WO2020211028A1 - 螺旋桨、动力组件及飞行器 - Google Patents

螺旋桨、动力组件及飞行器 Download PDF

Info

Publication number
WO2020211028A1
WO2020211028A1 PCT/CN2019/083161 CN2019083161W WO2020211028A1 WO 2020211028 A1 WO2020211028 A1 WO 2020211028A1 CN 2019083161 W CN2019083161 W CN 2019083161W WO 2020211028 A1 WO2020211028 A1 WO 2020211028A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
blade
propeller
notch
connecting plate
Prior art date
Application number
PCT/CN2019/083161
Other languages
English (en)
French (fr)
Inventor
陈鹏
李建芳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP19924818.8A priority Critical patent/EP3858731A1/en
Priority to PCT/CN2019/083161 priority patent/WO2020211028A1/zh
Priority to CN201980012527.7A priority patent/CN111741895A/zh
Publication of WO2020211028A1 publication Critical patent/WO2020211028A1/zh
Priority to US17/152,770 priority patent/US20210139132A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/02Hub construction
    • B64C11/04Blade mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/20Constructional features
    • B64C11/28Collapsible or foldable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/48Root attachment to rotor head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/473Constructional features
    • B64C27/50Blades foldable to facilitate stowage of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the embodiment of the present invention relates to aircraft manufacturing technology, in particular to a propeller, a power assembly and an aircraft.
  • the aircraft includes a propeller and a driving device, and the propeller is in transmission connection with the driving device to drive the propeller to rotate when the driving device is working, so as to provide power for the aircraft.
  • the propeller includes a hub that is drive-connected with the driving device of the aircraft, and at least two blades arranged at equal intervals along the circumference of the hub.
  • the blades and the hub are integrally formed; the driving device drives the hub when the driving device works And the blades rotate to provide power for the aircraft.
  • the blades extend in a direction perpendicular to the axis of the propeller, occupying a large space, and after the aircraft has landed on the ground, the blades are likely to rub against external objects and damage the blades.
  • the embodiments of the present invention provide a propeller, a power assembly and an aircraft to solve the problem that the blades extend in a direction perpendicular to the axis of the propeller, occupying a large space, and after the aircraft is landed on the ground, the blades are easy to rub against external objects. Damage to the blades.
  • the embodiment of the present invention provides a propeller, including: a hub capable of rotating around a rotation axis; at least two blades; rotatably connected with the hub, and the rotation state of the blades relative to the hub Including an unfolded state and a folded state; wherein, in the unfolded state, the length direction of the blade forms a first angle with respect to the axis of rotation; in the folded state, the length direction of the blade Compared with the second included angle formed by the rotation axis, the second included angle is not equal to the first included angle.
  • the embodiment of the present invention provides a propeller, including: a hub and at least two blades arranged at equal intervals along the circumferential direction of the hub; the blades are rotationally connected to the hub through a rotating shaft, so as The rotation axis of the hub folds the blade, and there is a preset included angle between the axis of the rotation shaft and the rotation axis, and the preset included angle is greater than 0°.
  • An embodiment of the present invention also provides a power assembly, including a motor and a propeller; the motor is in transmission connection with the propeller; the propeller will include: a hub and at least two at least two equal intervals arranged along the circumferential direction of the hub.
  • the blade; the blade is rotatably connected with the hub through a rotation shaft to fold the blade toward the rotation axis of the hub, and there is a preset between the axis of the rotation shaft and the rotation axis The included angle, the preset included angle is greater than 0°.
  • An embodiment of the present invention also provides an aircraft, including a fuselage and the above-mentioned power assembly.
  • the blades and the hub are rotatably connected by a rotating shaft, and there is a preset angle between the axis of the rotating shaft and the axis of rotation of the hub; after the aircraft has landed on the ground, the propeller The blades rotate around the rotation axis, so that the blades are folded toward the rotation axis of the hub, so as to prevent the blades from rubbing against the ground or objects on the ground to avoid damage to the blades.
  • Fig. 1 is a schematic diagram 1 of a structure when the propeller blades are in a folded state according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a structure when the propeller blades are in a deployed state according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the installation of annular reeds and blades in a propeller provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the installation between the annular reed and the hub of the propeller provided by the embodiment of the present invention
  • Figure 5 is a partial enlarged view of A in Figure 4.
  • FIG. 6 is a second schematic diagram of a structure when the propeller blades are in a folded state according to an embodiment of the present invention
  • FIG. 7 is a second schematic diagram of a structure when the propeller blades are in an unfolded state according to an embodiment of the present invention.
  • FIG. 8 is a third structural diagram of the propeller blades provided in the embodiment of the present invention when they are in a folded state;
  • Fig. 9 is a third structural schematic diagram of the propeller blade provided by the embodiment of the present invention when the propeller blades are in the unfolded state.
  • the aircraft includes a fuselage and a driving device and a propeller arranged on the fuselage; the driving device may be a motor or an internal combustion engine.
  • the driving device and the propeller may both be arranged at the front end of the fuselage or the driving device and the propeller may both be arranged at the rear end of the fuselage; the blades on the propeller are generally located at the same perpendicular to the propeller In the plane of the axis of rotation; the propeller is in transmission connection with the driving device.
  • the propeller is driven to rotate, so that air flows to the rear of the fuselage, so that the fuselage can obtain forward thrust.
  • the aircraft can also be a rotorcraft.
  • FIG. 1 is a schematic diagram 1 of a structure when the propeller blades are in a folded state according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a structure when the propeller blades are in an unfolded state according to an embodiment of the present invention.
  • This embodiment provides a propeller, which can be used in an unmanned aerial vehicle, and includes: a hub 20 capable of rotating around a rotation axis; at least two blades 10 are rotatably connected with the hub 20, and the blade 10 is relative to the hub
  • the rotation state of 20 includes an unfolded state and a folded state; wherein, in the unfolded state, the length of the blade 10 forms a first angle with respect to the axis of rotation; in the folded state, the length of the blade 10 is relatively
  • the axis forms a second included angle, and the second included angle is not equal to the first included angle.
  • the propeller hub 20 is used to connect a driving device of the unmanned aerial vehicle, so as to drive the propeller hub 20 to rotate through the driving device.
  • the unfolded state is the state when the blades provide power to the unmanned aerial vehicle
  • the folded state is the state when the unmanned aerial vehicle will land on the ground without powering the unmanned aerial vehicle.
  • the length direction of the blade 10 in the unfolded state, forms a first included angle with respect to the axis of rotation.
  • the first included angle may be 90°, of course, the first included angle may also be 85°.
  • the length direction of the blade 10 forms a second included angle with respect to the axis of rotation, and the second included angle may be 0°, 5°, or the like.
  • the blade 10 is in an unfolded state. At this time, the blade 10 can be driven to rotate to provide power to the UAV.
  • the blade 10 and the hub 20 are rotatably connected, and the rotation state of the blade 10 relative to the hub 20 includes the unfolded state and the folded state; when the unmanned aerial vehicle does not need to fly Therefore, the blade 10 can be rotated relative to the hub 20 to a folded state, so as to prevent the blade 10 from rubbing against the ground or objects on the ground, so as to prevent the blade 10 from being damaged.
  • this embodiment provides a propeller, including: a hub 20 and at least two blades 10 arranged at equal intervals along the circumference of the hub 20; the blades 10 are connected to the hub through a rotating shaft 104 20 is rotationally connected to fold the blade 10 toward the axis of rotation of the hub 20, or unfold the blade 10 toward the axis of rotation away from the hub 20, and there is a preset angle between the axis of the rotating shaft 104 and the axis of rotation, The included angle is greater than 0°.
  • the hub 20 is used to connect the driving device of the aircraft and the blade 10, the hub 20 may be columnar or plate-shaped, and the corresponding hub 20 needs to have a symmetrical structure with respect to the axis of rotation, so as to avoid being placed on the hub 20.
  • the vibration of the aircraft fuselage is caused by centrifugal force during rotation.
  • the driving device may be any device capable of driving the hub 20 to rotate around the rotation axis, for example, the driving device may be a motor, an internal combustion engine, or the like.
  • the hub 20 may be in the shape of a disk, and the center of the corresponding disk-shaped hub 20 is located on the rotation axis, and the rotation axis is arranged perpendicular to the hub 20; of course, the hub 20 may also be in the shape of a rectangular plate. Correspondingly, the intersection of the diagonals of the hub 20 is located on the axis of rotation, and the axis of rotation is perpendicular to the hub 20.
  • the number of blades 10 can be various, for example, the number of blades 10 can be two, three, four, etc. It is worth noting that when the hub 20 rotates to provide power to the fuselage, the blades 10 are in the unfolded state, that is, the blades 10 are generally located in the same plane perpendicular to the axis of rotation; in addition, the blades 10 are relative to The axis of rotation is symmetrical to the center, so as to avoid that when the hub 20 drives the blade 10 to rotate, the uneven distribution of the blade 10 may cause vibration of the fuselage or cause flight instability.
  • the blade 10 and the hub 20 are rotatably connected by a rotating shaft 104, and the preset angle between the axis of the rotating shaft 104 and the axis of rotation of the hub 20 can be various, as long as the aircraft does not need to fly.
  • the blade 10 can be folded toward the rotation axis of the hub 20 to increase the distance between the blade 10 and the ground, and to avoid rubbing between the blade 10 and the ground or objects on the ground.
  • the preset included angle may be 45°, 60°, etc., of course, the preset included angle may also be other included angles.
  • the rotation state of the blade 10 relative to the hub 20 includes a folded state after being folded toward the axis of rotation, and an unfolded state before being folded; when the blade 10 is in the unfolded state, it can provide the aircraft with an unfolded state perpendicular to the blade 10 The power of the plane.
  • the preset included angle is 90°. It should be noted that at this time, the axis of the rotating shaft 104 and the axis of rotation of the hub 20 need to be arranged on different surfaces.
  • one end of the hub 20 is connected to a driving device located on the fuselage.
  • the blades 10 can rotate toward the fuselage or the blades 10 can rotate away from the fuselage, so that the blades 10 is folded to prevent the paddle 10 from rubbing against foreign objects.
  • the blades 10 can be folded toward the front end of the fuselage so that the blades 10 face the fuselage.
  • the front end is extended to increase the distance between the blade 10 and the ground to prevent the blade 10 from rubbing against objects on the ground; of course, the blade 10 can also be folded toward the rear of the fuselage so that the blade 10 faces the fuselage.
  • the rear end extends.
  • the distance between the blade 10 and the ground can be increased to prevent the blade 10 from protruding to the outside of the fuselage.
  • the propeller can also be installed at the rear end of the fuselage, and the plane of the unfolded blades 10 is perpendicular to the horizontal plane.
  • the blades 10 can be folded toward the rear end of the fuselage so that the blades 10 face the rear end of the fuselage. It is also possible to fold the blade 10 toward the front end of the fuselage. Compared with folding the blade 10 toward the rear end of the fuselage, on the basis of increasing the distance between the blade 10 and the ground, it can avoid the direction of the blade 10 The outside of the fuselage is extended to prevent the paddle 10 from contacting objects at the rear of the fuselage.
  • the blades 10 can be folded away from the ground; of course, the blades 10 can also be folded toward the ground to reduce the space occupied by the aircraft in the direction in which the blades 10 are deployed.
  • the working process of the propeller provided in this embodiment is: when the driving device provided on the aircraft fuselage works, the driving device drives the hub 20 to rotate, and then drives the blade 10 to rotate around the hub 20 The axis of rotation rotates. During this process, the blade 10 rotates in a direction away from the axis of rotation of the hub 20 under the action of centrifugal force, so that each blade 10 is approximately located in a plane perpendicular to the axis of rotation of the hub 20, that is, each blade 10 is in the unfolded state; it drives the air flow to provide power for the fuselage.
  • the blade 10 can be rotated around the rotation axis 104, so that the blade 10 is folded toward the axis of rotation, so that the blade 10 is in the folded state; it is worth noting that when the blade 10 is in the folded state There may be a certain included angle between the blade 10 and the axis of rotation, and the included angle may be 5°, 10°, etc., to avoid scratches between the blade 10 and the fuselage.
  • the propeller provided in this embodiment is rotatably connected with the blade 10 and the hub 20 through the rotation shaft 104, and there is a preset angle between the axis of the rotation shaft 104 and the rotation axis of the hub 20; when the aircraft is not flying , The blade 10 can be rotated around the rotation axis 104 to fold the blade 10 toward the rotation axis of the hub 20 to prevent the blade 10 from rubbing against the ground or objects on the ground, so as to prevent the blade 10 from being damaged.
  • the propeller further includes an elastic member, which is connected to the hub 20 and the blade 10 to drive the blade 10 to fold toward the axis of the hub 20.
  • the elastic member drives the blade 10 to rotate around the rotation axis 104 of the blade 10 and the hub 20 under the action of its own elastic force, so that the blade 10 is folded to the rotation axis, without manual operation or only a small amount of Human operation.
  • the elastic member may include an annular reed 30.
  • the side wall of the annular reed 30 is provided with a notch.
  • the annular reed 30 is sleeved on the outside of the rotating shaft 104 of the blade 10 and the hub 20, and is placed on the annular reed 30.
  • the driving device drives the hub 20 and the blade 10 to rotate
  • the blade 10 rotates in a direction away from the axis of rotation under the action of centrifugal force, so that the annular reed 30 is elastically deformed and the width of the notch increases.
  • the ring spring 30 recovers its deformation, the width of the notch is reduced, and then the blade 10 is driven toward the hub 20 The axis of rotation is folded.
  • the mounting end of the blade 10 facing the hub 20 is provided with an annular groove 101 whose center line is collinear with the axis of the rotating shaft 104, and the annular groove 101 is provided with a groove matching the groove.
  • the protruding part 103, the annular reed 30 is accommodated in the annular groove 101; the hub 20 has an extension 201 that extends into the slot, and when the annular reed 30 drives the blade 10 to fold, the extension 201 abuts against the annular groove 101 At one end of the notch of the reed 30, the protruding part 103 abuts on the other end of the notch, and the width of the notch becomes smaller.
  • the protrusion 103 and the extension 201 can be arranged in the slot in sequence along the direction parallel to the center line of the annular spring 30, that is, the protrusion 103 and the extension
  • the portions 201 are arranged oppositely; optionally, the width of the extension portion 201 is equal to the width of the protrusion 103, and at this time, both ends of the notch are in contact with the protrusion 103 or the extension portion 201 along the width.
  • the width of the extension part 201 may be slightly smaller or slightly larger than the width of the protrusion 103.
  • the protrusion 103 and the extension 201 are staggered, and the extension 201 gradually slides into the annular groove 101, one end of the notch In contact with the protruding portion 103 and the other end in contact with the extension portion 201, the width of the notch increases, and the ring spring 30 is elastically deformed.
  • the annular reed 30 drives the extension 201 and the protrusion 103 closer to each other under the action of its own elastic force, and the width of the notch is reduced, so that the blade 10 is folded toward the axis of rotation .
  • the protrusion 103 and the extension 201 may also be arranged side by side; and, one end of the notch is only in contact with the extension 201, and the other end of the notch is only in contact with the protrusion 201. ⁇ 103contact.
  • the hub 20 rotates, the blade 10 rotates around the rotating shaft 104 under the action of centrifugal force.
  • the protrusion 103 and the extension 201 are far away from each other, the width of the notch increases, and the annular spring 30 undergoes elastic deformation;
  • the annular reed 30 drives the extension 201 and the protrusion 103 close to each other under the action of its own elastic force, and the width of the notch is reduced, so that the blade 10 folds toward the rotation axis.
  • the annular reed 30 is accommodated in the annular groove 101, which can prevent external objects from contacting the annular reed 30; in addition, the annular groove 101 can also play a role in positioning the annular reed 30 to prevent the annular reed 30 from moving.
  • the hub 20 includes a body and a first connecting plate and a second connecting plate arranged on the edge of the body.
  • the first connecting plate and the second connecting plate are arranged in parallel and spaced apart; the mounting end is arranged on the first connecting plate and Between the second connecting plates, and the mounting end is connected with the first connecting plate and the second connecting plate through the rotating shaft 104; the first connecting plate is used to close the annular groove 101, and the extension 201 is arranged on the first connecting plate facing the annular groove 101 Side.
  • the mounting end is hinged to the first connecting plate and the second connecting plate, which can improve the connection strength between the blade 10 and the hub 20.
  • a first hinge hole may be opened on the first connecting plate
  • a second hinge hole may be opened on the second connecting plate
  • the center line of the first hinge hole, the center line of the second hinge hole and the rotation axis 104 The axes are arranged collinearly; the installation end of the blade 10 facing the hub 20 is provided with a third hinge hole, and the rotating shaft 104 is inserted through the first hinge hole, the second hinge hole and the third hinge hole to realize the blade 10 The hinged connection with the hub 20.
  • the annular groove 101 is provided on the side of the mounting end facing the first connecting plate.
  • the extension 201 is provided on the side of the first connecting plate facing the mounting end.
  • the extension 201 extends into the annular groove 101 and is located in the notch of the annular spring 30, and the protrusion 103 and the extension 201 are spaced apart along the direction parallel to the center line of the annular groove 101, that is, the protrusion 103 It is opposite to the extension 201.
  • a mounting opening 102 that penetrates the annular groove 101 is provided on the outer surface of the mounting end, the mounting opening 102 is facing the protruding portion 103, and the width of the mounting opening 102 is equal to or slightly larger than the extension portion 102 The width.
  • the shape of the extension 201 is set reasonably so that the width of the extension 201 in the radial direction of the annular groove 101 is less than or equal to the width of the annular groove 101 in the radial direction, and the extension 201 can slide into the annular groove 101 smoothly. Inside, the paddle 10 can rotate around the rotating shaft 104.
  • the width of the protrusion 103 or the extension 201 may be equal to the width of the notch, that is, both ends of the notch just fit the protrusion 103 or the extension 201; or the width of the protrusion 103 or the extension 201 The width is slightly larger than the width of the notch, so that both ends of the notch are in interference fit with the protrusion 103 or the extension 201.
  • the width of the extension 201 is equal to the width of the protrusion 103, so that when the blade 10 is in the folded state, both ends of the notch are in contact with the extension 201 and the protrusion 103, and the protrusion 103 is in contact with the extension 103.
  • the portions 201 are arranged at intervals in a direction parallel to the rotating shaft 104, that is, the protruding portion 103 overlaps the extending portion 201.
  • the blade 10 rotates under the action of centrifugal force, so that the protrusion 103 and the extension 201 are staggered.
  • the extension 201 gradually slides into the annular groove 101, the extension 201 resists At one end of the top notch, the protruding portion 103 abuts the other end of the top notch, and the ring spring 30 is elastically deformed.
  • the blade 10 when the hub 20 rotates, the blade 10 rotates in a direction away from the rotation axis under the action of centrifugal force, and the blade 10 can be automatically deployed under the action of the centrifugal force.
  • each blade 10 rotates in a direction away from the rotation axis to Expanded state; the preset speed should not be greater than the speed required for take-off of the aircraft, so that each blade 10 can be fully deployed before the aircraft takes off.
  • Fig. 6 is a second structural schematic diagram of the propeller blade provided in the embodiment of the present invention when the propeller blade is in a folded state
  • Fig. 7 is a second structural schematic diagram of the propeller blade provided by the embodiment of the present invention when the propeller blade is in an unfolded state
  • the elastic member further includes a spring 40
  • the fuselage has a rotating part 60 that is drivingly connected to the hub 20, one end of the spring 40 is connected to the rotating part 60, and the other end of the spring 40 is connected to the blade 10.
  • the spring 40 drives the blade 10 to rotate around the rotation axis 104 of the blade 10 and the hub 20, and the structure is simple.
  • the rotating part 60 rotates synchronously with the hub 20, and the spring 40 connected to the rotating part 60 and the blade 10 will not prevent the blade 10 from rotating with the hub 20.
  • the rotating part 60 may be a driving device.
  • the rotating part 60 is provided with a main shaft 601, correspondingly, a shaft hole is provided on the hub 20, and the main shaft 601 is inserted in the shaft hole to realize the connection between the main shaft 601 and the hub 20 .
  • the main shaft 601 and the hub 20 may be connected by a key connection, so as to drive the hub 20 to rotate when the main shaft 601 rotates.
  • the working process of the propeller provided in this embodiment is: when the driving device provided on the aircraft fuselage works, the driving device drives the propeller hub 20 to rotate through the rotating part 60, and then drives the propeller blade 10 to rotate around the axis of the propeller hub 20.
  • the blade 10 is rotated in a direction away from the axis of rotation of the hub 20 under the action of centrifugal force, and the spring 40 is pulled to make the spring 40 elastically deformed; when each blade 10 rotates to the unfolded state, each blade 10 roughly It is located in a plane perpendicular to the rotation axis of the hub 20, and then drives air to flow in a direction perpendicular to the blade 10 to provide power to the aircraft.
  • the spring 40 shrinks, causing the blade 10 to rotate around the rotation axis 104, so that the blade 10 is folded toward the rotation axis of the hub 20, so as to reduce the deployment direction of the blade 10 Occupied space.
  • the propeller can be installed on the nose or tail, and the rotation axis of the blade 10 is parallel to the ground. When the blade 10 is folded, the distance between the blade 10 and the ground can be reduced to prevent The blade 10 rubs against the ground, thereby damaging the blade 10.
  • Fig. 8 is a third structural schematic diagram of the propeller blades provided in the embodiment of the present invention when the propeller blades are in the folded state
  • Fig. 9 is a third structural schematic diagram of the propeller blades provided by the embodiment of the present invention when the propeller blades are in the unfolded state
  • the elastic member includes an elastic piece 50 which is arranged between the hub 20 and the blade 10.
  • the elastic piece 50 has a curved portion 502, and the curved portion 502 abuts on the blade 10.
  • the elastic piece 50 may include a mounting piece 501 connected to the hub 20, and a bent portion 502 provided at the end of the mounting piece 501.
  • the bent portion 502 may be arc-shaped or there is a certain angle between the bent portion 502 and the mounting piece 501 , wherein, when the blade 10 is in the initial folded state, the bent portion 502 is bent toward the direction of the blade, and further, the bent portion 502 is in contact with or attached to the blade 10; the mounting piece 501 can be bonded, welded or bolted
  • the connection is connected to the hub 20, and the curved portion 502 and the mounting piece 501 are integrally formed.
  • the working process of the propeller provided in this embodiment is: when the driving device provided on the aircraft fuselage works, the driving device drives the hub 20 to rotate, and then drives the blade 10 to rotate around the hub 20 The axis of rotation rotates. During this process, the blade 10 rotates in a direction away from the axis of rotation of the hub 20 under the action of centrifugal force, and the blade 10 abuts the curved portion 502 to elastically deform the curved portion 502; when each blade 10 rotates to In the unfolded state, each hub 20 is approximately located in a plane perpendicular to the axis of the hub 20, thereby driving air to flow in a direction perpendicular to the blade 10 to provide power to the fuselage.
  • the blade 10 rotates around the rotation axis 104 between the blade 10 and the hub 20, thereby folding the blade 10 toward the rotation axis of the hub 20 to reduce The space occupied by the blade 10 along its deployment direction.
  • the propeller can be installed on the nose or tail, and the rotation axis of the blade 10 is parallel to the ground. When the blade 10 is folded, the distance between the blade 10 and the ground can be reduced to prevent The blade 10 rubs against the ground, thereby damaging the blade 10.
  • the shrapnel 50 is arranged on the side of the hub 20 away from the fuselage. Therefore, when the aircraft is landing, the shrapnel 50 drives the folding of the blade 10 toward the fuselage, so as to prevent the blade 10 from extending in a direction away from the fuselage and occupying a larger space.
  • the propeller when the propeller is deployed, the blade 10 is approximately located in the same plane perpendicular to the rotation axis of the hub 20, so the propeller may also include a limiting structure (Not shown in the figure), the limiting structure can be arranged on the hub 20 or the blade 10 to prevent the blade from being expanded too much during the unfolding process, so that the blades are not located in the same plane.
  • this embodiment provides a power assembly, including a motor and a propeller; the motor is connected to the screw drive. To drive the propeller to rotate.
  • the structure of the propeller is generally similar to the propeller structure in Embodiment 2, and will not be repeated here.
  • the power assembly provided in this embodiment is connected by rotating the blade 10 and the hub 20 through a rotating shaft 104, and there is a preset angle between the axis of the rotating shaft 104 and the axis of rotation of the hub 20; when the aircraft drops to the ground After being mounted, the blade 10 can be rotated around the rotation axis 104 to fold the blade 10 toward the axis of rotation of the hub 20 to prevent the blade 10 from extending along its unfolding direction, thereby preventing the blade 10 from rubbing against the ground or objects on the ground. , So as not to damage the blade 10.
  • this embodiment provides an aircraft including the power assembly described above.
  • the aircraft provided in this embodiment is connected by rotating the blades 10 and the hub 20 through a rotating shaft 104, and there is a preset angle between the axis of the rotating shaft 104 and the axis of rotation of the hub 20; when the aircraft drops to the ground After being mounted, the blade 10 can be rotated around the rotation axis 104 to fold the blade 10 toward the rotation axis of the hub 20 to prevent the blade 10 from rubbing against the ground or objects on the ground, so as to prevent the blade 10 from being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

提供了一种螺旋桨、动力组件及飞行器。其中螺旋桨包括:桨毂(20)以及沿桨毂(20)的周向等间隔设置的至少两个桨叶(10);桨叶(10)通过转动轴(104)与桨毂(20)转动连接,以向桨毂(20)的旋转轴线折叠桨叶(10)或向远离桨毂(20)的旋转轴线展开桨叶(10),并且转动轴(104)的轴线与旋转轴线之间具有预设夹角;桨毂(20)用于与驱动装置传动连接,以驱动桨毂(20)绕旋转轴线转动;在飞行器降落到地面上之后,桨叶(10)绕转动轴(104)转动,使桨叶(10)向桨毂(20)的旋转轴线折叠。具有这种螺旋桨的飞行器通过折叠桨叶有效避免桨叶与地面或者地面上的物体剐蹭,以免桨叶损坏。

Description

螺旋桨、动力组件及飞行器 技术领域
本发明实施例涉及飞行器制造技术,尤其涉及一种螺旋桨、动力组件及飞行器。
背景技术
飞行器包括螺旋桨和驱动装置,螺旋桨与驱动装置传动连接,以在驱动装置工作时驱动螺旋桨转动,以为飞行器提供动力。
现有技术中,螺旋桨包括与飞行器的驱动装置传动连接的桨毂、以及沿桨毂的周向等间隔设置的至少两个桨叶,桨叶与桨毂一体成型;驱动装置工作时带动桨毂以及桨叶转动,为飞行器提供动力。
然而,桨叶沿垂直于螺旋桨轴线的方向延伸,占据的空间较大,且在飞行器降落到地面上之后,桨叶容易与外界物体剐蹭,容易损伤桨叶。
发明内容
本发明实施例提供一种螺旋桨、动力组件及飞行器,以解决桨叶沿垂直于螺旋桨轴线的方向延伸,占据空间较大,且在飞行器降落到地面上之后,桨叶容易与外界物体剐蹭,容易损伤桨叶。
本发明实施例提供一种螺旋桨,包括:桨毂,能够绕一旋转轴线转动;至少两个桨叶;与所述桨毂可转动连接,并且所述桨叶相对于所述桨毂的转动状态包括展开状态以及折叠状态;其中,在所述展开状态时,所述桨叶的长度方向相较于所述旋转轴线形成第一夹角;在所述折叠状态时,所述桨叶的长度方向相较于所述旋转轴线形成第二夹角,所述第二夹角不等于所述第一夹角。
本发明实施例提供一种螺旋桨,包括:桨毂以及沿所述桨毂的周向等间隔设置的至少两个桨叶;所述桨叶通过转动轴与所述桨毂转动连接,以向所述桨毂的旋转轴线折叠所述桨叶,并且所述转动轴的轴线与所述旋转轴线之间具有预设夹角,所述预设夹角大于0°。
本发明实施例还提供一种动力组件,包括电机以及螺旋桨;所述电机与所述螺旋桨传动连接;所述螺旋将包括:桨毂以及沿所述桨毂的周向等间隔设置的至少两个桨叶;所述桨叶通过转动轴与所述桨毂转动连接,以向所述桨毂的旋转轴线折叠所述桨叶,并且所述转动轴的轴线与所述旋转轴线之间具有预设夹角,所述预设夹角大于0°。
本发明实施例还提供一种飞行器,包括:机身以及如上所述的动力组件。
本发明提供的螺旋桨、动力组件及飞行器,桨叶与桨毂通过转动轴转动连接,并且转动轴的轴线与桨毂的旋转轴线之间具有预设夹角;在飞行器降落到地面上之后,桨叶绕转动轴转动,使桨叶向桨毂的旋转轴线折叠,进而避免桨叶与地面或者地面上的物体剐蹭,以免桨叶损坏。
附图说明
图1为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图一;
图2为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图一;
图3为本发明实施例提供的螺旋桨中环形簧片与桨叶的安装示意图;
图4为本发明实施例提供的螺旋桨中环形簧片与桨毂之间的安装示意图;
图5为图4中A处的局部放大图;
图6为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图二;
图7为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图二;
图8为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图三;
图9为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图三。
附图标记说明:
10、桨叶;
101、环形槽;
102、安装口;
103、凸出部;
104、转动轴;
20、桨毂;
201、延伸部;
30、环形簧片;
40、弹簧;
50、弹片;
501、安装片;
502、弯曲部;
60、转动部;
601、主轴。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
飞行器包括机身以及设置在机身上的驱动装置和螺旋桨;驱动装置可以为电机或者内燃机等。示例性的,当飞行器为固定翼飞行器时,驱动装置和螺旋桨可以均设置在机身的前端或者驱动装置和螺旋桨均设置在机身的后端;螺旋桨上的各桨叶大致位于同一垂直于螺旋桨旋转轴线的平面内;螺旋桨与驱动装置传动连接,在驱动装置工作时,驱动螺旋桨转动,进而使空气向机身的后部流动,以使机身获得向前的推力。当然,飞行器也可以为旋翼飞行器。
实施例1
图1为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图一;图2为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图一。
请参照图1和图2。本实施例提供一种螺旋桨,可用于无人飞行器,包括:桨毂20,能够绕一旋转轴线转动;至少两个桨叶10,与桨毂20可转动连接,并且桨叶10相对于桨毂20的转动状态包括展开状态以及折叠状态;其中,在展开状态时,桨叶10的长度方向相较于旋转轴线形成第一夹角;在折叠状态时,桨叶10的长度方向相较于旋转轴线形成第二夹角,第二夹角不等于第一夹角。
具体地,桨毂20用于连接无人飞行器的驱动装置,以通过驱动装置带动桨毂20转动。展开状态为桨叶为无人飞行器提供动力时的状态,折叠状态为无人飞行器将落地面上,无需为无人飞行器提供动力时的状态。
继续参照图2,展开状态时,桨叶10的长度方向相较于旋转轴线形成第一夹角,第一夹角可以为90°,当然第一夹角也可以为85°等。折叠状态时,桨叶10的长度方向相较于旋转轴线形成第二夹角,第二夹角可以为0°、5°等。当桨叶10的长度方向与旋转轴线成第一夹角时,桨叶10呈展开状态,此时可以驱动桨叶10转动给无人飞行器提供动力,当相对桨毂20转动桨叶10使其的长度方向与旋转轴线成第二夹角时,桨叶10呈折叠状态,进而避免桨叶10与外界物体剐蹭,以免桨叶10损坏。
本实施例提供的无人飞行器的螺旋桨,桨叶10与桨毂20可转动连接,并且桨叶10相对于桨毂20的转动状态包括展开状态以及折叠状态;在无人飞行器不需要进行飞行时,可以使桨叶10相对于桨毂20转动至折叠状态,避免桨叶10与地面或者地面上的物体剐蹭,以免桨叶10损坏。
实施例2
请参照图1和图2,本实施例提供一种螺旋桨,包括:桨毂20以及沿桨毂20的周向等间隔设置的至少两个桨叶10;桨叶10通过转动轴104与桨毂20转动连接,以向桨毂20的旋转轴线折叠桨叶10,或者向远离桨毂20的旋转轴线展开桨叶10,并且转动轴104的轴线与旋转轴线之间具有预设夹角,预设夹角大于0°。
具体地,桨毂20用于连接飞行器的驱动装置和桨叶10,桨毂20可以 呈柱状或者板状,相应的桨毂20需要具有相对于旋转轴线中心对称的结构,以避免在桨毂20转动时在离心力的作用下引起飞行器机身的振动。其中驱动装置可以为任意能够驱动桨毂20绕旋转轴线转动的装置,例如:驱动装置可以为电机、内燃机等。
示例性的,桨毂20可以呈圆盘状,相应的呈圆盘状的桨毂20的圆心位于旋转轴线上,并且旋转轴线垂直于桨毂20设置;当然桨毂20还可以呈矩形板状,相应的,桨毂20的对角线交点位于旋转轴线上,并且旋转轴线垂直于桨毂20设置。
本实施例中,桨叶10的数量可以有多种,例如桨叶10的数量可以为两个、三个、四个等。值得注意的是,在桨毂20转动而为机身提供动力时,各桨叶10处于展开状态,即各桨叶10均大致位于同一垂直于旋转轴线的平面内;另外各桨叶10相对于旋转轴线中心对称,以免在桨毂20带动桨叶10转动时,桨叶10分布不均引起机身的振动或者造成飞行不稳定。
本实施例中,桨叶10与桨毂20通过转动轴104转动连接,转动轴104的轴线与桨毂20的旋转轴线之间的预设夹角可以有多种,只要能够在飞行器不需要飞行时可以向桨毂20的旋转轴线折叠桨叶10即可,以增大桨叶10与地面之间的距离,避免桨叶10与地面或者地面上的物体之间剐蹭。示例性地,预设夹角可以45°、60°等,当然预设夹角还可以为其他的夹角。
具体地,桨叶10相对于桨毂20的转动状态包括向旋转轴线折叠后的折叠状态、以及折叠前的展开状态;当桨叶10处于展开状态时,可以为飞行器提供垂直于桨叶10展开平面的动力。
继续参照图1,本实施例优选地,预设夹角为90°。值得注意的是,此时转动轴104的轴线与桨毂20的旋转轴线需异面设置。
本实施例中,桨毂20的一端与位于机身上的驱动装置连接,在飞行器不需要飞行时,桨叶10可以向机身转动或者桨叶10向背离机身的方向转动,使桨叶10折叠,以免桨叶10与外界物体剐蹭。以固定翼飞行器为例,当螺旋桨安装在飞行器机身的前端,且各桨叶10展开后的平面与水平面垂直时,可以向机身的前端折叠桨叶10,以使桨叶10向机身的前端伸出,增大桨叶10与地面之间的距离,以免桨叶10与地面上的物体剐蹭; 当然也可以向机身的后端折叠桨叶10,使桨叶10向机身的后端伸出,与桨叶10向机身的前端伸出相比,在增大桨叶10与地面之间距离的基础上,可以避免桨叶10向机身外部伸出,以免桨叶10与机身前部的物体接触,且减小飞行器所占的空间。
当然,螺旋桨还可以安装在机身的后端,且各桨叶10展开后的平面与水平面垂直,此时可以向机身的后端折叠桨叶10,使桨叶10向机身的后端伸出;也可以向机身的前端折叠桨叶10,与向机身的后端折叠桨叶10相比,在增大桨叶10与地面之间距离的基础上,可以避免桨叶10向机身外部伸出,以免桨叶10与机身后部的物体接触。
当飞行器为旋翼飞行器时,旋翼飞行器不需要飞行时,可以向背离地面的方向折叠桨叶10;当然也可以向地面折叠桨叶10,可以减少飞行器在桨叶10展开方向上占用的空间。
继续参照图1和图2,本实施例提供的螺旋桨的工作过程为:当设置在飞行器机身上的驱动装置工作时,驱动装置带动桨毂20转动,进而带动桨叶10绕桨毂20的旋转轴线转动,在此过程中桨叶10在离心力的作用下向背离桨毂20旋转轴线的方向转动,以使各桨叶10大致位于垂直于桨毂20旋转轴线的平面内,即各桨叶10处于展开状态;进而驱动空气流动,以为机身提供动力。在飞行器不需要进行飞行时,可以使桨叶10绕转动轴104转动,进而使桨叶10向旋转轴线折叠,使桨叶10位于折叠状态;值得说明的是,在桨叶10处于折叠状态时,桨叶10与旋转轴线之间可以具有一定的夹角,该夹角可以为5°、10°等,以免桨叶10与机身之间发生剐蹭。
本实施例提供的螺旋桨,通过使桨叶10与桨毂20通过转动轴104转动连接,并且转动轴104的轴线与桨毂20的旋转轴线之间具有预设夹角;在飞行器不进行飞行时,可以将桨叶10绕转动轴104转动,使桨叶10向桨毂20的旋转轴线折叠,进而避免桨叶10与地面或者地面上的物体剐蹭,以免桨叶10损坏。
本实施例中,螺旋桨还包括弹性件,弹性件与桨毂20和桨叶10连接,以驱动桨叶10向桨毂20的轴线折叠。在螺旋桨停止转动时,弹性件在自身弹力的作用下驱动桨叶10绕桨叶10与桨毂20的转动轴104转动,使 桨叶10向旋转轴线折叠,无需人为操作或者只需要很少的人为操作。
图3为本发明实施例提供的螺旋桨中环形簧片的安装示意图;图4为本发明实施例提供的螺旋桨中环形簧片与桨毂之间的安装示意图;图5为图4中A处的局部放大图。请参照图1-图5。具体地,弹性件可以包括环形簧片30,环形簧片30的侧壁上开设有槽口,环形簧片30套设在桨叶10与桨毂20的转动轴104外侧,且在环形簧片30驱动桨叶10展开时,槽口的一端与桨毂20连接,槽口的另一端与桨叶10连接。
示例性的,当驱动装置带动桨毂20和桨叶10转动时,桨叶10在离心力的作用下朝远离旋转轴线的方向旋转,使得环形簧片30发生弹性变形,槽口的宽度增大,直至各桨叶10处于展开状态;在驱动装置停止工作时,在环形簧片30自身弹性的作用下,环形弹片30恢复形变,槽口的宽度减小,进而驱动桨叶10向桨毂20的旋转轴线折叠。
继续参照图3-图5,具体地,桨叶10朝向桨毂20的安装端上设置有中心线与转动轴104的轴线共线的环形槽101,环形槽101内设置有与槽口配合的凸出部103,环形簧片30容置在环形槽101内;桨毂20上具有延伸至槽口内的延伸部201,在环形簧片30驱动桨叶10折叠时,延伸部201抵顶在环形簧片30的槽口的一端,凸出部103抵顶在槽口的另一端,槽口宽度变小。
在一个可实现的方式中,当桨叶10处于折叠状态时,凸出部103和延伸部201在槽口内可以沿平行于环形簧片30中心线的方向依次设置,即凸出部103和延伸部201相对设置;可选的,延伸部201的宽度与凸出部103的宽度相等,此时槽口的两端与凸出部103或延伸部201沿宽度的两端接触。在其它实施例中,延伸部201的宽度可以略小于或者略大于凸出部103的宽度。当桨毂20转动时,桨叶10在离心力的作用下绕转动轴104转动,此时凸出部103和延伸部201之间错开,延伸部201逐渐滑入环形槽101内,槽口的一端与凸出部103接触,另一端与延伸部201接触,槽口的宽度增大,环形簧片30发生弹性形变。当桨毂20的转速降低或者停止转动时,环形簧片30在自身弹力的作用下驱动延伸部201和凸出部103彼此靠近,槽口的宽度减小,以使桨叶10向旋转轴线折叠。
在其他实现方式中,当桨叶10处于折叠状态时,凸出部103和延伸 部201也可以并排设置;并且,槽口的一端仅与延伸部201接触,槽口的另一端仅与凸出部103接触。当桨毂20转动时,桨叶10在离心力的作用下绕转动轴104转动,此时凸出部103和延伸部201彼此远离,槽口的宽度增大,环形簧片30发生弹性形变;当桨毂20的转速降低或者停止转动时,环形簧片30在自身弹力的作用下驱动延伸部201和凸出部103彼此靠近,槽口的宽度减小,以使桨叶10向旋转轴线折叠。
环形簧片30容置在环形槽101内,可以避免外界物体与环形簧片30接触;另外,环形槽101也可以起到对环形簧片30的定位作用,以免环形簧片30移动。
本实施例中,桨毂20包括本体以及设置在本体边缘的第一连接板和第二连接板,第一连接板和第二连接板平行且间隔的设置;安装端设置在第一连接板和第二连接板之间,且安装端与第一连接板和第二连接板通过转动轴104连接;第一连接板用于封闭环形槽101,延伸部201设置在第一连接板朝向环形槽101的一侧。安装端与第一连接板和第二连接板均铰接,可以提高桨叶10与桨毂20之间的连接强度。
具体地,可以在第一连接板上开设有第一铰接孔,在第二连接板上开设有第二铰接孔,第一铰接孔的中心线、第二铰接孔的中心线以及转动轴104的轴线共线设置;桨叶10朝向桨毂20的安装端上开设有第三铰接孔,转动轴104穿设在第一铰接孔、第二铰接孔以及第三铰接孔内,以实现桨叶10与桨毂20之间的铰接。环形槽101设置在安装端朝向第一连接板的侧面上,相应的,延伸部201设置在第一连接板朝向安装端的侧面上,在将安装端设置在第一连接板和第二连接板之间时,延伸部201伸入到环形槽101内且位于环形簧片30的槽口内,凸出部103与延伸部201沿平行于环形槽101中心线的方向间隔的设置,即凸出部103与延伸部201相对设置。
继续参照图3-图5,进一步地,安装端的外表面上设置有贯穿至环形槽101的安装口102,安装口102正对凸出部103,安装口102的宽度等于或稍大于延伸部102的宽度。安装时可以先将延伸部201对准安装口102,之后推动安装端,以使延伸部201经安装口102进入到环形槽101内,与此同时延伸部201进入到环形簧片30的槽口内,避免安装时延伸 部201与安装端外表面接触,方便了桨叶10与桨毂20之间的安装。
值得注意的是,合理的设置延伸部201的形状,以使延伸部201沿环形槽101径向的宽度小于等于环形槽101沿径向的宽度,延伸部201可以顺利的滑入到环形槽101内,使桨叶10可以绕转动轴104转动。
本实施例中,当桨叶10向旋转轴线折叠至折叠状态时,槽口的两端均与凸出部103或延伸部201接触。避免了环形簧片30在环形槽101内晃动,导致的桨叶10活动。具体地,凸出部103或延伸部201的宽度可以与槽口的宽度相等,即槽口的两端刚好与凸出部103或延伸部201贴合;或者凸出部103或延伸部201的宽度稍大于槽口的宽度,以使槽口的两端与凸出部103或延伸部201过盈配合。
可选地,延伸部201宽度与凸出部103的宽度相等,以在桨叶10处于折叠状态时,槽口的两端均与延伸部201和凸出部103接触,凸出部103与延伸部201沿平行于转动轴104的方向间隔的设置,即凸出部103与延伸部201重叠。当桨毂20转动时,桨叶10在离心力的作用下发生转动,使得凸出部103和延伸部201之间错开,在延伸部201逐渐滑入环形槽101内的过程中,延伸部201抵顶槽口的一端,凸出部103抵顶槽口的另一端,环形簧片30发生弹性形变。
本实施例中,当桨毂20转动时,桨叶10在离心力的作用下向背离旋转轴线的方向转动,桨叶10可以在离心力的作用下自动展开。
值得注意的是,随着桨毂20转速的逐渐升高,桨叶10受到的离心力逐渐增大,当桨毂20的转速达到预设转速时,各桨叶10向背离旋转轴线的方向转动至展开状态;预设转速应不大于飞行器起飞所需的转速,以在飞行器起飞之前各桨叶10可以完全展开。
图6为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图二;图7为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图二,请参照图6和图7。本实施例中,弹性件还包括弹簧40;机身上具有与桨毂20传动连接的转动部60,弹簧40一端与转动部60连接,弹簧40的另一端与桨叶10连接。通过弹簧40驱动桨叶10绕桨叶10与桨毂20的转动轴104转动,结构简单。另外转动部60与桨毂20同步转动,连接在转动部60和桨叶10上的弹簧40不会阻止桨叶10随桨毂20 一起转动。
本实施例对转动部60不做限制,只要保证转动部60可以与桨毂20同步转动;示例性的,转动部60可以是驱动装置。继续参照图1-图7,转动部60上设置有主轴601,相应的,桨毂20上设置有轴孔,主轴601穿设在轴孔内,以实现主轴601与桨毂20之间的连接。进一步地,主轴601与桨毂20之间可以通过键连接的方式连接,以在主轴601转动时带动桨毂20转动。
继续参照图6和图7。本实施例提供的螺旋桨的工作过程为:当设置在飞行器机身上的驱动装置工作时,驱动装置通过转动部60带动桨毂20转动,进而带动桨叶10绕桨毂20的轴线转动,在此过程中桨叶10在离心力的作用下向背离桨毂20旋转轴线的方向转动,拉拔弹簧40以使弹簧40发生弹性形变;当各桨叶10转动至展开状态时,各桨叶10大致位于垂直于桨毂20旋转轴线的平面内,进而驱动空气向垂直于桨叶10的方向流动,以给飞行器提供动力。在飞行器降落时,在弹簧40弹力的作用下,弹簧40收缩,使桨叶10绕转动轴104转动,使桨叶10向桨毂20的旋转轴线折叠,以减小桨叶10沿其展开方向占据的空间。对于固定翼飞行器来说,可以将螺旋桨设置在机头或者机尾,且桨叶10的旋转轴线平行于地面,当桨叶10折叠时,可以减小桨叶10与地面之间的距离,防止桨叶10与地面发生剐蹭,从而损坏桨叶10。
图8为本发明实施例提供的螺旋桨桨叶处于折叠状态时的一种结构示意图三;图9为本发明实施例提供的螺旋桨桨叶处于展开状态时的一种结构示意图三,请参照图8和图9。本实施中,弹性件包括弹片50,弹片50设置在桨毂20和桨叶10之间,弹片50上具有弯曲部502,弯曲部502抵顶在桨叶10上。
具体地,弹片50可以包括与桨毂20连接的安装片501,以及设置在安装片501末端的弯曲部502,弯曲部502可以呈弧形或者弯曲部502与安装片501之间具有一定夹角,其中,在桨叶10处于初始的折叠状态时,弯曲部502朝向桨叶的方向弯曲,进一步的,弯曲部502与桨叶10接触或贴合;安装片501可以通过粘接、焊接或者螺栓连接的方式与桨毂20连接,弯曲部502与安装片501之间一体成型。
继续参照图8和图9,本实施例提供的螺旋桨的工作过程为:当设置在飞行器机身上的驱动装置工作时,驱动装置带动桨毂20转动,进而带动桨叶10绕桨毂20的旋转轴线转动,在此过程中桨叶10在离心力的作用下向背离桨毂20旋转轴线的方向转动,桨叶10抵顶弯曲部502使弯曲部502发生弹性形变;当各桨叶10转动至展开状态时,各桨毂20大致位于垂直于桨毂20轴线的平面内,进而驱动空气向垂直于桨叶10的方向流动,以为机身提供动力。在飞行器降落后,在弯曲部502弹力的作用下,桨叶10绕桨叶10与桨毂20之间的转动轴104转动,进而使桨叶10向桨毂20的旋转轴线折叠,以减小沿桨叶10沿其展开方向占据的空间。对于固定翼飞行器来说,可以将螺旋桨设置在机头或者机尾,且桨叶10的旋转轴线平行于地面,当桨叶10折叠时,可以减小桨叶10与地面之间的距离,防止桨叶10与地面发生剐蹭,从而损坏桨叶10。
进一步地,弹片50设置在桨毂20背离机身的一侧。以在飞行器降落时,弹片50驱动桨叶10向机身的折叠,以免桨叶10向背离机身的方向伸出,占据更大的空间。
进一步地,如上述实施例1和实施例2中所示的螺旋桨,当螺旋桨展开时,桨叶10大致位于垂直于桨毂20的旋转轴线的同一平面内,因此该螺旋桨还可以包括限位结构(图未示出),该限位结构可以设置在桨毂20或桨叶10上,以防止桨叶在展开过程中展开过大,使得各桨叶不位于同一平面内。
实施例3
继续参照图1-图9,本实施例提供一种动力组件,包括电机以及螺旋桨;电机与螺旋传动连接。以带动螺旋桨转动。
其中螺旋桨的结构与实施例2中的螺旋桨结构大体相似,在此不再赘述。本实施例提供的动力组件,通过使桨叶10与桨毂20通过转动轴104转动连接,并且转动轴104的轴线与桨毂20的旋转轴线之间具有预设夹角;在飞行器降落到地面上之后,可以使桨叶10绕转动轴104转动,使桨叶10向桨毂20的旋转轴线折叠,以免桨叶10沿其展开方向延伸,进而避免桨叶10与地面或者地面上的物体剐蹭,以免桨叶10损坏。
实施例4
继续参照图1-图9,本实施例提供一种飞行器,包括如上所述的动力组件。
本实施例提供的飞行器,通过通过使桨叶10与桨毂20通过转动轴104转动连接,并且转动轴104的轴线与桨毂20的旋转轴线之间具有预设夹角;在飞行器降落到地面上之后,可以使桨叶10绕转动轴104转动,使桨叶10向桨毂20的旋转轴线折叠,进而避免桨叶10与地面或者地面上的物体剐蹭,以免桨叶10损坏。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (39)

  1. 一种螺旋桨,其特征在于,包括:
    桨毂,能够绕一旋转轴线转动;
    至少两个桨叶,与所述桨毂可转动连接,并且所述桨叶相对于所述桨毂的转动状态包括展开状态以及折叠状态;
    其中,在所述展开状态时,所述桨叶的长度方向相较于所述旋转轴线形成第一夹角;在所述折叠状态时,所述桨叶的长度方向相较于所述旋转轴线形成第二夹角,所述第二夹角不等于所述第一夹角。
  2. 根据权利要求1所述的螺旋桨,其特征在于,当所述桨叶处于展开状态时,各所述桨叶所处的平面与水平面垂直。
  3. 根据权利要求1所述的螺旋桨,其特征在于,所述螺旋桨还包括弹性件,所述弹性件与所述桨毂和所述桨叶连接,用于驱动所述桨叶向所述旋转轴线折叠。
  4. 根据权利要求3所述的螺旋桨,其特征在于,所述弹性件包括环形簧片,所述环形簧片的侧壁上开设有槽口,所述环形簧片套设在所述桨叶与所述桨毂之间的转动轴的外侧,且所述槽口的一端与所述桨毂连接,所述槽口的另一端与所述桨叶连接。
  5. 根据权利要求4所述的螺旋桨,其特征在于,所述桨叶朝向所述桨毂的安装端上设置有中心线与所述转动轴的轴线共线的环形槽,所述环形槽内设置有与所述槽口配合的凸出部,所述环形簧片容置在所述环形槽内;所述桨毂上具有延伸至所述槽口内的延伸部,所述延伸部抵顶在所述槽口的一端,所述凸出部抵顶在所述槽口的另一端,以驱动所述桨叶向所述旋转轴线折叠。
  6. 根据权利要求5所述的螺旋桨,其特征在于,当所述桨叶向所述旋转轴线折叠至折叠状态时,所述槽口的两端均与所述凸出部接触。
  7. 根据权利要求5所述的螺旋桨,其特征在于,当所述桨毂转动时,所述桨叶在离心力的作用下向背离所述旋转轴线的方向转动。
  8. 根据权利要求5所述的螺旋桨,其特征在于,所述桨毂包括本体以及设置在所述本体边缘的第一连接板和第二连接板,所述第一连接板和所述第二连接板平行且间隔的设置;所述安装端设置在所述第一连接板和 所述第二连接板之间,且所述安装端与所述第一连接板和所述第二连接板通过所述转动轴铰接;所述第一连接板用于封闭所述环形槽,所述延伸部设置在所述第一连接板朝向所述环形槽的一侧。
  9. 根据权利要求8所述的螺旋桨,其特征在于,所述安装端的外表面上设置有贯穿至所述环形槽的安装口,所述安装口正对所述凸出部。
  10. 根据权利要求3所述的螺旋桨,其特征在于,所述弹性件包括弹簧;机身上具有与所述桨毂传动连接的转动部,所述弹簧一端与所述转动部连接,所述弹簧的另一端与所述桨叶连接。
  11. 根据权利要求3所述的螺旋桨,其特征在于,所述弹性件包括弹片,所述弹片设置在桨毂上,所述弹片上具有弯曲部,所述弯曲部抵顶在所述桨叶上。
  12. 根据权利要求11所述的螺旋桨,其特征在于,所述弹片设置在所述桨毂背离机身的一侧。
  13. 一种螺旋桨,其特征在于,包括:桨毂以及沿所述桨毂的周向等间隔设置的至少两个桨叶;
    所述桨叶通过转动轴与所述桨毂转动连接,以向所述桨毂的旋转轴线折叠所述桨叶,并且所述转动轴的轴线与所述旋转轴线之间具有预设夹角,所述预设夹角大于0°。
  14. 根据权利要求13所述的螺旋桨,其特征在于,所述桨叶相对于所述桨毂的转动状态包括向所述旋转轴线折叠后的折叠状态、以及折叠前的展开状态;当所述桨叶处于展开状态时,各所述桨叶所处的平面与水平面垂直。
  15. 根据权利要求13所述的螺旋桨,其特征在于,所述预设夹角为90°。
  16. 根据权利要求13所述的螺旋桨,其特征在于,所述螺旋桨还包括弹性件,所述弹性件与所述桨毂和所述桨叶连接,用于驱动所述桨叶向所述旋转轴线折叠。
  17. 根据权利要求16所述的螺旋桨,其特征在于,所述弹性件包括环形簧片,所述环形簧片的侧壁上开设有槽口,所述环形簧片套设在所述转动轴的外侧,且所述槽口的一端与所述桨毂连接,所述槽口的另一端与 所述桨叶连接。
  18. 根据权利要求17所述的螺旋桨,其特征在于,所述桨叶朝向所述桨毂的安装端上设置有中心线与所述转动轴的轴线共线的环形槽,所述环形槽内设置有与所述槽口配合的凸出部,所述环形簧片容置在所述环形槽内;所述桨毂上具有延伸至所述槽口内的延伸部,所述延伸部抵顶在所述槽口的一端,所述凸出部抵顶在所述槽口的另一端,以驱动所述桨叶向所述旋转轴线折叠。
  19. 根据权利要求18所述的螺旋桨,其特征在于,当所述桨叶向所述旋转轴线折叠至折叠状态时,所述槽口的两端均与所述凸出部接触。
  20. 根据权利要求18所述的螺旋桨,其特征在于,当所述桨毂转动时,所述桨叶在离心力的作用下向背离所述旋转轴线的方向转动。
  21. 根据权利要求18所述的螺旋桨,其特征在于,所述桨毂包括本体以及设置在所述本体边缘的第一连接板和第二连接板,所述第一连接板和所述第二连接板平行且间隔的设置;所述安装端设置在所述第一连接板和所述第二连接板之间,且所述安装端与所述第一连接板和所述第二连接板通过所述转动轴铰接;所述第一连接板用于封闭所述环形槽,所述延伸部设置在所述第一连接板朝向所述环形槽的一侧。
  22. 根据权利要求21所述的螺旋桨,其特征在于,所述安装端的外表面上设置有贯穿至所述环形槽的安装口,所述安装口正对所述凸出部。
  23. 根据权利要求16所述的螺旋桨,其特征在于,所述弹性件包括弹簧;机身上具有与所述桨毂传动连接的转动部,所述弹簧一端与所述转动部连接,所述弹簧的另一端与所述桨叶连接。
  24. 根据权利要求16所述的螺旋桨,其特征在于,所述弹性件包括弹片,所述弹片设置在桨毂上,所述弹片上具有弯曲部,所述弯曲部抵顶在所述桨叶上。
  25. 根据权利要求24所述的螺旋桨,其特征在于,所述弹片设置在所述桨毂背离机身的一侧。
  26. 一种动力组件,其特征在于,包括电机以及螺旋桨;
    所述电机与所述螺旋桨传动连接;
    所述螺旋将包括:桨毂以及沿所述桨毂的周向等间隔设置的至少两个 桨叶;
    所述桨叶通过转动轴与所述桨毂转动连接,以向所述桨毂的旋转轴线折叠所述桨叶,并且所述转动轴的轴线与所述旋转轴线之间具有预设夹角,所述预设夹角大于0°。
  27. 根据权利要求26所述的动力组件,其特征在于,所述桨叶相对于所述桨毂的转动状态包括向所述旋转轴线折叠后的折叠状态、以及折叠前的展开状态;当所述桨叶处于展开状态时,各所述桨叶所处的平面与水平面垂直。
  28. 根据权利要求26所述的动力组件,其特征在于,所述预设夹角为90°。
  29. 根据权利要求26所述的动力组件,其特征在于,所述螺旋桨还包括弹性件,所述弹性件与所述桨毂和所述桨叶连接,用于驱动所述桨叶向所述旋转轴线折叠。
  30. 根据权利要求29所述的动力组件,其特征在于,所述弹性件包括环形簧片,所述环形簧片的侧壁上开设有槽口,所述环形簧片套设在所述转动轴的外侧,且所述槽口的一端与所述桨毂连接,所述槽口的另一端与所述桨叶连接。
  31. 根据权利要求30所述的动力组件,其特征在于,所述桨叶朝向所述桨毂的安装端上设置有中心线与所述转动轴的轴线共线的环形槽,所述环形槽内设置有与所述槽口配合的凸出部,所述环形簧片容置在所述环形槽内;所述桨毂上具有延伸至所述槽口内的延伸部,所述延伸部抵顶在所述槽口的一端,所述凸出部抵顶在所述槽口的另一端,以驱动所述桨叶向所述旋转轴线折叠。
  32. 根据权利要求31所述的动力组件,其特征在于,当所述桨叶向所述旋转轴线折叠至折叠状态时,所述槽口的两端均与所述凸出部接触。
  33. 根据权利要求31所述的动力组件,其特征在于,当所述桨毂转动时,所述桨叶在离心力的作用下向背离所述旋转轴线的方向转动。
  34. 根据权利要求31所述的动力组件,其特征在于,所述桨毂包括本体以及设置在所述本体边缘的第一连接板和第二连接板,所述第一连接板和所述第二连接板平行且间隔的设置;所述安装端设置在所述第一连接 板和所述第二连接板之间,且所述安装端与所述第一连接板和所述第二连接板通过所述转动轴铰接;所述第一连接板用于封闭所述环形槽,所述延伸部设置在所述第一连接板朝向所述环形槽的一侧。
  35. 根据权利要求34所述的动力组件,其特征在于,所述安装端的外表面上设置有贯穿至所述环形槽的安装口,所述安装口正对所述凸出部。
  36. 根据权利要求29所述的动力组件,其特征在于,所述弹性件包括弹簧;机身上具有与所述桨毂传动连接的转动部,所述弹簧一端与所述转动部连接,所述弹簧的另一端与所述桨叶连接。
  37. 根据权利要求29所述的动力组件,其特征在于,所述弹性件包括弹片,所述弹片设置在桨毂上,所述弹片上具有弯曲部,所述弯曲部抵顶在所述桨叶上。
  38. 根据权利要求37所述的动力组件,其特征在于,所述弹片设置在所述桨毂背离机身的一侧。
  39. 一种飞行器,其特征在于,包括:机身以及权利要求26-38任一项所述的动力组件。
PCT/CN2019/083161 2019-04-18 2019-04-18 螺旋桨、动力组件及飞行器 WO2020211028A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19924818.8A EP3858731A1 (en) 2019-04-18 2019-04-18 Propeller, power assembly, and aerial vehicle
PCT/CN2019/083161 WO2020211028A1 (zh) 2019-04-18 2019-04-18 螺旋桨、动力组件及飞行器
CN201980012527.7A CN111741895A (zh) 2019-04-18 2019-04-18 螺旋桨、动力组件及飞行器
US17/152,770 US20210139132A1 (en) 2019-04-18 2021-01-19 Propellers, power assemblies and aerial vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083161 WO2020211028A1 (zh) 2019-04-18 2019-04-18 螺旋桨、动力组件及飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/152,770 Continuation US20210139132A1 (en) 2019-04-18 2021-01-19 Propellers, power assemblies and aerial vehicles

Publications (1)

Publication Number Publication Date
WO2020211028A1 true WO2020211028A1 (zh) 2020-10-22

Family

ID=72646395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083161 WO2020211028A1 (zh) 2019-04-18 2019-04-18 螺旋桨、动力组件及飞行器

Country Status (4)

Country Link
US (1) US20210139132A1 (zh)
EP (1) EP3858731A1 (zh)
CN (1) CN111741895A (zh)
WO (1) WO2020211028A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212243A (zh) * 2021-12-03 2022-03-22 南昌三瑞智能科技有限公司 一种可自动折叠和展开的螺旋桨

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220056573A (ko) * 2020-10-28 2022-05-06 현대자동차주식회사 에어모빌리티의 프로펠러 폴딩 장치
CN113562170A (zh) * 2021-09-10 2021-10-29 陕西蓝悦无人机技术有限公司 一种防弹减震无人机和方法
CN114030591A (zh) * 2021-12-23 2022-02-11 中国航天空气动力技术研究院 一种螺旋桨变距限位装置
CN114248908B (zh) * 2021-12-30 2023-06-16 广东汇天航空航天科技有限公司 螺旋桨及飞行设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077278A1 (en) * 2014-11-10 2016-05-19 Ascent Aerosystems Llc Unmanned flying device
US20170320565A1 (en) * 2016-03-30 2017-11-09 Lockheed Martin Corporation Hinge mechanism for a weight-shifting coaxial helicopter
CN207129146U (zh) * 2017-06-27 2018-03-23 汕头市大业塑胶玩具有限公司 无人机折叠旋翼
CN207536120U (zh) * 2017-10-25 2018-06-26 广东泰一高新技术发展有限公司 无人机螺旋桨保护系统
CN207683779U (zh) * 2017-12-22 2018-08-03 宝鸡特种飞行器工程研究院有限公司 便携式无人机共轴双桨折叠机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499155B2 (ja) * 2004-04-14 2010-07-07 アールトン,ポール,イー. 回転翼輸送手段
KR102192821B1 (ko) * 2014-11-04 2020-12-18 엘지전자 주식회사 드론
GB2550916B (en) * 2016-05-30 2018-09-26 Kapeter Luka Propeller-hub assembly with folding blades for VTOL aircraft
CN207141389U (zh) * 2017-08-15 2018-03-27 深圳市道通智能航空技术有限公司 折叠螺旋桨、动力组件以及无人飞行器
WO2019043520A1 (en) * 2017-08-29 2019-03-07 Hangzhou Zero Zero Technology Co., Ltd. AUTONOMOUS AUTOMATIC STABILIZATION AERIAL SYSTEM AND METHOD THEREOF
CN108791859B (zh) * 2018-07-12 2024-02-06 西安君晖航空科技有限公司 一种快速抵近的旋翼无人机
CN108688792A (zh) * 2018-07-31 2018-10-23 成都纵横大鹏无人机科技有限公司 一种折叠式螺旋桨、动力装置及无人机
CN210139956U (zh) * 2019-04-18 2020-03-13 深圳市大疆创新科技有限公司 螺旋桨、动力组件及飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077278A1 (en) * 2014-11-10 2016-05-19 Ascent Aerosystems Llc Unmanned flying device
US20170320565A1 (en) * 2016-03-30 2017-11-09 Lockheed Martin Corporation Hinge mechanism for a weight-shifting coaxial helicopter
CN207129146U (zh) * 2017-06-27 2018-03-23 汕头市大业塑胶玩具有限公司 无人机折叠旋翼
CN207536120U (zh) * 2017-10-25 2018-06-26 广东泰一高新技术发展有限公司 无人机螺旋桨保护系统
CN207683779U (zh) * 2017-12-22 2018-08-03 宝鸡特种飞行器工程研究院有限公司 便携式无人机共轴双桨折叠机构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212243A (zh) * 2021-12-03 2022-03-22 南昌三瑞智能科技有限公司 一种可自动折叠和展开的螺旋桨
CN114212243B (zh) * 2021-12-03 2022-11-01 南昌三瑞智能科技有限公司 一种可自动折叠和展开的螺旋桨

Also Published As

Publication number Publication date
US20210139132A1 (en) 2021-05-13
EP3858731A1 (en) 2021-08-04
CN111741895A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2020211028A1 (zh) 螺旋桨、动力组件及飞行器
CN109533305B (zh) 用于固定翼垂直起降飞行器的可折叠旋翼组件
CN205554584U (zh) 无人飞行器及其机架
JP4441826B2 (ja) リング状の翼構造を有する航空機
EP3464061B1 (en) Propeller-hub assembly with folding blades for vtol aircraft
CN210139956U (zh) 螺旋桨、动力组件及飞行器
US6561456B1 (en) Vertical/short take-off and landing aircraft
JP6578451B2 (ja) フェザープロペラクラッチ機構
WO2019084815A1 (zh) 无人机
WO2022000198A1 (zh) 无人机及适用于无人机的防护装置
CN111252237A (zh) 一种折叠展开装置及螺旋桨
WO2021098452A1 (zh) 折叠桨机构和无人飞行器
WO2019242225A1 (zh) 无人飞行器及其机臂组件和转轴机构
CN106114835A (zh) 一种复合式无人直升机
US10526069B1 (en) Collapsible large diameter propeller for quiet aircraft
CN212448047U (zh) 桨夹、螺旋桨组件、动力装置和无人机
CN207129129U (zh) 可折叠飞行器
WO2020156078A1 (zh) 一种倾转旋翼无人机及其机翼组件
CN209938948U (zh) 可折叠式共轴旋翼无人机
KR101726652B1 (ko) 무인 비행체용 날개
CN207826537U (zh) 一种新型折叠油动旋翼结构
CN114348237A (zh) 一种小型航空器折叠翼面弹出口的封闭和锁定机构
CN115303478A (zh) 一种共轴无人机
KR20180081923A (ko) 무인비행체
WO2018214224A1 (zh) 无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19924818.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019924818

Country of ref document: EP

Effective date: 20210429

NENP Non-entry into the national phase

Ref country code: DE