WO2020134136A1 - 一种无人飞行器 - Google Patents

一种无人飞行器 Download PDF

Info

Publication number
WO2020134136A1
WO2020134136A1 PCT/CN2019/103051 CN2019103051W WO2020134136A1 WO 2020134136 A1 WO2020134136 A1 WO 2020134136A1 CN 2019103051 W CN2019103051 W CN 2019103051W WO 2020134136 A1 WO2020134136 A1 WO 2020134136A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor assembly
wing
tilt
fuselage
unmanned aerial
Prior art date
Application number
PCT/CN2019/103051
Other languages
English (en)
French (fr)
Inventor
梁智颖
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020134136A1 publication Critical patent/WO2020134136A1/zh
Priority to US17/361,671 priority Critical patent/US20210323663A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/21Rotary wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the invention relates to the field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle.
  • Unmanned aerial vehicle or UAV for short, is a new concept equipment in rapid development, which has the advantages of flexible maneuverability, fast response, unmanned driving and low operation requirements.
  • unmanned aerial vehicles can be divided into fixed-wing unmanned aerial vehicles and rotorless unmanned aerial vehicles according to the type of lift. Compared with the two, fixed-wing unmanned aerial vehicles need to accelerate on the ground to take off, and the requirements for the field are relatively high, while the rotorless Manned aircraft can not meet the requirements of long-endurance flight.
  • the embodiments of the present invention provide an unmanned aerial vehicle that can take off and land vertically while satisfying long-endurance flight.
  • an unmanned aerial vehicle including: a fuselage having a nose and a tail; a wing connected to the fuselage; a tilt rotor assembly, the tilt rotor assembly mounted on the wing , The tilting rotor assembly can be rotated to a first position or a second position relative to the fuselage; and a rotor assembly, the rotor assembly is provided at the nose and/or tail; when the unmanned aerial vehicle During vertical take-off and landing, the tilting rotor assembly rotates to the first position, and the tilting rotor assembly and the rotor assembly jointly provide lift for the flight of the unmanned aerial vehicle; During flight, the tilt rotor assembly rotates to the second position, and only the tilt rotor assembly provides thrust for endurance flight of the unmanned aerial vehicle.
  • the UAV further includes a tilt motor
  • the wing includes a wing body and a wing tip rotatable relative to the wing body
  • the tilt motor is provided on the wing tip And connected to the wing body
  • the tilt rotor assembly is mounted on the wing tip
  • the tilt motor drives the wing tip to drive the tilt rotor assembly to rotate relative to the fuselage to the first A position and the second position.
  • one of the wing body and the wing tip is provided with a rotating shaft
  • the other of the wing body and the wing tip is provided with a shaft hole
  • the rotating shaft is installed The shaft hole allows the wing tip to rotate relative to the wing body.
  • the shaft hole is provided in the wing tip
  • the rotating shaft is provided in the wing body; one end of the rotating shaft is installed in the shaft hole, and the other end of the rotating shaft is embedded in the machine Wing body.
  • the tilt motor is installed in the wing tip, and the rotor of the tilt motor is connected to the rotating shaft.
  • the rotating shaft is provided with a mounting hole, and the rotor of the tilting motor is mounted on the mounting hole.
  • the tilt motor is a servo motor.
  • the rotor assembly includes a first rotor assembly provided on the nose.
  • the rotor assembly further includes a second rotor assembly provided at the tail.
  • the wing is rotatably connected to the fuselage, and the wing drives the tilt rotor assembly to rotate to the first position or the second position relative to the fuselage.
  • an unmanned aerial vehicle includes: a fuselage having a nose and a tail; a wing connected to the fuselage; a tilt rotor assembly, the A tilt rotor assembly is mounted on the wing, and the tilt rotor assembly can be rotated to a first position or a second position relative to the fuselage; and a rotor assembly, the rotor assembly is provided on the nose and/or Or the tail; when the UAV takes off and land vertically, the tilt rotor assembly rotates to the first position, and the tilt rotor assembly and the rotor assembly together are the flight of the UAV Provide lift; when the unmanned aerial vehicle continues to fly, the tilting rotor assembly rotates to the second position, and only the tilting rotor assembly provides thrust to the unmanned aerial vehicle for continuous flight.
  • the unmanned aerial vehicle can take off and land vertically, and has a strong endurance.
  • FIG. 1 is a perspective view of an unmanned aerial vehicle according to an embodiment of the present invention, wherein the unmanned aerial vehicle is in a continuous flight state;
  • FIG. 2 is a perspective view of the UAV shown in FIG. 1 in another state, in which the UAV is in a vertical take-off and landing state;
  • FIG. 3 is a front view of the UAV shown in FIG. 1;
  • FIG. 4 is a plan view of the UAV shown in FIG. 1;
  • FIG. 5 is an A-A cross-sectional view of the UAV shown in FIG. 4;
  • FIG. 6 is a partial enlarged view of the unmanned aerial vehicle shown in FIG. 5 at B;
  • FIG. 7 is a perspective view of another implementation manner of the UAV shown in FIG. 2;
  • FIG. 8 is a perspective view of yet another implementation manner of the UAV shown in FIG. 2.
  • FIGS. 1 to 5 is an unmanned aerial vehicle 100 according to an embodiment of the present invention.
  • the unmanned aerial vehicle 100 includes a fuselage 10, a wing 20, a tilt rotor assembly 30, and a tilt motor 40 and Rotor assembly.
  • the wing 20 is disposed on both sides of the fuselage 10, the tilt rotor assembly 30 is installed on the wing 20, the rotor assembly is installed on the fuselage 10, the tilt rotor assembly 30 may Relative to the fuselage 10 tilting to the first position or the second position, the tilting motor 40 is used to directly drive the tilting rotor assembly 30 to tilt to the first position relative to the fuselage 10 Or the second position.
  • the UAV 100 has two states, namely a vertical take-off and landing state and a continuous flight state.
  • the tilt rotor assembly When the UAV takes off and land vertically, the tilt rotor assembly rotates to the first position, and the tilt rotor assembly 30 and the rotor assembly together provide lift for the flight of the UAV 100 .
  • the thrust provided by the tilt rotor assembly 30 is substantially perpendicular to the ground. When the thrust provided by the tilt rotor assembly 30 is greater than the gravity of the UAV 100, the thrust provided by the tilt rotor assembly 30 may drive the thrust The unmanned aerial vehicle 100 ascends, and conversely, when the thrust provided by the tilt rotor assembly 30 is less than the gravity of the unmanned aerial vehicle 100, the thrust provided by the tilt rotor assembly 30 may drive the unmanned aerial vehicle 100 to descend .
  • the UAV 100 When the UAV 100 rises to a preset flying altitude, the UAV 100 can continue to fly.
  • the tilt rotor assembly 30 is tilted to the second position relative to the fuselage 10, and only the tilt rotor assembly 30 provides thrust for the unmanned aerial vehicle 100 for endurance flight.
  • the thrust provided by the tilt rotor assembly 30 drives the unmanned aerial vehicle 100 forward, and the wing 20 crosses the air, causing a pressure difference between the upper and lower wing surfaces of the wing 20, so that the wing 20 will produce a lift that drives the UAV 100 to float, and the energy consumed by the tilt rotor assembly 30 to provide thrust is much less than the energy consumed by the tilt rotor assembly 30 to provide lift. Therefore, in comparison For the rotor drones that can take off and land vertically, the unmanned aerial vehicle 100 has a stronger endurance flight capability.
  • the tilting motor 40 directly drives the tilting rotor assembly 30 to rotate relative to the fuselage 10, since there is no transmission mechanism between the tilting motor 40 and the tilting rotor assembly 30, avoiding The friction caused by the tilting motor 40 using the transmission mechanism in the process of driving the tilting rotor assembly 30 to tilt, indirectly reduces the energy generated by the tilting motor 40 driving the tilting rotor assembly 30 The loss further improves the endurance of the UAV 100.
  • the unmanned aerial vehicle 100 has a roll axis x, a pitch axis y, and a heading axis z. Two of the roll axis x, the pitch axis y, and the heading axis z are perpendicular to each other.
  • the roll axis x, the pitch axis y, and the heading axis z are all virtual straight lines defined by the present invention for convenience of description.
  • the UAV 100 is taking off and landing vertically, the UAV 100 is basically taking off and landing along the heading axis z, and when the UAV 100 is in continuous flight, the UAV 100 is basically along the horizontal direction Roller x flying.
  • the fuselage 10 has a substantially shuttle shape.
  • the fuselage 10 has a nose 11 and a tail 10. Both the nose 11 and the tail 12 of the fuselage 10 are located on the roll axis x.
  • the fuselage 10 includes a control circuit assembly composed of electronic components such as an MCU.
  • the control circuit assembly includes a plurality of control modules, such as a flight control control module for controlling the flying attitude of the unmanned aerial vehicle 100, and a navigation control module.
  • the Beidou module of the UAV 100 and a data processing module for processing environmental information acquired by related airborne equipment.
  • the extending direction of the wing 20 is parallel to the pitch axis y.
  • the wing 20 includes a wing root 210, a wing body 211 and a wing tip 212.
  • the wing root 210, the wing body 211, and the wing tip 212 are all located on the pitch axis y, and the wing root 210 is connected to the fuselage 10.
  • the wing tip 212 is mounted with the rotor assembly 30.
  • the wing root 212 and the fuselage 10 are fixedly connected, for example, the wing root 212 and the fuselage 10 are integrally formed, and for example, the wing root 212 and the fuselage 10 Connected by welding or riveting, the wing tip 212 is rotatably connected to the wing body 211, and the tilt motor 40 is used to directly drive the wing tip 212 about the pitch axis y relative to the aircraft Body 10 rotates.
  • the wing root 212 is rotatably connected to the fuselage 10, for example, the wing root 212 is connected to the fuselage 10 through a shaft and a hole, the tilt
  • the rotating motor 40 is used to directly drive the entire wing 20 to rotate relative to the fuselage 10 about the pitch axis y.
  • the tilt motor 40 directly drives the entire wing 20 to rotate.
  • the tilt motor 40 directly drives the wingtip 212 to rotate around the pitch axis y.
  • the weight of the wingtip 212 is much smaller than the weight of the entire wing 20, so the inertia of the wingtip 212 is small, so The tilt motor 40 drives the wing tip 212 with higher accuracy.
  • the wing 20 may be partially rotated relative to the fuselage 10, or may be entirely rotated relative to the fuselage 20. As long as the wing 20 and the fuselage 10 are rotationally connected, the wing can rotate the tilt rotor assembly 30 relative to the fuselage 10 to the first position or the second position.
  • the wing body 211 is provided with a rotation axis 214 provided along the pitch axis y
  • the wing tip 212 is provided with a shaft hole 215 provided along the pitch axis y
  • the rotation axis 214 is The shaft holes 215 are connected so that the wing tip 212 can rotate relative to the wing body 211 about the pitch axis y.
  • the positions of the rotating shaft 214 and the shaft hole 215 can be interchanged, that is, the rotating shaft 215 is disposed on the wing tip 212, and at the same time, the shaft hole 215 is disposed on the Since the wing body 211 is provided with one of the wing tip 212 and the wing body 211, the rotating shaft 214 is provided, and the other is provided with the shaft hole 215.
  • one end of the rotating shaft 215 is connected to the shaft hole 214, and the other end of the rotating shaft 215 is embedded in the wing body 211.
  • the rotating shaft 214 is integrally formed with the wing body 211.
  • the rotating shaft 214 has a hollow structure.
  • the rotating shaft 214 is used for wiring.
  • the rotating shaft 214 is provided with a mounting hole 2140.
  • the mounting hole 2140 is used to connect with the tilt motor 40.
  • the tilt motor 40 is a servo motor, the tilt motor is installed in the wing tip 212, and the rotor of the tilt motor is installed in the mounting hole 2140.
  • the number of the tilt rotor assemblies 30 is two, and each of the tilt rotor assemblies 30 is mounted on a corresponding wing tip 212 of the wing 20, and passes through two wing tips 212 of the wing 20. All of the tilt rotor assemblies 30 are provided, so that the UAV 100 can be raised and lowered or the flight can be kept stable.
  • the rotor assembly is mounted on the nose 11 and/or the tail 12 of the fuselage 10.
  • the rotor assembly includes a first rotor assembly 50 and a second rotor assembly 60, the first rotor assembly 50 and the second rotor assembly 60 are both mounted on the fuselage 10, the first rotor assembly 50 and the The second rotor assembly 60 is used to provide lift.
  • the first rotor assembly 50 is close to the tail 12 of the fuselage 10, and the second rotor assembly 60 is close to the nose 11 of the fuselage 10.
  • Two of the tilt rotor assembly 30, the first rotor assembly 50, and the second rotor assembly 60 form a quadrilateral, so that when the UAV 100 takes off and land vertically, the UAV Lifting output points are set around the 100 to make the UAV 100 move smoothly.
  • one of the first rotor assembly 50 and the second rotor assembly 60 may be omitted, because the nose 11 of the fuselage 10 is closer to the wing than the tail 12 20, therefore, the second rotor assembly 60 on the side of the nose 11 of the fuselage 10 is preferentially omitted.
  • the two of the tilting rotor assembly 30 and the first rotor assembly 50 are distributed in a triangle shape. Based on the principle that one plane is determined based on three non-collinear points, by setting two tilting rotor assembly 30 and all The first rotor assembly 50 can make the unmanned aerial vehicle 100 lift in a planar shape during vertical take-off and landing, and the unmanned aerial vehicle 100 can take off and land vertically more smoothly.
  • the specific use of the UAV 100 is as follows:
  • the tilt motor 40 directly drives the wing tip 212 to rotate relative to the fuselage 10 about the pitch axis y, and the tilt rotor assembly 30 follows the The wing tip 212 rotates relative to the fuselage 10 about the pitch axis y, and the tilt rotor assembly 30, the first rotor assembly 50, and the second rotor assembly 60 together provide lift to drive the The unmanned aerial vehicle 100 rises or falls along the heading axis z.
  • both the first rotor assembly 50 and the second rotor assembly 60 continue to provide lift, while the tilting rotor assembly 30 gradually around the pitch axis y Relative to the body 10 rotates.
  • the tilt rotor assembly 30 gradually rotates, the lift provided by the tilt rotor assembly 30 gradually becomes smaller, and at the same time, the thrust provided by the tilt rotor assembly 30 gradually becomes larger, and the UAV 100 gradually accelerates Until the tilt rotor assembly 30 only provides thrust, and the flying speed of the UAV 100 is greater than the stall speed, at this time, the UAV 100 is in endurance flight.
  • the first rotor assembly 50 and the second rotor assembly 60 may stop working, the tilting rotor assembly 30 provides thrust, and the unmanned aircraft 100 makes The wing 20 passes over the air, thereby generating lift on the wing 20.
  • any one of the tilt rotor assembly 30, the first rotor assembly 50, and the second rotor assembly 60 includes a rotor motor and a propeller, the propeller is mounted on a rotor of the rotor motor, the rotor The motor is used to drive the propeller to rotate, so that the propeller provides lift or thrust, for example, the rotation axis of the propeller is substantially parallel to the heading axis z, the propeller rotation provides lift, and for example, the rotation of the propeller The axis is substantially parallel to the roll axis x, and the propeller rotation provides thrust.
  • the propeller of the tilt rotor assembly 30 When the tilt rotor assembly 30 rotates to the first position relative to the fuselage 10, as shown in FIG. 2, the propeller of the tilt rotor assembly 30 is located on the upper wing surface of the wing body 211 2110 faces the side, and the rotation axis of the propeller of the rotor assembly 30 is parallel to the heading axis z.
  • the propeller of the tilt rotor assembly 30 When the tilt rotor assembly 30 rotates to the second position relative to the fuselage 10, as shown in FIG. 4, the propeller of the tilt rotor assembly 30 is located at the leading edge 2111 of the wing body 211 And the rotation axis of the propeller of the rotor assembly 30 is parallel to the roll axis x.
  • the rotor assembly and the tilt rotor assembly 30 can realize vertical takeoff and landing and endurance flight of the unmanned aircraft 100.
  • the tilt motor 40 directly drives the rotor assembly 30 to rotate, thereby avoiding friction caused by using a transmission mechanism between the tilt motor 10 and the rotor assembly 30, which indirectly reduces the tilt
  • the energy loss generated by the rotary motor 40 driving the rotor assembly 30 further improves the endurance of the UAV 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

一种无人飞行器(100),包括:机身(10),机身(10)具有机头(11)和机尾(12);机翼(20),其与机身(10)相连;倾转旋翼组件(30),倾转旋翼组件(30)安装于机翼(20),倾转旋翼组件(30)可相对于机身(10)旋转至第一位置或第二位置;以及旋翼组件,旋翼组件设于机头(11)和/或机尾(12)。当无人飞行器(100)垂直起降时,倾转旋翼组件(30)旋转至第一位置,由倾转旋翼组件(30)和旋翼组件共同为无人飞行器(100)的飞行提供升力;当无人飞行器(100)续航飞行时,倾转旋翼组件(30)旋转至第二位置,仅由倾转旋翼组件(30)为无人飞行器(100)提供续航飞行的推力。旋翼组件和倾转旋翼组件(30)能够实现无人飞行器(100)的垂直起降和续航飞行,且提高了无人飞行器(100)的续航能力。

Description

一种无人飞行器
【相关申请交叉引用】
本申请要求于2018年12月29日申请的、申请号为201811639118.3、申请名称为“一种无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人飞行器领域,尤其涉及一种无人飞行器。
【背景技术】
无人驾驶飞机,简称无人飞行器(UAV),是一种处在迅速发展中的新概念装备,其具有机动灵活、反应快速、无人驾驶、操作要求低的优点。
通常,无人飞行器根据升力类型可分为固定翼无人飞行器和旋翼无人飞行器,两者相比,其中固定翼无人飞行器需要在地面助跑加速才能起飞,对场地要求比较高,而旋翼无人飞行器不能够满足长时间续航飞行的要求。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种即能够竖直起降,又能够满足长时间续航飞行的无人飞行器。
为了解决上述技术问题,本发明实施例提供以下技术方案:
提供一种无人飞行器,包括:机身,所述机身具有机头和机尾;机翼,与所述机身相连;倾转旋翼组件,所述倾转旋翼组件安装于所述机翼,所述倾转旋翼组件可相对于所述机身旋转至第一位置或第二位置;以及旋翼组件,所述旋翼组件设于所述机头和/或机尾;当所述无人飞行器垂直起降时,所述倾转旋翼组件旋转至所述第一位置,由所述倾转旋翼组件和所述旋翼组件共同为所述无人飞行器的飞行提供升力;当所述无人飞行器续航飞行时,所述倾转旋翼组件旋转至所述第二位置,仅由所述倾转旋翼组件为所述无人飞行器提供续航飞行的推力。
在一些实施例中,所述无人飞行器还包括倾转电机,所述机翼包括机翼主体和可相对于所述机翼主体旋转的翼尖,所述倾转电机设于所述翼尖并与所述机翼主体相连,所述倾转旋翼组件安装于所述翼尖,所述倾转电机驱动所述翼尖带动所述倾转旋翼组件相对于所述机身旋转至所述第一位置和所述第二位置。
在一些实施例中,所述机翼主体与所述翼尖两者中的一个设置有转轴,所述机翼主体与所述翼尖两者中的另一个设置有轴孔,所述转轴安装于所述轴孔,使得所述翼尖可相对于所述机翼主体转动。
在一些实施例中,所述轴孔设于所述翼尖,所述转轴设于所述机翼主体;所述转轴的一端安装于所述轴孔,所述转轴的另一端嵌入所述机翼主体。
在一些实施例中,所述倾转电机安装于所述翼尖内,所述倾转电机的转子与所述转轴相连。
在一些实施例中,所述转轴设置有安装孔,所述倾转电机的转子安装于所述安装孔。
在一些实施例中,所述倾转电机为伺服电机。
在一些实施例中,所述旋翼组件包括设于所述机头的第一旋翼组件。
在一些实施例中,所述旋翼组件还包括设于所述机尾的第二旋翼组件。
在一些实施例中,所述机翼与所述机身转动连接,所述机翼带动所述倾转旋翼组件相对于所述机身旋转至所述第一位置或第二位置。
与现有技术相比较,在本发明实施例的无人飞行器,包括:机身,所述机身具有机头和机尾;机翼,与所述机身相连;倾转旋翼组件,所述倾转旋翼组件安装于所述机翼,所述倾转旋翼组件可相对于所述机身旋转至第一位置或第二位置;以及旋翼组件,所述旋翼组件设于所述机头和/或机尾;当所述无人飞行器垂直起降时,所述倾转旋翼组件旋转至所述第一位置,由所述倾转旋翼组件和所述旋翼组件共同为所述无人飞行器的飞行提供升力;当所述无人飞行器续航飞行时,所述倾转旋翼组件旋转至所述第二位置,仅由所述倾转旋翼组件为所述无人飞行器提供续航飞行的推力。通过旋翼组件和倾转旋翼组件,实现了所述无人飞行器可以垂直起降,并且续航能力较强。
【附图说明】
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明其中一实施例提供的一种无人飞行器的立体图,其中无人飞行器处于持续飞行状态;
图2为图1所示的无人飞行器另一种状态下的立体图,其中无人飞行器处于垂直起降状态;
图3为图1所示的无人飞行器的主视图;
图4为图1所示无人飞行器的俯视图;
图5为图4所示的无人飞行器的A-A剖视图;
图6为图5所示的无人飞行器的B处的局部放大图;
图7为图2所示的无人飞行器的另一种实现方式的立体图;
图8为图2所示的无人飞行器的又一种实现方式的立体图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图5,为本发明其中一实施例提供的一种无人飞行器100,所述无人飞行器100包括机身10,机翼20,倾转旋翼组件30,倾转电机40以及旋翼组件。所述机翼20设置于所述机身10两侧,所述倾转旋翼组件30安装于所述机翼20,所述旋翼组件安装于所述机身10,所述倾转旋翼组件30 可相对于所述机身10倾转至第一位置或第二位置,所述倾转电机40用于直接驱动所述倾转旋翼组件30相对于所述机身10倾转至所述第一位置或者所述第二位置。
所述无人飞行器100具有两种状态,分别为垂直起降状态和持续飞行状态。
当所述无人飞行器垂直起降时,所述倾转旋翼组件旋转至所述第一位置,由所述倾转旋翼组件30和所述旋翼组件共同为所述无人飞行器100的飞行提供升力。所述倾转旋翼组件30提供的推力大致垂直于地面,当所述倾转旋翼组件30提供的推力大于所述无人飞行器100的重力时,所述倾转旋翼组件30提供的推力可驱使所述无人飞行器100上升,反之,当所述倾转旋翼组件30提供的推力小于所述无人飞行器100的重力时,所述倾转旋翼组件30提供的推力可驱使所述无人飞行器100下降。
当所述无人飞行器100上升至预设的飞行高度时,所述无人飞行器100可续航飞行。所述倾转旋翼组件30相对于所述机身10倾转至所述第二位置,仅由所述倾转旋翼组件30为所述无人飞行器100提供续航飞行的推力。具体地,所述倾转旋翼组件30提供的推力驱使所述无人飞行器100前进,所述机翼20越过空气,会在所述机翼20的上下翼面产生压差,从而所述机翼20上会产生驱使所述无人飞行器100浮空的升力,并且所述倾转旋翼组件30提供推力所消耗的能量远小于所述倾转旋翼组件30提供升力所消耗的能量,因此,相比较于可以垂直起降的旋翼无人机,所述无人飞行器100在续航飞行能力更强。
另外,通过所述倾转电机40直接驱动所述倾转旋翼组件30相对于所述机身10转动,由于所述倾转电机40与所述倾转旋翼组件30之间不存在传动机构,避免了所述倾转电机40在驱动所述倾转旋翼组件30倾转的过程中使用传动机构而带来的摩擦,间接减少了所述倾转电机40驱动所述倾转旋翼组件30产生的能量损耗,进一步提高了所述无人飞行器100的续航能力。
所述无人飞行器100具有横滚轴x、俯仰轴y以及航向轴z,所述横滚轴x、所述俯仰轴y以及所述航向轴z三者中两两相互垂直,其中,所述横滚轴 x、所述俯仰轴y以及所述航向轴z三者均为本发明方便描述而定义的虚拟直线。所述无人飞行器100在垂直起降时,所述无人飞行器100基本沿所述航向轴z起降,所述无人飞行器100在续航飞行时,所述无人飞行器100基本沿所述横滚轴x飞行。
所述机身10大致呈梭形,所述机身10具有机头11和机尾10,所述机身10的机头11与机尾12均位于所述横滚轴x上。
所述机身10内包括由MCU等电子元器件组成的控制电路组件,该控制电路组件包括多个控制模块,如,用于控制无人飞行器100飞行姿态的飞控控制模块、用于导航无人飞行器100的北斗模块、以及用于处理相关机载设备所获取的环境信息的数据处理模块等。
所述机翼20的延伸方向平行于所述俯仰轴y,所述机翼20包括翼根210、机翼主体211以及翼尖212。所述翼根210、所述机翼主体211以及所述翼尖212均位于所述俯仰轴y上,并且所述翼根210与所述机身10相连。
所述翼尖212安装有所述旋翼组件30。
在本实施例中,所述翼根212与所述机身10固定连接,例如,所述翼根212与所述机身10一体成型,又例如,所述翼根212与所述机身10通过焊接或者铆接的方式相连接,所述翼尖212与所述机翼主体211转动连接,所述倾转电机40用于直接驱动所述翼尖212绕所述俯仰轴y相对于所述机身10旋转。
在一些其他的实施例中,请参阅图7,所述翼根212与所述机身10转动连接,例如,所述翼根212与所述机身10通过轴与孔相连接,所述倾转电机40用于直接驱动整个所述机翼20绕所述俯仰轴y相对于所述机身10旋转。
值得说明的是,一方面,所述倾转电机40直接驱动整个所述机翼20旋转,在所述无人飞行器100垂直起降的过程中,由于整个所述机翼20的翼面(上翼面或者下翼面)基本是平行于所述无人飞行器的起降方向,因此,所述机翼20的产生的阻力小,所述倾转旋翼组件30消耗的能量小;另一方面,所述倾转电机40直接驱动所述翼尖212绕所述俯仰轴y旋转,所述翼尖212的重量远小于整个所述机翼20的重量,因此所述翼尖212的惯性小,所述倾转电机40驱动所述翼尖212的精度更高。
可以理解的是,根据实际情况,所述机翼20可部分相对于所述机身10转动,也可整个相对于所述机身20转动。只要所述机翼20与所述机身10转动连接,所述机翼带动所述倾转旋翼组件30相对于所述机身10旋转至所述第一位置或第二位置即可。
请一并参阅图6,所述机翼主体211设置有沿所述俯仰轴y设置的转轴214,所述翼尖212设置有沿所述俯仰轴y设置的轴孔215,所述转轴214与所述轴孔215相连接,使得所述翼尖212可绕所述俯仰轴y相对于所述机翼主体211旋转。可以理解的是,根据实际情况,所述转轴214和所述轴孔215的位置可以互换,也即所述转轴215设置于所述翼尖212上,同时,所述轴孔215设置于所述机翼主体211上,因此,只要所述翼尖212与所述机翼主体211两者中的一个设置有所述转轴214,另一个设置有所述轴孔215即可。
在本实施例中,所述转轴215的一端与所述轴孔214相连接,所述转轴215的另一端嵌设于所述机翼主体211。
在一些其他的实施例中,所述转轴214与所述机翼主体211一体成型。
所述转轴214为中空结构,所述转轴214内部用于走线,所述转轴214设置有安装孔2140,所述安装孔2140用于与所述倾转电机40相连。
所述倾转电机40为伺服电机,所述倾转电机安装于所述翼尖212内,所述倾转电机的转子安装于所述安装孔2140。
所述倾转旋翼组件30的数量为两个,每个所述倾转旋翼组件30安装于一个相应的所述机翼20的翼尖212,通过在两个所述机翼20的翼尖212均设置有所述倾转旋翼组件30,可使得所述无人飞行器100升降或者飞行保持平稳。
所述旋翼组件安装于所述机身10的机头11和/或机尾12。
所述旋翼组件包括第一旋翼组件50和第二旋翼组件60,所述第一旋翼组件50和所述第二旋翼组件60均安装于所述机身10,所述第一旋翼组件50和所述第二旋翼组件60均用于提供升力。
所述第一旋翼组件50靠近所述机身10的机尾12,所述第二旋翼组件60靠近所述机身10的机头11。通过设置所述第一旋翼组件50和所述第二旋翼组件60,可以使得所述无人飞行器100垂直起降时,所述无人飞行器100在沿着所述横滚轴x的两侧的升力平稳。
两个所述倾转旋翼组件30、所述第一旋翼组件50以及所述第二旋翼组件60四者围成一个四边形,使得所述无人飞行器100在垂直起降时,所述无人飞行器100的四周均设置有升力的输出点,使得所述无人飞行器100升降平稳。
可以理解的是,根据实际情况,所述第一旋翼组件50和所述第二旋翼组件60中的一个可以省略,由于所述机身10的机头11比机尾12更靠近所述机翼20,因此,优先省略位于所述机身10的机头11一侧的第二旋翼组件60。两个所述倾转旋翼组件30以及所述第一旋翼组件50三者呈三角形分布,基于三个不共线的点确定一个面的原则,通过设置两个所述倾转旋翼组件30以及所述第一旋翼组件50,可使得所述无人飞行器100在垂直起降的过程中,所述无人飞行器100的升力呈面形分布,所述无人飞行器100垂直起降更为平稳。
所述无人飞行器100在具体使用时,具体如下:
所述无人飞行器100垂直起降时,通过所述倾转电机40直接驱动所述翼尖212绕所述俯仰轴y相对于所述机身10旋转,所述倾转旋翼组件30随所述翼尖212绕所述俯仰轴y相对于所述机身10旋转,所述倾转旋翼组件30、所述第一旋翼组件50和所述第二旋翼组件60三者共同提供升力,驱使所述无人飞行器100沿所述航向轴z上升或者下降。
在所述无人飞行器100上升到预设的飞行高度后,所述第一旋翼组件50和所二旋翼组件60两者继续提供升力,而所述倾转旋翼组件30逐渐绕所述俯仰轴y相对于所述机身10旋转。随着所述倾转旋翼组件30逐渐旋转,所述倾转旋翼组件30提供的升力逐渐变小,同时,所述倾转旋翼组件30提供的推力逐渐变大,所述无人飞行器100逐渐加速,直到所述倾转旋翼组件30只提供推力,并且所述无人飞行器100的飞行速度大于失速速度,此时,所述无人飞行器100处于续航飞行状态。
当所述无人飞行器100处于续航飞行状态时,所述第一旋翼组件50和所述第二旋翼组件60可停止工作,所述倾转旋翼组件30提供推力,所述无人飞行器100飞行使所述机翼20越过空气,从而在所述机翼20上产生升力。
所述倾转旋翼组件30、所述第一旋翼组件50以及所述第二旋翼组件60三者中的任意一个包括旋翼电机和螺旋桨,所述螺旋桨安装于所述旋翼电机的转子,所述旋翼电机用于驱动所述螺旋桨旋转,使得所述螺旋桨提供升力或者推力,例如,所述螺旋桨的旋转轴线基本平行于所述航向轴z,所述螺旋桨旋转提供升力,又例如,所述螺旋桨的旋转轴线基本平行于所述横滚轴x,所述螺旋桨旋转提供推力。
当所述倾转旋翼组件30相对于所述机身10转至所述第一位置时,如图2所示,所述倾转旋翼组件30的螺旋桨位于所述机翼主体211的上翼面2110朝向的一侧,并且所述旋翼组件30的螺旋桨的旋转轴线平行于所述航向轴z。
当所述倾转旋翼组件30相对于所述机身10转至所述第二位置时,如图4所示,所述倾转旋翼组件30的螺旋桨位于所述机翼主体211的前缘2111朝向的一侧,并且所述旋翼组件30的螺旋桨的旋转轴线平行于所述横滚轴x。
与现有技术相比较,本发明实施例提供的一种无人飞行器100中,通过所述旋翼组件和所述倾转旋翼组件30可实现所述无人飞行器100的垂直起降和续航飞行。
另外,通过所述倾转电机40直接驱动所述旋翼组件30旋转,避免了在所述倾转电机10与所述旋翼组件30之间使用传动机构而带来的摩擦,间接减少了所述倾转电机40驱动所述旋翼组件30产生的能量损耗,进一步提高了所述无人飞行器100的续航能力。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征 进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种无人飞行器,其特征在于,包括:
    机身,所述机身具有机头和机尾;
    机翼,与所述机身相连;
    倾转旋翼组件,所述倾转旋翼组件安装于所述机翼,所述倾转旋翼组件可相对于所述机身旋转至第一位置或第二位置;以及
    旋翼组件,所述旋翼组件设于所述机头和/或机尾;
    当所述无人飞行器垂直起降时,所述倾转旋翼组件旋转至所述第一位置,由所述倾转旋翼组件和所述旋翼组件共同为所述无人飞行器的飞行提供升力;
    当所述无人飞行器续航飞行时,所述倾转旋翼组件旋转至所述第二位置,仅由所述倾转旋翼组件为所述无人飞行器提供续航飞行的推力。
  2. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器还包括倾转电机,所述机翼包括机翼主体和可相对于所述机翼主体旋转的翼尖,所述倾转电机设于所述翼尖并与所述机翼主体相连,所述倾转旋翼组件安装于所述翼尖,所述倾转电机驱动所述翼尖带动所述倾转旋翼组件相对于所述机身旋转至所述第一位置和所述第二位置。
  3. 根据权利要求2所述的无人飞行器,其特征在于,所述机翼主体与所述翼尖两者中的一个设置有转轴,所述机翼主体与所述翼尖两者中的另一个设置有轴孔,所述转轴安装于所述轴孔,使得所述翼尖可相对于所述机翼主体转动。
  4. 根据权利要求3所述的无人飞行器,其特征在于,所述轴孔设于所述翼尖,所述转轴设于所述机翼主体;所述转轴的一端安装于所述轴孔,所述转轴的另一端嵌入所述机翼主体。
  5. 根据权利要求4所述的无人飞行器,其特征在于,所述倾转电机安装于所述翼尖内,所述倾转电机的转子与所述转轴相连。
  6. 根据权利要求5所述的无人飞行器,其特征在于,所述转轴设置有安装孔,所述倾转电机的转子安装于所述安装孔。
  7. 根据权利要求2-6中任一项所述的无人飞行器,其特征在于,所述倾 转电机为伺服电机。
  8. 根据权利要求1-7中任一项所述的无人飞行器,其特征在于,所述旋翼组件包括设于所述机头的第一旋翼组件。
  9. 根据权利要求1-8中任一项所述的无人飞行器,其特征在于,所述旋翼组件还包括设于所述机尾的第二旋翼组件。
  10. 根据权利要求1-9中任一项所述的无人飞行器,其特征在于,所述机翼与所述机身转动连接,所述机翼带动所述倾转旋翼组件相对于所述机身旋转至所述第一位置或第二位置。
PCT/CN2019/103051 2018-12-29 2019-08-28 一种无人飞行器 WO2020134136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/361,671 US20210323663A1 (en) 2018-12-29 2021-06-29 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811639118.3 2018-12-29
CN201811639118.3A CN109436314A (zh) 2018-12-29 2018-12-29 一种无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/361,671 Continuation US20210323663A1 (en) 2018-12-29 2021-06-29 Unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020134136A1 true WO2020134136A1 (zh) 2020-07-02

Family

ID=65540083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103051 WO2020134136A1 (zh) 2018-12-29 2019-08-28 一种无人飞行器

Country Status (3)

Country Link
US (1) US20210323663A1 (zh)
CN (1) CN109436314A (zh)
WO (1) WO2020134136A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206074A4 (en) * 2020-10-16 2024-05-15 Autel Robotics Co Ltd UNMANNED AIRCRAFT

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11077937B1 (en) * 2018-06-22 2021-08-03 Transcend Air Corporation Vertical take-off and landing (VTOL) tilt-wing passenger aircraft
CN109436314A (zh) * 2018-12-29 2019-03-08 深圳市道通智能航空技术有限公司 一种无人飞行器
CN110304244A (zh) * 2019-06-26 2019-10-08 深圳市道通智能航空技术有限公司 飞行控制方法、装置、倾转翼飞行器及介质
CN110371287A (zh) * 2019-07-05 2019-10-25 深圳市道通智能航空技术有限公司 倾转翼机构以及倾转旋翼无人机
CN110588967A (zh) * 2019-10-21 2019-12-20 武汉思众空间信息科技有限公司 飞行器和飞行器系统
CN110615097A (zh) * 2019-10-23 2019-12-27 深圳市道通智能航空技术有限公司 一种无人飞行器
CN112977813A (zh) * 2021-04-02 2021-06-18 深圳市道通智能航空技术股份有限公司 一种可倾转机翼及无人机
CN112977811B (zh) * 2021-05-13 2021-09-03 北京三快在线科技有限公司 多旋翼无人机
USD997073S1 (en) * 2021-06-22 2023-08-29 Transcend Air Corporation Vertical take-off and landing tilt-wing passenger aircraft

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254264A (ja) * 2009-04-24 2010-11-11 Kenta Yasuda Tilt翼機構による垂直離発着無人航空機
US8939393B2 (en) * 2005-08-15 2015-01-27 Abe Karem Aircraft with integrated lift and propulsion system
CN204979227U (zh) * 2015-07-27 2016-01-20 江阴市翔诺电子科技有限公司 一种新型垂直起降飞行器
CN205022862U (zh) * 2015-09-06 2016-02-10 长沙鸿浪自动化科技有限公司 带有倾转机构的动力装置和固定翼飞行器
CN108394556A (zh) * 2018-05-06 2018-08-14 北京天宇新超航空科技有限公司 一种高效倾转旋翼无人机
CN108725773A (zh) * 2018-08-06 2018-11-02 云呈通信息科技(上海)有限公司 一种无人运输机
CN208181416U (zh) * 2018-03-30 2018-12-04 天长航空技术有限公司 无舵面垂直起降固定翼无人机
CN109436314A (zh) * 2018-12-29 2019-03-08 深圳市道通智能航空技术有限公司 一种无人飞行器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151001A1 (en) * 2003-07-02 2005-07-14 Loper Arthur W. Compound helicopter
KR101125870B1 (ko) * 2011-07-29 2012-03-28 한국항공우주연구원 나셀틸트각과 플래퍼론각의 기계적 연동이 이루어지는 고성능 틸트로터 항공기
US20130105635A1 (en) * 2011-10-31 2013-05-02 King Abdullah II Design and Development Bureau Quad tilt rotor vertical take off and landing (vtol) unmanned aerial vehicle (uav) with 45 degree rotors
CN105083550A (zh) * 2015-09-06 2015-11-25 长沙鸿浪自动化科技有限公司 垂直起降固定翼飞行器
US10486806B2 (en) * 2015-10-05 2019-11-26 Sikorsky Aircraft Corporation Pivot systems for tiltwing aircraft
AU2016356697C1 (en) * 2015-11-20 2020-09-03 FlightWave Aerospace Systems Gimbaled thruster configuration for use with unmanned aerial vehicle
US11104446B2 (en) * 2016-07-01 2021-08-31 Textron Innovations Inc. Line replaceable propulsion assemblies for aircraft
US10266252B2 (en) * 2016-09-19 2019-04-23 Bell Helicopter Textron Inc. Wing extension winglets for tiltrotor aircraft
US20180215465A1 (en) * 2017-01-31 2018-08-02 Joseph Raymond RENTERIA Rotatable thruster aircraft with separate lift thrusters
CN207607645U (zh) * 2017-10-31 2018-07-13 鲁智佳 复合翼飞行器
CN107933909A (zh) * 2017-12-17 2018-04-20 北京天宇新超航空科技有限公司 一种高速高效倾转机翼无人飞行器
US10472058B2 (en) * 2018-01-29 2019-11-12 Shanghai Autoflight Co., Ltd. VTOL aircraft with step-up overlapping propellers
CN108482668A (zh) * 2018-05-24 2018-09-04 深圳智航无人机有限公司 倾转式垂直起降飞行器
US11077937B1 (en) * 2018-06-22 2021-08-03 Transcend Air Corporation Vertical take-off and landing (VTOL) tilt-wing passenger aircraft
CN108791873A (zh) * 2018-07-05 2018-11-13 北京天宇新超航空科技有限公司 一种纵列矢量双旋翼电动垂直起降无人机及其控制方法
US20200086971A1 (en) * 2018-09-14 2020-03-19 Bell Helicopter Textron Inc. Tiltrotor Free-Pivot Wing Extension
IL263301B2 (en) * 2018-11-25 2023-09-01 Israel Aerospace Ind Ltd Aircraft and the method of operation of aircraft
CN209617480U (zh) * 2018-12-29 2019-11-12 深圳市道通智能航空技术有限公司 一种无人飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939393B2 (en) * 2005-08-15 2015-01-27 Abe Karem Aircraft with integrated lift and propulsion system
JP2010254264A (ja) * 2009-04-24 2010-11-11 Kenta Yasuda Tilt翼機構による垂直離発着無人航空機
CN204979227U (zh) * 2015-07-27 2016-01-20 江阴市翔诺电子科技有限公司 一种新型垂直起降飞行器
CN205022862U (zh) * 2015-09-06 2016-02-10 长沙鸿浪自动化科技有限公司 带有倾转机构的动力装置和固定翼飞行器
CN208181416U (zh) * 2018-03-30 2018-12-04 天长航空技术有限公司 无舵面垂直起降固定翼无人机
CN108394556A (zh) * 2018-05-06 2018-08-14 北京天宇新超航空科技有限公司 一种高效倾转旋翼无人机
CN108725773A (zh) * 2018-08-06 2018-11-02 云呈通信息科技(上海)有限公司 一种无人运输机
CN109436314A (zh) * 2018-12-29 2019-03-08 深圳市道通智能航空技术有限公司 一种无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206074A4 (en) * 2020-10-16 2024-05-15 Autel Robotics Co Ltd UNMANNED AIRCRAFT

Also Published As

Publication number Publication date
US20210323663A1 (en) 2021-10-21
CN109436314A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020134136A1 (zh) 一种无人飞行器
CN106828915B (zh) 一种倾转螺旋桨可垂直起降的高速飞行器的控制方法
EP3464064B1 (en) Vertical take-off and landing (vtol) winged air vehicle with complementary angled rotors
US10144509B2 (en) High performance VTOL aircraft
US20180141655A1 (en) VTOL airplane or drone utilizing at least two tilting propellers located in front of wings center of gravity.
US10005554B2 (en) Unmanned aerial vehicle
CN108298064B (zh) 非常规偏航控制系统
EP2353684A2 (en) VTOL model aircraft
EP3623289A1 (en) Tiltrotor free-pivot wing extension
JP7433254B2 (ja) テイルシッター
WO2018107564A1 (zh) 无人飞行器
CN106043696A (zh) 一种无人机飞行系统
CN103979104A (zh) 一种可变体x型机翼垂直起降微型飞行器
CN106915459A (zh) 一种混合式倾转旋翼无人机
CN106828918B (zh) 一种三翼面垂直起降飞行器
CN105173076B (zh) 一种垂直起降无人机
WO2020156078A1 (zh) 一种倾转旋翼无人机及其机翼组件
CN209617480U (zh) 一种无人飞行器
US11046421B2 (en) Slotted flaperon seal mechanism for aircraft devices
CN207607645U (zh) 复合翼飞行器
CN113788142A (zh) 一种可变型百叶窗机翼的倾转旋翼飞行器
JP7149116B2 (ja) 航空機
CN209581874U (zh) 一种垂直起降无人机
CN209852575U (zh) 一种复合翼无人机
CN112046740A (zh) 一种垂直起降飞行器和飞行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904707

Country of ref document: EP

Kind code of ref document: A1