WO2020211266A1 - 一种抗蛇行减振器的控制方法及装置 - Google Patents

一种抗蛇行减振器的控制方法及装置 Download PDF

Info

Publication number
WO2020211266A1
WO2020211266A1 PCT/CN2019/104842 CN2019104842W WO2020211266A1 WO 2020211266 A1 WO2020211266 A1 WO 2020211266A1 CN 2019104842 W CN2019104842 W CN 2019104842W WO 2020211266 A1 WO2020211266 A1 WO 2020211266A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective function
snaking
function value
preprocessing
shock absorber
Prior art date
Application number
PCT/CN2019/104842
Other languages
English (en)
French (fr)
Inventor
孔海朋
王旭
曹洪勇
曹晓宁
周平宇
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to JP2021518061A priority Critical patent/JP7118254B2/ja
Priority to ES19924915T priority patent/ES2953526T3/es
Priority to US17/276,335 priority patent/US11554799B2/en
Priority to EP19924915.2A priority patent/EP3832159B1/en
Publication of WO2020211266A1 publication Critical patent/WO2020211266A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/504Inertia, i.e. acceleration,-sensitive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0047Measuring, indicating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/08Sensor arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • F16F2230/183Control arrangements fluid actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/02Rotary

Definitions

  • the embodiments of the present disclosure relate to the field of shock absorber control, and in particular to a control method of an anti-snaking shock absorber.
  • the bogie which plays an extremely important role in the safety, comfort, operational reliability of the locomotive, reducing the force on the track, and reducing environmental pollution.
  • the anti-snaking shock absorber is one of the important components to maintain the stability of the bogie, and its parameter matching is also one of the key factors for train operation safety.
  • MPPT its Chinese meaning is "Maximum Power Point Tracking".
  • the MPPT algorithm first appeared in the photovoltaic field.
  • the core principle of the algorithm is: it can effectively track the maximum power point under fast-changing conditions, so that the controlled object can work at the maximum power point as much as possible.
  • the MPPT algorithm has been widely used since its inception, but so far, it has not been found that the MPPT algorithm is applied to the control of anti-snaking shock absorbers.
  • the embodiments of the present disclosure provide a control method of the anti-snaking shock absorber and, based on the MPPT algorithm control, the damping force of the anti-snaking shock absorber is adjusted in real time during vehicle operation, so as to improve the stability of train operation.
  • the embodiment of the present disclosure provides a control method of an anti-snaking vibration damper, including:
  • the first preprocessing result and the second preprocessing result obtain the MPPT algorithm objective function value at the current moment and the MPPT algorithm objective function value at the previous moment, and compare the MPPT algorithm objective function value at the current moment with the MPPT algorithm at the previous moment Comparison of objective function values;
  • the embodiment of the present disclosure provides a control device for an anti-snaking vibration damper, including:
  • the first preprocessing module is used to obtain the lateral acceleration signal of the frame and perform first preprocessing on the lateral acceleration signal;
  • the second preprocessing module is used to obtain the pressure difference between the two chambers of the anti-snake shock absorber piston, and perform a second preprocessing on the pressure difference;
  • the comparison module is used to obtain the MPPT algorithm objective function value at the current moment and the MPPT algorithm objective function value at the previous moment according to the first preprocessing result and the second preprocessing result, and compare the MPPT algorithm objective function value at the current moment with the above Compare the objective function values of the MPPT algorithm at a moment;
  • the control module is used to control the adjustment direction of the electromagnetic proportional valve of the anti-snaking shock absorber according to the comparison result.
  • An embodiment of the present disclosure provides an electronic device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, the anti-snaking provided by the embodiment of the present disclosure is implemented. Steps of vibrator control method.
  • the embodiments of the present disclosure provide a non-transitory computer-readable storage medium on which a computer program is stored, wherein the computer program is characterized in that, when the computer program is executed by a processor, it implements the anti-snaking damper control method provided by the embodiments of the present disclosure. step.
  • the anti-snake damper control method and device collect the frame lateral vibration acceleration signal and the anti-snake shock absorber piston two-cavity pressure signal, and use the frame lateral acceleration and the shock absorber hydraulic pressure as the control target
  • the MPPT algorithm adjusts the damping force of the anti-snaking shock absorber in real time to improve the adaptability of the anti-snaking shock absorber under different wheel wear conditions, thereby improving the dynamic stability of the EMU.
  • Fig. 1 is a flow chart of a control method for an anti-snaking shock absorber provided by an embodiment of the disclosure
  • FIG. 2 is a waveform diagram of lateral acceleration of the frame in an embodiment of the disclosure
  • FIG. 3 is a waveform diagram of a sliding average of the lateral acceleration of the framework in an embodiment of the disclosure
  • FIG. 4 is a block diagram of a control device for an anti-snaking shock absorber provided by an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the disclosure.
  • control method of the anti-snaking shock absorber includes:
  • Step 101 Obtain a lateral acceleration signal of the frame, and perform first preprocessing on the lateral acceleration signal.
  • Figure 2 shows the acceleration data of the frame lateral vibration collected by the acceleration sensor.
  • the abscissa is time
  • the ordinate is the lateral acceleration value of the frame.
  • the sampling time interval depends on the sampling frequency of the acceleration sensor, and the sampling time interval has a reciprocal relationship with the sampling frequency. For example, when the sampling frequency Fs is 100HZ, 100 acceleration values are collected within 1 second.
  • the preprocessing method may include filtering and moving average processing on the signal.
  • Step 102 Obtain the pressure difference between the two chambers of the anti-snake shock absorber piston, and perform a second pretreatment on the pressure difference.
  • the pressure values of the two chambers of the anti-snake shock absorber piston are collected by a pressure sensor, and the respective pressure values of the two chambers of the piston are calculated according to the respective areas of the two chambers of the piston, thereby obtaining the pressure between the two chambers of the piston difference. Since the pressure difference between the two chambers of the piston can be obtained at every moment, a second preprocessing is required for the pressure difference.
  • the preprocessing method may include signal filtering and moving average processing.
  • Step 103 According to the first preprocessing result and the second preprocessing result, obtain the MPPT algorithm objective function value at the current moment and the MPPT algorithm objective function value at the previous moment, and compare the MPPT algorithm objective function value at the current moment with the previous moment The objective function value of the MPPT algorithm is compared.
  • the core principle of the MPPT algorithm is: it can effectively track the maximum power point under fast-changing conditions, so that the controlled object can work at the maximum power point as much as possible.
  • the MPPT algorithm when the MPPT algorithm is applied to the shock absorber control of the train, it is necessary to obtain the result of the first preprocessing of the lateral acceleration signal in the above steps and the result of the second preprocessing of the pressure difference between the piston chambers
  • the objective function of the MPPT algorithm In the anti-snaking shock absorber, the damping force of the shock absorber can be adjusted by adjusting the direction of the electromagnetic proportional valve, thereby improving the adaptability of the anti-snaking shock absorber under different wheel wear conditions.
  • in order to determine whether to adjust the control direction of the electromagnetic proportional valve it is necessary to obtain the MPPT objective function value at the current moment and the MPPT objective function value at the previous moment, and compare the two objective function values.
  • Step 104 Control the adjustment direction of the electromagnetic proportional valve of the anti-snaking shock absorber according to the comparison result of step 103.
  • the damping force of the shock absorber can be adjusted by adjusting the control direction of the electromagnetic proportional valve, thereby improving the adaptability of the anti-snaking shock absorber under different wheel wear conditions.
  • the adjustment direction of the electromagnetic proportional valve can be controlled by comparing the MPPT objective function value at the current moment and the MPPT objective function value at the previous moment. For example, according to the comparison result of the objective function value, the adjustment direction of the electromagnetic proportional valve can be maintained or changed.
  • the anti-snake damper control method collects the frame lateral vibration acceleration signal and the anti-snake shock absorber piston two-chamber pressure signal, and uses the MPPT algorithm that takes the frame lateral acceleration and the piston two-chamber pressure as the control target, The adjustment direction of the electromagnetic proportional valve of the anti-snaking shock absorber is controlled, so that the damping force of the anti-snaking shock absorber is adjusted in real time, which improves the adaptability of the anti-snaking shock absorber under different wheel wear conditions and the dynamic stability of the EMU Sex.
  • the first preprocessing is performed on the lateral acceleration of the frame.
  • the first preprocessing method can take steps a1 to a2 not shown in Fig. 1, specifically as follows :
  • Step a1 band-pass filtering the lateral acceleration signal of the frame.
  • the acceleration signal is band-pass filtered according to the EN14363-2016 standard.
  • the EN14363-2016 standard is a non-mandatory national standard for the running performance and stability test of railway vehicles. In this standard, it is stipulated that the band-pass filter f 0 ⁇ 2HZ is used to filter the signal in the judgment condition regarding the unstable operation of the vehicle.
  • a fast Fourier transform is used to convert a time domain signal into a frequency domain signal. In this step, the most prominent frequency in the Fourier-transformed spectrum signal, that is, the dominant frequency is denoted by f 0.
  • the lateral acceleration signal is band-pass filtered with f 0 ⁇ 2HZ, so that only Keep the 2HZ signal near the main frequency.
  • Step a2 Perform a moving average of the lateral acceleration signal filtered in step a1.
  • Fig. 3 shows a waveform diagram of a sliding average of a lateral acceleration signal in an embodiment of the present disclosure.
  • mark A represents the acceleration value after band-pass filtering
  • mark B represents the acceleration value after moving average.
  • the train speed is 280 km/h, which is 77.8 m/s
  • the data in the data window is squared and averaged, and then the root sign is used to obtain the value
  • a ' represents the acceleration of the moving average value
  • a 1, a 2, ... a n denote n acquired acceleration value
  • n represents the number.
  • Move the window in turn, perform a sliding average of the values in the window, and replace the current acceleration value, thereby obtaining the final sliding average lateral acceleration value.
  • band-pass filtering is used to retain the 2HZ signal near the main frequency of the lateral acceleration signal, and remove other low-frequency interference signals. Then a data window is used to perform a moving average on the filtered signal, thereby eliminating accidental fluctuation factors. Moreover, the moving average is used to process the signal, the algorithm is simple, the calculation amount is small, and the non-stationary data can be processed quickly and in real time.
  • step 102 the pressure difference between the two chambers of the anti-snaking damper piston is to be obtained, and the second pretreatment is performed on the pressure difference.
  • steps b1 to b3 the pressure difference between the two chambers of the anti-snake damper piston is obtained, and the second preprocessing is performed on the pressure difference signal. Specific steps are as follows:
  • Step b1 Collect the pressure signals of the two chambers of the anti-snake shock absorber and the areas of the two chambers of the piston to obtain the respective pressures of the two chambers of the piston.
  • the areas of the two chambers of the anti-snaking shock absorber piston are set as S 1 and S 2 respectively, and the pressure values collected at each time by the pressure sensor are P 1 and P 2 respectively , and the pressure multiplied by the area is For the pressure value, the respective pressure values of the two chambers of the piston can be obtained at each moment.
  • Step b2 Calculate the pressure difference between the two chambers of the piston, and perform low-pass filtering on the pressure difference.
  • step b1 calculates the pressure difference between the two chambers of the piston at each moment, and perform low-pass filtering on the pressure difference.
  • the cutoff frequency is taken as f t , namely Noise signals with frequencies greater than f t are filtered out.
  • Step b3 Perform a sliding average on the filtered pressure difference, and set the pressure difference after the sliding average as the damping force output by the anti-snake shock absorber.
  • the filtered pressure difference is slidingly averaged in the same manner as in step a2, and the result of the sliding average is used as the damping force F output by the anti-snake shock absorber.
  • low-pass filtering is performed on the pressure difference signal to remove the high frequency components of the signal to achieve smooth denoising. Then a data window is used to perform a moving average on the filtered signal, thereby eliminating accidental fluctuation factors. Moreover, the moving average is used to process the signal, the algorithm is simple, the calculation amount is small, and the non-stationary data can be processed quickly and in real time.
  • step 103 the MPPT algorithm objective function value at the current moment and the MPPT algorithm objective function value at the previous moment are obtained according to the first preprocessing result and the second preprocessing result, and the current MPPT algorithm
  • the algorithm objective function value is compared with the MPPT algorithm objective function value at the previous moment.
  • steps c1 to c2 not shown in FIG. 1 may be taken to obtain the MPPT objective function value, and compare the objective function value at the current moment with the objective function value at the previous moment. Specific steps are as follows:
  • the core principle of the MPPT algorithm is: it can effectively track the maximum power point under fast-changing conditions, so that the controlled object can work at the maximum power point as much as possible.
  • the objective function J(t) of the algorithm when the MPPT algorithm is applied to the shock absorber control of the train, the objective function J(t) of the algorithm must be redesigned.
  • Step c2 compare the objective function value J(t) with the objective function value J(t-1) at the previous moment.
  • the damping force of the shock absorber can be adjusted by adjusting the electromagnetic proportional valve, thereby improving the adaptability of the anti-snaking shock absorber under different wheel wear conditions.
  • the adjustment direction of the electromagnetic proportional valve it is necessary to obtain the objective function value J(t) at the current moment and the objective function value J(t-1) at the previous moment, and combine the two objective function values Compare.
  • an objective function with lateral acceleration and damping force as the control object is established based on the principle of the MPPT algorithm, so that the damping force of the anti-snaking shock absorber can be adjusted by comparing the objective function values.
  • step 104 the adjustment direction of the electromagnetic proportional valve of the anti-snaking damper can be controlled according to the comparison result of the MPPT objective function value at the current moment and the MPPT objective function value at the previous moment.
  • the adjustment direction of the electromagnetic proportional valve can be controlled according to the comparison result of the MPPT objective function value at the current moment and the MPPT objective function value at the previous moment.
  • the current anti-snaking shock absorber should continue to be maintained.
  • the adjustment direction of the electromagnetic proportional valve makes the lateral acceleration of the frame and the damping force output by the anti-snaking shock absorber continue to decrease, ensuring the stability of operation.
  • the electromagnetic ratio of the anti-snaking shock absorber should be changed
  • the adjustment direction of the valve reduces the lateral acceleration of the frame and the damping force output by the anti-snaking shock absorber, which improves the stability of operation.
  • an objective function with lateral acceleration and damping force as the control object is established based on the principle of the MPPT algorithm.
  • the adjustment direction of the electromagnetic proportional valve is maintained, so that the lateral acceleration of the frame and the anti-snaking and vibration reduction
  • the damping force output by the generator continues to decrease.
  • the adjustment direction of the electromagnetic proportional valve is changed, so that the lateral acceleration of the frame and the damping force output by the anti-snake shock absorber are reduced.
  • the damping force output by the shock absorber is adjusted in real time to ensure that the train is running in a stable state.
  • the limit of the lateral force of the axle is: Among them, P is the axle load.
  • the limits of the lateral acceleration of the frame are: Where m b is the weight of the bogie.
  • the lateral acceleration weight w1 of the frame is equal to 1, and the weight w2 of the shock absorber damping force is equal to 1.
  • the vehicle speed is 300 km/h-400 km/h
  • the vehicle's axle is laterally
  • the force and the lateral acceleration of the frame are within the limits of the EN14363 standard, and the vehicle can run stably.
  • the objective function J(t) in the above step 107 only takes the lateral acceleration of the frame as the control target, and the vehicle speed is 300 km/h-400 km/h.
  • the lateral force of the axle of the vehicle and the lateral acceleration of the frame are both within the limits of the EN14363 standard, and the vehicle can run stably.
  • Fig. 4 illustrates the anti-snaking damper control device provided by the embodiment of the present disclosure.
  • the anti-snaking damper control device 400 includes:
  • the first preprocessing module 401 is configured to obtain a lateral acceleration signal of the frame and perform first preprocessing on the lateral acceleration signal;
  • the second pre-processing module 402 is used to obtain the pressure difference between the two chambers of the anti-snaking shock absorber piston and perform a second pre-processing on the pressure difference;
  • the comparison module 403 is used to obtain the MPPT algorithm objective function value at the current moment and the MPPT algorithm objective function value at the previous moment according to the first preprocessing result and the second preprocessing result, and compare the MPPT algorithm objective function value at the current moment with Compare the objective function value of the MPPT algorithm at the previous moment;
  • the control module 404 is configured to control the adjustment direction of the electromagnetic proportional valve of the anti-snaking shock absorber according to the comparison result.
  • the anti-snaking damper control device based on the MPPT algorithm described in this embodiment can be used to execute the foregoing method embodiments, and the principles and technical effects are similar, and will not be repeated here.
  • FIG. 5 illustrates a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present disclosure.
  • the electronic device may include: a processor 510, a communication interface 520, a memory 530, and a communication bus 840.
  • the processor 510, the communication interface 520, and the memory 530 communicate with each other through the communication bus 540.
  • the processor 510 may call the logic instructions in the memory 530 to execute the foregoing method embodiments.
  • the principles and technical effects are similar, and details are not described herein again.
  • the above-mentioned logical instructions in the memory 530 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present disclosure provide a non-transitory computer-readable storage medium that stores computer instructions that cause the computer to execute the method provided in the above-mentioned method embodiment, and its principle It is similar to the technical effect and will not be repeated here.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solutions can be embodied in the form of software products, which can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., include a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种抗蛇行减振器的控制方法,包括获取构架的横向加速度信号,并对横向加速度信号进行第一预处理;获取抗蛇行减振器活塞两腔的压力差,并对压力差进行第二预处理;根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较;根据比较结果,对抗蛇行减振器的电磁比例阀的调节方向进行控制。根据该方法,可以实时调节抗蛇行减振器的阻尼力,提高减振器在不同车轮磨耗状态下的适应性和动车组的动力学稳定性。还提供了一种抗蛇行减振器装置。

Description

一种抗蛇行减振器的控制方法及装置
相关申请的交叉引用
本公开要求于2019年4月19日提交的申请号为201910318241.3,发明名称为“一种抗蛇行减振器的控制方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本公开实施例涉及减振器控制领域,尤其涉及一种抗蛇行减振器控制方法。
背景技术
随着社会的进步和经济的发展,交通运输这个行业已经深刻的影响到了普通百姓的生活。铁路运输是我国交通运输的主力,作为铁路运输牵引动力之一的电力机车更是发展迅速。
保障机车安全运行的关键因素之一就是转向架,它对机车的安全性、舒适性、运行可靠性及降低对轨道的动作用力、减轻对环境的污染等有着极为重要的作用。而其中抗蛇行减振器是保持转向架稳定的重要组成之一,其参数匹配也是列车运行安全性的关键因素之一。
随着车辆运行里程的增加,车轮踏面等效锥度不断增加,引起列车蛇行频率也不断增大,需要的二系回转阻力矩也越来越大,采用传统的阻尼不可调节的抗蛇行减振器很难适应车轮不同的磨耗状态。为了改善车轮在不同磨耗程度下的适应性,提高列车运行稳定性,开发具有主动控制的抗蛇行减振器控制方法是非常必要的。
MPPT,其中文含义是“最大功率点跟踪”。MPPT算法最早出现在光伏领域,该算法的核心原理是:能在快速变化的条件下有效地跟踪最大功率点,使控制对象尽可能地工作在最大功率点上。MPPT算法产生以来得到广泛应用,但迄今为止,还未发现将MPPT算法应用于抗蛇行减振器的控制之中。
发明内容
本公开实施例提供一种抗蛇行减振器的控制方法及,基于MPPT算法控制,在车辆运行过程中对抗蛇行减振器的阻尼力进行实时调节,提高列车运行的稳定性。
本公开实施例提供一种抗蛇行减振器的控制方法,包括:
获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理;
获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理;
根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较;
根据比较结果,对所述抗蛇行减振器的电磁比例阀的方向进行控制。
本公开实施例提供一种抗蛇行减振器的控制装置,包括:
第一预处理模块,用于获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理;
第二预处理模块,用于获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理;
比较模块,用于根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较;
控制模块,用于根据比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。
本公开实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本公开实施例提供的抗蛇行减振器控制方法的步骤。
本公开实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现本公开实施例提供的抗蛇行减振器控制方法的步骤。
本公开实施例提供的抗蛇行减振器控制方法和装置,通过采集构架横 向振动加速度信号和抗蛇行减振器活塞两腔压力信号,利用以构架横向加速度和减振器液压力为控制目标的MPPT算法,对抗蛇行减振器的阻尼力进行实时调节,提高抗蛇行减振器在不同车轮磨耗状态下的适应性,从而提高动车组的动力学稳定性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的抗蛇行减振器控制方法流程图;
图2为本公开实施例中的构架横向加速度波形图;
图3为本公开实施例中的构架横向加速度进行滑动平均的波形图;
图4为本公开实施例提供的抗蛇行减振器控制装置框图;
图5为本公开实施例提供的电子设备的实体结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开实施例提供的抗蛇行减振器的控制方法,包括:
步骤101,获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理。
图2示出了加速度传感器采集的构架横向振动加速度数据。图2中,横坐标为时间,纵坐标为构架的横向加速度值。采样时间间隔依赖于加速度传感器的采样频率,采样时间间隔与采样频率成倒数关系。例如,当采样频率Fs为100HZ时,则1秒内采集100个加速度值。在本公开实施例中,为了获得后续处理所需的参数,需要对横向加速度信号进行第一预处理,预处理方式可以包括对信号进行滤波和滑动平均处理。
步骤102,获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理。
本公开实施例中,通过压力传感器采集抗蛇行减振器活塞两腔的压强值,并根据活塞两腔各自的面积,计算出活塞两腔各自的压力值,从而获得活塞两腔之间的压力差。由于每一时刻都可以获得活塞两腔之间的压力差,因而需要对压力差进行第二预处理,预处理方式可以包括信号滤波和滑动平均处理。
步骤103,根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较。
MPPT算法的核心原理是:能在快速变化的条件下有效地跟踪最大功率点,使控制对象尽可能地工作在最大功率点上。本公开实施例中,将MPPT算法应用于列车的减振器控制时,需要根据上述步骤中对横向加速度信号的第一预处理结果,以及对活塞两腔压力差的第二预处理结果,获得MPPT算法的目标函数。在抗蛇行减振器中,通过调整电磁比例阀的方向可以调节减振器的阻尼力,从而提高抗蛇行减振器在不同车轮磨耗状态下的适应性。本公开实施例中,为了判断是否要调节电磁比例阀的控制方向,需要获得当前时刻的MPPT目标函数值以及上一时刻的MPPT目标函数值,并将两个目标函数值进行比较。
步骤104,根据步骤103的比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。
在抗蛇行减振器中,通过调整电磁比例阀的控制方向可以调节减振器的阻尼力,从而提高抗蛇行减振器在不同车轮磨耗状态下的适应性。在本公开实施例中,可以通过比较当前时刻的MPPT目标函数值以及上一时刻的MPPT目标函数值,从而控制电磁比例阀的调节方向。例如,根据目标函数值的比较结果,可以保持或改变电磁比例阀的调节方向。
本公开实施例提供的抗蛇行减振器控制方法,通过采集构架横向振动加速度信号和抗蛇行减振器活塞两腔压力信号,利用以构架横向加速度和活塞两腔压力为控制目标的MPPT算法,对抗蛇行减振器电磁比例阀的调节方向进行控制,从而对抗蛇行减振器的阻尼力进行实时调节,提高了抗 蛇行减振器在不同车轮磨耗状态下的适应性和动车组的动力学稳定性。
如图1所示,在步骤101中要对构架的横向加速度进行第一预处理,在本公开实施例中,第一预处理方式可以采取图1中未示出的步骤a1至a2,具体如下:
步骤a1,对构架的横向加速度信号进行带通滤波。
本公开实施例中,根据EN14363-2016标准对加速度信号进行带通滤波。EN14363-2016标准是铁路车辆运行性能和稳定性试验的非强制性国家标准。在该标准中,关于车辆运行不稳定的判定条件中,规定采用带通滤波器f 0±2HZ对信号进行滤波。在本公开实施例中,基于步骤101中采集的横向加速度值,利用快速傅里叶变换,将时域信号转换为频域信号。在该步骤中,经傅里叶变换的频谱信号中最突出的频率即主频用f 0表示,基于该主频f 0值,对横向加速度信号进行f 0±2HZ的带通滤波,从而只保留主频附近2HZ的信号。
步骤a2,将步骤a1中滤波后的横向加速度信号进行滑动平均。
图3示出了本公开实施例中,对横向加速度信号进行滑动平均的波形图。如图3所示,标记A表示带通滤波后的加速度值,标记B(十字标记)表示滑动平均后的加速度值。测试时,列车速度为280公里/小时,即77.8米/秒,取对应500米距离的数据窗,即500/77.8=6.4秒,也就是说在图2中的加速度窗口取为6.4秒。基于滑动平均原理,对数据窗内的数据进行平方求和平均,再开根号,得到的值
Figure PCTCN2019104842-appb-000001
以取代原始加速度值,其中a’表示滑动平均后的加速度值,a 1,a 2,…a n表示采集的n个加速度值,n表示个数。依次移动窗口,对窗口内的值进行滑动平均,并取代当前加速度值,从而得到最终的滑动平均的横向加速度值。
本公开实施例中,根据EN14363-2016标准的规定,通过带通滤波,保留横向加速度信号主频附近2HZ的信号,去除其他低频干扰信号。然后采用数据窗对滤波后的信号进行滑动平均,从而消除偶然变动因素。而且采用滑动平均对信号进行处理,算法简单,计算量小,可以快速且实时处理非平稳数据。
如图1所示,在步骤102中要获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理,在本公开实施例中,可以采取图1中未示出的步骤b1至b3获取抗蛇行减振器活塞两腔的压力差,并对压力差信号进行第二预处理。具体步骤如下:
步骤b1,采集抗蛇行减振器活塞两腔的压强信号和活塞两腔的面积,得到活塞两腔各自的压力。
本公开实施例中,设定抗蛇行减振器活塞两腔的面积分别为S 1和S 2,通过压力传感器每一时刻采集的压强值分别为P 1和P 2,压强乘以面积即为压力值,可以获得每一时刻活塞两腔各自的压力值。
步骤b2,计算活塞两腔之间的压力差,并对压力差进行低通滤波。
根据步骤b1中获得的每一时刻抗蛇行减振器活塞两腔各自的压力值,计算每一时刻活塞两腔的压力差,并对压力差进行低通滤波,截止频率取为f t,即频率大于f t的噪声信号被过滤掉。
步骤b3,对滤波后的压力差值进行滑动平均,将滑动平均后的压力差值设置为抗蛇行减振器输出的阻尼力。
本公开实施例中,采用与步骤a2相同的方式对滤波后的压力差值进行滑动平均,并将滑动平均后的结果作为抗蛇行减振器输出的阻尼力F。
本公开实施例中,通过对压力差信号进行低通滤波,去除信号的高频成分,实现平滑去噪。然后采用数据窗对滤波后的信号进行滑动平均,从而消除偶然变动因素。而且采用滑动平均对信号进行处理,算法简单,计算量小,可以快速且实时处理非平稳数据。
如图1所示,在步骤103中要根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较。在本公开实施例中,可以采取图1中未示出的步骤c1至c2获得MPPT目标函数值,并比较当前时刻的目标函数值与上一时刻的目标函数值。具体步骤如下:
步骤c1,获得当前时刻t的MPPT算法目标函数J(t),其中J(t)=w1*La2+w2*F2,w1表示构架的横向加速度的权重,w2表示阻尼力的权重,La表示经滑动平均后的横向加速度值,F表示阻尼力。
MPPT算法的核心原理是:能在快速变化的条件下有效地跟踪最大功率点,使控制对象尽可能地工作在最大功率点上。本公开实施例中,将MPPT算法应用于列车的减振器控制时,要重新设计该算法的目标函数J(t)。在本公开实施例中,目标函数J(t)=w1*La2+w2*F2,其中w1表示 构架的横向加速度的权重,w2表示阻尼力的权重,La表示经滑动平均后的横向加速度值,F表示阻尼力。
步骤c2,将目标函数值J(t)与上一时刻的目标函数值J(t-1)进行比较。
在抗蛇行减振器中,通过调整电磁比例阀可以调节减振器的阻尼力,从而提高抗蛇行减振器在不同车轮磨耗状态下的适应性。本公开实施例中,为了判断是电磁比例阀的调节方向,需要获得当前时刻的目标函数值J(t)以及上一时刻的目标函数值J(t-1),并将两个目标函数值进行比较。
本公开实施例中,依据MPPT算法原理建立了以横向加速度和阻尼力为控制对象的目标函数,从而可以通过对目标函数值进行比较,来实现抗蛇行减振器阻尼力的调节。
如图1所示,在步骤104中,可根据当前时刻的MPPT目标函数值与上一时刻的MPPT目标函数值比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。在本公开实施例中,根据MPPT目标函数值的比较结果,对电磁比例阀的调节方向存在两种不同的控制。
方式一,若J(t)<J(t-1),则抗蛇行减振器电磁比例阀的调节方向保持不变。
在本公开实施例中,如果当前时刻的目标函数值J(t)小于上一时刻的目标函数值J(t-1),即目标函数值变小时,应当继续保持当前抗蛇行减振器的电磁比例阀的调节方向,使得构架的横向加速度和抗蛇行减振器输出的阻尼力继续减小,确保运行的稳定性。
方式二,若J(t)≥J(t-1),则改变抗蛇行减振器电磁比例阀的调节方向。
在本公开实施例中,如果当前时刻的目标函数值J(t)大于上一时刻的目标函数值J(t-1),即目标函数值变大时,应当改变抗蛇行减振器电磁比例阀的调节方向,使得构架的横向加速度和抗蛇行减振器输出的阻尼力减小,提高运行的稳定性。
本公开实施例中,依据MPPT算法原理建立了以横向加速度和阻尼力为控制对象的目标函数,当目标函数值变小时,保持电磁比例阀的调节方向,使得构架的横向加速度和抗蛇行减振器输出的阻尼力继续减小。当目标函数值变大时,改变电磁比例阀的调节方向,使得构架的横向加速度和抗蛇行减振器输出的阻尼力减小。基于目标函数值的变化,实时调节减振 器输出的阻尼力,确保列车运行处于稳定的状态。
为了验证本公开实施例所提供方法的有效性,在测试过程中,当车辆直线运行时,采集相关数据,并按照本公开实施例所提供的方法对数据进行处理,控制构架的横向加速度和减振器的阻尼力。此时,监测轮轴的横向力和构架的横向加速度,并将监测结果与EN14363标准中判定车辆稳定的限值进行比较,从而判断车辆的稳定性。
在EN14363标准中,轮轴横向力的限值为:
Figure PCTCN2019104842-appb-000002
其中,P为轴重。构架横向加速度的限值为:
Figure PCTCN2019104842-appb-000003
其中m b为转向架的重量。
测试时,对一节车厢的4个车轴WS1-WS4进行监测。测试结果表明,当未采用MPPT控制算法时,在车速达到330公里/小时左右时,4个车轴的轮轴横向力和加速度都超出了EN14363标准中的限值,车辆运行不稳定。
当采用MPPT控制算法后,取构架的横向加速度权重w1等于1,减振器阻尼力的权重w2等于1时,在车速为300公里/小时-400公里/小时的速度等级下,车辆的轮轴横向力和构架的横向加速度都在EN14363标准的限值范围内,车辆能够稳定运行。
当减振器阻尼力的权重w2为0时,此时上述步骤107的目标函数J(t)只以构架的横向加速度为控制目标,在车速为300公里/小时-400公里/小时的速度等级下,车辆的轮轴横向力和构架的横向加速度都在EN14363标准的限值范围内,车辆能够稳定运行。
图4示例了本公开实施例提供的抗蛇行减振器控制装置,如图4所示,抗蛇行减振器控制装置400包括:
第一预处理模块401,用于获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理;
第二预处理模块402,用于获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理;
比较模块403,用于根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值 进行比较;
控制模块404,用于根据比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。
本实施例所述的基于MPPT算法的抗蛇行减振器控制装置可以用于执行上述方法实施例,其原理和技术效果类似,此处不再赘述。
图5示例了本公开实施例提供的一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器510、通信接口520、存储器530和通信总线840,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行上述方法实施例,其原理和技术效果类似,此处不再赘述。
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述方法实施例所提供的方法,其原理和技术效果类似,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种抗蛇行减振器的控制方法,其特征在于,包括:
    获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理;
    获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理;
    根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较;
    根据比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。
  2. 根据权利要求1所述的抗蛇行减振器的控制方法,其特征在于,所述第一预处理具体包括:
    对所述横向加速度信号进行带通滤波;
    将所述滤波后的横向加速度信号进行滑动平均。
  3. 根据权利要求2所述的抗蛇行减振器的控制方法,其特征在于,所述获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理,具体包括:
    采集抗蛇行减振器活塞两腔的压强信号和活塞两腔的面积,获取活塞两腔各自的压力;
    计算所述活塞两腔之间的压力差,并对所述压力差进行低通滤波;
    对滤波后的压力差值进行滑动平均,将滑动平均后的压力差值设置为所述抗蛇行减振器输出的阻尼力。
  4. 根据权利要求3所述的抗蛇行减振器的控制方法,其特征在于,所述根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较,具体包括:
    获得当前时刻t的MPPT算法目标函数J(t),其中J(t)=w1*La 2+w2*F 2,w1表示所述横向加速度的权重,w2表示所述阻尼力的权重,La表示经滑动平均后的横向加速度信号,F表示所述阻尼力;
    将目标函数值J(t)与上一时刻的目标函数值J(t-1)进行比较。
  5. 根据权利要求4所述的抗蛇行减振器的控制方法,其特征在于,所述根据比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制,具体包括:
    若J(t)<J(t-1),则所述抗蛇行减振器的电磁比例阀的调节方向保持不变;或者
    若J(t)≥J(t-1),则改变所述抗蛇行减振器的电磁比例阀的调节方向。
  6. 根据权利要求2所述的抗蛇行减振器的控制方法,其特征在于,采用带通滤波器f 0±2HZ,对所述横向加速度信号进行带通滤波,f 0表示主频。
  7. 根据权利要求2所述的抗蛇行减振器的控制方法,其特征在于,将所述滤波后的横向加速度信号进行滑动平均,具体包括:设置数据窗口,在所述滤波后的横向加速度信号中移动数据窗口,对数据窗口内的值进行滑动平均。
  8. 一种抗蛇行减振器的控制装置,其特征在于,包括:
    第一预处理模块,用于获取构架的横向加速度信号,并对所述横向加速度信号进行第一预处理;
    第二预处理模块,用于获取抗蛇行减振器活塞两腔的压力差,并对所述压力差进行第二预处理;
    比较模块,用于根据第一预处理结果和第二预处理结果,获得当前时刻的MPPT算法目标函数值和上一时刻的MPPT算法目标函数值,并将当前时刻的MPPT算法目标函数值与上一时刻的MPPT算法目标函数值进行比较;
    控制模块,用于根据比较结果,对所述抗蛇行减振器的电磁比例阀的调节方向进行控制。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至7任一项所述抗蛇行减振器控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至7任一项所述 抗蛇行减振器控制方法的步骤。
PCT/CN2019/104842 2019-04-19 2019-09-09 一种抗蛇行减振器的控制方法及装置 WO2020211266A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021518061A JP7118254B2 (ja) 2019-04-19 2019-09-09 アンチヨーダンパの制御方法及び装置
ES19924915T ES2953526T3 (es) 2019-04-19 2019-09-09 Método y aparato para controlar un amortiguador antiguiñada
US17/276,335 US11554799B2 (en) 2019-04-19 2019-09-09 Method and apparatus for controlling anti-yaw damper
EP19924915.2A EP3832159B1 (en) 2019-04-19 2019-09-09 Method and apparatus for controlling anti-yaw damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910318241.3 2019-04-19
CN201910318241.3A CN110091888B (zh) 2019-04-19 2019-04-19 一种抗蛇行减振器的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2020211266A1 true WO2020211266A1 (zh) 2020-10-22

Family

ID=67445345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104842 WO2020211266A1 (zh) 2019-04-19 2019-09-09 一种抗蛇行减振器的控制方法及装置

Country Status (6)

Country Link
US (1) US11554799B2 (zh)
EP (1) EP3832159B1 (zh)
JP (1) JP7118254B2 (zh)
CN (1) CN110091888B (zh)
ES (1) ES2953526T3 (zh)
WO (1) WO2020211266A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091888B (zh) 2019-04-19 2020-04-28 中车青岛四方机车车辆股份有限公司 一种抗蛇行减振器的控制方法及装置
CN110525472A (zh) * 2019-09-16 2019-12-03 中车长春轨道客车股份有限公司 改善高速列车动力学性能的变阻尼减振器控制装置及方法
CN110823542B (zh) * 2019-11-06 2021-08-20 中车青岛四方机车车辆股份有限公司 减振器测试装置及减振器测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105818634A (zh) * 2016-03-31 2016-08-03 广州汽车集团股份有限公司 一种闭环连续阻尼控制装置及其控制方法
CN105835649A (zh) * 2016-03-18 2016-08-10 江苏大学 一种带有可变容积附加气室的油气悬架及其控制方法
CN106594148A (zh) * 2016-11-15 2017-04-26 江苏大学镇江流体工程装备技术研究院 一种具有高度自适应系统的单筒式液压减振器及其方法
KR20170108195A (ko) * 2016-03-16 2017-09-27 전자부품연구원 파력 발전 시스템에서 최대 파워 추종을 위한 제어 장치 및 방법
CN110091888A (zh) * 2019-04-19 2019-08-06 中车青岛四方机车车辆股份有限公司 一种抗蛇行减振器的控制方法及装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123858A1 (de) * 1981-06-16 1982-12-30 Fried. Krupp Gmbh, 4300 Essen Laufwerk fuer ein schienenfahrzeug
JPH06104450B2 (ja) * 1986-01-29 1994-12-21 財団法人鉄道総合技術研究所 車両の振動制御装置
US5662046A (en) * 1993-12-14 1997-09-02 Hansen Inc. Method and apparatus for controlling railway truck hunting and a railway car body supported thereby
ZA948197B (en) * 1993-12-14 1996-04-18 Hansen Inc Method and apparatus for controlling railway truck hunting and a railway car body supported thereby
DE19714745A1 (de) * 1997-04-09 1998-10-15 Mannesmann Sachs Ag Hydraulische Schwingungsdämpfungsanordnung
JP4023754B2 (ja) * 1997-04-28 2007-12-19 カヤバ工業株式会社 振動抑制装置
FR2784341B1 (fr) * 1998-10-07 2000-12-15 Alstom Technology Dispositif d'amortissement des mouvements transversaux et de lacet d'un vehicule, et vehicule pourvu d'un tel dispositif
DE202007013300U1 (de) * 2007-09-21 2009-02-12 Liebherr-Aerospace Lindenberg Gmbh Aktiver hydraulischer Dämpfer und hydraulischer Stellantrieb
DE102009053801B4 (de) * 2009-11-18 2019-03-21 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Einrichtung zur Zustandsüberwachung wenigstens einen Radsatz aufweisenden Drehgestells eines Schienenfahrzeugs
KR20140095565A (ko) * 2011-11-20 2014-08-01 솔렉셀, 인크. 스마트 광발전 전지 및 모듈
CN103851121B (zh) * 2012-12-07 2017-05-24 常州朗锐凯迩必减振技术有限公司 抗蛇行减振器
CN104787074B (zh) * 2015-04-09 2017-08-22 大连交通大学 基于抗蛇行频带吸能机制的高速转向架动态设计方法
JP6450278B2 (ja) * 2015-08-03 2019-01-09 Kyb株式会社 鉄道車両用制振装置
CN105109510B (zh) * 2015-08-06 2018-07-24 大连交通大学 一种抗蛇行宽频带吸能机制实现方法及转向架参数优化配置方法
CN105160104B (zh) * 2015-09-06 2018-07-27 山东理工大学 高速轨道车辆抗蛇行减振器最优阻尼系数的解析计算方法
CN106981878B (zh) * 2016-01-18 2019-06-07 华北电力大学(保定) 一种基于自抗扰控制的双馈风机抑制电网低频振荡的方法
JP6879695B2 (ja) * 2016-08-30 2021-06-02 Kyb株式会社 セミアクティブダンパ
CN106828123B (zh) * 2017-02-10 2023-04-07 西南交通大学 一种分布式光伏电源的高速铁路牵引供电系统及控制方法
CN107401843A (zh) * 2017-07-16 2017-11-28 长沙善道新材料科技有限公司 太阳能热水系统
CN108036012A (zh) * 2017-12-30 2018-05-15 深圳市中车业成实业有限公司 一种高速动车用油压减振器调阀组件
CN108533362A (zh) * 2018-01-25 2018-09-14 江苏大学 一种基于柴油机排气余热温差发电的主动再生dpf能量供给系统
CN109606394B (zh) * 2018-12-10 2021-05-28 辽宁科技大学 一种电力机车控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108195A (ko) * 2016-03-16 2017-09-27 전자부품연구원 파력 발전 시스템에서 최대 파워 추종을 위한 제어 장치 및 방법
CN105835649A (zh) * 2016-03-18 2016-08-10 江苏大学 一种带有可变容积附加气室的油气悬架及其控制方法
CN105818634A (zh) * 2016-03-31 2016-08-03 广州汽车集团股份有限公司 一种闭环连续阻尼控制装置及其控制方法
CN106594148A (zh) * 2016-11-15 2017-04-26 江苏大学镇江流体工程装备技术研究院 一种具有高度自适应系统的单筒式液压减振器及其方法
CN110091888A (zh) * 2019-04-19 2019-08-06 中车青岛四方机车车辆股份有限公司 一种抗蛇行减振器的控制方法及装置

Also Published As

Publication number Publication date
US20220001904A1 (en) 2022-01-06
ES2953526T3 (es) 2023-11-14
EP3832159A4 (en) 2021-12-08
CN110091888B (zh) 2020-04-28
US11554799B2 (en) 2023-01-17
JP7118254B2 (ja) 2022-08-15
EP3832159A1 (en) 2021-06-09
EP3832159B1 (en) 2023-08-09
JP2022504060A (ja) 2022-01-13
CN110091888A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020211266A1 (zh) 一种抗蛇行减振器的控制方法及装置
Li et al. Linear and non-linear skyhook damping control laws for active railway suspensions
CN107403139B (zh) 一种城轨列车车轮扁疤故障检测方法
DE102012221837A1 (de) Steuerungsverahren zur Schwingungsdämpfung und Vorrichtung eines Antriebsstrangs durch das Steuern eines Motordrehmoments von einem Elektrofahrzeug
CN110274776B (zh) 一种评判高速列车横向运动稳定性的方法及装置
Du et al. Risk evaluation of bogie system based on extension theory and entropy weight method
Nguyen et al. Vibration analysis of the bicycle-car model considering tire-road separation
Wu et al. Control and stability analysis of double time-delay active suspension based on particle swarm optimization
CN113263921A (zh) 一种结合振动辨识的磁浮列车动态悬浮控制方法
CN106052606B (zh) 一种基于尺度平均小波能量谱的轨道表面凹陷检测方法
CN115828086B (zh) 一种基于车体横向加速度的重载机车车钩失稳预警方法
Yin et al. Dynamic hybrid observer-based early slipping fault detection for high-speed train wheelsets
CN112231994B (zh) 一种轨道车辆特征风速的计算方法、装置及存储介质
Qin et al. Road classification based on system response with consideration of tire enveloping
Fu et al. Research on on-board dynamic weighing algorithm based on two-degree-of-freedom 1/4 vehicle model
Xuwang et al. The Effect of Friction on Ride Comfort Simulation and Suspension Optimization
JP2016200397A (ja) 路面プロファイル補正プログラムおよび路面プロファイル補正装置
CN113928375B (zh) 一种轨道车辆运行状态识别方法及系统
Ning et al. Design and Simulation of the Suspension System of Chassis Platform Based on Handling Stability
CN113946913B (zh) 铁路行车故障检测方法、装置、电子设备及存储介质
Aihara et al. A Method to Determine the Gain of the Wheel Slip Speed Feedback Controller for Locomotive
CN109426177A (zh) 一种列车主动降噪方法及装置
Xiaoyi Study on dynamic behavior of CRH380B type high speed vehicle with suspension component failures
CN115352239A (zh) 基于路面等级的救援车辆主动悬架自抗扰控制方法
Zhang Study on Safety Improvement of Road Vehicle Subjected to Crosswind

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019924915

Country of ref document: EP

Effective date: 20210302

ENP Entry into the national phase

Ref document number: 2021518061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE