doped region 102 and the inversion layer between the output region 105 and the output region 105 to the output region 105.
  • the inversion layer between the first doped region 102 and the output region 105 releases photo-generated electrons, causing the released photo-generated electrons to reflow to the second doped region 104, and pass through the second doped region 104 and the transmission
  • the first doped region 102 is provided between the gate 103 to store the reflowed photo-generated electrons in the first doped region 102 to prevent the reflowed photo-generated electrons from reflowing to the second doped region 104, so as to avoid affecting the next photoelectric conversion.
  • the photo-generated electrons further improve the efficiency of photodiode processing photoelectric conversion.
  • the photodiode includes: an epitaxial layer, a first doped region, a transmission gate, a second doped region, and an output region;
  • the epitaxial layer is disposed on a silicon substrate, and the epitaxial layer is doped with The first type of material;
  • the first doped region is provided in the first region of the epitaxial layer, the first doped region is doped with a second type of material;
  • the second doped region is provided in the In the second region of the epitaxial layer, the second doped region is doped with a second type of material, and the second doped region is connected to the first doped region;
  • the transmission gate is arranged on the epitaxial layer On the upper surface of the transmission gate, one side of the transmission gate is connected to the first doped region;
  • the output region is arranged in the third region of the epitaxial layer, and the first type of material is doped in the output region, so The other side of the transmission gate is connected to the output area.
  • the second doped region is provided between the second doped region and the transmission gate.
  • a doped area which can store the reflowed photoelectrons in the first doped area, and prevent the reflowed photogenerated electrons from reflowing to the second doped area, thereby avoiding affecting the photogenerated electrons generated during the next photoelectric conversion, thereby improving the photodiode The photoelectric conversion effect.
  • FIG. 3 is a schematic structural diagram of another embodiment of the photodiode of the present application. As shown in FIG. 3, on the basis of the foregoing embodiment, the photodiode may further include: a first isolation region 106;
  • the first isolation region 106 is disposed under the first region, and the first isolation region 106 is doped with a first type material.
  • the first isolation region 106 is respectively connected to both the and the second doped regions.
  • the second doping can be avoided. The photogenerated electrons in the region enter the first doped region.
  • the photodiode may further include: a second isolation region 107;
  • the second isolation region 107 is disposed above the second doped region 104 and the first doped region 102, and the second isolation region 107 includes a first type of material doping;
  • the one side of the transmission gate is connected to the first doped region 102 through the second isolation region 107.
  • the second isolation region 107 is provided between the first doped region 102 and the transmission gate, and the threshold of the transmission gate can be adjusted.
  • the threshold includes the transfer of photogenerated electrons in the second doped region 104 to the output region 105.
  • the transmission gate is closed, a small part of the photo-generated electrons may be injected back into the second doped region 104, because the first doped region 102 is arranged in the second doped region 104 and the transmission Between the gates, and because the concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region, it is avoided that the photogenerated electrons are injected back into the second doped
  • the miscellaneous region 104 realizes unidirectional transfer of photo-generated electrons, that is, photo-generated electrons are transferred from the second doped region 104 to the output region 105.
  • the second type material and the first type material are respectively different types of semiconductor materials
  • the semiconductor material includes a P-type semiconductor material and an N-type semiconductor material.
  • the first type of material includes any one of P-type semiconductor materials or N-type semiconductor materials
  • the second type of material includes any one of P-type semiconductor materials or N-type semiconductor materials.
  • the P-type semiconductor material may be an ion or compound of any element in group III or II elements
  • the N-type semiconductor material may be an ion or compound of any element in group V elements;
  • different elements can be used for different regions, or the same element can be used.
  • the first region, the second region, or the third region can be doped with the second type material, and different elements can be used.
  • the same elements can also be used for different regions; for example, when the fourth isolation region, the second isolation region 107, and the first isolation region 106 are doped with the first type of material, different elements can be used, or The same elements.
  • the photodiode may further include: a third isolation region 108;
  • the third isolation region 108 is disposed in the fourth region of the epitaxial layer 101, the third isolation region 108 is doped with a first type of material doping, and the output region 105 is disposed in the third isolation region 108 in. That is, the fourth area is provided in the peripheral area of the output area 105, and the peripheral area is provided in the epitaxial layer 101.
  • the third isolation regions 108 are respectively provided with shallow trench isolation regions STI1011, which are configured to achieve isolation from adjacent pixel units.
  • the third isolation region 108 is provided on the periphery of the output region 105, thereby achieving isolation between the output region 105 and the second doped region.
  • the third isolation region 108 and the first doped region 102 are not directly connected. In this way, the switching function of the transmission gate 103 between the first doped region 102 and the output region 105 is realized.
  • the first isolation region 106 is connected to both the and second doped regions 104 respectively.
  • the first isolation region 106 is connected to both the and the second doped regions 104, which can prevent photo-generated electrons from passing through the channel between the second doped region 104 and the output region 105 from the second The doped region 104 enters the output region 105.
  • the photodiode may further include:
  • the side wall is arranged on the side wall of the transmission grid
  • the fourth isolation region is disposed between the second isolation region 107 and the second doped region 104, and the fourth isolation region is doped with a first type material.
  • This embodiment also provides a photodiode, wherein the second doped region 102 in the photodiode is mirrored with the first doped region 104, the first isolation region 106, the output region 105, and the third isolation region. 108.
  • FIG. 4 is a schematic flowchart of an embodiment of the photodiode manufacturing method of the present application. As shown in FIG. 4, the photodiode manufacturing method includes:
  • Step 401 Form an epitaxial layer on one side of the silicon substrate.
  • the epitaxial layer is doped with a first type of material; the doped first type of material in this embodiment may be a P-type semiconductor material or an N-type semiconductor material.
  • the epitaxial layer is prepared on the silicon substrate, and the P-type material is doped during the epitaxial layer preparation process.
  • the thickness of the obtained P-type epitaxial layer is at least 15um.
  • the P-type material in the P-type epitaxial layer The concentration is 5e13cm 3 .
  • Step 402 Doping a second type material in the first region of the epitaxial layer to form a first doped region.
  • the second type of material and the first type of material in this embodiment are respectively different types of semiconductor materials, and the semiconductor material includes a P-type semiconductor material and an N-type semiconductor material, wherein the The first type material includes any one of a P-type semiconductor material or an N-type semiconductor material, and the second type material is any one of a P-type semiconductor material or an N-type semiconductor material, respectively.
  • the P-type semiconductor material may be an ion or compound of any element in group III or II elements
  • the N-type semiconductor material may be an ion or compound of any element in group V elements
  • different regions for example, the first region, the second region, or the third region are doped with the second type material, different elements can be used, or the same element can be used; for different regions The first type of material doping can use different elements or the same element.
  • Step 403 forming a transmission gate on the upper surface of the epitaxial layer.
  • the transmission gate in this embodiment is connected to the first doped region.
  • a polysilicon gate is formed on the upper surface of the epitaxial layer, and then, the polysilicon gate is etched to form the transmission gate.
  • Step 404 Doping the second region of the epitaxial layer with a second type material to form a second doped region.
  • the second doped region is connected to the first doped region.
  • the concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region.
  • the second type of material is doped by implantation, and the second region of the epitaxial layer is doped with the second type of material by implantation.
  • Step 405 Doping the first type material in the third region of the epitaxial layer to obtain an output region.
  • one side of the transmission gate is connected to the output region 105, and the other side of the transmission gate is connected to the first doped region.
  • the third region of the epitaxial layer is doped with the first type material by implantation, for example: the first type material phosphorus P is implanted, the implant dose is 6e13cm -2 , and the implant energy Energy is 14Kev.
  • the photodiode receives light
  • the light wave penetrates the epitaxial layer 101 to generate photogenerated electrons.
  • the second doped region 104 attracts the photogenerated electrons and attracts the photogenerated electrons to the second doped region 104
  • power is applied to the transmission gate so that the photogenerated electrons in the second doped region 104 are transferred to the output region 105 through the first doped region 102.
  • the power to the transmission gate is stopped, some photogenerated electrons will be generated. The electron reflows the second doped region 104.
  • the first doped region 102 is arranged between the second doped region 104 and the output region 105, so that the reflowed photo-generated electrons are stored in the first doped region 102 to avoid the reflowed photo-generated electrons. Reflowing back to the second doped region 104 improves the photoelectric conversion effect of the photodiode, thereby improving the processing efficiency of the photodiode.
  • the photodiode manufacturing method includes: forming an epitaxial layer on one side of a silicon substrate, the epitaxial layer is doped with a first type material; and performing a second type material doping in the first region of the epitaxial layer Impurity, forming a first doped region; forming a transmission gate on the upper surface of the epitaxial layer, and one side of the transmission gate is connected to the first doped region; performing a second region on the second region of the epitaxial layer Type material is doped to form a second doped region, and the second doped region is connected to the first doped region; the second type material is doped in the third region of the epitaxial layer to obtain an output region, The other side of the transmission gate is connected to the output area.
  • the first doped region is arranged between the second doped region and the transmission gate.
  • the doped area realizes the storage of the reflowed photogenerated electrons in the first doped area and prevents the reflowed photogenerated electrons from reflowing to the second doped area, thereby avoiding affecting the photogenerated electrons generated in the next photoelectric conversion, thereby improving the photodiode’s performance Photoelectric conversion effect.
  • the sequence of implementing the photodiode manufacturing method is not limited to the sequence of the above steps.
  • another photodiode manufacturing method may be implemented in that step 403 is performed before step 402, or another A method for manufacturing a photodiode can be implemented in that step 404 is performed before step 402 and step 403, which is only an example here, and is not limited thereto.
  • This embodiment provides another photodiode. Based on the above embodiment, before step 402, it may further include:
  • a first type of material doping is performed under the first region to form a first isolation region 106.
  • the first type of material doping is implanted multiple times under the first region to form the first isolation region 106.
  • the first type of material boron B is injected twice, the first type of material boron B is injected, the injection dose is 6e11cm -2 , the injected energy energy is 1450Kev, and the first type of material boron B is injected for the second time.
  • the dose is 6e11cm -2 and the injected energy energy is 1100Kev.
  • the first isolation region 106 below the first doping region, it is possible to prevent the photogenerated electrons in the second doping region from entering the first doping region.
  • the photodiode manufacturing method includes:
  • the method may further include:
  • the other side of the transmission gate is connected to the first doped region and includes:
  • the other side of the transmission gate is connected to the first doped region through the second isolation region 107.
  • the second isolation region 107 is provided between the first doped region and the transmission gate, and the threshold of the transmission gate can be adjusted.
  • the threshold includes the application of photogenerated electrons in the second doped region to the output region.
  • the voltage of the transmission gate and further, when the transmission gate is closed, a small part of the photo-generated electron injection may be injected back into the second doped region, because the first doped region is arranged between the second doped region and the transmission gate, and because The concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region, which prevents the photogenerated electrons from being injected back into the second doped region when the transmission gate is turned off, thereby realizing light generation Unidirectional electron transfer, that is, photo-generated electrons transfer from the second doped area to the output area.
  • the doping in the foregoing embodiment includes implantation.
  • At least half of the lower surface of the transmission gate is connected to the first doped region.
  • the transmission gate there is an overlap region between the first doped region and the second doped region, so that when the transmission gate is closed, a small part of the photogenerated electrons may be injected back into the second doped region.
  • a doped region is arranged between the second doped region and the transmission gate, and because the concentration of the second type material in the overlapping region is higher than that of the first doped region, the photo-generated electrons are stored in the overlapping region, which avoids The photo-generated electrons are injected back into the second doped region 104 when the transmission gate is turned off, thereby realizing a unidirectional transfer of photo-generated electrons, that is, the photo-generated electrons are transferred from the second doped region 104 to the output region 105.
  • This embodiment also provides another photodiode.
  • the second type material is doped in the first region of the epitaxial layer to form the first doped region, Also includes:
  • the first type material is doped in the fourth region of the epitaxial layer to form a third isolation region 108, and the output region 105 is disposed in the third isolation region 108.
  • the third isolation region 108 is not directly connected to the first doped region. In this way, the switching function of the transmission gate 103 between the first doped region 102 and the output region 105 is realized.
  • the doping of the first type material in the fourth region of the epitaxial layer to form the third isolation region 108 includes:
  • Performing at least two injections of the first type material into the fourth region to obtain the third isolation region 108, and performing at least two injections of the first type material into the fourth region includes: In two adjacent injections, the measurement and energy of the next injection are smaller than the measurement and energy of the previous injection, respectively.
  • the first isolation region 106 is connected to both the and second doped regions 104 respectively.
  • the first isolation region 106 is connected to both the and the second doped regions 104, which can prevent photo-generated electrons from passing through the channel between the second doped region 104 and the output region 105 from the second The doped region 104 enters the output region 105.
  • This embodiment also provides another photodiode.
  • the method for manufacturing the photodiode further includes: after forming a transmission gate on the upper surface of the epitaxial layer:
  • the first type of material doping is performed between the second isolation region 107 and the second doped region 104 to obtain a fourth isolation region.
  • the third region is located between the second isolation region 107 and the second isolation region 107. Between the two doped regions 104.
  • the forming a transmission gate on the upper surface of the epitaxial layer includes:
  • the polysilicon gate is etched to form the transmission gate.
  • FIG. 5 is a schematic flowchart of another embodiment of the photodiode manufacturing method of the present application. As shown in FIG. 5, the photodiode manufacturing method includes:
  • Step 501 forming an epitaxial layer on one side of the silicon substrate.
  • the epitaxial layer is doped with a first type of material; the doped first type of material in this embodiment may be a P-type semiconductor material or an N-type semiconductor material.
  • the epitaxial layer is prepared on the silicon substrate, and the P-type material is doped during the epitaxial layer preparation process.
  • the thickness of the obtained P-type epitaxial layer is at least 15um.
  • the P-type material in the P-type epitaxial layer The concentration is 5e13cm 3 .
  • Step 502 Doping the first type material in the fourth region of the epitaxial layer to form a third isolation region.
  • the output area 105 in this embodiment is arranged in the third isolation area 108.
  • the third isolation region 108 is not directly connected to the first doped region.
  • the implementation of forming the third isolation region 108 at least includes:
  • Performing at least two injections of the first type material into the fourth region to obtain the third isolation region 108, and performing at least two injections of the first type material into the fourth region includes: In two adjacent injections, the measurement and energy of the next injection are smaller than the measurement and energy of the previous injection, respectively.
  • Step 503 Doping the first type material under the first region to form a first isolation region.
  • the first type of material doping are performed under the first region to form the first isolation region 106.
  • the first type of material boron B is injected twice.
  • the first injection of the first type material is the same as the injection measurement.
  • the first injection energy is greater than the second injection energy.
  • the injected material is boron B.
  • the energy injected for the first time is 1100, and energy injected for the second time is 900.
  • the first region is a region where the second doped region 104 is formed.
  • the first doping region can be isolated from the epitaxial layer, thereby preventing the photogenerated electrons stored in the first doping region from being transmitted to the epitaxial layer.
  • Step 504 doping with a second type material in the first region of the epitaxial layer to form a first doped region.
  • the first doped region Preferably, there is an overlapping area between the first doped region and the second doped region 104.
  • the second type of material is doped by implantation, and the second region of the epitaxial layer is doped with the second type of material by implantation.
  • Step 505 Doping the first type material above the second doping region and the first doping region to form a second isolation region.
  • Step 506 forming a transmission gate on the upper surface of the epitaxial layer.
  • a polysilicon gate is formed on the upper surface of the epitaxial layer, and then the polysilicon gate is etched to form the transmission gate.
  • At least half of the lower surface of the transmission gate is connected to the first doped region.
  • Step 507 Prepare sidewalls on the sidewalls of the transmission gate
  • Step 508 Doping the first type material between the second isolation region and the second doped region to obtain a fourth isolation region.
  • Step 509 Doping the second region of the epitaxial layer with a second type material to form a second doped region.
  • the second doped region is connected to the first doped region.
  • the first isolation region 106 is connected to both the and the second doped regions respectively.
  • the concentration of the second type material in the first doped region is higher than the concentration of the second type material in the second doped region.
  • Step 510 Doping the first type material in the third region of the epitaxial layer to obtain an output region.
  • one side of the transmission gate is connected to the output region 105, and the other side of the transmission gate is connected to the first doped region.
  • the third region of the epitaxial layer is doped with the first type material by implantation, for example: the first type material phosphorus P is implanted, the implant dose is 6e15, and the implant energy energy is 15KeV.
  • the photogenerated electrons released from the inversion layer between the first doped region and the output region are reflowed to the second doped region.
  • the first doped region is arranged between the gates to store the reflowed photo-generated electrons in the first doped region, and prevent the reflowed photo-generated electrons from flowing back to the second doped region, thereby avoiding affecting the photo-generated electrons generated during the next photoelectric conversion. In turn, the photoelectric conversion effect of the photodiode is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种光电二极管制备方法及其光电二极管,该方法包括:在外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区(402);在外延层的上表面形成传输栅,传输栅的一侧与第一掺杂区连接(403);对外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区,第二掺杂区与第一掺杂区连接(404);在外延层的第三区域进行第二类型材料掺杂,获得输出区域,传输栅的另一侧与输出区域连接(405)。在停止对传输栅加电,第一掺杂区与输出区域之间的反型层释放的光生电子向第二掺杂区回流时,实现将回流的光生电子存储在第一掺杂区,避免回流的光生电子回流至第二掺杂区,进而提高了光电二极管的光电转换效果。

Description

光电二极管制备方法及其光电二极管
相关申请的交叉引用
本申请要求于2019年04月15日提交中国专利局的申请号为CN201910297257.0、名称为“光电二极管制备方法及其光电二极管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体领域,具体地,涉及一种光电二极管制备方法及其光电二极管。
背景技术
随着科技的发展,互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器已经广泛应用在人们生活的各方各面,例如远距离高精度测距、高动态成像和高帧频成像。
现有技术中,CMOS图像传感器至少包括:像素阵列、时序控制模块、模拟信号处理模块以及模数转换模块,其中,像素阵列可以采用光电二极管实现光电转换。图1是一种现有技术的光电二极管的结构示意图,如图1所示,该光电二极管包括:P型衬底P-sub1上设置有P型外延层P-epi2,P型外延层P-epi2中一个区域设置有N型掺杂区PDN3,同时在N型掺杂区PDN3的一部分上表面设置有钳位层6,P型外延层P-epi2中另一个区域设置有输出端FD4,在P型外延层P-epi2的上表面形成传输栅TX5,其中,该传输栅TX5的下表面分别与输出端FD4以及N型掺杂区PDN3直接连接。从而,光电二极管接收光照时,光波穿透到P型外延层P-epi2区域,在P型外延层P-epi2区域产生光生电子,同时N型掺杂区PDN3对该光生电子进行吸引,从而将P型外延层P-epi2区域中产生的光生电子存储在N型掺杂区PDN3,当对传输栅TX5加电时,N型掺杂区PDN3与输出端FD4之间形成反型层,该反型层作为导电沟道将N型掺杂区PDN3的光生电子通过该导电沟道自身从输出端FD4输出。
然而,本申请的发明人在实现上述现有技术的过程中发现,当对传输栅TX5停止加电时,反型层会释放部分光生电子并返回N型掺杂区PDN3,导致下一次的光电转换产生的光生电子与返回N型掺杂区PDN3的光生电子无法区分,从而导致光电二极管的光电转换 效果较差。
发明内容
本申请的目的是提供一种光电二极管制备方法及其光电二极管,用以解决光电二极管的光电转换效果较差的问题。
为了实现上述目的,本申请实施例的第一方面,提供一种光电二极管制备方法,包括:
在硅衬底的一面形成外延层,所述外延层掺杂有第一类型材料;
在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区;
在所述外延层的上表面形成传输栅,所述传输栅的一侧与所述第一掺杂区连接;
对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区,所述第二掺杂区与所述第一掺杂区连接;
在所述外延层的第三区域进行第二类型材料掺杂,获得输出区域,所述传输栅的另一侧与所述输出区域连接。
进一步地,所述在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区之前,还包括:
在所述第一区域下方进行第一类型材料掺杂,形成第一隔离区。
进一步地,所述在所述外延层的上表面形成传输栅之前,还包括:
在所述第二掺杂区以及第一掺杂区的上方进行第一类型材料掺杂,形成第二隔离区;
所述传输栅的一侧与所述第一掺杂区连接,包括:
所述传输栅的所述一侧通过所述第二隔离区与所述第一掺杂区连接。
进一步地,所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料。
进一步地,所述掺杂包括注入。
进一步地,所述传输栅的另一侧与所述第一掺杂区连接,包括:
所述传输栅的下表面的至少一半通过所述第二隔离区与所述第一掺杂区连接。
进一步地,所述第一掺杂区中第二类型材料的浓度高于所述第二掺杂区中第二类型材料的浓度。
进一步地,所述第一掺杂区与所述第二掺杂区之间存在重叠区域。
进一步地,所述在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区之前,还包括:
在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区,所述输出区域设置在所述第三隔离区中。
进一步地,所述第三隔离区与所述第一掺杂区之间不直接连接。
进一步地,所述在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区,包括:
对所述第四区域进行至少两次所述第一类型材料的注入,获得所述第三隔离区,所述对所述第四区域进行至少两次所述第一类型材料的注入包括:在相邻两次注入中,后一次注入的计量与能量小于前一次注入的计量与能量。
进一步地,所述第一隔离区分别与所述和所述第二掺杂区均连接。
进一步地,所述在所述外延层的上表面形成第一传输栅和第二传输栅之后,还包括:
在所述传输栅侧壁制备侧墙;
对所述第二隔离区与所述第二掺杂区之间进行第一类型材料掺杂,获得第四隔离区,所述第三区域位于所述第二隔离区与所述第二掺杂区之间。
进一步地,所述在所述外延层的上表面形成传输栅,包括:
在所述外延层的上表面形成多晶硅栅;
对所述多晶硅栅进行刻蚀,形成所述传输栅。
本申请实施例的第二方面,提供一种光电二极管,包括:外延层、第一掺杂区、传输栅、第二掺杂区和输出区域,其中,
所述外延层设置在硅衬底上,所述外延层掺杂有第一类型材料;
所述第一掺杂区设置在所述外延层的第一区域,所述第一掺杂区掺杂有第二类型材料掺杂;
所述第二掺杂区设置在所述外延层的第二区域,所述第二掺杂区掺杂有第二类型材料,所述第二掺杂区与所述第一掺杂区连接;
所述传输栅设置在所述外延层的上表面,所述传输栅的一侧与所述第一掺杂区连接;
所述输出区域设置在所述外延层的第三区域,所述输出区域中掺杂有第一类型材料,所述传输栅的另一侧与所述输出区域连接。
进一步地,还包括:第一隔离区;
所述第一隔离区设置在所述第一区域下方,所述第一隔离区中掺杂有第一类型材料。
进一步地,还包括:第二隔离区;
所述第二隔离区设置在所述第二掺杂区以及所述第一掺杂区的上方,所述第二隔离区包括第一类型材料掺杂;
所述传输栅的所述一侧通过所述第二隔离区与所述第一掺杂区连接。
进一步地,所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料。
进一步地,所述传输栅的下表面的至少一半通过所述第二隔离区与所述第一掺杂区连接。
进一步地,所述第一掺杂区中第二类型材料的浓度高于第二掺杂区中所述第二类型材料的浓度。
进一步地,所述第一掺杂区与所述第二掺杂区之间存在重叠区域。
进一步地,还包括:第三隔离区;
所述第三隔离区设置在所述外延层的第四区域,所述第三隔离区中掺杂有第一类型材料掺杂,所述输出区域设置在所述第三隔离区中。
进一步地,所述第三隔离区与所述第一掺杂区之间不直接连接。
进一步地,还包括:
所述第一隔离区分别与所述和所述第二掺杂区均连接。
进一步地,还包括:侧墙以及第四隔离区;
所述侧墙设置在所述传输栅的侧壁;
所述第四隔离区设置在所述第二隔离区与所述第二掺杂区之间,所述第四隔离区掺杂有第一类型材料。
通过上述技术方案,本申请所提供的光电二极管制备方法及其光电二极管,包括:在硅衬底的一面形成外延层,所述外延层掺杂有第一类型材料;在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区;在所述外延层的上表面形成传输栅,所述传输栅的一侧与所述第一掺杂区连接;对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区,所述第二掺杂区与所述第一掺杂区连接;在所述外延层的第三区域进行第二类型材料掺杂,获得输出区域,所述传输栅的另一侧与所述输出区域连。在停止对传输栅加电,第一掺杂区与输出区域之间的反型层释放的光生电子向第二掺杂区回流时,通过在第二掺杂区与传输栅之间设置第一掺杂区,实现将回流的光生电子存储在第一掺杂区,避免回流的光生电子回流至第二掺杂区,从而避免影响下一次光电转换时产生的光生电子,进而提高了光电二极管的光电转换效果。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是一种现有技术的光电二极管的结构示意图;
图2是本申请的光电二极管一实施例的结构示意图;
图3是本申请的光电二极管另一实施例的结构示意图;
图4是本申请的光电二极管制备方法一实施例的流程示意图;
图5是本申请的光电二极管制备方法另一实施例的流程示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图2是本申请的光电二极管一实施例的结构示意图,如图2所示,该光电二极管,包括:外延层101、第一掺杂区102、传输栅103、第二掺杂区4、输出区域105。其中,
所述外延层101设置在硅衬底上,所述外延层101掺杂有第一类型材料;
所述第一掺杂区102设置在所述外延层101的第一区域,所述第一掺杂区102掺杂有第二类型材料掺杂;
所述第二掺杂区104设置在所述外延层101的第二区域,所述第二掺杂区104掺杂有第二类型材料,所述第二掺杂区104与所述第一掺杂区102连接;
优选地,所述第一掺杂区102与所述第二掺杂区104之间存在重叠区域。其中,所述第一掺杂区102中所述第二类型材料的浓度高于所述第二掺杂区104中所述第二类型材料的浓度。从而通过在第一掺杂区102与所述第二掺杂区104之间的重叠区域,可以存储部分电子,进一步地,在传输栅103关闭时,重叠区域可以对反型层释放的光生电子进行存储,避免注入回第二掺杂区104,进一步避免影响下一次的光电转换,进而提高了光电转换效率。
所述传输栅103设置在所述外延层101的上表面,所述传输栅的一侧与所述第一掺杂区102连接;
所述输出区域105设置在所述外延层101的第三区域,所述输出区域105中掺杂有第一类型材料,所述传输栅的另一侧与所述输出区域105连接。
优选地,所述传输栅的下表面的至少一半与所述第一掺杂区102连接。
具体地,当光电二极管接收光照时,光波穿透到外延层101可以产生光生电子,接着,第二掺杂区104对上述光生电子进行吸引,并将上述光生电子吸引到第二掺杂区104,同时对传输栅加电,以使第二掺杂区104的光生电子通过第一掺杂区102传输以及与输出区域105之间的反型层传输到输出区域105,进一步地,在停止对传输栅加电时,第一掺杂 区102与输出区域105之间的反型层释放光生电子,导致释放的光生电子向第二掺杂区104回流,通过在第二掺杂区104与传输栅103之间设置第一掺杂区102,实现将回流的光生电子存储在第一掺杂区102,避免回流的光生电子回流至第二掺杂区104,从而避免影响下一次光电转换时产生的光生电子,进而提高了光电二极管处理光电转换的效率。
在本实施例中,光电二极管,包括:外延层、第一掺杂区、传输栅、第二掺杂区和输出区域;所述外延层设置在硅衬底上,所述外延层掺杂有第一类型材料;所述第一掺杂区设置在所述外延层的第一区域,所述第一掺杂区掺杂有第二类型材料掺杂;所述第二掺杂区设置在所述外延层的第二区域,所述第二掺杂区掺杂有第二类型材料,所述第二掺杂区与所述第一掺杂区连接;所述传输栅设置在所述外延层的上表面,所述传输栅的一侧与所述第一掺杂区连接;所述输出区域设置在所述外延层的第三区域,所述输出区域中掺杂有第一类型材料,所述传输栅的另一侧与所述输出区域连接。实现在停止对传输栅加电,第一掺杂区与输出区域之间的反型层释放的光生电子向第二掺杂区回流时,通过在第二掺杂区与传输栅之间设置第一掺杂区,实现将回流的光生电子存储在第一掺杂区,避免回流的光生电子回流至第二掺杂区,从而避免影响下一次光电转换时产生的光生电子,进而提高了光电二极管的光电转换效果。
图3是本申请的光电二极管另一实施例的结构示意图,如图3所示,在上述实施例的基础上,该光电二极管,还可以包括:第一隔离区106;
所述第一隔离区106设置在所述第一区域下方,所述第一隔离区106中掺杂有第一类型材料。
优选地,所述第一隔离区106分别与所述和所述第二掺杂区均连接,通过在第一掺杂区102的下方设置第一隔离区106,可以避免所述第二掺杂区中的光生电子进入第一掺杂区。
优选地,在上述实施例的基础上,该光电二极管,还可以包括:第二隔离区107;
所述第二隔离区107设置在第二掺杂区104以及所述第一掺杂区102的上方,所述第二隔离区107包括第一类型材料掺杂;
所述传输栅的所述一侧通过所述第二隔离区107与所述第一掺杂区102连接。
具体地,在第一掺杂区102与传输栅之间设置第二隔离区107,可以实现对传输栅阈 值的调整,该阈值包括将第二掺杂区104中的光生电子转移到输出区域105时施加在传输栅的电压值,进而,在传输栅关闭时,光生电子会有一小部分可能注入回第二掺杂区104,由于第一掺杂区102设置在第二掺杂区104与传输栅之间,并且由于所述第一掺杂区中第二类型材料的浓度高于第二掺杂区中所述第二类型材料的浓度,避免了传输栅关闭时光生电子注入回第二掺杂区104,从而实现光生电子单向转移,即光生电子从第二掺杂区104转移到输出区域105。
优选地,在上述实施例中,所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料,其中,所述第一类型材料包括P型半导体材料,或者,N型半导体材料中的任意一种,所述第二类型材料包括P型半导体材料,或者,N型半导体材料中的任意一种。举例来讲,P型半导体材料可以是Ⅲ族元素或者Ⅱ族元素中任意一种元素的离子或其化合物,N型半导体材料可以是Ⅴ族元素中任意一种元素的离子或其化合物;需要说明的是,本实施例中,对于不同区域,可以采用不同的元素,也可以采用相同的元素,例如,第一区域、第二区域或者第三区域进行第二类型材料掺杂,可以采用不同的元素,也可以采用相同的元素;对于不同区域,例如,对第四隔离区、第二隔离区107以及第一隔离区106进行第一类型材料掺杂时,可以采用不同的元素,也可以采用相同的元素。
进一步地,在上述实施例中,该光电二极管,还可以包括:第三隔离区108;
所述第三隔离区108设置在所述外延层101的第四区域,所述第三隔离区108中掺杂有第一类型材料掺杂,所述输出区域105设置在所述第三隔离区108中。也就是说,第四区域设置在输出区域105的外围区域,该外围区域设置在外延层101中。其中,第三隔离区108中分别设置有浅槽隔离区STI1011,配置成实现与相邻像素单元的隔离。
在本实施例中,通过对输出区域105的外围设置第三隔离区108,从而实现输出区域105与第二掺杂区之间的隔离。
优选地,所述第三隔离区108与所述第一掺杂区102之间不直接连接。从而实现传输栅103对在第一掺杂区102与输出区域105之间的开关作用。
可选地,在上述实施例的基础上,所述第一隔离区106分别与所述和所述第二掺杂区104均连接。
在本实施例中,第一隔离区106分别与所述和所述第二掺杂区104均连接,可以避免光生电子通过第二掺杂区104与输出区域105之间的沟道从第二掺杂区104进入输出区域105。
进一步地,在上述实施例的基础上,该光电二极管还可以包括:
侧墙109以及第四隔离区1010;
所述侧墙设置在所述传输栅的侧壁;
所述第四隔离区设置在所述第二隔离区107与所述第二掺杂区104之间,所述第四隔离区掺杂有第一类型材料。
本实施例还提供一种光电二极管,其中,该光电二极管中第二掺杂区102的两侧镜像设置有上述第一掺杂区104、第一隔离区106、输出区域105以及第三隔离区108。
图4是本申请的光电二极管制备方法一实施例的流程示意图,如图4所示,该光电二极管制备方法,包括:
步骤401、在硅衬底的一面形成外延层。
在本实施例中,所述外延层掺杂有第一类型材料;本实施例中掺杂的第一类型材料可以是P型半导体材料,也可以是N型半导体材料。
举例来讲,对硅衬底进行外延层制备,同时在外延层制备过程中进行P型材料掺杂,获得的P型外延层的厚度至少为15um,其中,在P型外延层的P型材料的浓度为5e13cm 3
步骤402、在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区。
需要说明的是,本实施例中的所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料,其中,所述第一类型材料包括P型半导体材料或者N型半导体材料中的任意一种,所述第二类型材料分别为P型半导体材料或者N型半导体材料中的任意一种。举例来讲,P型半导体材料可以是Ⅲ族元素或者Ⅱ族元素中任意一种元素的离子或其化合物,N型半导体材料可以是Ⅴ族元素中任意一种元素的离子或其化合物;需要说明的是,本实施例中,对于不同区域,例如,第一区域、第二区域或者第三区域进行第二类型材料掺杂,可以采用不同的元素,也可以采用相同的元素;对于不同区域进行的第一类型材料掺杂,可以采用不同的元素,也可以 采用相同的元素。
步骤403、在所述外延层的上表面形成传输栅。
本实施例中的所述传输栅与所述第一掺杂区连接。
举例来讲,首先在所述外延层的上表面形成多晶硅栅,接着,对所述多晶硅栅进行刻蚀,形成所述传输栅。
步骤404、对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区。
在本实施例中,所述第二掺杂区与所述第一掺杂区连接。
需要说明的是,所述第一掺杂区中所述第二类型材料的浓度高于所述第二掺杂区中所述第二类型材料的浓度。
举例来讲,在所述外延层的第一区域通过注入进行第二类型材料掺杂,对所述外延层的第二区域通过注入进行第二类型材料掺杂,具体实现方式如下:对第二区域注入第二类型材料砷,注入计量dose=3e11cm -2,注入能量energy=50Kev。接着,在形成传输栅之后,对第一区域注入第二类型材料砷,注入计量dose为2.6e11cm -2,注入能量energy为125Kev。
步骤405、在所述外延层的第三区域进行第一类型材料掺杂,获得输出区域。
在本实施例中,所述传输栅的一侧与所述输出区域105连接,所述传输栅的另一侧与所述第一掺杂区连接。
举例来讲,本实施例中,通过注入的方式对所述外延层的第三区域进行第一类型材料掺杂,例如:注入第一类型材料磷P,注入计量dose为6e13cm -2,注入能量energy为14Kev。
具体地,当光电二极管接收光照时,光波穿透到外延层101可以产生光生电子,接着,第二掺杂区104对上述光生电子进行吸引,并将上述光生电子吸引到第二掺杂区104,再接着,对传输栅加电,以使第二掺杂区104的光生电子通过第一掺杂区102传输到输出区域105,进一步地,在停止对传输栅加电时,会有部分光生电子回流第二掺杂区104,通过第二掺杂区104与输出区域105之间设置第一掺杂区102,实现将回流的光生电子存储在第一掺杂区102,避免回流的光生电子回流回第二掺杂区104,提高了光电二极管的光电转换效果,进而提高了光电二极管的处理效率。
在本实施例中,光电二极管制备方法,包括:在硅衬底的一面形成外延层,所述外延层掺杂有第一类型材料;在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区;在所述外延层的上表面形成传输栅,所述传输栅的一侧与所述第一掺杂区连接;对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区,所述第二掺杂区与所述第一掺杂区连接;在所述外延层的第三区域进行第二类型材料掺杂,获得输出区域,所述传输栅的另一侧与所述输出区域连接。在停止对传输栅加电,第一掺杂区与输出区域之间的反型层释放的光生电子向第二掺杂区回流时,通过在第二掺杂区与传输栅之间设置第一掺杂区,实现将回流的光生电子存储在第一掺杂区,避免回流的光生电子回流至第二掺杂区,从而避免影响下一次光电转换时产生的光生电子,进而提高了光电二极管的光电转换效果。
需要说明的是,实现光电二极管制备方法的先后顺序不以上述步骤的先后顺序为限,举例来讲,另一种光电二极管制备方法的实现方式可以是步骤403在步骤402之前执行,或者,另一种光电二极管制备方法的实现方式可以是步骤404在步骤402和步骤403之前执行,在此仅为举例,不以此为限。
本实施例提供另一种光电二极管,在上述实施例的基础上,在步骤402之前,还可以包括:
在所述第一区域下方进行第一类型材料掺杂,形成第一隔离区106。
优选地,对第一区域下方进行多次注入第一类型材料掺杂,形成第一隔离区106。例如分两次注入第一类型材料硼B,第一次注入第一类型材料硼B,注入计量dose为6e11cm -2,注入能量energy为1450Kev,第二次注入第一类型材料硼B,注入计量dose为6e11cm -2,注入能量energy为1100Kev。
具体地,通过在第一掺杂区的下方设置第一隔离区106,可以避免所述第二掺杂区中的光生电子进入第一掺杂区。
本实施例还提供另一种光电二极管,该光电二极管制备方法,包括:
在上述实施例的基础上,在所述外延层的上表面形成传输栅之前,还可以包括:
在所述第二掺杂区104以及第一掺杂区的上方进行第一类型材料掺杂,形成第二隔离区107;
所述传输栅的另一侧与所述第一掺杂区连接,包括:
所述传输栅的所述另一侧通过所述第二隔离区107与所述第一掺杂区连接。
具体地,在第一掺杂区与传输栅之间设置第二隔离区107,可以实现对传输栅阈值的调整,该阈值包括将第二掺杂区中的光生电子转移到输出区域时施加在传输栅的电压,进而,在传输栅关闭时,光生电子注入会有一小部分可能注入回第二掺杂区,由于第一掺杂区设置在第二掺杂区与传输栅之间,并且由于所述第一掺杂区中第二类型材料的浓度高于第二掺杂区中所述第二类型材料的浓度,避免了传输栅关闭时光生电子注入回第二掺杂区,从而实现光生电子单向转移,即光生电子从第二掺杂区转移到输出区域。
需要说明的是,上述实施例中所述掺杂包括注入。
优选地,所述传输栅的下表面的至少一半与所述第一掺杂区连接。
所述第一掺杂区与所述第二掺杂区之间存在重叠区域。
在本实施例中,通过第一掺杂区与所述第二掺杂区之间存在重叠区域,从而在传输栅关闭时,光生电子会有一小部分可能注入回第二掺杂区,由于第一掺杂区设置在第二掺杂区与传输栅之间,并且由于重叠区域中第二类型材料的浓度高于所述第一掺杂区,进而实现光生电子存储在该重叠区域,避免了传输栅关闭时光生电子注入回第二掺杂区104,进而实现光生电子单向转移,即光生电子从第二掺杂区104转移到输出区域105。
本实施例还提供另一种光电二极管,该光电二极管制备方法,在上述实施例的基础上,在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区之前,还包括:
在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区108,所述输出区域105设置在所述第三隔离区108中。
优选地,所述第三隔离区108与所述第一掺杂区之间不直接连接。从而实现传输栅103对在第一掺杂区102与输出区域105之间的开关作用。
具体地,所述在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区108,包括:
对所述第四区域进行至少两次所述第一类型材料的注入,获得所述第三隔离区108,所述对所述第四区域进行至少两次所述第一类型材料的注入包括:在相邻两次注入中,后一次注入的计量与能量分别小于前一次注入的计量与能量。
优选地,所述第一隔离区106分别与所述和所述第二掺杂区104均连接。
在本实施例中,第一隔离区106分别与所述和所述第二掺杂区104均连接,可以避免光生电子通过第二掺杂区104与输出区域105之间的沟道从第二掺杂区104进入输出区域105。
本实施例还提供另一种光电二极管,该光电二极管制备方法,在上述实施例的基础上,所述在所述外延层的上表面形成传输栅之后,还包括:
在所述传输栅侧壁制备侧墙;
对所述第二隔离区107与所述第二掺杂区104之间进行第一类型材料掺杂,获得第四隔离区,所述第三区域位于所述第二隔离区107与所述第二掺杂区104之间。
可选地,在上述实施例的基础上,所述在所述外延层的上表面形成传输栅,包括:
在所述外延层的上表面形成多晶硅栅;
对所述多晶硅栅进行刻蚀,形成所述传输栅。
图5是本申请的光电二极管制备方法另一实施例的流程示意图,如图5所示,该光电二极管制备方法,包括:
步骤501、在硅衬底的一面形成外延层。
在本实施例中,所述外延层掺杂有第一类型材料;本实施例中掺杂的第一类型材料可以是P型半导体材料,也可以是N型半导体材料。
举例来讲,对硅衬底进行外延层制备,同时在外延层制备过程中进行P型材料掺杂,获得的P型外延层的厚度至少为15um,其中,在P型外延层的P型材料的浓度为5e13cm 3
步骤502、在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区。
本实施例中的所述输出区域105设置在所述第三隔离区108中。
优选地,所述第三隔离区108与所述第一掺杂区之间不直接连接。
对于在所述外延层的第四区域进行第一类型材料掺杂,形成第三隔离区108的实现方式至少包括:
对所述第四区域进行至少两次所述第一类型材料的注入,获得所述第三隔离区108,所述对所述第四区域进行至少两次所述第一类型材料的注入包括:在相邻两次注入中,后一次注入的计量与能量分别小于前一次注入的计量与能量。
步骤503、在第一区域下方进行第一类型材料掺杂,形成第一隔离区。
举例来讲,对第一区域下方进行多次注入第一类型材料掺杂,形成第一隔离区106。具体地,分两次注入第一类型材料硼B,第一次注入第一类型材料与注入计量均相同,第一次的注入能量大于第二次的注入能量,例如,注入材料为硼B,第一次注入能量energy为1100,第二次注入能量energy为900。其中,第一区域为形成第二掺杂区104的区域。
具体地,通过在第一掺杂区的下方设置第一隔离区106,可以实现第一掺杂区与外延层的隔离,从而避免第一掺杂区中存储的光生电子传输到外延层中。
步骤504、在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区。
优选地,所述第一掺杂区与所述第二掺杂区104之间存在重叠区域。
举例来讲,在所述外延层的第一区域通过注入进行第二类型材料掺杂,对所述外延层的第二区域通过注入进行第二类型材料掺杂,具体实现方式如下:对第二区域注入第二类型材料砷,注入计量dose=2.6e12,注入能量energy=60。接着,在形成传输栅之后,对第一区域注入第二类型材料砷,注入计量dose为1.6e12,注入能量energy为145。
步骤505、在第二掺杂区以及第一掺杂区的上方进行第一类型材料掺杂,形成第二隔离区。
步骤506、在所述外延层的上表面形成传输栅。
具体地,在所述外延层的上表面形成多晶硅栅,接着,对所述多晶硅栅进行刻蚀,形成所述传输栅。
优选地,所述传输栅的下表面的至少一半与所述第一掺杂区连接。
步骤507、在所述传输栅侧壁制备侧墙;
步骤508、对所述第二隔离区与所述第二掺杂区之间进行第一类型材料掺杂,获得第四隔离区。
步骤509、对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区。
在本实施例中,所述第二掺杂区与所述第一掺杂区连接。并且,所述第一隔离区106分别与所述和所述第二掺杂区均连接。
需要说明的是,所述第一掺杂区中所述第二类型材料的浓度高于所述第二掺杂区中所述第二类型材料的浓度。
步骤510、在所述外延层的第三区域进行第一类型材料掺杂,获得输出区域。
在本实施例中,所述传输栅的一侧与所述输出区域105连接,所述传输栅的另一侧与所述第一掺杂区连接。
举例来讲,本实施例中,通过注入的方式对所述外延层的第三区域进行第一类型材料掺杂,例如:注入第一类型材料磷P,注入计量dose为6e15,注入能量energy为15KeV。
在本实施例中,在停止对传输栅加电,第一掺杂区与输出区域之间的反型层释放的光生电子向第二掺杂区回流时,通过在第二掺杂区与传输栅之间设置第一掺杂区,实现将回流的光生电子存储在第一掺杂区,避免回流的光生电子回流至第二掺杂区,从而避免影响下一次光电转换时产生的光生电子,进而提高了光电二极管的光电转换效果。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。同时本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。本申请并不局限于上面已经描述出的精确结构,本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种光电二极管制备方法,其特征在于,包括:
    在硅衬底的一面形成外延层,所述外延层掺杂有第一类型材料;
    在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区;
    在所述外延层的上表面形成传输栅,所述传输栅的一侧与所述第一掺杂区连接;
    对所述外延层的第二区域进行第二类型材料掺杂,形成第二掺杂区,所述第二掺杂区与所述第一掺杂区连接;
    在所述外延层的第三区域进行第二类型材料掺杂,获得输出区域,所述传输栅的另一侧与所述输出区域连接。
  2. 根据权利要求1所述的光电二极管制备方法,其特征在于,所述在所述外延层的第一区域进行第二类型材料掺杂,形成第一掺杂区之前,还包括:
    在所述第一区域下方进行第一类型材料掺杂,形成第一隔离区。
  3. 根据权利要求2所述的光电二极管制备方法,其特征在于,所述在所述外延层的上表面形成传输栅之前,还包括:
    在所述第二掺杂区以及第一掺杂区的上方进行第一类型材料掺杂,形成第二隔离区;
    所述传输栅的一侧与所述第一掺杂区连接,包括:
    所述传输栅的所述一侧通过所述第二隔离区与所述第一掺杂区连接。
  4. 根据权利要求1-3任一项所述的光电二极管制备方法,其特征在于,所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料。
  5. 根据权利要求4所述的光电二极管制备方法,其特征在于,所述第一掺杂区与所述第二掺杂区之间存在重叠区域。
  6. 一种光电二极管,其特征在于,包括:外延层、第一掺杂区、传输栅、第二掺杂区和输出区域;
    所述外延层设置在硅衬底上,所述外延层掺杂有第一类型材料;
    所述第一掺杂区设置在所述外延层的第一区域,所述第一掺杂区掺杂有第二类型材料掺杂;
    所述第二掺杂区设置在所述外延层的第二区域,所述第二掺杂区掺杂有第二类型材料,所述第二掺杂区与所述第一掺杂区连接;
    所述传输栅设置在所述外延层的上表面,所述传输栅的一侧与所述第一掺杂区连接;
    所述输出区域设置在所述外延层的第三区域,所述输出区域中掺杂有第一类型材料,所述传输栅的另一侧与所述输出区域连接。
  7. 根据权利要求6所述的光电二极管,其特征在于,还包括:第一隔离区;
    所述第一隔离区设置在所述第一区域下方,所述第一隔离区中掺杂有第一类型材料。
  8. 根据权利要求7所述的光电二极管,其特征在于,还包括:第二隔离区;
    所述第二隔离区设置在所述第二掺杂区以及所述第一掺杂区的上方,所述第二隔离区包括第一类型材料掺杂;
    所述传输栅的所述一侧通过所述第二隔离区与所述第一掺杂区连接。
  9. 根据权利要求6-8任一项所述的光电二极管,其特征在于,所述第二类型材料与所述第一类型材料分别为不同类型的半导体材料,所述半导体材料包括P型半导体材料和N型半导体材料。
  10. 根据权利要求9所述的光电二极管,其特征在于,所述第一掺杂区与所述第二掺杂区之间存在重叠区域。
PCT/CN2019/110217 2019-04-15 2019-10-09 光电二极管制备方法及其光电二极管 WO2020211302A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/604,047 US20220209041A1 (en) 2019-04-15 2019-10-09 Photodiode manufacturing method and photodiode thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910297257.0A CN111834468A (zh) 2019-04-15 2019-04-15 光电二极管制备方法及其光电二极管
CN201910297257.0 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211302A1 true WO2020211302A1 (zh) 2020-10-22

Family

ID=72836936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110217 WO2020211302A1 (zh) 2019-04-15 2019-10-09 光电二极管制备方法及其光电二极管

Country Status (3)

Country Link
US (1) US20220209041A1 (zh)
CN (1) CN111834468A (zh)
WO (1) WO2020211302A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679167A (zh) * 2002-08-30 2005-10-05 皇家飞利浦电子股份有限公司 图像传感器、包括图像传感器的照相机系统及其制造方法
CN1819225A (zh) * 2004-12-29 2006-08-16 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
US20080157145A1 (en) * 2006-12-29 2008-07-03 Dong-Bin Park Method of fabricating image sensor
CN101471360A (zh) * 2007-12-27 2009-07-01 东部高科股份有限公司 图像传感器及其制造方法
CN109300925A (zh) * 2018-09-06 2019-02-01 德淮半导体有限公司 像素单元及其制造方法、图像传感器以及成像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969631B2 (en) * 2003-06-16 2005-11-29 Micron Technology, Inc. Method of forming photodiode with self-aligned implants for high quantum efficiency
US20070023803A1 (en) * 2005-07-26 2007-02-01 Dongbu Electronics Co., Ltd. CMOS image sensor and method of fabricating the same
KR100871714B1 (ko) * 2005-12-05 2008-12-05 한국전자통신연구원 트랜스퍼 트랜지스터 및 이를 구비한 저잡음 이미지 센서
JP2010147193A (ja) * 2008-12-17 2010-07-01 Sharp Corp 固体撮像装置およびその製造方法、並びに電子情報機器
KR20110019556A (ko) * 2009-08-20 2011-02-28 주식회사 동부하이텍 Cmos 이미지 센서
JP5458135B2 (ja) * 2012-03-28 2014-04-02 シャープ株式会社 固体撮像素子の製造方法
GB201302664D0 (en) * 2013-02-15 2013-04-03 Cmosis Nv A pixel structure
US20150021668A1 (en) * 2013-07-19 2015-01-22 Stmicroelectronics Sa Photosensitive cell of an image sensor
US9231007B2 (en) * 2013-08-27 2016-01-05 Semiconductor Components Industries, Llc Image sensors operable in global shutter mode and having small pixels with high well capacity
CN106952931B (zh) * 2016-01-07 2019-11-01 中芯国际集成电路制造(上海)有限公司 一种cmos图像传感器的制造方法
CN112292761A (zh) * 2018-08-20 2021-01-29 宁波飞芯电子科技有限公司 光电二极管以及制造方法、传感器、传感阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679167A (zh) * 2002-08-30 2005-10-05 皇家飞利浦电子股份有限公司 图像传感器、包括图像传感器的照相机系统及其制造方法
CN1819225A (zh) * 2004-12-29 2006-08-16 东部亚南半导体株式会社 Cmos图像传感器及其制造方法
US20080157145A1 (en) * 2006-12-29 2008-07-03 Dong-Bin Park Method of fabricating image sensor
CN101471360A (zh) * 2007-12-27 2009-07-01 东部高科股份有限公司 图像传感器及其制造方法
CN109300925A (zh) * 2018-09-06 2019-02-01 德淮半导体有限公司 像素单元及其制造方法、图像传感器以及成像装置

Also Published As

Publication number Publication date
US20220209041A1 (en) 2022-06-30
CN111834468A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US8501520B2 (en) Manufacturing method for a solid-state image sensor
US6660553B2 (en) Semiconductor device having solid-state image sensor with suppressed variation in impurity concentration distribution within semiconductor substrate, and method of manufacturing the same
US20060076588A1 (en) Image sensor and pixel having a non-convex photodiode
US10340304B2 (en) CMOS image sensor
US7713808B2 (en) CMOS image sensor and method for fabricating the same
US7989252B2 (en) Method for fabricating pixel cell of CMOS image sensor
WO2013040908A1 (zh) 电荷快速转移的四管有源像素及其制作方法
CN101728432A (zh) 半导体装置、其制造方法及使用其的固态图像拾取装置
US20150084106A1 (en) Solid-state imaging device and method of manufacturing the device
CN109950265A (zh) 图像传感器及其制造方法、控制方法
CN111584532B (zh) 转移管的垂直栅及cmos传感器的形成方法
WO2020211302A1 (zh) 光电二极管制备方法及其光电二极管
CN110047740A (zh) 图像传感器的形成方法
KR100660345B1 (ko) 씨모스 이미지 센서 및 그의 제조방법
CN113066810B (zh) 像素器件
US20080160731A1 (en) Method for fabricating cmos image sensor
CN109346553B (zh) 增强近红外量子效率的钳位型光电二极管及其制备方法
CN114078889A (zh) 全局快门cmos图像传感器及其制造方法
CN112447776A (zh) 一种降低电荷回流的cmos图像传感器像素制作方法
KR20080008851A (ko) 이미지 센서 제조 방법
KR20030058291A (ko) 이미지센서 및 그 제조 방법
KR20040058697A (ko) 포토다이오드의 표면결함을 치료하는 시모스 이미지센서및 그 제조방법
KR100705214B1 (ko) 이미지센서의 핀드 포토다이오드 제조방법
KR100718775B1 (ko) 이미지 센서 및 그 제조방법
CN117832236A (zh) 制备感光单元的工艺方法和感光单元以及图像传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924703

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19924703

Country of ref document: EP

Kind code of ref document: A1