WO2020156078A1 - 一种倾转旋翼无人机及其机翼组件 - Google Patents

一种倾转旋翼无人机及其机翼组件 Download PDF

Info

Publication number
WO2020156078A1
WO2020156078A1 PCT/CN2020/070952 CN2020070952W WO2020156078A1 WO 2020156078 A1 WO2020156078 A1 WO 2020156078A1 CN 2020070952 W CN2020070952 W CN 2020070952W WO 2020156078 A1 WO2020156078 A1 WO 2020156078A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wing
assembly
tilt
support
Prior art date
Application number
PCT/CN2020/070952
Other languages
English (en)
French (fr)
Inventor
孙维
张海浪
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020156078A1 publication Critical patent/WO2020156078A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to a tilt-rotor unmanned aerial vehicle and its wing assembly.
  • Tilt-rotor UAV is a kind of UAV that can complete the take-off and landing of UAV in situ without taxiing.
  • the tilt rotor assembly of the tilt-rotor UAV tilts as the flight speed increases. After the tilt-rotor UAV exceeds a certain stall speed, the tilt-rotor assembly completes the tilt and tilts the rotor.
  • the output direction of the component is approximately perpendicular to the direction of air flow, so that the tilt-rotor UAV generates buoyancy through the wings and ensures the endurance flight capability of the tilt-rotor UAV.
  • the landing gear Due to the structural weight limitation of light tilt-rotor drones, the landing gear is mostly fixed. Therefore, when tilt-rotor drones are flying, the landing gear increases the flight resistance of tilt-rotor drones. In addition, due to The landing gear could not be stowed, causing the landing gear to block the viewing angle of the surveying and mapping camera or the gimbal camera.
  • embodiments of the present invention provide a tilt-rotor drone with a foldable landing gear and its wings.
  • a wing assembly for installation on the fuselage of a tilt-rotor UAV, the wing assembly includes: a wing, the wing is used to be installed on the fuselage: a tilt-rotor Assembly, the tilting rotor assembly is installed on the wing; and landing gear, the landing gear is installed on the tilting rotor assembly; wherein the tilting rotor assembly can be tilted relative to the wing to The first position or the second position; when the tilt-rotor drone takes off and landed vertically, the tilt-rotor assembly tilts to the first position relative to the wing, and the landing gear is relative to the The wings are unfolded, and the tilt rotor assembly provides vertical take-off and landing lift for the tilt rotor drone; when the tilt rotor drone continues to fly, the tilt rotor assembly is relative to the The wing is tilted to the second position, the landing gear is folded relative to the wing, and the tilt-rotor assembly provides thrust for endurance flight of the tilt-rotor drone.
  • the tilting rotor assembly includes a rotor mechanism and a support assembly; the support assembly is mounted on the wing, the rotor mechanism is mounted on the support assembly, and the rotor mechanism can be opposed to each other. Tilting on the support assembly; the landing gear is installed on the rotor mechanism.
  • the wing has a leading edge and a trailing edge; one end of the support assembly protrudes from the front edge or the trailing edge; the rotor mechanism is installed on the support assembly to protrude from the front Rim or one end of the trailing edge.
  • one end of the support assembly protrudes from the front edge, and the other end of the support assembly protrudes from the rear edge; the two rotor mechanisms are respectively installed at both ends of the support assembly .
  • the support assembly includes a first support and a second support; one end of the first support protrudes from the front edge, and the other end of the first support is connected to the second support.
  • the supports are opposed to each other, and the other end of the second support protrudes from the rear edge; one of the two rotor mechanisms is installed on one end of the first support protruding from the front edge, and the two rotors The other of the mechanisms is mounted on an end of the second support protruding from the rear edge.
  • the two landing gears are respectively mounted on the two rotor mechanisms.
  • the rotor mechanism includes a motor base, a rotor motor, and a propeller that are sequentially connected; the motor base is mounted on the support assembly, the landing gear is mounted on the motor base, and the motor base may Tilt relative to the wing.
  • the propeller has a rotation axis, and the motor base, the rotor motor, and the propeller are linearly distributed.
  • the landing gear includes a support part; one end of the support part is connected to the motor base, and the other end of the support part extends in a direction away from the propeller.
  • the landing gear further includes a connecting portion connected between the supporting portion and the connecting portion.
  • a tilt-rotor drone including: a fuselage; and the above-mentioned wing assembly installed on the fuselage.
  • the wing assembly is used to be installed on the fuselage of the tilt-rotor drone, and the wing
  • the components include: a wing, the wing for mounting on the fuselage: a tilting rotor assembly, the tilting rotor assembly is mounted on the wing; and a landing gear, the landing gear is mounted on the tilting rotor A rotary wing assembly; wherein the tilting rotor assembly can be tilted to a first position or a second position relative to the wing; when the tilting rotor drone takes off and landing vertically, the tilting rotor assembly Tilting relative to the wing to the first position, the landing gear is deployed relative to the wing, and the tilting rotor assembly provides vertical take-off and landing lift for the tilting rotor drone; when When the tilt-rotor drone is in continuous flight, the tilt-rotor assembly tilts to the second position relative to the wing, the landing
  • Figure 1 is a perspective view of a tilt-rotor drone in a vertical take-off and landing state according to one of the embodiments of the present invention
  • Figure 2 is a perspective view of the tilt-rotor UAV shown in Figure 1 in the endurance flight state;
  • Figure 3 is a perspective view of the landing gear and tilt rotor assembly of the tilt-rotor drone shown in Figure 1;
  • Figure 4 is a side view of the tilt-rotor drone shown in Figure 1;
  • Figure 5 is a side view of the tilt-rotor drone shown in Figure 2;
  • Figure 6 is a front view of the tilt-rotor UAV shown in Figure 1;
  • Figure 7 is a front view of the tilt-rotor drone shown in Figure 2;
  • Fig. 8 is a perspective view of the tilt-rotor drone shown in Fig. 1 in an acceleration phase.
  • FIGS. 1 and 2 are a tilt-rotor drone 300 provided by one embodiment of the present invention, including a fuselage 200 and a wing assembly 100. Wherein, the wing assembly 100 is installed on the fuselage 200.
  • the fuselage 200 is in the shape of a shuttle as a whole.
  • the fuselage 200 includes a control circuit assembly composed of MCU and other electronic components.
  • the control circuit assembly includes a plurality of control modules, such as for controlling the tilting rotor without
  • the flight control module for the flight attitude of the man-machine 300, the Beidou module for navigating the tilt-rotor UAV 300, and the data processing module for processing the environmental information obtained by the relevant airborne equipment, etc.
  • the wing assembly 100 includes a wing 10, a tilting rotor assembly 20 and a landing gear 30.
  • the wing 10 is installed on the fuselage 200
  • the tilting rotor assembly 20 is installed on the wing 10
  • the landing gear 30 is installed on the tilting rotor assembly 20, and the tilting rotor
  • the assembly 20 can be tilted to a first position or a second position relative to the fuselage 10.
  • the tilt-rotor drone 100 has two flight states, namely a vertical take-off and landing state and an endurance flight state. Wherein, when the tilt-rotor drone 100 takes off and landed vertically, the tilt-rotor assembly 20 tilts to the first position relative to the wing 10, and the tilt-rotor assembly 20 is the The tilt-rotor drone 300 takes off and landed vertically to provide lift, and the landing gear 30 is deployed relative to the fuselage, and the landing gear 30 can support the tilt-rotor drone 300.
  • the tilt-rotor assembly 20 rotates to the second position, and the tilt-rotor assembly 20 provides endurance flight for the tilt-rotor drone 300
  • the landing gear 30 is folded relative to the fuselage, and the flight resistance of the landing gear 30 to the tilt-rotor drone 300 is relatively small.
  • the tilt-rotor assembly 20 provides thrust for the tilt-rotor drone 300 to move forward, and the wing 10 crosses the air because In the configuration of the wing 10, the upper and lower wing surfaces of the wing 10 have a pressure difference, the wing 10 generates the lift force that causes the tilt-rotor drone 300 to float in the air, and the tilt-rotor assembly
  • the energy consumed by 20 to provide thrust is less than the energy consumed by the tilt-rotor assembly 20 to provide lift. Therefore, the tilt-rotor drone 300 can fly continuously.
  • the landing gear 30 can prevent the viewing angle of the surveying and mapping camera or the pan/tilt camera from being blocked by the landing gear 30. Difficulty in the arrangement of optical equipment in the process. Furthermore, the tilt-rotor drone 300 uses the landing gear 30 only during vertical take-off and landing, and needs to fold the landing gear 30 during continuous flight. Therefore, the landing gear 30 is installed at all The tilt-rotor assembly 20 does not require additional motors for the landing gear 30, so that the endurance of the tilt-rotor drone 300 is improved and the weight of the tilt-rotor drone 300 is reduced. .
  • the tilt-rotor drone 300 when the tilt-rotor drone 300 is in the take-off phase, since the landing gear 30 is installed on the tilt-rotor assembly 20, and the landing gear 30 is in contact with the ground, that is, in the tilt
  • the rotor assembly 20 adds a movement constraint to the tilt rotor assembly 20 in the direction perpendicular to the ground, that is, it cannot move toward the ground, so that the tilt rotor assembly 20 can only move in an upward direction perpendicular to the ground.
  • the movement weakens the vibration of the tilt-rotor assembly 20 and improves the stability of the tilt-rotor drone 300 during take-off.
  • the wing 10 expands along its extension direction L, and the wing 10 has a leading edge 11, a trailing edge 12, an upper wing surface 13 and a lower wing surface 14.
  • the front edge 11 and the rear edge 12 are opposite
  • the tilting rotor assembly 20 includes a support assembly 21, a rotor mechanism 22, and a tilting motor (not shown).
  • the support assembly 21 is connected to the wing 10
  • the rotor mechanism 22 is mounted on the support assembly 21, and the rotor mechanism 22 can be tilted to the first position or relative to the wing 10 In the second position, the tilt motor is used to drive the rotor mechanism 22 to tilt relative to the wing 10.
  • the rotor mechanism 22 tilts to the first position relative to the wing 10, and the rotor mechanism 22 is the tilt-rotor drone 300 vertical take-off and landing provide lift.
  • the rotor mechanism 22 tilts to the second position relative to the wing 10, and the rotor mechanism 22 is the tilt-rotor drone 300 Endurance flight provides thrust.
  • the support assembly 21 has a hollow cylindrical shape as a whole, one end of the support assembly 21 protrudes from the front edge 11 of the wing 10, and the other end of the support assembly 21 protrudes from the rear edge of the wing 10 12.
  • the support assembly 21 includes a first support 210 and a second support 211.
  • One end of the first support 210 protrudes from the leading edge 11 of the wing 10, and the other end of the first support 210 is connected to One end of the second support 211 is opposite to each other, and the other end of the second support 211 protrudes from the rear edge 12 of the wing 10.
  • the first support 210 and the second support 211 may be integrated, that is, the support assembly 21 is a whole.
  • one of the first support 210 and the second support 211 may be omitted.
  • the support assembly 21 can be omitted, that is, the rotor mechanism 22 is directly installed on the wing 10.
  • the number of the rotor mechanism 22 is two, one of the two rotor mechanisms 22 is mounted on the first support 210 protruding from the end of the front edge 11 of the wing 10, and the two rotor mechanisms 22 The other one is installed at the other end of the second support 211 protruding from the trailing edge 12 of the wing 10.
  • the two rotor mechanisms 22 are both tilted to the first position relative to the wing 10, and the two rotor mechanisms 22 jointly provide the tilt
  • the rotary-rotor drone 300 provides vertical lift.
  • the two rotor mechanisms 22 are both tilted to the second position relative to the wing 10, and the two rotor mechanisms 22 jointly provide the tilt Rotor UAV 300 provides thrust for endurance flight.
  • the number of the rotor mechanism 22 is not limited to two, as long as it is at least one, and only one rotor mechanism 22 provides the vertical rotor mechanism for the tilt-rotor drone 300.
  • Each rotor mechanism 22 includes a motor base 220, a rotor motor 221, and a propeller 222.
  • the motor base 220, the rotor motor 221 and the propeller 222 are connected in sequence.
  • the motor base 220 is mounted on an end of the support assembly 21 protruding from the front edge 11 or an end protruding from the rear edge 12, and the motor base 220 can tilt relative to the wing 10.
  • the motor base 220, the rotor motor 221, and the propeller 222 are linearly distributed.
  • the motor base 220, the rotor motor 221, and the propeller 222 are all along The rotation axis S of the propeller 222 is distributed.
  • the propeller 222 is located on the side facing the upper wing surface 13.
  • the propeller 222 is located on the side facing the leading edge 11 or the trailing edge 13 .
  • the tilting motor is installed in the support assembly 21, the tilting motor is used to drive the motor base 221 to tilt relative to the wing 10, and the number of the tilting motor is proportional to the rotor mechanism The number of 22 corresponds.
  • the tilting motor can be a servo motor or a steering gear.
  • the tilting motor can directly drive the motor base 221 to tilt relative to the wing 10, or it can be through a gear set, for example.
  • a transmission mechanism such as a worm gear mechanism drives the motor base 221 to tilt relative to the wing 10.
  • the landing gear 30 is installed on the motor base 221, and the number of the landing gear 221 corresponds to the number of the rotor mechanism 22.
  • the landing gear 30 is L-shaped as a whole, and the landing gear 30 includes a supporting portion 31 and a connecting portion 32.
  • One end of the connecting portion 32 is connected to the motor base 221, the other end of the connecting portion 32 is connected to the supporting portion 31, and one end of the supporting portion 31 is connected to the connecting portion 32.
  • the other end extends in a direction away from the propeller 222.
  • the first support portion 31 is substantially perpendicular to the lower wing surface 14, and The other end of the support portion 31 away from the propeller 222 is located at the end facing the lower wing surface 14 so that the support portion 31 can support the tilt-rotor drone 300.
  • the support portion 31 is substantially parallel to the lower wing surface 14, and the The supporting portion 31 is located on the side facing the lower wing surface 14 so that the supporting portion 31 has a low flight resistance to the tilt-rotor drone 300.
  • the rotor mechanism 22 is tilted relative to the wing 10 about the centerline O, the centerline O is substantially perpendicular to the extension direction S of the wing 10, and The center line O is parallel to the upper wing surface 13 or the lower wing surface 14 of the wing 10.
  • the support portion 31 is parallel to the rotation axis S of the propeller 222.
  • the connecting portion 32 is perpendicular to the supporting portion 31.
  • connecting portion 32 is used to deviate the support portion 31 from the wing 10 so as to avoid interference between the support portion 31 and the wing 10.
  • the connecting portion 32 may be omitted, that is, one end of the supporting portion 31 is directly connected to the motor base 221.
  • tilt-rotor drone 300 When the tilt-rotor drone 300 is specifically used, the details are as follows:
  • the two rotor mechanisms 22 are both tilted to the first position relative to the wing 10,
  • the landing gear 30 is deployed relative to the wing 10, and the two rotor mechanisms 22 together provide the tilt-rotor drone 300 with vertical take-off and landing lift.
  • the rotor mechanism 22 at the leading edge 11 first gradually tilts relative to the wing 10 to the second Position, the landing gear 30 located at the leading edge 11 is folded relative to the wing 10, and the rotor mechanism 22 located at the trailing edge 12 is kept in the first position relative to the wing 10, located at the rear
  • the rotor mechanism 22 of the edge 12 continues to provide lift for the tilt-rotor drone 300 to keep floating.
  • the rotor mechanism 22 located at the trailing edge 12 quickly tilts relative to the wing 10 to the second position, which is located at the rear
  • the landing gear 30 of the rim 12 is folded relative to the wing 10, and the two rotor mechanisms 22 together provide the endurance flight thrust for the tilt-rotor UAV 300, as shown in Figs. 2, 5 and 7 .
  • the wing assembly 100 is used to be installed on the fuselage 200 of the tilt-rotor drone 300,
  • the wing assembly 100 includes: a wing 10, the wing 10 is configured to be installed on the fuselage 200; a tilting rotor assembly 20, the tilting rotor assembly 20 is installed on the wing 10; and
  • the landing gear 30 is installed on the tilting rotor assembly 20; wherein the tilting rotor assembly 20 can be tilted to a first position or a second position relative to the wing 10;
  • the tilt-rotor assembly 20 When the rotary-rotor drone 300 takes off and landed vertically, the tilt-rotor assembly 20 is tilted to the first position relative to the wing 10, the landing gear 30 is deployed relative to the wing 10, and the The tilt-rotor assembly 20 provides vertical take-off and landing lift for the tilt-rotor drone 300; when the tilt-rotor drone 300 continues to fly, the tilt-rotor assembly 20 is relative to the

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

一种机翼组件(100),包括:机翼(10),用于安装于机身(200):倾转旋翼组件(20),安装于机翼(10);以及起落架(30),安装于倾转旋翼组件(20);当倾转旋翼无人机垂直起降时,倾转旋翼组件相对于机翼倾转至第一位置,起落架相对于机翼展开,倾转旋翼组件为倾转旋翼无人机提供垂直起降的升力;当倾转旋翼无人机续航飞行时,倾转旋翼组件相对于机翼倾转至第二位置,起落架相对于机翼折叠,倾转旋翼组件为倾转旋翼无人机提供续航飞行的推力。一种倾转旋翼无人机也被公开。

Description

一种倾转旋翼无人机及其机翼组件 【技术领域】
本发明涉及无人飞行器领域,尤其涉及一种倾转旋翼无人机及其机翼组件。
【背景技术】
倾转旋翼无人机,是一种起飞时无需滑跑,可以原地完成无人机的起飞和降落。在空中时,倾转旋翼无人机的倾转旋翼组件随着飞行速度的提高进行倾转,待倾转旋翼无人机超过一定的失速速度之后,倾转旋翼组件完成倾转,倾转旋翼组件的输出方向与空气来流方向近似垂直,从而使倾转旋翼无人机的通过机翼产生浮力,保证了倾转旋翼无人机的续航飞行能力。
轻型的倾转旋翼无人机由于结构重量的限制,起落架多为固定式,因此,倾转旋翼无人机在飞行时,起落架增加了倾转旋翼无人机的飞行阻力,此外,由于起落架无法收起,导致起落架遮挡测绘相机或者云台相机的视角。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种起落架可折叠的倾转旋翼无人机及其机翼。
为了解决上述技术问题,本发明实施例提供以下技术方案:
一方面,提供一种机翼组件,用于安装于倾转旋翼无人机的机身,所述机翼组件包括:机翼,所述机翼用于安装于所述机身:倾转旋翼组件,所述倾转旋翼组件安装于所述机翼;以及起落架,所述起落架安装于所述倾转旋翼组件;其中,所述倾转旋翼组件可相对于所述机翼倾转至第一位置或第二位置;当所述倾转旋翼无人机垂直起降时,所述倾转旋翼组件相对于所述机翼倾转至所述第一位置,所述起落架相对于所述机翼展开,所述倾转旋翼组件为所述倾转旋翼无人机提供垂直起降的升力;当所述倾转旋翼无人机续航飞行时,所述倾转旋翼组件相对于所述机翼倾转至所述第二位置,所述起落 架相对于所述机翼折叠,所述倾转旋翼组件为所述倾转旋翼无人机提供续航飞行的推力。
在一些实施例中,所述倾转旋翼组件包括旋翼机构和支座组件;所述支座组件安装于所述机翼,所述旋翼机构安装于所述支座组件,所述旋翼机构可相对于所述支座组件倾转;所述起落架安装于所述旋翼机构。
在一些实施例中,所述机翼具有前缘和后缘;所述支座组件的一端突出所述前缘或者所述后缘;所述旋翼机构安装于所述支座组件突出所述前缘或者所述后缘的一端。
在一些实施例中,所述支座组件的一端突出所述前缘,所述支座组件的另一端突出所述后缘;两个所述旋翼机构分别安装于所述支座组件的两端。
在一些实施例中,所述支座组件包括第一支座和第二支座;所述第一支座的一端突出所述前缘,所述第一支座的另一端与所述第二支座相对接,所述第二支座的另一端突出所述后缘;两个所述旋翼机构中的一个安装于所述第一支座突出所述前缘的一端,两个所述旋翼机构中的另一个安装于所述第二支座突出所述后缘的一端。
在一些实施例中,两个所述起落架分别安装于两个所述旋翼机构。
在一些实施例中,所述旋翼机构包括依次相连的电机座、旋翼电机以及螺旋桨;所述电机座安装于所述支座组件,所述起落架安装于所述电机座,所述电机座可相对于所述机翼倾转。
在一些实施例中,所述螺旋桨具有旋转轴线,所述电机座、所述旋翼电机以及所述螺旋桨呈线性分布。
在一些实施例中,所述起落架包括支撑部;所述支撑部的一端连接于所述电机座,所述支撑部的另一端朝远离所述螺旋桨的方向延伸。
在一些实施例中,所述起落架还包括连接部,所述连接部连接于所述支撑部与所述连接部之间。
另一方面,提供一种倾转旋翼无人机,包括:机身;以及安装于所述机身的如上所述的机翼组件。
与现有技术相比较,在本发明实施例提供的倾转旋翼无人机及其机翼组件中,所述机翼组件用于安装于倾转旋翼无人机的机身,所述机翼组件包括:机翼,所述机翼用于安装于所述机身:倾转旋翼组件,所述倾转旋翼组件安 装于所述机翼;以及起落架,所述起落架安装于所述倾转旋翼组件;其中,所述倾转旋翼组件可相对于所述机翼倾转至第一位置或第二位置;当所述倾转旋翼无人机垂直起降时,所述倾转旋翼组件相对于所述机翼倾转至所述第一位置,所述起落架相对于所述机翼展开,所述倾转旋翼组件为所述倾转旋翼无人机提供垂直起降的升力;当所述倾转旋翼无人机续航飞行时,所述倾转旋翼组件相对于所述机翼倾转至所述第二位置,所述起落架相对于所述机翼折叠,所述倾转旋翼组件为所述倾转旋翼无人机提供续航飞行的推力。通过将所述起落架安装于所述倾转旋翼组件,可实现所述倾转旋翼无人机的起落架可以折叠。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种倾转旋翼无人机在垂直起降状态的立体图;
图2为图1所示的倾转旋翼无人机在续航飞行状态的立体图;
图3为图1所示的倾转旋翼无人机的起落架以及倾转旋翼组件的立体图;
图4为图1所示的倾转旋翼无人机的侧视图;
图5为图2所示的倾转旋翼无人机的侧视图;
图6为图1所示的倾转旋翼无人机的前视图;
图7为图2所示的倾转旋翼无人机的前视图;
图8为图1所示的倾转旋翼无人机的在加速阶段的立体图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平 的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1和图2,为本发明其中一实施例提供的一种倾转旋翼无人机300,包括机身200和机翼组件100。其中,所述机翼组件100安装于所述机身200。
所述机身200整体呈梭形,所述机身200内包括由MCU等电子元器件组成的控制电路组件,该控制电路组件包括多个控制模块,如,用于控制所述倾转旋翼无人机300飞行姿态的飞控控制模块、用于导航所述倾转旋翼无人机300的北斗模块、以及用于处理相关机载设备所获取的环境信息的数据处理模块等。
所述机翼组件100包括机翼10,倾转旋翼组件20以及起落架30。其中,所述机翼10安装于所述机身200,所述倾转旋翼组件20安装于所述机翼10,所述起落架30安装于所述倾转旋翼组件20,所述倾转旋翼组件20可相对于所述机身10倾转至第一位置或第二位置。
所述倾转旋翼无人机100具有两种飞行状态,分别为垂直起降状态和续航飞行状态。其中,当所述倾转旋翼无人机100垂直起降时,所述倾转旋翼组件20相对于所述机翼10倾转至所述第一位置,所述倾转旋翼组件20为所述倾转旋翼无人机300垂直起降提供升力,并且所述起落架30相对于所述机身展开,所述起落架30可支撑所述倾转旋翼无人机300。当所述倾转旋翼无人机300续航飞行时,所述倾转旋翼组件20旋转至所述第二位置,所述倾转旋翼组件20为所述倾转旋翼无人机300提供续航飞行的推力,并且所述起落架30相对于所述机身折叠,所述起落架30对所述倾转旋翼无人机300的飞行阻力较小。
需要说明的是,所述倾转旋翼无人机300在续航飞行时,所述倾转旋翼组件20提供使所述倾转旋翼无人机300前进的推力,所述机翼10越过空气, 由于所述机翼10的构型,所述机翼10的上下翼面具有压差,所述机翼10产生使所述倾转旋翼无人机300浮空的升力,并且所述倾转旋翼组件20提供推力所消耗的能量小于所述倾转旋翼组件20提供升力所消耗的能量,因此,所述倾转旋翼无人机300可以续航飞行。
值得说明的是,通过设置可以相对于所述机身200折叠的起落架30,可避免所述起落架30遮挡测绘相机或者云台相机的视角,从另一个角度来说,降低了人机设计过程中光学设备的布置难度。进一步地讲,所述倾转旋翼无人机300仅在垂直起降时会使用起落架30,而在续航飞行时需要使所述起落架30折叠,因此,将所述起落架30安装于所述倾转旋翼组件20,不需要额外给所述起落架30布置电机,使所述倾转旋翼无人机300的续航能力和得到提升的同时,所述倾转旋翼无人机300的重量减轻。此外,当所述倾转旋翼无人机300在起飞阶段时,由于所述起落架30安装于所述倾转旋翼组件20上,并且所述起落架30与地面接触,也即在所述倾转旋翼组件20在垂直于地面的方向上给所述倾转旋翼组件20增加了一个运动约束,即不能朝地面方向运动,使所述倾转旋翼组件20只能沿垂直于地面朝上的方向运动,削弱了所述倾转旋翼组件20的震动,提高了所述倾转旋翼无人机300起飞时的稳定性。
所述机翼10沿其延展方向L展开,所述机翼10具有前缘11、后缘12、上翼面13以及下翼面14。其中,所述前缘11和所述后缘12相对,所述上翼面13和所述下翼面14相对且均连接于所述前缘11和所述后缘12之间,所述前缘11、所述后缘12、所述上翼面13以及所述下翼面14四者皆平行于所述机翼10的延展方向L。
所述倾转旋翼组件20包括支座组件21、旋翼机构22以及倾转电机(图未示)。所述支座组件21与所述机翼10相连,所述旋翼机构22安装于所述支座组件21,所述旋翼机构22可相对于所述机翼10倾转至所述第一位置或所述第二位置,所述倾转电机用于驱动所述旋翼机构22相对于所述机翼10倾转。
当所述倾转旋翼无人机300垂直起降时,所述旋翼机构22相对于所述机 翼10倾转至所述第一位置,所述旋翼机构22为所述倾转旋翼无人机300垂直起降提供升力。
当所述倾转旋翼无人机300续航飞行时,所述旋翼机构22相对于所述机翼10倾转至所述第二位置,所述旋翼机构22为所述倾转旋翼无人机300续航飞行提供推力。
所述支座组件21整体呈中空的筒状,所述支座组件21的一端突出所述机翼10的前缘11,所述支座组件21的另一端突出所述机翼10的后缘12。
所述支座组件21包括第一支座210和第二支座211,所述第一支座210的一端突出所述机翼10的前缘11,所述第一支座210的另一端与所述第二支座211的一端相对接,所述第二支座211的另一端突出所述机翼10的后缘12。
可以理解的是,根据实际情况,在第一方面,所述第一支座210和所述第二支座211可以一体化设置,也即所述支座组件21为一个整体。在第二方面,所述第一支座210和所述第二支座211两者中的一个可以省略。在第三方面,所述支座组件21可以省略,也即所述旋翼机构22直接安装于所述机翼10。
所述旋翼机构22的数量为两个,两个所述旋翼机构22中的一个安装于所述第一支座210突出所述机翼10的前缘11的一端,两个所述旋翼机构22中的另一个安装于所述第二支座211突出所述机翼10的后缘12的另一端。
当所述倾转旋翼无人机300垂直起降时,两个所述旋翼机构22均相对于所述机翼10倾转至第一位置,由两个所述旋翼机构22共同为所述倾转旋翼无人机300提供垂直升降的升力。
当所述倾转旋翼无人机300续航飞行时,两个所述旋翼机构22均相对于所述机翼10倾转至第二位置,由两个所述旋翼机构22共同为所述倾转旋翼无人机300提供续航飞行的推力。
可以理解的是,根据实际情况,所述旋翼机构22的数量并不限制为两个,只要至少为一个即可,仅由一个所述旋翼机构22为所述倾转旋翼无人机300提供垂直起降的升力或者续航飞行的推力。
请一并参阅图3,每个所述旋翼机构22包括一个电机座220,一个旋翼电机221,以及一个螺旋桨222。所述电机座220,所述旋翼电机221以及所述螺旋桨222依次相连。所述电机座220安装于所述支座组件21突出所述前缘11的一端或者突出所述后缘12的一端,所述电机座220可相对于所述机翼10倾转。
请一并参阅图4至图7,所述电机座220、所述旋翼电机221以及所述螺旋桨222呈线性分布,例如,所述电机座220、所述旋翼电机221以及所述螺旋桨222均沿所述螺旋桨222的旋转轴线S分布。当所述旋翼机构22相对于所述机翼10倾转至第一位置时,如图4和图6所示,所述螺旋桨222位于所述上翼面13朝向的一侧。当所述旋翼机构22相对于所述机翼10倾转至第二位置时,如图5和图7所示,所述螺旋桨222位于所述前缘11或者所述后缘13朝向的一侧。
所述倾转电机安装于所述支座组件21内,所述倾转电机用于驱动所述电机座221相对于所述机翼10倾转,所述倾转电机的数量与所述旋翼机构22的数量对应。
需要说明的是,所述倾转电机可以为伺服电机,也可以为舵机,所述倾转电机可以直接驱动所述电机座221相对于所述机翼10倾转,也可以通过例如齿轮组、涡轮蜗杆机构等传动机构驱动所述电机座221相对于所述机翼10倾转。
所述起落架30安装于所述电机座221,所述起落架221的数量与所述旋翼机构22的数量相对应。
所述起落架30整体呈L形,所述起落架30包括支撑部31和连接部32。所述连接部32的一端连接所述电机座221,所述连接部32的另一端连接所述支撑部31,所述支撑部31的一端与所述连接部32相连,所述支撑部31的另一端朝远离所述螺旋桨222的方向延伸。
当所述旋翼机构22相对于所述机翼10倾转至所述第一位置时,如图4和图6所示,所述第一支撑部31基本垂直于所述下翼面14,并且所述支撑部31远离所述螺旋桨222的另一端位于所述下翼面14朝向的一端,以使得所述支撑部31可以支撑所述倾转旋翼无人机300。
当所述旋翼机构22相对于所述机翼10倾转至所述第二位置时,如图5和图7所示,所述支撑部31基本平行于所述下翼面14,并且所述支撑部31位于所述下翼面14朝向的一侧,使得所述支撑部31对所述倾转旋翼无人机300的飞行阻力小。
在本发明的一些实施例中,所述旋翼机构22绕所述中心线O相对于所述机翼10倾转,所述中心线O基本垂直于所述机翼10的延展方向S,并且所述中心线O平行于所述机翼10的上翼面13或者下翼面14。
在本发明的一些实施例中,所述支撑部31平行于所述螺旋桨222的旋转轴线S。
在本发明的一些实施例中,所述连接部32与所述支撑部31相垂直。
值得说明的是,所述连接部32用于使所述支撑部31偏离所述机翼10,避免所述支撑部31与所述机翼10相干涉。
可以理解的是,根据实际情况,所述连接部32可以省略,也即所述支撑部31的一端直接与所述电机座221相连。
所述倾转旋翼无人机300在具体使用时,具体如下:
所述倾转旋翼无人机300垂直起降时,如图1、图4以及图6所示,两个所述旋翼机构22均相对于所述机翼10倾转至所述第一位置,所述起落架30相对于所述机翼10展开,两个所述旋翼机构22共同为所述倾转旋翼无人机300提供垂直起降的升力。
当所述倾转旋翼无人机300升至预设高度时,如图8所示,位于所述前缘11的旋翼机构22先逐渐地相对于所述机翼10倾转至所述第二位置,位于所述前缘11的起落架30相对于所述机翼10折叠,位于所述后缘12的旋翼机构22相对于所述机翼10保持在所述第一位置,位于所述后缘12的旋翼机构22继续提供为所述倾转旋翼无人机300提供保持浮空的升力。
当所述倾转旋翼无人机300的飞行速度超过失速速度时,位于所述后缘12的旋翼机构22快速地相对于所述机翼10倾转至所述第二位置,位于所述后缘12的起落架30相对于所述机翼10折叠,两个所述旋翼机构22共同为所述倾转旋翼无人机300提供续航飞行的推力,如图2、图5以及图7所示。
与现有技术相比较,本发明实施例提供的倾转旋翼无人机300及其机翼组件100中,所述机翼组件100用于安装于倾转旋翼无人机300的机身200,所述机翼组件100包括:机翼10,所述机翼10用于安装于所述机身200:倾转旋翼组件20,所述倾转旋翼组件20安装于所述机翼10;以及起落架30,所述起落架30安装于所述倾转旋翼组件20;其中,所述倾转旋翼组件20可相对于所述机翼10倾转至第一位置或第二位置;当所述倾转旋翼无人机300垂直起降时,所述倾转旋翼组件20相对于所述机翼10倾转至所述第一位置,所述起落架30相对于所述机翼10展开,所述倾转旋翼组件20为所述倾转旋翼无人机300提供垂直起降的升力;当所述倾转旋翼无人机300续航飞行时,所述倾转旋翼组件20相对于所述机翼10倾转至所述第二位置,所述起落架30相对于所述机翼10折叠,所述倾转旋翼组件20为所述倾转旋翼无人机300提供续航飞行的推力。通过将所述起落架30安装于所述倾转旋翼组件20,可实现所述倾转旋翼无人机300的起落架30可以折叠。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种机翼组件,用于安装于倾转旋翼无人机的机身,其特征在于,所述机翼组件包括:
    机翼,所述机翼用于安装于所述机身:
    倾转旋翼组件,所述倾转旋翼组件安装于所述机翼;以及
    起落架,所述起落架安装于所述倾转旋翼组件;
    其中,所述倾转旋翼组件可相对于所述机翼倾转至第一位置或第二位置;
    当所述倾转旋翼无人机垂直起降时,所述倾转旋翼组件相对于所述机翼倾转至所述第一位置,所述起落架相对于所述机翼展开,所述倾转旋翼组件为所述倾转旋翼无人机提供垂直起降的升力;
    当所述倾转旋翼无人机续航飞行时,所述倾转旋翼组件相对于所述机翼倾转至所述第二位置,所述起落架相对于所述机翼折叠,所述倾转旋翼组件为所述倾转旋翼无人机提供续航飞行的推力。
  2. 根据权利要求1所述的机翼组件,其特征在于,所述倾转旋翼组件包括旋翼机构和支座组件;
    所述支座组件安装于所述机翼,所述旋翼机构安装于所述支座组件,所述旋翼机构可相对于所述支座组件倾转;
    所述起落架安装于所述旋翼机构。
  3. 根据权利要求2所述的机翼组件,其特征在于,所述机翼具有前缘和后缘;
    所述支座组件的一端突出所述前缘或者所述后缘;
    所述旋翼机构安装于所述支座组件突出所述前缘或者所述后缘的一端。
  4. 根据权利要求3所述的机翼组件,其特征在于,所述支座组件的一端突出所述前缘,所述支座组件的另一端突出所述后缘;
    两个所述旋翼机构分别安装于所述支座组件的两端。
  5. 根据权利要求4所述的机翼组件,其特征在于,所述支座组件包括第一支座和第二支座;
    所述第一支座的一端突出所述前缘,所述第一支座的另一端与所述第二支座相对接,所述第二支座的另一端突出所述后缘;
    两个所述旋翼机构中的一个安装于所述第一支座突出所述前缘的一端,两个所述旋翼机构中的另一个安装于所述第二支座突出所述后缘的一端。
  6. 根据权利要求4或5所述的机翼组件,其特征在于,两个所述起落架分别安装于两个所述旋翼机构。
  7. 根据权利要求3至6任一项所述的机翼组件,其特征在于,所述旋翼机构包括依次相连的电机座、旋翼电机以及螺旋桨;
    所述电机座安装于所述支座组件,所述起落架安装于所述电机座,所述电机座可相对于所述机翼倾转。
  8. 根据权利要求7所述的机翼组件,其特征在于,所述螺旋桨具有旋转轴线,所述电机座、所述旋翼电机以及所述螺旋桨呈线性分布。
  9. 根据权利要求7或8所述的机翼组件,其特征在于,所述起落架包括支撑部;
    所述支撑部的一端连接于所述电机座,所述支撑部的另一端朝远离所述螺旋桨的方向延伸。
  10. 根据权利要求9所述的机翼组件,其特征在于,所述起落架还包括连接部,所述连接部连接于所述支撑部与所述连接部之间。
  11. 一种倾转旋翼无人机,其特征在于,包括:
    机身;以及
    安装于所述机身的如权利要求1至10任一项所述的机翼组件。
PCT/CN2020/070952 2019-01-30 2020-01-08 一种倾转旋翼无人机及其机翼组件 WO2020156078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910093098.2A CN109573006B (zh) 2019-01-30 2019-01-30 一种倾转旋翼无人机及其机翼组件
CN201910093098.2 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020156078A1 true WO2020156078A1 (zh) 2020-08-06

Family

ID=65918462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070952 WO2020156078A1 (zh) 2019-01-30 2020-01-08 一种倾转旋翼无人机及其机翼组件

Country Status (2)

Country Link
CN (1) CN109573006B (zh)
WO (1) WO2020156078A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109573006B (zh) * 2019-01-30 2024-04-12 深圳市道通智能航空技术股份有限公司 一种倾转旋翼无人机及其机翼组件
CN113928551A (zh) * 2021-09-18 2022-01-14 南京航空航天大学 临近空间下新构型复合式无人直升机及其飞行控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206552260U (zh) * 2017-03-02 2017-10-13 北京天宇新超航空科技有限公司 一种高效垂直起降飞行器
US20180215465A1 (en) * 2017-01-31 2018-08-02 Joseph Raymond RENTERIA Rotatable thruster aircraft with separate lift thrusters
CN109573006A (zh) * 2019-01-30 2019-04-05 深圳市道通智能航空技术有限公司 一种倾转旋翼无人机及其机翼组件
CN209757510U (zh) * 2019-01-30 2019-12-10 深圳市道通智能航空技术有限公司 一种倾转旋翼无人机及其机翼组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2005662C1 (ru) * 1992-06-30 1994-01-15 Акционерное общество "Авиатика" Спортивно-пилотажный самолет
CN101423117A (zh) * 2008-12-05 2009-05-06 北京航空航天大学 采用推力尾桨和滑流舵进行操纵和推进的倾转旋翼飞机
WO2016118230A1 (en) * 2015-01-21 2016-07-28 Sikorsky Aircraft Corporation Flying wing vertical take-off and landing aircraft
CN106628168A (zh) * 2016-11-30 2017-05-10 北京天宇新超航空科技有限公司 一种新型倾转旋翼飞机
CN107933909A (zh) * 2017-12-17 2018-04-20 北京天宇新超航空科技有限公司 一种高速高效倾转机翼无人飞行器
CN108639328A (zh) * 2018-05-15 2018-10-12 西北工业大学 一种新型尾座式轴对称多螺旋桨垂直起降无人机
CN108750081A (zh) * 2018-06-05 2018-11-06 中国人民解放军国防科技大学 倾转四旋翼变形飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180215465A1 (en) * 2017-01-31 2018-08-02 Joseph Raymond RENTERIA Rotatable thruster aircraft with separate lift thrusters
CN206552260U (zh) * 2017-03-02 2017-10-13 北京天宇新超航空科技有限公司 一种高效垂直起降飞行器
CN109573006A (zh) * 2019-01-30 2019-04-05 深圳市道通智能航空技术有限公司 一种倾转旋翼无人机及其机翼组件
CN209757510U (zh) * 2019-01-30 2019-12-10 深圳市道通智能航空技术有限公司 一种倾转旋翼无人机及其机翼组件

Also Published As

Publication number Publication date
CN109573006B (zh) 2024-04-12
CN109573006A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
US11661202B2 (en) Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and box wing design
US10875643B2 (en) Articulated electric propulsion system with fully stowing blades and lightweight vertical take-off and landing aircraft using same
JP6825011B2 (ja) 補完的な角度がついたロータを有する垂直離着陸用翼付き航空機
US10144509B2 (en) High performance VTOL aircraft
US10625852B2 (en) Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
WO2020134136A1 (zh) 一种无人飞行器
EP3087003B1 (en) An unmanned aerial vehicle
WO2016028358A2 (en) High Performance VTOL Aircraft
KR102135285B1 (ko) 수직 이착륙 고정익 무인기
WO2020156078A1 (zh) 一种倾转旋翼无人机及其机翼组件
WO2019180304A1 (en) A structure construction for an aircraft and aircraft comprising the structure construction
CN107878747B (zh) 一种垂直起降的固定翼飞行器
AU2019295946A1 (en) Tail sitter
CN209757510U (zh) 一种倾转旋翼无人机及其机翼组件
KR20180033011A (ko) 날개로 작용 가능한 다기능 다리를 갖는 무인 비행체
CN214451829U (zh) 矢量动力飞行器、拼接式无人机和垂起固定翼飞行器
JP2020175713A (ja) マルチローター航空機
CN112368206B (zh) 尾座式垂直起降飞机
US11760475B2 (en) Articulated tiltrotor
CN112498678B (zh) 一种舰载垂直起降无人机及飞行方法
WO2021157343A1 (ja) 垂直離着陸機
JP3236741U (ja) テールシッタ式飛行体
RU2775027C1 (ru) Тейлситтер

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749616

Country of ref document: EP

Kind code of ref document: A1